变频器的电压与频率成比例的改变吗
什么是变频调速系统的恒压频比控制?
什么是变频调速系统的恒压频比控制?
恒压频比控制是变频调速系统中一种常用的控制方式,其目的是在变频调速过程中保持输出电压和频率之间的恒定比例关系。
在恒压频比控制中,通过调节变频器输出的电压和频率,以使输出电压与电网电压之间保持恒定的比例关系。
通常,以百分比的方式表示该比例关系,如电压百分比和频率百分比。
例如,如果恒压频比设置为80%,则在调速过程中,输出电压将与电网电压保持80%的比例,频率也与电网频率保持80%的比例。
恒压频比控制可以在变频调速系统中实现输出电压的稳定控制,具有以下优点:
1.稳定性:恒压频比控制可以实现输出电压稳定在一定的百
分比范围内,无论电网电压的变化,都可以保持恒定输出
电压。
这对于需要保持恒定电压的应用场景非常重要。
2.自适应性:恒压频比控制可以根据负载变化自适应地调整
输出电压和频率,以保持恒定压频比。
因此,无论负载增
加或减少,系统都能快速响应,确保稳定的工作。
3.能耗优化:通过恒压频比控制,可以根据实际需要调整输
出电压和频率,以实现能耗的优化。
通过降低输出电压和
频率,可以达到节省能源的效果。
总之,恒压频比控制在变频调速系统中通过调整输出电压和频
率的比例关系来实现恒定的输出电压,具有稳定性、自适应性和能耗优化的特点,适用于需要保持恒定电压的应用场景,如工业生产中的电机调速控制等。
变频器的基本原理及调试方法讲解
变频器的基本原理及调试方法讲解变频器的基本原理及调试方法讲解1.变频器基础1: VVVF 是Variable Voltage and Variable Frequency 的缩写,意为改变电压和改变频率,也就是人们所说的变压变频。
2: CVCF 是Constant Voltage and Constant Frequency 的缩写,意为恒电压、恒频率,也就是人们所说的恒压恒频。
我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。
交流电源在人们使用电源中占总使用电源的95%左右。
无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能于我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz等等,标准的电压和频率的交流供电电源叫工频交流电。
通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。
对于逆变为频率可调、电压可调的逆变器我们称为变频器。
变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。
对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。
一般变频电源是变频器价格的15--20倍。
由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。
变频器也可用于家电产品。
变频器的调速原理)
变频器调速基本原理变频器调速基本原理 1、变频器概述。
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
它的主电路都采用交—直—交电路。
JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz;2、变频原理。
从理论上我们可知,电机的转速N 与供电频率f 有以下关系:)1(*60sPfN其中: p ——电机极数 S——转差率由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。
变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
3、节能调速原理一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。
因此浪费大量电能,属不经济的调节方式。
从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。
对不同使用频率时的节电率N%可查表。
上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。
变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。
变频器中的频率、电压、转速、电流、功率的关系
步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
为此,本文结合变频调速的基本控制方式及负载的机械特性与基准电压、基准频率参数的关系,列举实例,详细说明基准电压与基准频率参数的设定方法。
变频器中的频率、电压、转速、电流、功率,转矩的关系
变频器中的频率、电压、转速、电流、功率,转矩的关系异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
变频器频率与电压曲线的关系
变频器频率与电压曲线的关系可以用以下步骤来详细描述:
1.变频器在低频时,由于电机磁通饱和,因此电压与频率成正比。
在额定频率以下调速时,频率和电压成比例地降低,同时保证V/F值基本恒定。
这需要将交流电通过整流桥变成直流电,利用电容稳压滤波,再通过IGBT等功率器件进行PWM斩波调速。
在这个过程中,电压和频率的比例关系需要保持恒定,以确保电机的恒转矩调速。
2.在基频以上调速时,频率和电压不是成比例地改变,而是通过保持电机的主磁通为额定值不变来控制电机的最大扭矩。
这需要利用IGBT等器件的快速开关特性,通过PWM 斩波的方式改变电机的电压和频率,以实现电机的恒功率调速。
综上所述,变频器频率与电压曲线的关系是:在低频时,电压与频率成正比;而在基频以上调速时,频率和电压不成比例地改变,而是通过控制电机的最大扭矩来实现恒功率调速。
变频器中的频率、电压、转速、电流、功率的关系
步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
为此,本文结合变频调速的基本控制方式及负载的机械特性与基准电压、基准频率参数的关系,列举实例,详细说明基准电压与基准频率参数的设定方法。
变频器基础原理知识
变频器基础原理知识1、什么是变频器?变频器由几部分组成?变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。
变频器由两大部分组成,即主电路和控制电路。
(1)主电路包括整流滤波电路、逆变电路、制动单元。
(2)控制电路包括计算机控制系统、键盘与显示、内部接口及信号检测与传递、供电电源、外接控制端子等。
2、PWM和PAM的不同点是什么?PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调制方式。
PAM是英文Pulse Amplitude Modulation (脉冲幅值调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
3、电压型与电流型有什么不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
4、为什么变频器的电压与频率成比例的改变?任何电动机的电磁转矩都是电流和磁通相互作用的结果,电流是不允许超过额定值的,否则将引起电动机的发热。
因此,如果磁通减小,电磁转矩也必减小,导致带载能力降低。
由公式E=4.44*K*F*N*Φ可以看出,在变频调速时,电动机的磁路随着运行频率fX是在相当大的范围内变化,它极容易使电动机的磁路严重饱和,导致励磁电流的波形严重畸变,产生峰值很高的尖峰电流。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
5、变频器安装时布线的主要原则是什么?(1)当外围设备与变频器共用一供电系统时,要在输入端安装噪声滤波器,或将其他设备用隔离变压器或电源滤波器进行噪声隔离。
变频器基础以及与直流调速器的区别
变频器基础以及与直流调速器的区别21世纪以来工业自动化进入了日新月异的飞速发展时代,工业控制产品各类繁多,功能强大,但是,各种工业设备应用总是少不了电机机输出旋转力矩作为基础,交流电机因为生产工艺简单,价格成本便宜,动力效率高等诸多优点逐渐取代直流电机,并且有越来越好的趋势,交流变频器作为交流电机的调速控制器,在工业领域得到了广泛而普及的应用。
所以本文特别介绍一下变频器的基础知识,以及和直流电机作对比,看看有哪些不同。
1、什么是变频器?与直流调速器原理有什么不同?变频器是利用电力半导体器件的通断将工频电源变换为频率连续可调的电能控制装置。
具体原理是,先将交流电源通过整流滤波变成直流电源,再通过六个IGBT元件在直流正负极之间交替导通形成三相交流电动势,CPU控制了导通的时间特性,使输出到电机上的三相电源发生了频率变化并且有多种电流电压特性。
而直流调速器实际上是一个三相整流器,只不过它通过数字电路来控制了可控硅的导通角,实现三相可控整流。
2、电压型与电流型有什麽不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
3、为什麽变频器的电压与频率成比例的改变?非同步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用於风机、泵类节能型变频器。
4、按比例地改变V和f时,电机的转矩如何变化?频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定的起动转矩,这种补偿称增强起动。
变频器频率电压计算公式
变频器频率电压计算公式
变频器的输出电压和频率有一定的关系,其计算公式为:Uo=UsFm/Fs,其中Uo为变频器的输出电压,Us为电源电压,Fm为变频器的输出频率,Fs 为电源频率。
例如,如果电源电压为50V,变频器的输出频率为50Hz时,输出电压就是50V;如果电源电压为220V,输出频率为10Hz时,输出电压就是220V。
变频器输出的频率也可以通过其他公式来计算,例如:
1. 变频器的输出频率公式:Fm=F1N1/N2,其中F1为电源频率,N1为电机的额定转速,N2为变频器的输出转速。
2. 变频器的输出电流公式:I=Pr/(Uocosφ),其中Pr为负载功率,Uo为变频器的输出电压,cosφ为功率因数。
3. 变频器的效率公式:η=Po/Pi,其中Po为电机输出功率,Pi为变频器输入功率。
因此,使用上述公式就可以根据需要的输出电压和频率来计算变频器的输出电压和频率。
不过在实际使用中,还需要考虑到负载的特性和其他因素的影响。
《变频调速技术与应用》复习资料(16级复习资料)
《变频技术及应用》复习大纲1、变频器主要是由主电路、控制电路组成,或由整流回路、中间回路、逆变回路。
2、什么是变频器?变频器是利用电力半导体器件的通断作用将电源频率变换为另一电源频率的控制装置。
3、变频就是改变供电频率,通过改变交流电频率的方式实现交流电控制的技术就叫变频技术。
4、变频器通常包含2个组成部分:整流器(rectifier)和逆变器(Inverter)。
其中,整流器将输入的交流电转换为直流电,逆变器将直流电再转换成所需频率的交流电。
5、恒转矩负载指那些负载转矩的大小,仅仅取决于负载的轻重,而和转速大小无关的负载。
恒功率负载指负载转矩的大小与转速成反比,而其功率基本维持不变的负载。
6、变频器类别❖A)按变换环节分类交--交、交---直----交❖B)按电压调制方式分类PAM、PWM❖C)按直流环节的储能方式分类电压型、电流型7、按输出波形分:1)PAM(脉冲幅度调制 )2)PWM (脉冲宽度调制 ))3)SPWM(正弦脉宽调制 )9、变频的控制技术1、标量控制2、VC矢量控制3、DTC控制10、各种电力电子器件均具有导通和阻断二种工作特性。
注:电力电子技术起步于晶闸管,普及于GTR,提高于IGBT。
14、当晶闸管的额定电压小于实际要求时,可以采用两个或两个以上同型号器件相串联。
15、为什么要进行晶闸管过电流保护?造成晶闸管过电流的重要原因是:电网电压波动太大、电动机轴上拖动的负载超过允许值、电路中管子误导通以及管子击穿短路等。
16、晶闸管的过电流常见的保护有以下几种:1)快速熔断器保护2)过电流继电器保护3)限流与脉冲移相保护4)利用反馈控制作过电流保护5)直流快速开关电流保护为什么要进行晶闸管的过电压保护?晶闸管从导通到阻断和开关电路一样,因为有电感释放能量,所以会产生过电压。
这可能会导致管子的反向击穿,所以必须采取保护措施。
常用的保护方法是在晶闸管两端并接RC吸收元件。
20、门极关断晶闸管GTO(gate turn off thyristor)。
变频器的频率和电压的关系
精心整理页脚内容变频器中的电压与频率的关系注:以下内容属摘抄和自己总结,无意冒犯原作,仅供互相学习总结:在中国基频为50HZ在基频以下调速时,为恒扭矩调速:频率越低,电压越小,扭矩不变,功率越小。
电压和频率成正比?在基频以上调速时,为恒功率调速:频率越高,电压不变,扭矩减小,功率不变。
?1、?频率与电压要成比例地改变原因异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电23、,方法4、,基准频率5、定子?;Φm-U1/f1基频以下调时速时,为恒压频比(恒磁通)控制方式,属于恒转?矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压在基频以下调速时,电压会随频率而变化,但两?者的比值不变,功率增大?。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过?电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒?功率调速区。
基准频率为恒功率调速区的最低频率,是恒转矩调速区与恒功率调速区的转折点,而基准电压值在整个恒功率调速区内不再随频率变化而改变。
??6、负载分类负载基本上可分为恒转矩负载、恒功率负载以及平方转矩负载等三类。
精心整理页脚内容恒转矩负载其所需转矩基本不受速度变化的影响(T=定值),对于该类负载,变频器的整个工作区最好运行在基频以下,这时变频器的输出特性正好能满足负载的要求。
恒功率负载在转速越高时,所需转矩越小(T ×N=定值),对于恒功率负载来说,电机的工作频率若运行在基频以上,其所要求的机械特性将与变频器的输出特性相吻合。
平方转矩负载,它所要求的转矩与转速的平方成正比(T/N2=定值),电机应运行在基频以下较为合理。
需要注意的是:平方转矩负载的工作频率绝不能超过工频(除非变频器容量大一个等级)。
变频器输出频率
变频器输出频率 The manuscript was revised on the evening of 2021
1.变频器输出频率与输出电压之间对应关系:变频器输出频率与输出电压为正比。
举例:当输出频率由50Hz调整为30Hz时,实测的输出电压为232V。
此时,输出频率为额定频率的60%,输出电压同样为输入电压的60%。
2.变频器输出频率与输入功率之间对应关系:变频器输出频率与输入功率的立方成正比。
举例:当输出频率由50Hz调整为30Hz时,输入功率由额定值减少为P输入=设:电动机额定功率=100KW则输入功率==。
3.变频器输出频率与输入电流之间对应关系:变频器输出频率与输入电流的立方成正比。
举例:当输出频率由50Hz调整为30Hz时,输入电流由额定值减少为P输入=设:电动机额定电流=200A则输入功率==。
比如频率范围5-50HZ负载10KW给定频率25HZ功率因数此时的输入电流应该是多少输出应该是多少如果给定平率变化的的话那么出入和输出电流是不是线性倍率关系。
提问者采纳
基本的电气原理已经告诉你,变频器的输入功率和输出功率不考虑变频器本身的功耗的情况下是相等的。
变频器的输入电压是不变的,但是输出电压是和输出频率是呈正比关系。
在绝大部分的情况下是线性的,这个关系也是电机原理的决定的,否则将导致电机内部的磁通过饱和,使电机发热严重,驱动特性下降。
所以简单的换算一下:
I(输入)=(V(输出)/V(输入))*I(输出)
输入电流和输出电流就是只能说是呈正比关系,因为V(输出)/V(输入)是随着频率的变化而变化的。
所以两者的关系应该是条曲线而非线性。
自动化电机驱动与调速技术复习题
1.在电力拖动系统中,负载的类型主要有:恒转矩负载、恒功率负载、二次方律负载。
2.三相异步电动机的调速方法主要有:变极调速、变频调速、改变转差率S调速等。
3.三相异步电动机的制动方法主要有:再生制动、直流制动和反接制动。
4.变频器的分类方法有多种,按照主电路直流环节储能方式分类,可以分为可以分为电压型变频器和电流型变频器。
5.占空比按正弦规律变化的脉宽调制方法叫做正弦波脉宽调制(SPWM)。
6.变频器的控制模式主要有:V/F控制模式、矢量控制模式。
7.在交-直-交变频器中,其主电路基本由整流部分、逆变部分、制动部分等三部分组成。
在交—直—交变频器的电路中,滤波电容C F的作用是对整流电压进行滤波,它是电压型变频器的主要标志,对电流型变频器来说滤波的元件是电感。
8.调频调压时,要维持U1/ f1=常数,技术上有两种方法:脉幅调制(PAM)和脉宽调制(PWM)9.把K u=K f时的U/f控制曲线称做基本U/f曲线,它表明了没有补偿时的电压U x 和f x之间的关系,它是进行V/F控制时的基准线。
10.二次方律负载是指转矩与速度的二次方成正比例变化的负载。
11.恒转矩负载是指负载转矩的大小仅仅取决于负载的轻重,而与转速大小无关的负载。
12.恒功率负载指负载转矩的大小与转速成反比,而其功率基本维持不变的负载。
13.基频电压指输出频率达到基频时变频器输出的电压。
14.加速时间指工作时间从0Hz上升到稳定运行所需的时间。
15.变频器PID控制功能中,P(比例)功能是提高控制的灵敏度。
变频器PID控制功能中,I(积分)功能是延长加减速的时间,缓解因P值过大而引起的超调.16.变频器PID控制功能中,D(微分)功能是提高控制的动态响应速度。
17.频率控制功能是变频器的基本控制功能。
控制变频器输出频率有以下几种方法:___面板控制__;____外接模拟量___;____固定频率_____;_通讯控制_______。
变频器中的频率、电压、转速、电流、功率的关系
变频器中的频率、电压、转速、电流、功率的关系异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
变频常用参数设置
变频器参数设置(一)变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。
1 、控制方式:即速度控制、转距控制、PID 控制或其他方式。
采取控制方式后,一般要根据控制精度进行静态或动态辨识。
2 、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
3 、最高运行频率:一般的变频器最大频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
4 、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
5 、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
6 、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
变频器参数设置(二)变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
一、加减速时间加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
为什么变频器的电压与频率成比例的改变?
为什么变频器的电压与频率成比例的改变?异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
-----------“成比例的改变”说法有误!!!1、如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
2、因此,改变频率的同时要控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生;3、“频率与电压要成比例地改变”是近似的、粗略的说法:1)根据电势平衡方程式(空载):U= E+IoRE= 4.44fNΦ=2πfL×Io2)忽略IoR (定子空载励磁电流Io在绕组电阻上的压降):U≈E= 4.44fNΦU/f=4.44NΦ=CΦ=定值当f低、远离50Hz时,电压取值也低,磁通也低,转矩不足;3)不忽略IoR :U= E+IoR = 4.44fNΦ+IoR=2πfL×Io +IoRU/f=2πL×Io +IoR/f=Io(2πL+R/f)U/f=U/f(f)不是定值,是频率f的函数,在f接近50Hz时,R/f很小可忽略,U/f=定值U/f=U/f(f)不是定值,是频率f的函数,在f低、远离50Hz时,R/f很大不可忽略,U/f=IoR/f,U=IoR,保证磁通恒定!4、所以正确的说法是:1)频率f降低时,电压U也降低,U/f=U/f(f)不是定值,是频率f的函数;2)f高时,接近50Hz时,U/f=定值=380/50;3)在f低、远离50Hz时,R/f很大不可忽略,U/f=IoR/f很大,U>IoR,保证磁通恒定!5、由于U/f=定值模式,在低频时力矩不足,所以适应低速负载较小的设备,如离心风机、水泵等;6、对于低速时,就满载、重在时,U/f=IoR/f很大,U>IoR,保证磁通恒定,保证有足够的转矩!7、如果变频器的U/f=定值模式控制,电机磁场在低频时减弱,转矩不足;8、如果变频器按U/f=U/f(f)模式不是定值,是频率f的函数变化,电机磁场恒定,电机转矩稳定,高低、频特性一致!目的是使电机磁通保持基本不变,电机避开弱磁区和饱和区,获取较好的运转特性。
关于变频器各参数之间的关系问题
关于变频器各参数之间的关系问题一、与频率相关的参数问题1.变频器的输出频率与输入侧频率无关。
因为常见的电压型变频器有dc电容的中间环节是交-直-交类型的。
2. 变频器输出频率取决于调制波频率。
3. IGBT的开关频率应至少是变频器输出频率的3倍,甚至更高。
载频越高,电流波形越好啊变频器的输出频率和输出电压基本成线性比例。
在负载不变的情况下,频率升高,电压升高,电流下降。
相反频率降低,电压减少,电流增大。
低速情况下,电流大。
二、变频器输入输出电流与负载的关系同一品牌的变频器都被分成两大类:"恒转矩式"和"变转矩式"后者内部所使用的IGBT功率要比前者小.应用于风机,水泵类(可变转矩设备)的控制.它的输入输出电流同负载的转速(转速越高负载越大)是正比关系,它也叫做"风机,水泵类变频器".所以把风机,水泵控制在低速时可以节能。
如果是前者("恒转矩式"变频器)要比较贵些,一般使用在:"恒转矩式的负载上(如:输送棍道,压边机,投料机等)则变频器的输入输入电流基本是恒定的.但是变频器的输出电流却是跟其输出频率成反比例关系,因为输出频率越低变频器的输出电压也越低,为了维持<恒转矩>所以输出电流只有升高了来保持恒定的输出功率P=V×I。
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器V/F控制和矢量控制是不一样的。
这取决于负载特性和变频器设定的驱动特性。
变频器变频后输出的电流变大有的相关参数是变频器的输出没有设置好,检查变频器的输出电流,要么降低变频器的1:载波频率:降低2:转矩提升:降低3:自动稳压:关闭如果变频器应电流过大而跳闸,也许就是负载的问题。
变频器知识整理
变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。
(但VFD也可解释为Vacuum fluorescent display,真空荧光管,故这种译法并不常用)。
变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。
变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable Voltage Variable Frequency Inverter)。
1、VVVF 是Variable Voltage and Variable Frequency 的缩写,意为改变电压和改变频率,也就是人们所说的变压变频。
2、CVCF 是Constant Voltage and Constant Frequency 的缩写,意为恒电压、恒频率,也就是人们所说的恒压恒频。
我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。
交流电源在人们使用电源中占总使用电源的95%左右。
无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能于我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz等等,标准的电压和频率的交流供电电源叫工频交流电。
通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。
对于逆变为频率可调、电压可调的逆变器我们称为变频器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的电压与频率成比例的改变吗?
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
-----------“成比例的改变”说法有误!!!
1、如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
2、因此,改变频率的同时要控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生;
3、“频率与电压要成比例地改变”是近似的、粗略的说法:
1)根据电势平衡方程式(空载):
U=E+IoR
E= 4.44fNΦ=2πfL×Io
2)忽略IoR(定子空载励磁电流Io在绕组电阻上的压降):
U≈E= 4.44fNΦ
U/f=4.44NΦ=CΦ=定值
当f低、远离50Hz时,电压取值也低,磁通也低,转矩不足;
3)不忽略IoR:
U=E+IoR= 4.44fNΦ+IoR=2πfL×Io+IoR
U/f=2πL×Io+IoR/f=Io(2πL+R/f)
U/f=U/f(f)不是定值,是频率f的函数,在f接近50Hz时,R/f很小可忽略,U/f=定值
U/f=U/f(f)不是定值,是频率f的函数,在f低、远离50Hz时,R/f很大不可忽略,U/f=IoR/f,U=IoR,保证磁通恒定!
4、所以正确的说法是:
1)频率f降低时,电压U也降低,U/f=U/f(f)不是定值,是频率f的函数;2)f高时,接近50Hz时,U/f=定值=380/50;
3)在f低、远离50Hz时,R/f很大不可忽略,U/f=IoR/f很大,U>IoR,保证磁通恒定!
5、由于U/f=定值模式,在低频时力矩不足,所以适应低速负载较小的设备,如离心风机、水泵等;
6、对于低速时,就满载、重在时,U/f=IoR/f很大,U>IoR,保证磁通恒定,保证有足够的转矩!
7、如果变频器的U/f=定值模式控制,电机磁场在低频时减弱,转矩不足;
8、如果变频器按U/f=U/f(f)模式不是定值,是频率f的函数变化,电机磁场恒定,电机转矩稳定,高低、频特性一致!。