fiber optic illuminator光纤照明设备

合集下载

光学纤维传输在照明设备中的研究与应用

光学纤维传输在照明设备中的研究与应用

光学纤维传输在照明设备中的研究与应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!光学纤维传输技术是一种通过光学纤维传输光信号的技术,已经在通信领域得到广泛应用。

光导纤维、光导纤维束或光缆用连接器hs code

光导纤维、光导纤维束或光缆用连接器hs code

光导纤维、光导纤维束或光缆用连接器hs code1.引言1.1 概述光导纤维连接器是一种用于将光导纤维、光导纤维束或光缆连接起来的重要组件。

它在光通信和光传感等领域中起着关键的作用。

光导纤维连接器的主要功能是实现光信号的传输和连接的稳定性。

随着现代通信技术的不断发展,光导纤维连接器也逐渐发展壮大,并在光纤通信领域扮演着不可或缺的角色。

它通过精确的机械对准和光学接触,将两根光导纤维的端面对接在一起,使光信号得以有效地传输。

光导纤维连接器根据其结构和特性的不同,可以分为多种类型。

例如,常见的连接器类型有SC、LC、FC、ST等。

每种连接器都有自己独特的设计和安装方式,以适应不同的应用场景和要求。

这些连接器提供了可靠的光学接口,能够确保光信号的高质量传输。

光导纤维连接器在光通信网络中的重要性不言而喻。

它们不仅在数据中心、局域网和广域网等光纤网络中广泛应用,还被广泛应用于航空航天、军事、医疗和工业等领域。

随着数字化时代的到来,对高速、可靠和高质量的光通信需求不断增长,光导纤维连接器的市场前景非常广阔。

基于以上背景,本文将深入探讨光导纤维连接器的相关知识及其分类情况,以帮助读者更好地理解其作用和应用。

此外,本文还将展望光导纤维连接器未来的发展趋势和潜力。

通过全面分析和研究,我们有望进一步提升光导纤维连接器的性能和应用范围,推动光通信技术的发展,为人类社会的进步做出更大的贡献。

1.2 文章结构文章结构部分的内容可以编写为:文章结构:本文将围绕光导纤维连接器展开深入研究和讨论,旨在探讨该领域的相关知识和技术。

文章分为三个主要部分:引言、正文和结论。

在引言部分,我们将对光导纤维连接器进行概述,介绍其基本概念、原理和应用背景。

随后,我们会详细阐述本文的结构和目的,以帮助读者更好地理解文章内容。

正文部分将重点关注光导纤维连接器的作用和分类。

首先,我们将深入讨论光导纤维连接器在光纤传输中的重要作用,包括其在光信号传输中的连接和传输功能以及对信号质量的影响。

光导纤维照明简介

光导纤维照明简介

光源技术光导纤维照明简介何宜生(华东电子集团公司,南京210028)摘要:该文对光纤的历史,光纤的制造方法和光纤技术在照明领域的应用方面作了介绍。

关键词:光纤;光纤光缆;投光器收稿日期:2004-01-05玻璃纤维光学系统在建筑照明和商业空间造型领域起着日益重要的作用。

在室内造型方面,它首先被采用于博物馆及商店的展品,商品陈列柜的照明上。

其次在浴室,桑拿浴室以及宾馆等建筑的门厅入口等处也得到广泛的应用,见图1、图2、图3、图4、图5。

这种不带电的0冷光0在这些场合的应用日益受到人们的青睐。

显然,这种光纤照明目前还不能替代现存的一般照明的方式,但是它可以作为极有意义的补充手段。

图1图2图3图4#41#图51光纤的历史回顾19世纪70年代,在英国开展了首批光导试验, 20世纪的20年代,美国受理了首个有关光纤技术的专利。

20世纪70年代开始合理和经济地利用玻纤光缆和光。

它们首先被采用于生产线上各个单元的控制,解决了大容量的数据传输而又无需极度增加电线的敷设,当时的传输距离约为20m。

随着各个部件效率的提高,数据传输距离也成倍地增加。

80年代出现了首批用于医疗技术的内窥镜。

90年代初不少光纤产品已经商品化,在数据技术方面,主要使用混合光缆(C U P LWL),而光学技术方面采用纯玻纤光缆,以及塑料光缆(P MMA)。

2光纤的制造在各种玻纤和塑料纤维光缆制造中,都必须有严格的质量指标。

以玻纤光缆为例,其具有多级工序的制备过程的首道工序是熔制玻璃。

由高纯度的原料按严格的熔制方法熔制,然后由高折射率的芯玻璃拉制成直径为30m m,长为1000mm的芯棒。

由低折射率的外层玻璃制成几何尺寸十分精确的玻璃管。

在一个温度约1000e的电炉中,在直至100个可分别调节温度的同一轴向的加热环中,由预制材料拉制出首级玻璃光纤束。

此处按拉制的速度,产生直径由30~100L m的单根玻璃纤维,在拉制过程之后,立即按所需光缆的直径(1~8mm)将光纤整理成束并套上防止机械损伤的塑料保护层。

光导纤维的原理及应用

光导纤维的原理及应用

光导纤维的原理及应用廖浚竹物理学2015级摘要:介绍了阶跃型和梯度型光导纤维内光线传输原理,光导纤维的优良特性和在各个领域的广泛应用。

关键词:光导纤维、全反射、自聚焦、光纤应用引言:光导纤维的研制成功使人类的通迅技术得到了前所未有的发展,自从1977年美国加利福尼亚洲通用电话公司安装第一套光纤通讯系统以后,发展十分迅猛,至今已普遍使用。

于当今信息爆炸的世界,人们对提高无线电波传递信息容量给予了极大的关注,光纤通信就是这一征程上的重大里程碑。

近年来,随着现代科学技术的迅猛发展,光导纤维不仅在通信、电子和电力等领域的应用日益扩展,而且在医学检测、太阳光照明、制作传感器等方面也有了重要突破,成为大有前途的新型基础材料。

1、阶跃型(全反射型)光导纤维光线传输原理1.1全反射光由光密介质进入光疏介质时,即n2>n1时,折射光线将远离法线。

随着入射角θ1的增大,折射角θ2增加很快,当入射角θ1增加到θc时,折射线延表面进行,即折射角为90°,该入射角θc称为临界角。

若入射角大于临界角,则只有反射没有折射,此现象称为全反射(图1)。

当光线由光疏媒介射到光密媒介时,折射光线将靠近法线而折射,故这时不会发生全反射。

临界角:θc=arc(n1/n2)图11.2光导纤维⑴基本结构光纤的内层是纯玻璃光芯,外包折射率低于玻璃折射率的掺杂物(包层)。

内芯是光传播的部分,包层与纤芯折射率的差别就是为了使光发生全内反射。

大部分的光纤在包层外还有一层涂覆层,它一般是一层或几层聚合物,防止纤芯和包层受到震荡而影响光学或物理性质。

涂覆层对在光纤里传播的光没有影响,它只是作为一个减震器。

⑵基本原理光导纤维就是利用全反射规律使光线沿着曲线传播的光学元件。

图2显示了光在光纤里的传播特性。

入射进光纤中的光,当入射角大于临界角时,光在纤芯与包层之间界面上发生全反射,因为入射角等于反射角,反射光再次被反射,光将被光纤以锯齿形传播。

德国LBM光纤照明技术有限公司

德国LBM光纤照明技术有限公司

• 光线通过收集器后不聚焦 • 最佳分布的区域位于收集器的出口处 • 曲面允许存在一定误差 • 光源的大小比收集器的曲率更重要 • 收集器出口处光线分布均匀
• 反射器输出的光是聚焦的 • 最佳采光点是椭圆的第二个焦点 • 曲面要求制作精确 • 曲面大小限制了反射器和采光直径 • 中央焦点明亮, 边缘亮度逐渐减弱
德国LBM光纤照明技术有限公司
内容介绍
• 公司简介
• 市场概览
• 技术研发 • 工程实例
公司简介
1989年伯恩哈特· 曼先生(Bernhard Mann)创 立LBM公司,成为把光纤系统引入德国的第一人。 1994年,LBM公司专门致力于光纤照明产品的 研发。 1997年,LBM公司已经成为欧洲范围内光纤照 明技术的领导者和市场代言人,产品遍布欧洲。
-25-
高效光纤照明------ 第二次革命
产品革新 …
光纤 …
… 收集器
+
新型大芯光纤
92334-VortragBM-LiTG-23Mai03-wu
68 瓦卤灯
MCC MARKETING COMMUNICATIONS COACHING
光线收集器
-26-
EFO 68 IP 67 光端机
92334-VortragBM-LiTG-23Mai03-wu
MCC MARKETING COMMUNICATIONS COACHING
-32-
大芯塑料光纤超越了塑料光纤
套管 (n = 1,35) 100 % 大芯光纤
固体塑料芯 (n = 1,5)
80O
可接受角度 (NA > 0,66)
75 %
塑料光纤束
• 传输中的光损失为每米3 ~ 6% • 比集成的面积损失小 • 与塑料光纤束相比较,更低的成本

光纤照明原理

光纤照明原理

光纤照明原理
光纤照明是一种利用光纤传输光线来照明的技术。

它采用了灯光源将光线发送到一端的光纤,然后通过光纤的全反射原理将光线传输到需要照明的地方。

光纤照明的原理基于光的全反射现象。

光线从光纤的一端进入,当光线碰到光纤的界面并以一定的角度入射时,如果这个角度超过了临界角,光线就会被完全反射回光纤内部。

这样,光线就能在光纤中持续地传输,直到达到光纤的另一端。

在光线的传输过程中,光线几乎不损失,因此光纤照明可以实现长距离的光线传输。

光纤照明通常使用的光源是高亮度的LED灯。

LED灯的发光
效果好,并且具有长寿命、低能耗等特点,非常适合用于光纤照明。

LED灯会将光线发送到光纤的一端,并通过光纤的全
反射原理将光线传输到需要照明的地方。

传输过程中,光线会严格按照光纤的路径进行传输,保持光线的聚焦性和方向性。

当光线从光纤的另一端传输到需要照明的地方时,可以通过不同的方式将光线散开,实现不同的照明效果。

例如,可以使用透镜或反射器将光线聚焦或散射,进一步调节照明效果。

光纤照明具有很广泛的应用。

它可以用于室内照明、景观照明、建筑照明等。

由于光纤照明的灵活性,可以根据需要进行任意的布局和设计,实现各种照明效果。

同时,光纤照明还能够实现远距离的光线传输,因此在一些特殊场合,如地下矿井、隧道、水下环境等,光纤照明也得到了广泛的应用。

总的来说,光纤照明通过利用光纤的全反射原理,将光线从光源传输到需要照明的地方。

它具有灵活性高、光线传输距离远等优势,在不同的应用领域中具有广泛的应用前景。

机器视觉英文词汇

机器视觉英文词汇

机器视觉英文词汇机器视觉英文词汇Aaberration 像差accessory shoes 附件插座、热靴accessory 附件achromatic 消色差的active 主动的、有源的acutance 锐度acute-matte 磨砂毛玻璃adapter 适配器advance system 输片系统ae lock(ael) 自动曝光锁定af illuminatoraf 照明器af spotbeam projectoraf 照明器af(auto focus) 自动聚焦algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。

aliasing 走样(混叠)当图像象素间距和图像细节相比太大时产生的一种人工痕迹。

alkaline 碱性ambient light 环境光amplification factor 放大倍率analog input/output boards 模拟输入输出板卡analog-to-digital converters 模数转换器ancillary devices 辅助产品angle finder 弯角取景器angle of view 视角anti-red-eye 防红眼aperture priority(ap) 光圈优先aperture 光圈apo(apochromat) 复消色差application-development software 应用开发软件application-specific software 应用软件apz(advanced program zoom) 高级程序变焦arc 弧图的一部分;表示一曲线一段的相连的像素集合。

area ccd solid-state sensors 区域ccd 固体传感器area cmos sensors 区域cmos传感器area-array cameras 面阵相机arrays 阵列asa(american standards association) 美国标准协会asics 专用集成电路astigmatism 像散attached coprocessrs 附加协处理器auto bracket 自动包围auto composition 自动构图auto exposure bracketing 自动包围曝光auto exposure 自动曝光auto film advance 自动进片auto flash 自动闪光auto loading 自动装片auto multi-program 自动多程序auto rewind 自动退片auto wind 自动卷片auto zoom 自动变焦autofocus optics 自动聚焦光学元件automatic exposure(ae) 自动曝光automation/robotics 自动化/机器人技术automation 自动化auxiliary 辅助的Bback light compensation 逆光补偿back light 逆光、背光back 机背background 背景backlighting devices 背光源backplanes 底板balance contrast 反差平衡bar code system 条形码系统barcode scanners 条形码扫描仪barrel distortion 桶形畸变base-stored image sensor (basis) 基存储影像传感器battery check 电池检测battery holder 电池手柄bayonet 卡口beam profilers 电子束仿形器beam splitters 光分路器bellows 皮腔binary image 二值图像只有两级灰度的数字图像(通常为0和1,黑和白)biometrics systems 生物测量系统blue filter 蓝色滤光镜blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。

光纤培训ppt

光纤培训ppt

光纤清洁工具
光纤连接型号
单模、多模
• 多模光纤:芯的直径是50μm和62.5μm两种, 大致与人的头发的粗细 相当。 • 而单模光纤芯的直径为8μm~10μm。
多模光纤多用于传输速率相对较低,传输 距离相对较短的网络中,如局域网等,这类网络 中通常具有节点多,接头多,弯路多,而且连接 器、耦合器的用量大,单位光纤长度使用光源个 数多等特点,使用多模光纤可以有效的降低网络 成本。
光纤有什么优势呢?
频带宽、损耗低、重量轻、抗干扰能力强、 成本不断下降……
光纤产品
光纤线缆 光纤工具 光纤配件 光纤设备
光纤工艺
光纤研磨 光纤快接 光纤熔接
测试方法 供应商介绍
熔接测试平台 光纤验证 光纤认证
光纤产品关键词
SC接头
LC接头 FC接头 ST接头 凯夫拉剪刀
单模
多模 皮线光缆 快速连接器
单芯
多芯
室内
室外 跳纤 尾纤 米勒钳
清洁工具
切割工具
皮线开剥器 光纤配线架 光电收发器
红光笔
光功率计 光纤交换机 耦合器
光纤熔接机
熔接包
等等……
光纤熔接机
光纤熔接机主要用于光通信 中,光缆的施工和维护。主要是 靠放出电弧将两头光纤熔化,同 时运用准直原理平缓推进,以实 现光纤模场的耦合。
现有光纤熔接机国 外品牌有住友(TYPE-37、TYPE-39、TYPE-81C、 TYPE-66)、古河(175、177、178A),藤仓(30S、50S、 60S、 80S、60R),易诺(IFS-5、IFS-1O、IFS-15H、IFS-16),日新,黑 马(D-19、D-90)。 国内品牌有电子41所(6471,6471A),迪威普,南京吉隆,深圳瑞研, 南京天兴通,青岛。

f-7000 荧光光谱仪仪器参数

f-7000 荧光光谱仪仪器参数

一、荧光光谱仪的原理和应用荧光光谱仪是一种用于测量物质荧光发射光谱的仪器。

它利用物质受到紫外或可见光激发后发出的荧光来进行分析和检测。

荧光光谱仪广泛应用于生物医药、环境监测、食品安全等领域,具有灵敏度高、分辨率好、快速准确等特点。

二、荧光光谱仪的参数和规格1. 光源:荧光光谱仪一般采用氙灯或汞灯作为激发光源,氙灯的波长范围广,能够提供较强的激发光,而汞灯则具有比较稳定的输出功率。

2. 分光器:荧光光谱仪的分光器通常采用全息光栅或单色器,能够对荧光光谱进行高效分光和检测。

全息光栅具有分辨率高、光谱范围宽的优点,而单色器则能够提供较高的光谱分辨率。

3. 探测器:荧光光谱仪的探测器一般采用光电二极管(PMT)或光电倍增管(PMT)进行荧光信号的检测和转换。

PMT具有灵敏度高、响应速度快的特点,但对环境要求较高;而PMT则可适用于较恶劣的环境条件下。

4. 光谱范围:荧光光谱仪的光谱范围通常覆盖200-800nm,不同型号的荧光光谱仪具有不同的光谱范围和分辨率。

5. 数据处理系统:现代荧光光谱仪通常配备有先进的数据处理系统,能够实现数据采集、分析和报告输出等功能,提高了检测的自动化程度和准确性。

6. 标定和验证:荧光光谱仪的参数需要经过定期的标定和验证,以确保其检测结果的准确性和可靠性。

三、荧光光谱仪的操作和维护1. 操作:使用荧光光谱仪时,应严格按照操作手册的要求进行操作,保证仪器正常工作。

在操作过程中,应注意仪器的稳定性和光路的清洁,避免外界光线的干扰。

2. 维护:定期对荧光光谱仪进行维护保养,清洁光路和探测器,定期更换光源等关键部件,保证仪器的稳定性和准确性。

四、荧光光谱仪的应用荧光光谱仪在生物医药领域广泛应用于蛋白质、核酸、细胞等生物分子的检测和定量分析;在环境监测领域可以用于水质和大气等环境样品的有机物和金属离子的检测;在食品安全领域可用于食品中有毒物质和添加剂的分析等。

五、总结荧光光谱仪作为一种先进的分析仪器,具有灵敏度高、分辨率好、快速准确等特点,广泛应用于生物医药、环境监测、食品安全等领域。

高功率连续光纤激光器RFL-C4000M-HP RFL-C6000M-HP 使用说明书

高功率连续光纤激光器RFL-C4000M-HP RFL-C6000M-HP 使用说明书

高功率连续光纤激光器使用说明书适用机型:RFL-C4000M-HP RFL-C6000M-HP RFL-C8000M-HP RFL-C10000M-HP RFL-C12000M-HP目录1安全信息 (3)1.1安全标识 (3)1.2激光安全等级 (4)1.3光学安全 (5)1.4电学安全 (5)1.5其他安全注意事项 (5)2产品说明 (5)2.1产品特性 (5)2.2实际配置清单 (6)2.3开箱及检查 (6)2.4运行环境 (6)2.5注意事项 (7)2.6产品性能 (7)3安装 (8)3.1安装尺寸图 (8)3.2安装注意事项 (11)3.3冷却系统要求 (13)4产品的使用 (16)4.1前面板 (16)4.2后面板 (17)4.3电源连接 (18)4.4控制接口定义 (20)4.4.1SAFETY XP2接口 (21)4.4.2HARDWIRING XP1 (25)4.4.3RS232接口 (27)4.4.4Analog接口XP4 (27)4.4.5网口通信接口ETHERNET XP5 (27)4.5安全互锁介绍 (28)4.6激光器内部电气回路示意图 (28)4.7启动操作顺序 (29)5控制模式选择 (29)5.1ON模式 (31)5.2AD模式使能 (31)5.3出光外控使能 (32)5.4红光控制 (32)5.5编程模式 (32)5.6REM模式 (32)5.6.1AD模式使能 (32)5.6.2出光外控 (33)5.6.3红光控制 (33)5.6.4编程模式 (33)6激光器接线方式和操作步骤 (34)6.1ON模式下的内控 (34)6.2ON模式下的功率通讯设置出光外控模式 (35)6.3ON模式下功率模拟量设置出光外控 (36)6.4ON模式下的编程模式外控出光 (37)6.5REM模式下功率模拟量设置出光外控 (38)6.6REM模式下功率通讯设置出光外控 (39)6.7REM模式下的编程模式 (39)7RS232与INTERNET通讯指令 (40)7.1端口配置 (40)7.2激光器通讯协议(网口&串口) (40)8上位机软件使用说明 (46)8.1上位机软件显示主界面 (47)8.2主状态显示区 (48)8.2.1激光器累计工作时间显示区 (49)8.2.2激光器工作状态显示区 (49)8.2.3激光器控制显示区 (50)8.3激光器模块状态 (52)8.4报警类型显示区 (52)8.5上位机软件工作模式选择 (53)8.6语言选择 (54)8.7授权(限时锁定) (54)8.7.1观察模式下的授权 (54)8.7.2诊断模式下的授权 (55)8.8关于 (56)8.9XP1接口状态指示(诊断模式下) (56)8.10故障记录(诊断模式下) (57)8.11模块参数(诊断模式下) (57)8.12编程设置(波形编辑) (58)8.12.1编辑波形 (59)8.12.2命令解释 (59)9质保及返修、退货流程 (60)9.1一般保修 (60)9.2保修的限定性 (60)9.3技术支持及产品维修 (60)9.4报废要求 (60)1安全信息感谢您选择锐科光纤激光器,本用户手册为您提供了重要的安全、操作、维护及其它方面的信息。

Fiber optic gyro

Fiber optic gyro

专利名称:Fiber optic gyro发明人:Ohno, Aritaka, c/o Japan AviationElectronics,Motohara, Shinji, c/o JapanAviation Electronics,Hotate, Kazuo, c/o JapanAviation Electronics申请号:EP92110078.0申请日:19920615公开号:EP0520282A3公开日:19930512专利内容由知识产权出版社提供专利附图:摘要:An optical fiber coil (16) in a fiber optic gyro is formed by a single mode opticalfiber (16a) and two polarization retaining optical fibers (16b, 16c) of the same length and connected to both ends of the single mode optical fiber. The polarization optical fibers and an optical fiber coupler (14) are connected, and clockwise and counterclockwise light beams are distributed and supplied by the optical fiber coupler to the optical fiber coil, and the both light beams having returned to the optical fiber coupler are thereby caused to interfere with each other. The lengths of the X-axis and Y-axis components of light are displaced apart in phase to such an extent as not to interfere with each other, by the birefringent property induced in the coil of the single optical fiber and the birefringent property of the polarization retaining optical fibers themselves.申请人:JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED地址:21-6, Dogenzaka 1-chome Shibuya-ku Tokyo JP国籍:JP代理机构:Hoffmann, Eckart, Dipl.-Ing.更多信息请下载全文后查看。

光纤照明PPT

光纤照明PPT
★ 只有光,没有电,见光不见灯,安全性和欣赏性极高。 ★ 任意改变其造型及色彩组合,可以重复使用,节省投资。 ★ 不受雨、雪、雷恶劣天气的限制,是霓虹灯最好的替代品。 ★ 耗电仅是传统照明的十分之一,运行费用极低。 ★ 光纤丝只传导光,不带电。在水中使用,没有安全隐患。 ★ 材料柔软可以随意弯曲;使用寿命在10年以上,维护十分方便。 ★ 没有紫外线红外线,减少对物品的照射损坏。尤其是文物。 ★ 没有电磁干扰,没有电火花、没有雷击危险。
办公室 娱乐场所
大堂应用
水中应用
游泳池、喷泉、河湖、水族馆,可以充分 发挥光纤照明自身不带电的安全特性,完 成传统照明无法实现的照明装饰效果,而 且施工非常方便。(例如:水底的照明、 泳道的划分、水族馆用的光纤花。)
泳池变色效果
喷泉
游泳池照明
水景
水族箱
酒店应用
酒店是多功能综合性场所,室内外 环境要求华丽和艺术性,而光纤照 明既有很好的装饰效果,又可以大 大减少电费开支和日常维护费用。
娱乐应用
动感、多彩、变换是娱乐及演出照 明设计要素的一部分。而光纤照明 恰恰同时具备了以上要素。
吧台
随着风格各 异的吧台造 型,勾勒出 彩色变换的 线条或图案。
隔断
餐厅地面装饰灯
影剧院:地面指引照明
地 角 照 明
演出舞台、影视灯光照明
利用侧发光,勾勒出每级台阶,并且可以变换颜色, 增加动态、艺术效果。
店面装饰照明
店面装饰
橱窗
顶部装饰
走廊
柜台照明
文物照明
展览展示
可以制作成标识、图案以及局部照 明,尤其是企业参加展览会,不仅 增加了动态广告效应,而且一次投 资,可以重复使用。
展台
标识

光纤照明系统的组成及特点

光纤照明系统的组成及特点

光纤照明系统的组成及特点光纤照明系统是一种常用的照明系统,它利用光纤作为传输介质,将光源和被照明物相分离,广泛应用于建筑、景观、展示柜、广告灯箱等领域。

本文将介绍光纤照明系统的组成和特点。

组成光纤照明系统主要由以下四个部分组成:光源光源是光纤照明系统的重要组成部分,它产生光线并将光线传递到光纤中。

常用的光源有白炽灯、氙气灯、LED等。

其中LED光源由于其高效节能、色彩美观等特点被越来越广泛地应用于光纤照明系统中。

光纤光纤是光纤照明系统的传输介质,有塑料光纤和玻璃光纤两种,由于玻璃光纤有较高的折射率和透光率,因此在光纤传输质量和传输距离方面更具优势。

光纤末端光纤末端是将光线投射到被照明物上的部分,其形状和大小可以根据被照明物的大小和形状进行设计。

驱动装置驱动装置用于控制光源发出的光线的亮度和颜色,并将其传输到光纤中,从而实现对被照明物的照明。

特点光纤照明系统具有以下几个特点:安全性高光纤照明系统的光源和电源可以分离,因此光纤照明系统相对于传统照明系统而言更加安全,不会产生火灾和爆炸等安全隐患。

灵活性强光纤照明系统的光源、光纤和光纤末端可以弯曲和切割,因此可以根据被照明物的大小和形状进行灵活配置,使其更加适应不同的照明需要。

能耗低光纤照明系统可以利用LED等高效节能的光源,因此其能耗比传统照明系统更低,可以显著降低能源消耗和能源成本。

光线自然光纤照明系统的光线自然、均匀,不会产生闪烁和眩光等不良影响,因此更加舒适和环保。

长寿命光纤照明系统的光源寿命长,可以达到20,000至50,000小时以上,因此维护成本低,减少了更换照明设备的频率和使用成本。

总之,光纤照明系统具有灵活性强、安全性高、能耗低、光线自然、长寿命等多个优点,逐渐成为照明行业的趋势和主流。

近红外光子烧结灯管-概述说明以及解释

近红外光子烧结灯管-概述说明以及解释

近红外光子烧结灯管-概述说明以及解释1.引言1.1 概述近红外光子烧结灯管是一种新型的光源技术,其利用近红外光的特性和光子烧结技术的原理,能够实现高效的能量转换和节能环保的特点。

本文将详细介绍近红外光的特点、光子烧结技术的原理以及近红外光子烧结灯管在各个领域的应用,旨在探讨该技术的优势和发展前景。

近红外光是指波长介于700纳米至2500纳米之间的电磁波,它在光谱中处于可见光和红外光之间。

与可见光相比,近红外光具有穿透力强、热效应明显、不伤害人眼等特点。

这使得近红外光可以在各个领域发挥重要作用,例如医疗、工业、农业等。

光子烧结技术是一种将粉末材料通过近红外光能量进行加热和烧结的方法。

其原理是利用近红外光的高能量和较长波长,通过选择性加热粉末材料,使粉末颗粒在一定温度下熔结在一起,形成致密坚固的材料。

这种技术具有高效、环保的特点,可以有效提高材料的密度和牢固度。

近红外光子烧结灯管作为一种应用光子烧结技术的光源设备,在各个领域都有广泛的应用。

例如,在医疗领域,近红外光子烧结灯管可以用于光疗、康复等治疗,具有独特的治疗效果和无创性的特点。

在工业领域,该灯管可以用于高温烧结、表面改性等加工过程,提高生产效率和产品质量。

在农业领域,近红外光子烧结灯管可以用于植物光合作用的研究和提升农作物产量。

综上所述,近红外光子烧结灯管具有明显的优势和广泛的应用前景。

本文将进一步探讨近红外光子烧结灯管的优势和发展前景,为读者提供更深入的了解和研究方向。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构是指整篇文章所采用的组织方式和框架,通过清晰的结构可以使读者更好地理解文章的逻辑和思路。

本文将按照以下结构进行分析和讨论:1. 引言:在引言部分,将对近红外光子烧结灯管进行概述,并说明文章的目的和意义。

通过对该主题的引入,读者可以了解到近红外光子烧结灯管是什么以及与其他灯管相比的独特之处。

2. 正文:正文部分将深入探讨近红外光子烧结灯管的特点、光子烧结技术的原理以及该灯管在实际应用中的具体情况。

光电行业词汇.doc

光电行业词汇.doc

色吸收滤光镜 Absorption Filters声光光学晶体 Acousto-Optic Crystals声光玻璃 Acousto-Optic Glass声光调变器 Acousto-Optic Modulators声光偏折/扫瞄器 Acousto-Optic Optical Deflectors/Scanners光衰减器(可变) Adjustable Optical Attenuators亚历山大激光 Alexanderite Lasers激光晶体(亚历山大) Alexandrite Laser Crystals配向膜涂布装置 Alignment Coating Equipment配向膜 Alignment Film文数字表示用发光二极体 Alpha-Numeric LEDs类比/强度调变器 Analog/Intensity Modulators在线英语学习歪像透镜 Anamorphic Lenses单模态 APC 光纤连接器 Fiber Optic Connectors, Single Mode, APC氩离子激光 Argon Lasers灰烬设备 Ashing Equipment非球面镜 Aspheric Mirrors组合用设备 Assembling Equipment天文用面镜 Astronomical Mirrors非同步光通讯设备 Asynchronous Optical Communication Equipment非同步传输模式网路设备 ATM Network Equipment通信用崩溃光二极体模组 Avalanche Photodiode Modules for Communication通信用崩溃光二极体 Avalanche Photodiodes for Communication交流电路 a.c. circuit交流放电 a.c. discharge声频振荡器 a.f. oscillator模拟-数字转换 A/D conversion类比数位讯号转换器 A/D Converter算图,列线图 abac电磁系电流单位 abampere轴外的,离轴的 abaxial阿贝聚光器 Abb‘e Condenser阿贝常数 Abb‘e constant阿贝照明 Abb‘e Illumination阿贝坡若 Abb‘e Porro在线英语学习阿贝棱镜 Abb‘e Prism阿贝折射计 Abb‘e Refractometer阿贝正弦条件 Abb‘e Sine Condition阿贝〔数值〕孔径计 Abbe apertometer阿贝聚光镜 Abbe condenser阿贝常数 Abbe constant阿贝双衍射原理 Abbe double-diffraction principle阿贝目镜 Abbe eyepiece阿贝照明器 Abbe illuminator阿贝不变量 Abbe invariant阿贝数,色散系数 Abbe number阿贝光度定律 Abbe photometric law阿贝棱镜 Abbe prism阿贝折射计 Abbe refractometer阿贝分办率判断 Abbe resolution criterion阿贝处理 Abbe treatment阿贝公式 Abbe‘s formula阿贝数 Abbe‘s number阿贝原理 Abbe‘s principle阿贝正弦条件 Abbe‘s sine condition阿贝正弦定则 Abbe‘s sine rule阿贝成像理论 Abbe‘s theory of image formation阿贝-柯尼希棱镜 Abbe-Konig prism阿贝型立式测长义 Abbe-type vertical metroscope有像差透镜系统 aberrated lens system有像差光学系统 aberrated optics致〔像〕差媒质 aberrating medium像差 Aberration像差平衡 aberration balancing像差模糊图 aberration blur circle光行差常数,光行差恒量 aberration constant像差校正 aberration correction像差曲线 aberration curve像差斑,像差图形 aberration figure像差函数 aberration function像差光雾 aberration haze重建波〔的〕像差 aberration of reconstructed wave残余像差 aberration residuals像差感应器 Aberration Sensor无像差系统 aberration-free system无像差的 aberrationless冲蚀,烧蚀 ,消融(2)切除 ablation (1)在线英语学习消融闪光灯,烧蚀闪光灯 ablative flashlamp〔光〕冲蚀记录 ablative recording闪光壁灯,剥壁闪光灯 Ablative Wall Flashlamp阿布尼水准器 Abney level阿布饰凹面光栅装置 Abney mounting for concave grating反常,异常 abnormal反常色散玻离 abnormal dispersion glass反常辉光放电 abnormal glow discharge反常折射 abnormal refraction超临界〔状〕态 above-critical state超阈值运转法(激光器) above-threshold operation method磨料 abradant磨蚀,擦伤 abrade磨砂玻离,毛玻璃 abrased glass磨蚀 abrasion磨耗纹 Abrasion Maarks磨蚀阻力 abrasion resistance磨料 Abrasive研磨盘(2)砂轮 abrasive disk (1)磨擦灰雾abrasive fog磨料粒度abrasive grit研磨硬度,耐磨硬度abrasive hardness 研磨材料abrasive material研磨粉abrasive powder金钢砂磨剂abrasive slurry of corundum 磨蚀,磨损abrasive wear滤色单色仪abrideged monochromator筒缩分光光度计Abridged Spectrophotometer突变、陡变abrupt突变衬比界,陡变友差界abrupt contrast border 突变结,阶跃结abrupt junction隔断(2)断裂abruption (1)横坐标abscissa虚设层absentee layer石棉absest绝对大气压absolute atmosphere 绝对黑体absolute black body绝对亮度absolute brightness绝对校准absolute calibration绝对坐标Absolute Coordinate检测器绝对响应〔值〕absolute detector response绝对偏差absolute deviation在线英语学习绝对误差absolute error绝对折射率absolute index of refraction绝对〔光〕亮度阈(2)绝对发光率阈absolute luminance threshold (1)绝对照明底限Absolute Luminance Thresshold绝对测量absolute measurement绝对光频测量absolute optical frequency measurement 绝对最佳函数absolute optimal function绝对相位absolute parallax绝对纯度底限Absolute Purity Thresshold绝对折射率Absolute Refractive Index绝对灵敏度absolute sensitivity绝对信号延时Absolute Signal Delay绝对稳定性(2)绝对稳定度absolute stability (1)绝对温度absolute temperature绝对温标Absolute Temperature Scale绝对界限Absolute Threshold绝对单位absolute unite绝对值absolute value绝对矢量Absolute Vector绝对零度absolute zero吸收(2)减震absorb (1)可吸收性absorbability可吸收〔的〕absorbable可吸收之植入物(巩膜扣环法) Absorbable implant? (scleral buckling method)吸收率Absorbance 吸收性(2)吸收率absorbance index (1)吸光率,吸光本领absorbancy被吸收层absorbed layer被吸收率absorbed power吸收质(2)吸收体absorbent (1)吸收器(2)吸收体(3)减震器absorber (1)吸收切趾屏absorbing apodisation screen吸收晶体absorbing crystal吸收掺杂absorbing inclusion吸收媒质absorbing medium吸收相位遮板absorbing phase strip吸收本领absorbing power吸收片absorbing sheet吸收单维切趾器absorbing unidimensional apodisator 吸收光劈Absorbing Wedge吸收比Absorptance液体吸收气计(2)吸收比色计absorptiometer (1)在线英语学习吸收测量学absorptiometry吸收Absorption选择性吸收Absorption Attenuator吸收光带Absorption Band吸收本领absorption capacity吸收匣Absorption Cell吸收特性absorption characteristic吸收系数Absorption Ciefficient吸收系数absorption coefficient吸收色absorption colour吸收控制absorption control吸收曲线Absorption Curve间歇吸收Absorption Discontinuity吸收功率计absorption dynamometer 吸收限absorption edge吸收效应absorption effect 吸收因数absorption factor吸收性频率计Absorption Frequency Meter吸收全息图absorption hologram吸收指数Absorption Index吸收指示剂Absorption Indication吸收透镜Absorption Lens吸收能级(2)吸收率absorption level (1)吸收限absorption limit吸收谱线Absorption Line吸收损失Absorption Loss吸引平均自由〔路〕程absorption mean free path 吸收凹陷absorption notch吸收调制Absorption of Radiation辐射吸收Absorption Peak吸收率absorption rate吸收光谱学Absorption Selective吸收锋Absorption Spectroscopy吸收〔光〕谱 absorption spectrum吸收式波长计 absorption wave-meter吸收〔引起的〕倾斜(2)吸收〔引起的〕凹陷 absorption-dip (1)无吸收材料 absorption-free materiall吸收的 absorptive吸收透镜 absorptive lens吸收本领 absorptive power吸收率 Absorptivety吸收型调制器 absorptive-type modulator在线英语学习吸收衰减器 Absorptivie Attenuator吸收性,吸收能力(2)吸收率 absorptivity (1)抽像代码 abstract code丰度(2)分布量 abundance (1)〕电磁系单位 abunits (e.m.u.)〔c.g.s支座,支架(2)邻接 abut? (abutment)(1)〕电磁系电势单位,绝对伏特(108伏特) abvolt 〔c.g.s加速发磷光 accelerated phosphorescence加速电极 accelerating electrode加速〔电子〕透镜 accelerating lens加速〔电〕势差,加速〔电〕位差 accelerating potential加速电压 Accelerating Voltage加速空间 Acceleration Space加速器(2)〔显影〕促进剂 accelerator (1)自动加速度记录仪 accelerograph加动对反差 Accentuated Contrast加重(2)频率校正(3)对比 accentuation (1)加重器(2)频率效正电路 accentuator (1)接受角 Acceptance Angle接受角绘图器 Acceptance Angle Plotter接受锥体 Acceptance Cone验收规 acceptance gauge接受图 Acceptance Pattern受体 Acceptor受主浓度acceptor density 受主杂质acceptor impurity受主杂质能级acceptor impurity level受主〔能〕级acceptor level受主〔能〕级acceptor site入口通路(2)取数(3)存取(泛指取数或存数) access (1) 出入偶合器Access Coupler存取时间,取数时间access time存取位数access width零任,附件,附属设备accessory随机简并度accidental degeneracy偶然误差accidental error调节,适应Accommodation调节极限Accommodation Limits眼调节计accommodometer蓄信器Accomulator累积,积蓄(2)存储accumulation (1) 聚集点accumulation point在线英语学习累积误差accumulative error存储器(2)蓄电池(3)累积器accumulator (1)累加寄存器accumulator register准确(2)准确度accuracy (1)准确度等级accuracy grade玻璃样板准确度accuracy of test glass醋纤片基acetate base醋酸纤维丁酯acetate cellulose butyrate醋酸膜Acetate Film醋的acetic醋酸acetic acid丙酮acetone乙青acetonitrile乙洗苯苯光致还原acetophenone photoreduction 乙洗纤维素acetyl cellulose乙炔,电石气(2)双亚乙基acetylene (1) 绿色盲achloropsia消色差透镜,消色差镜头achromat色盲achromate消色差的Achromatic消色差镀膜achromatic coating消色色彩Achromatic Color无彩色achromatic colour消色差聚光镜achromatic condenser消色差日冕仪achromatic coronagraph 消色差双合透镜achromatic doublet消色差条纹achromatic fringe消色差块achromatic image消色差透镜achromatic lens消色差透镜Achromatic Lens, Achromat白光,消色差光,无彩〔色〕光achromatic light 消色差显微物镜achromatic micro objective 消色差物镜achromatic objective消色点Achromatic Point消色差棱镜achromatic prism消色差四分之一波片achromatic quarter waveplate 消色差望远镜achromatic telescope消色差三合〔透〕镜achromatic triplet消色差光劈,消色差光楔achromatic wedge消色差性Achromatism消色差achromatizarion〔已〕消色差〔的〕achromatized在线英语学习全色盲achromatopsia针状的acicular针状晶体acicular crystal酸、酸性的acid酸显影acid development耐酸的acid proof酸洗的acid wash无酸的acid-free酸溶液acidic solution酸性(2)酸度acidity (1)梯型螺纹acme thread音灯Acolight声束偏转器acoustic beam deflector声频支acoustic branch声音藕合器;音效藕合器acoustic coupler 声延迟线Acoustic Delay Line声衍射栅acoustic diffraction grating声频散acoustic dispersion声发射波acoustic emission wave声场acoustic field声全息图acoustic hologram声全息系统acoustic holographic system 声全息术acoustic holography声像acoustic image声成像acoustic imaging声阻抗Acoustic Impedance声干涉仪Acoustic Interferometer声显微术acoustic microscopy声发射压力Acoustic Radiation Pressure声频信号acoustic signal声表面波Acoustic Surface Wave声面波acoustic surface wave (ASW)声光像转换器acoustic to optical image converter 声波滤器Acoustic Wave Filter声波传播acoustic wave propagation声导Acoustical Conduction声波全像体acoustical hologram声波全像术Acoustical Holography声学单位Acoustical Units声学(2)音质 acoustics (1)声光折射效应 Acousto Photorefractive Effect声光的 acousto-optic在线英语学习声光束定位 acousto-optic beam positioning声光布喇格衍射 acousto-optic Bragg-diffraction声光腔 acousto-optic cavity声光调制器,声光盒 acousto-optic cell声光偏转,声光偏差 Acousto-Optic Deflection声光致偏器 Acousto-Optic Deflector声光绕射 Acousto-Optic Diffraction声光效应 Acoustooptic Effect声光效应 acousto-optic effect声光滤波器 acousto-optic filter声光相互作用 acousto-optic interaction声光激光器 acousto-optic laser声光偏转器 acousto-optic light deflector声光材料 acousto-optic materiall声光锁模倍频器 acousto-optic mode-locker frequency doubler声光调制 Acousto-Optic Modulation声光调制器 acousto-optic modulator声光Q 开关 acousto-optic Q-switching声光扫瞄器 acousto-optic scanner声光快门 Acousto-Optic Shutters声光调谐激光器 acousto-optically tuned laser声光学 acoustooptics声光折射效应 acousto-photorefractive effect交流电力式磁铁 AC-powered magnet交流式光刺激器 AC-powered photostimulator交流电力式细隙灯 AC-powered slitlamp biomicroscope探测(2)照准(3)瞄准 acquiring (1)探测,发现(2)捕获、拦截(3)目标显示 acquisition (1)捕获装置 acquisition equipment有源照明(2)主动照明 actice illumination (1) 光化(性)的 Actinic光化吸收 actinic absorption光化消色差〔性〕 actinic achromatism光化焦点 Actinic Focus光化玻璃 Actinic Glass光化辐射 Actinic Radiation光化性(2)光化度 actinicity (1)铜类元素 actinides光化学 Actinism锕 actinium (Ac)露光化学 actinochemistry光能测定仪(2)辐射仪 actinography (1)在线英语学习光化学(2)射线化学 actinology (1)露光计 Actinometer光能测定术,曝光测定术、光作用测定术 actinometry辐射对称的 actinomorphic射线疗法,放射疗法 actinotherapy作用(2)主动力(3)作用量 action (1)动态摄影 action photography作用半径,有效距离 action radius作用光谱 action spectrum激活、活化(2)起动,触发 activate (1)活性碳 activated carbon激活载流子(2)激活载体 activated carrier (1)激活的硅酸盐玻璃 activated silicate glass激活态,活化态 activated state起动开关 activated switch激化剂,活化剂 activating agent激活、活化(2)激发 activation (1)激活中心 activation center激活能 activation energy激栝纤维(2)主动纤维 activation fiber (1)灯丝的激活activation of filament进入自动寻的制导状态,接通归航装置activation of homing 活化计Activator激活原子activator atom主动(2)有效的(3)有源的(4)激活的active (1)有效面积active area激活原子active atom有效自聚集active autofocusing激活腔active caity活性碳active carbon有功电流active current有源器件Active Device有源元件active element激活〔光学〕纤维active fibre有效图像控制active figure control主动成像系统active imaging system 活性杂质active impurity 活动红外线系统Active Infrared System主动式红外跟踪系统active infrared tracking system 有源干涉仪active interferometer激活离子active ion放射层Active Layer在线英语学习激活能级active level激活材料,放射材料active material活性介质Active Medium主动锁模active mode-locking有源网路active network激活光纤Active Optical Fiber主动光件Active Optics活性氧active oxygen有功功率active power主动脉冲干涉仪active pulse interferometer放射区Active Region有源共振器active resonator有源器件active-device主动锁模钕玻离激光器actively mode-locked Nd glass laser放射性活度,活性Activity激活系数activity coefficient锕射气acton (An)实际像点actual image point真实温度actual temperature作用,开动actuate伺服电动机actuating motor作用信号actuating signal激励(2)起动,传动actuation (1)执行机构、执行元件(2)传运机构(3)激励器actuator (1) 锐度,敏度acuity散焦锐度acuity for defocus视觉敏锐度Acuity, Visual锐度Acutance锐角acute angle敏锐二等分角Acute Bisectrix短时间强照射acute exposure急性辐射acute irradiation锐度acuteness刚玉adamantine spar适应性,适用性adaptability视觉调整Adaptation转接器(2)接合器(3)适配器adapter (1)接合器透镜adapter lens紧定套,接头套〔筒〕,连接套管adapter sleeve 自适应,配合,匹配adaption自适应亮度adaption brightness自适应能级adaption level在线英语学习自适应控制adaptive control自适应滤光片adaptive filter自适应激光共振器adaptive laser resonator自适应光学系统adaptive optical system调适形光件Adaptive Optics视觉调整计Adaptometer眼适应时间计Adaptometer? (biophotometer) 向轴的,近轴的adaxial加,附加add加数(2)附加物addend (1)齿顶,齿顶高(2)附录addendum (1)齿顶角(伞齿轮的) addendum angle (1)齿顶圆addendum circle加法器,相加器(2)加法电路adder (1)加减器adder-subtractor加,加法(2)附加,补充addition (1)衍射图形叠加addition of diffraction patterns 模叠加addition of modes 光学场叠加addition of optical fields波阵面叠加,波前叠加addition of wavefronts附加镜additional mirror相加波,附加波additional wave添加物添加剂additive可加信道additive channel光彩混合Additive Color Mixing增色处理Additive Color Process加色additive colour〔加色混色的〕补色additive complementary colors 附加滤光片additive filter加色混合additive mixture of colours相加噪声additive noise加色混合的原色additive primaries加色法additive process相加性,叠加性additivity亮度叠加Additivity of Luminance资料储位 Address地址全息图 address hologram地址读出线 address read wire地址写入线 address write wire安排资料储位的能力 Addressability可寻址量度 Addressability Measure可寻址的 addressable在线英语学习可寻址存储器 addressable memory可寻址点 Addressable Point可寻址寄存器,可编址寄存器 addressable register寻址 addressing赋值矢量 adele附着〔力〕 adherence附着,粘附(2)附着力,粘附力 adhesion (1)附着的(2)粘附度 adhesive (1)附着力 adhesive power附着剂 Adhesives绝热的 adiabatic绝热近似〔法〕 adiabatic approximation绝热热磁 adiabatic demagnetization绝热电离能量 adiabatic ionization energy绝对雷射色度学 Adiabatic Laser Colorimetry绝热极化处理 adiabatic polarization procedure绝热过程 Adiabatic Process绝热曲线 adiabatics绝射的,不透光的 adiactinic绝热的,不透红外线的 adiathermanous邻接 adjacency邻〔接〕效应 adjacency effect邻角 adjacent agle相邻信道共振 adjacent resonance邻波 adjacent wave伴〔随〕adjoint可调节的,可调整的,可校准的adjustable活动角尺adjustable angle square可调轴承adjustable bearing可调台式水准仪adjustable bench level可调杯形座adjustable cup mount可调导杆adjustable guide bar调节杆adjustable lever可调千分尺adjustable micrometer可调〔狭〕缝adjustable slit活络板头adjustable wrench调节器(2)调准装置adjuster (1)调节架adjusting bracket调节螺丝adjusting screw调准,配准adjustment调整范围adjustment range目眼中心距调整Adjustment, Interpupillary在线英语学习测量,测定admeasure测像仪admeasuring apparatus放入,接纳,进气admission光纳(2)导纳admittance (1)光纳匹配(2)导纳匹配admittance matching (1) 掺质,混合(2)混合物admixture (1)二氢磷酸氨ADP吸附能力adsorbability吸附膜adsorbed film吸附层adsorbed layer吸附剂adsorbent吸附〔作用〕,表面吸收adsorption吸附色谱〔法〕adsorption chromatography吸附效应adsorption effect吸附等温线adsorption isotherm吸附分光计adsorption spectrometer掺杂的,掺假的(2)低劣的adulterated (1)光程提前量advance in path高级照相机advanced camera远景研究计划局部(美国) Advanced Research Projects Agency〔相位〕超前补偿器advancer前沿advancing front前进波advancing wave信号装置,信号器advertiser放射性谘询委员会Advisory Committee of the Radioactivity自动曝光照相机AE camera〔充气冷阴极〕辉光管aeolight各向异性晶体aeolotropic crystal各向异性aeolotropism充气,吹风aeration空气的,气体的(2)空中的,航空的aerial (1) 天线阵aerial array 航空照相机Aerial Camera航空照相软片Aerial Film航空写像Aerial Mapping航空目标,空中物体aerial object航空照相测量术Aerial Photogrammetry航空照相测量aerial photographic survey航空照相Aerial Photography航空照相勘察Aerial Photoreconnaissance航空放射性测量aerial radioactivity measurement 航空勘察Aerial Reconnaissance在线英语学习航空测量Aerial Survey天线调谐aerial tuning超电摄像管,超光电移像管aeriscope航空照相机aero-camera航空测量图,航空测图仪aerocartograph航测地图Aerocartography航空精密计时仪aerochronometer〕气体动力〔学〕的,气动的aerodynamic 〔al气动流aerodynamic flow气动热传递aerodynamic heat transfer无线电报机(2)航空气像仪aerograph (1)航空摄影胶片aerographic film高空测高计aerohypsometer航空磁测量aeromagnetic survey航空学aeronautics高层大气物理学aeronomy航测制图仪器aerophotogrammetric mapping instrument航空摄影测量aerophotogrammetric survey航摄测量术aerophotogrammetry航空摄影aerophotograph航空摄影机aerophotographic camera航〔空〕摄〔影〕学,航空照相术aerophotography 航空物理测量aerophysical survey飞机aeroplane航测制图仪aeroprojector尘埃计,空中观测〔细菌灰尘收检〕器aeroscope 简单投影测图仪aerosimplex气悬体,液悬胶体Aerosol悬浮微粒aerosol droplet气悬体不均匀性aerosol inhomogeneity气悬体测量aerosol measurement气悬微粒分析aerosol particle analysis气悬散射aerosol scattering气悬体单散射aerosol single scattering气悬体大小分布aerosol size distribution航空空间,宇宙空间aerospace航空空间工业,航天工业aerospace industry 〔生理〕大气层aerosphere航空测量aerosurvey航〔空〕摄〔影〕测量术 aerosurveying航摄镜头 aerotar空气热力学 aerothermodynamics在线英语学习空气热弹性理论 aerothermoelasticity航空三角测量 Aerotriangulation三极管 aerotron小型投影测图仪 aerovelox易解石 aeschynite以太(2)醚 aether (1)以太漂移 aether drift自动频率控制系统 AFC system仿射共线 affine collineation仿射变换 affine transformation类似(2)亲合势(3)仿射性 affinity (1)添加(2)添加物(3)附标 affix (1)无焦点竹 Afocal附加望远镜头 afocal attachment lens无焦双透镜 afocal doublet无焦成像系统 afocal imaging system无焦透镜 afocal lens连续变倍望远镜 afocal zoom telescope形架 A-frameA後然室,补燃器 afterburner余电流 after-current後效 after-effect余辉 Afterglow余辉期 afterglow period余留成像 afterimage留像 After-Image影像後闪光器 Afterimage flasher跟随脉冲 afterpulsing余震 after-schock後处理 aftertreatment 防潮 against moisture防震 against vibration反常像散 against-the-rule astigmatism琼脂 agar玛瑙 agate时效硬化 age-hardening时效,老化、陈化 ageing老化炉 ageing oven剂 agent阿克发彩色(商名) Agfacolor烧结 agglomerating组合〔的〕,集合〔的〕(2)机组 aggregate (1)在线英语学习集合偏振,集偏振化 aggregate polarization灵巧导弹 agile missile时效,老化,陈化 aging电致发光老化 aging of electroluminescence老化率 aging rate搅拌,搅动(2)激发,激励(3)骚动 agitation (1)搅拌器 agitator灼热〔的〕,发红〔的〕 aglow阿伦斯偏振棱镜 Ahrens polarizing prism设备,仪器 aid瞄准 aiming方位标定仪 Aiming Circle瞄准装置 aiming device〔测量〕觇点,瞄准点 aiming point瞄准望远镜 aiming telescope航空测量,航测 air 〔borne 〕surveying进气阀 air admittance valve空气扰动 air agitation空气承轴 Air Bearing气喷净法(2)喷气(3)喷气器 air blast (1)吸气式激光器,气动光器air breathing laser? (ABL) 气泡air bubble气动卡盘air chuck空气调节器air cleaner空气阻尼air damping辐射剂量Air Dose空过滤器air filter空气隙air gap气动量规air gauge气刀涂胶法air knife coating〔气泡〕水准仪air level〔空气中〕散射光(2)航空信号埃air light (1)气动测微计air micrometer航〔空〕摄〔影〕测量air photogrammetric survey激光〔雷达〕测大气污染air pollution measurement with lidar空气污染临测air pollution monitoring 气压计air pressure gauge空气纯化air purge航空侦察照相机air reconnaissance camera气封air seal空气承囊(气胎) air support bag机械声纳air transportable sonar在线英语学习通风管,通风孔,排气口air vent空气囊支撑系统air-bag support system机载的,航空的airborne航空电磁勘探airborne electromagnetic survey 机载气体激光器airborne gaseous laser航空重力测量airborne gravity survey机载红外成像airborne ir imaging机载红外透射仪airborne ir transmissometer机载激光雷达airborne laser radar机载激光测距仪airborne laser rangefinder机载激光测距仪 airborne laser ranger机载激光跟踪器 airborne laser tracker? (ALT)机载海洋激光雷达系统 airborne oceanographic lidar system航空放射性测量 airborne radioactivity survey机载遥感系统 airborne remote sensing system机载电影系统 airborne television system空气制动器,减速板 airbrake气笔,喷枪 airbrush空〔气〕调〔节〕装置 air-conditioning system空心的,无铁心的 air-cored飞机着落信标灯 aircraft landing lamp防空观测望远镜 air-defence sighting telescope充气温差电偶 air-filled thermocouple玻璃界面反射 air-glass reflection 空-空气-玻璃界面 air-glass surface夜光,气辉 Airglow辉光放射 airglow emission大气辉光强度 airglow intensity送气,充气 air-in通气(2)充气(3)起泡沫 airing (1) 气动负载 airload不透气的,气密的 air-locked航空图,空中摄影地图 air-map气动控制气 air-operated controller出气,排气 air-out空气垫囊 air-pad bag航空摄影(2)航摄相片 airphoto (1)不透气的,密封的 air-proof气泵 air-pump空气散射 air-scattered进气口,进气道 airscoop空城(2)空隙 airspace (1)在线英语学习anastigmat (Celor)中空双合透镜Air-Spaced Doublet航测照相机air-survey camera气密〔封〕性airtightness空对空识别air-to-air identification空对空拦截air-to-air intercept空对空激光测距air-to-air laser ranging空对地激光测距离air-to-ground laser rangefinder空对地激光测距air-to-ground laser ranging空对地照片传递系统Air-to-Ground Phototransmission Systems航路(2)通气孔airway (1)空气的(2)通风的airy (1)爱礼微分方程式Airy Differential Equation爱里衍射斑Airy diffraction disc爱里衍射积分Airy diffraction integral爱里衍射图样Airy diffraction pattern 爱里〔衍射〕Airy disc爱礼圆盘图Airy Disk爱里斑半径Airy disk radius爱里〔支援〕点Airy point爱里系统Airy system爱里型物镜Airy type objective通道,走廊aisle砹alabamine? (At)警报(2)警报器alarm (1)信号灯alarm lamp阿尔巴达寻像器,阿尔巴达瞄准器Albada finder 反照率Albedo反照率辐射(2)辐射反射率albedo radiation (1)反照率计albedometer气动负载airload不透气的,气密的air-locked航空图,空中摄影地图air-map气动控制气 air-operated controller出气,排气 air-out空气垫囊 air-pad bag航空摄影(2)航摄相片 airphoto (1)不透气的,密封的 air-proof气泵 air-pump空气散射 air-scattered进气口,进气道 airscoop空城(2)空隙 airspace (1)在线英语学习双分离对称消像散镜头(赛罗镜头) air-spaced doubleanastigmat (Celor)中空双合透镜 Air-Spaced Doublet航测照相机 air-survey camera气密〔封〕性 airtightness空对空识别 air-to-air identification空对空拦截 air-to-air intercept空对地激光测距离 air-to-ground laser rangefinder空对地激光测距 air-to-ground laser ranging空对地照片传递系统 Air-to-Ground Phototransmission Systems航路(2)通气孔 airway (1)空气的(2)通风的 airy (1)爱礼微分方程式 Airy Differential Equation爱里衍射斑 Airy diffraction disc爱里衍射积分 Airy diffraction integral爱里衍射图样 Airy diffraction pattern爱里〔衍射〕 Airy disc爱礼圆盘图 Airy Disk爱里斑半径 Airy disk radius爱里〔支援〕点 Airy point爱里系统 Airy system爱里型物镜 Airy type objective通道,走廊 aisle砹alabamine? (At)警报(2)警报器alarm (1) 信号灯alarm lamp阿尔巴达寻像器,阿尔巴达瞄准器Albada finder反照率Albedo反照率辐射(2)辐射反射率albedo radiation (1)反照率计albedometer带电线路alive circuit〔强〕碱alkali碱土金属alkali earth metal卤化碱alkali halide碱金属alkali metal碱金属锑化物alkali-antimonides含碱玻璃alkali-containing glass碱二聚物alkali-dimer卤化碱晶体alkali-halide crystal碱性(2)碱的alkaline (1) 碱土氟化物alkaline earth fluoride碱土金属alkaline earth metal在线英语学习碱性高能电池组alkaline high energy battery 碱金属alkaline metal碱产处理alkaline treatment碱性(2)碱度alkalinity (1)纯碱玻璃(冕牌玻璃) alkali-rich glass? (crown) 烷基碘alkyl iodide全光通信All Optical Communication多层全介电膜all-dielectric multilayers结合,耦合(2)通信,联系(3)键allegiance (1) 同源传里叶积分allied Fourier integral合法,混合法alligation全金属all-metal变色的,非本色的allochroic义质色allochromatic colour义质光导性晶体(2)义质色晶体allochromatic crystal (1) 义质色光电导体allochromatic photoconductor掺质色性allochromatism杂质色的Allochrometic异旋双折射Allogyric Birefringence同质异晶allomorph同质异晶体allomorphism配置,分配、分配额allotment不整形晶体allotriomorphic crystal同素异形性allotrope同素异形变化allotropic transformation同素异形性allotropism同素异形allotropy分配器allotter容许偏差,许用偏差allowable deviation 容许误差allowable error容许照射,容许曝光allowable exposure容许胁强,容许应力allowable stress容许跃迁allowable transition容限,公差(2)加工余量allowance (1)容许带,公差带allowed band容许谱allowed spectrum容许能谱形状allowed spectrum shape合金alloy合金钢,特殊钢alloy steel合金结alloy-junction具合金接头之光电池Alloy-Junction Photocell 在线英语学习合金结晶体管alloy-junction transistor全通滤波器all-pass filter通用计算机all-purpose computer通用仪器all-purpose instrument通用望远镜all-purpose telescope纯超声速的all-supersonic全晶体管照相机all-transistor camera全天候的(2)耐风雨的all-weather (1)烯丙基双甘油碳酸盐allyl diglycol carbonate铝镍钴alnico熔融氧化铝(人造刚玉磨料)(2)铝砂aloxite (Al2O3) (1) 铝硅合金alpax射线〔强度〕测量计alpha meterα射线alpha rayα多掺激光器alphabet laser晶体alpha-crystalα字母体字的alphanumeric文数字阅读机Alphanumeric Reader射线摄谱仪alpha-ray spectrographα射线光谱仪alpha-ray spectrometerα射线谱alpha-ray spectrumα 电离真空计,α粒子电离压力计alphatronα铝硅镁合金(一种高频绝缘材料) alsimag卧轴–卧轴型望远镜安装结构alt-alt telescope mounting 望远镜头调整器Altazimuth地平经纬仪(2)地平〔式〕装置alt-azimuth (1)卧轴–竖轴型望远镜安装结构alt-azimuth telescope mounting交错〔矩〕阵alternate matrix交变部分偏振滤光器alternate partial polarizer filter隔行扫瞄alternate-line scanning明暗相间的环alternately dark and bright rings交流放大器alternating current amplifier交流发电机alternating current generator交流机alternating current machine交流发电机alternating current motor交流变压器alternating current transformer交流〔电子〕管alternating current tube交流电 alternating current? (a.c.)交变位移 alternating displacement交变电动势 alternating electromotive force两光交换法 alternating light method往复运动 alternating motion在线英语学习变量,交变量(2)交错量 alternating quantity (1)交流电压 alternating voltage交变陡度聚焦原理 alternating-gradient focusing principle交变陡度透镜 alternating-gradient lens交变陡度磁聚焦 alternating-gradient magnetic focusing交替,变换,交流 alternation交流发电机 alternator高度计,测高仪 altimeter地平纬度(2)高度,海拔 altitude (1)竖直度盘(2)地平经圈 altitude circle (1)测高计 altitude gauge阿特曼改进型〔目录〕 Altman modification超短脉冲 altrashort pulse明矾 alum明矾晶 alum glass镍铝锰合金(高温热电偶材料) alumel铝土,矾土 alumina硼硅酸铝玻璃 alumina borosilicate glass铝合金 aluminium alloy锑化铝 aluminium antimonide砷化铝 aluminium arsenide铝垫片,铝底座 aluminium backing铝膜 aluminium coating铝箔灯 aluminium foil lamp铝反射膜 aluminium mirror coating氧化铝(Al2O3) aluminium oxide氧化铝坩埚 aluminium oxide crucible铝涂料,铝涂层,铝〔银灰〕漆 aluminium paint铝 aluminium? (AL)镀铝荧光屏 aluminium-coated Pyrex 铝氧族 aluminium-oxygen group镀铝阴极射线管 Aluminized Cathode-Ray Tube镀铝镜 aluminized mirror铝化 Aluminizing三氧化二铝(Al2O3),刚铝砂(磨料),铝氧粉 alundum电解光辉法(制造铝反射镜的) Alzac method铝制金属反射镜 Alzac reflector铝制金属友射镜 Alzak aluminium调富检波 AM Dector阿马伽(0℃,1大气压下的气体的密度单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

United States Patent Application20080269728 Kind Code A1 Buczek; Mark J. ; et al.October 30, 2008Active Lamp Alignment for Fiber Optic IlluminatorsAbstractAn assembly for use in an ophthalmic endoilluminator includes a precision lamp assembly, an actuator, and a controller. The precision lamp assembly has a housing and a lamp holder for holding a lamp. The actuator is connected to the precision lamp assembly and is configured to move the precision lamp assembly. The controller controls the operation of the actuator. The controller directs the actuator to move the precision lamp assembly over time to compensate for hot spot movement of the lamp. Inventors: Buczek; Mark J.; (Oceanside, CA); Papac; Michael; (Tustin, CA);Smith; Ronald T.; (Newport Coast, CA)Correspondence Address: ALCONIP LEGAL, TB4-8, 6201 SOUTH FREEWAY FORT WORTHTX76134USFamily ID: 39887865Appl. No.: 11/739227Filed: April 24, 2007Current U.S. Class:606/4; 600/178 Current CPC Class:A61B 3/0008 20130101; A61B 2090/30620160201; A61B 90/30 20160201; A61F 9/0072720130101 Class at Publication:606/4; 600/178 International Class:A61B 1/07 20060101 A61B001/07Claims1. An ophthalmic endoilluminator comprising: a light source; a precisionlamp assembly for holding the light source; an actuator for moving the precision lamp assembly; a controller for controlling the operation of the actuator; a collimating lens for collimating light produced by the light source; a condensing lens for focusing the light; and an optical fiber for carrying the focused light into an eye; wherein the actuator moves the precision lamp assembly over time to compensate for movement of a hot spot of the light source.2. The ophthalmic endoilluminator of claim 1 further comprising: a reflector for reflecting the light produced by the light source;3. The ophthalmic endoilluminator of claim 1 further comprising: a filter for filtering the light exiting the collimating lens;4. The ophthalmic endoilluminator of claim 3 wherein the filter comprises a cold mirror.5. The ophthalmic endoilluminator of claim 3 wherein the filter comprises a hot mirror.6. The ophthalmic endoilluminator of claim 1 further comprising: an attenuator for attenuating the light.7. The ophthalmic endoilluminator of claim 1 further comprising: a connector for aligning the light exiting the condensing lens with the optical fiber; a hand piece carrying the optical fiber, the hand piece capable of being manipulated in the hand; and a probe for carrying the optical fiber into the eye.8. The ophthalmic endoilluminator of claim 7 further comprising: a port attachable to and detachable from the connector, the port for aligning the light exiting the condensing lens with the optical fiber.9. The ophthalmic endoilluminator of claim 1 wherein the precision lamp assembly further comprises: a lamp holder for holding the light source; anda housing rigidly connected to the lamp holder.10. The ophthalmic endoilluminator of claim 1 wherein the light source is a xenon lamp.11. The ophthalmic endoilluminator of claim 1 wherein the controller operates the actuator to move the precision lamp assembly over time to keep the hot spot substantially centered on the optical fiber.12. The ophthalmic endoilluminator of claim 10 wherein the controller operates the actuator to move the precision lamp assembly over time to compensate for movement of the hot spot caused by erosion of a cathode of the xenon lamp.13. The ophthalmic endoilluminator of claim 10 further comprising: a memory for storing values of hot spot movement over time for the xenon lamp, the values used by the controller to move the precision lamp assembly to compensate for hot spot movement.14. The ophthalmic endoilluminator of claim 1 further comprising: a light sensor for providing feedback to the controller, the feedback used by the controller to control the operation of the actuator to move the precision lamp assembly.15. An assembly for use in an ophthalmic endoilluminator comprising: a precision lamp assembly comprising a housing and a lamp holder for holding a lamp; an actuator connected to and configured to move the precision lamp assembly; and a controller for controlling the operation of the actuator; wherein the controller directs the actuator to move the precision lamp assembly over time to compensate for hot spot movement of the lamp.16. The assembly of claim 15 further comprising: a reflector held by the housing, the reflector for reflecting light produced by the lamp.17. The assembly of claim 15 wherein the lamp holder is configured to holda xenon lamp.18. The assembly of claim 15 wherein the controller operates the actuator to move the precision lamp assembly over time to keep the hot spot substantially centered on an optical fiber.19. The assembly of claim 15 further comprising: a memory for storing values of hot spot movement over time for a xenon lamp, the values used by the controller to operate the actuator to move the precision lamp assembly to compensate for hot spot movement.20. An ophthalmic endoilluminator comprising: a light source; a precision lamp assembly for holding the light source; an actuator for moving the precision lamp assembly; a controller for controlling the operation of the actuator; a reflector for reflecting light from the light source; a collimating lens for collimating the light produced by the light source; a filter for filtering the collimated light; an attenuator for attenuating the filtered light; acondensing lens for focusing the attenuated light; and an optical fiber for carrying the focused light into an eye; wherein the controller directs the actuator to move the precision lamp assembly over time to compensate for movement of the hot spot of the light source.21. The ophthalmic endoilluminator of claim 20 further comprising: a connector for aligning the focused light with the optical fiber; a hand piece carrying the optical fiber, the hand piece capable of being manipulated in the hand; and a probe for carrying the optical fiber into the eye.22. The ophthalmic endoilluminator of claim 21 further comprising: a port attachable to and detachable from the connector, the port for aligning the focused light with the optical fiber.23. The ophthalmic endoilluminator of claim 20 wherein the precision lamp assembly further comprises: a lamp holder for holding the light source; anda housing connected to the lamp holder.24. The ophthalmic endoilluminator of claim 20 wherein the light source is a xenon lamp.25. The ophthalmic endoilluminator of claim 20 wherein the controller operates the actuator to move the precision lamp assembly over time to keep the hot spot substantially centered on the optical fiber.26. The ophthalmic endoilluminator of claim 24 further comprising: a memory for storing values of hot spot movement over time for the xenon lamp, the values used by the controller to move the precision lamp assembly to compensate for hot spot movement.DescriptionBACKGROUND OF THE INVENTION[0001] The present invention relates to an illuminator for use in ophthalmic surgery and more particularly to ophthalmic illuminator utilizing active lamp alignment to produce a light suitable for illuminating the inside of the eye.[0002] Anatomically, the eye is divided into two distinct parts--the anterior segment and the posterior segment. The anterior segment includes the lens and extends from the outermost layer of the cornea (the corneal endothelium)to the posterior of the lens capsule. The posterior segment includes the portion of the eye behind the lens capsule. The posterior segment extends from the anterior hyaloid face to the retina, with which the posterior hyaloid face of the vitreous body is in direct contact. The posterior segment is much larger than the anterior segment.[0003] The posterior segment includes the vitreous body--a clear, colorless, gel-like substance. It makes up approximately two-thirds of the eye's volume, giving it form and shape before birth. It is composed of 1% collagen and sodium hyaluronate and 99% water. The anterior boundary of the vitreous body is the anterior hyaloid face, which touches the posterior capsule of the lens, while the posterior hyaloid face forms its posterior boundary, and is in contact with the retina. The vitreous body is not free-flowing like the aqueous humor and has normal anatomic attachment sites. One of these sites is the vitreous base, which is a 3-4 mm wide band that overlies the ora serrata. The optic nerve head, macula lutea, and vascular arcade are also sites of attachment. The vitreous body's major functions are to hold the retina in place, maintain the integrity and shape of the globe, absorb shock due to movement, and to give support for the lens posteriorly. In contrast to aqueous humor, the vitreous body is not continuously replaced. The vitreous body becomes more fluid with age in a process known as syneresis. Syneresis results in shrinkage of the vitreous body, which can exert pressure or traction on its normal attachment sites. If enough traction is applied, the vitreous body may pull itself from its retinal attachment and create a retinal tear or hole.[0004] Various surgical procedures, called vitreo-retinal procedures, are commonly performed in the posterior segment of the eye. Vitreo-retinal procedures are appropriate to treat many serious conditions of the posterior segment. Vitreo-retinal procedures treat conditions such as age-related macular degeneration (AMD), diabetic retinopathy and diabetic vitreous hemorrhage, macular hole, retinal detachment, epiretinal membrane, CMV retinitis, and many other ophthalmic conditions.[0005] A surgeon performs vitreo-retinal procedures with a microscope and special lenses designed to provide a clear image of the posterior segment. Several tiny incisions just a millimeter or so in length are made on the sclera at the pars plana. The surgeon inserts microsurgical instruments through the incisions such as a fiber optic light source to illuminate inside the eye, an infusion line to maintain the eye's shape during surgery, and instruments to cut and remove the vitreous body.[0006] During such surgical procedures, proper illumination of the inside of the eye is important. Typically, a thin optical fiber is inserted into the eye toprovide the illumination. A light source, such as a metal halide lamp, a halogen lamp, a xenon lamp, or a mercury vapor lamp, is often used to produce the light carried by the optical fiber into the eye. The light passes through several optical elements (typically lenses, mirrors, and attenuators) and is launched at the optical fiber that carries the light into the eye. The quality of the illumination is dependent on several factors including the light source.[0007] A xenon lamp used in an ophthalmic illumination system typically has a relatively small arc (e.g., about 0.8 mm gap width for an Osram/Sylvania.RTM. 75 W xenon bulb at zero hours operating time). Optics within the illumination system are used to focus an image of the arc onto the optical fiber and the xenon bulb must be precisely aligned to ensure that an optimum amount of light is coupled into the optical fiber, and hence an optimum luminous flux emerges from the fiber. The optical fiber core diameter is selected to be large enough that the arc image will fit within the fiber core area. However, as the xenon bulb ages, the bulb cathode degrades and moves away from the bulb anode. As the cathode degrades, the arc grows in size, decreases in peak luminance and also moves away from the anode.[0008] The xenon bulb is positioned so that the arc image will fall on the optical fiber core entrance surface. In prior art illumination systems, the xenon bulb is positioned such that maximum fiber throughput is achieved at zero hours of operation (i.e., beginning of life of the xenon bulb). However, the arc can move (due to cathode degradation) in excess of about 250 microns during the first 200 hours of operation in a typical illumination system. Therefore, if the xenon bulb is aligned for maximum fiber throughput at zero hours, the arc movement (which can result in much of the arc image moving outside of the fiber core area) combined with the decrease in arc peak luminance can result in an appreciable drop in fiber throughput, and hence in an appreciable drop in illumination at the surgical site. [0009] One way of solving this problem in prior art ophthalmic illumination systems is to increase the diameter of the optical fiber core. However, increasing the diameter of the optical fiber has several disadvantages. The increased fiber diameter results in a stiffer optical fiber, which is not as easy to manipulate in an operating environment. A larger diameter fiber is more expensive because more fiber material is used per unit length of optical fiber.A larger diameter fiber may be greater than that allowed by size requirements on the probe inserted into the eye. If the optical fiber tapers to a smaller diameter downstream from its proximal end, transmittance of light through the fiber is inversely dependent on the taper ratio--the ratio between the fiber proximal diameter and distal diameter. Therefore, for a fixed distalfiber diameter, an increase in proximal fiber diameter will result in a reduction in light transmittance. Therefore, for a fixed distal fiber, even though an increase in proximal diameter may result in more light coupled into the fiber, most if not all of this extra light may not reach the distal end of the fiber due to decreased fiber transmittance.[0010] Therefore, a need exists for a system for enhancing the useful lifetime of an ophthalmic illumination system that can reduce or eliminate the problems of prior art ophthalmic illumination systems discussed above.SUMMARY OF THE INVENTION[0011] In one embodiment consistent with the principles of the present invention, the present invention is an ophthalmic endoilluminator comprising a light source, a precision lamp assembly for holding the light source, an actuator for moving the precision lamp assembly, a controller for controlling the operation of the actuator, a collimating lens for collimating light produced by the light source, a condensing lens for focusing the light, and an optical fiber for carrying the focused light into an eye. The actuator moves the precision lamp assembly over time to compensate for movement of a hot spot of the light source.[0012] In another embodiment consistent with the principles of the present invention, the present invention is an assembly for use in an ophthalmic endoilluminator including a precision lamp assembly, an actuator, and a controller. The precision lamp assembly has a housing and a lamp holder for holding a lamp. The actuator is connected to the precision lamp assembly and is configured to move the precision lamp assembly. The controller controls the operation of the actuator. The controller directs the actuator to move the precision lamp assembly over time to compensate for hot spot (or, arc) movement of the lamp.[0013] In another embodiment consistent with the principles of the present invention, the present invention is an ophthalmic endoilluminator. The ophthalmic endoilluminator has a light source, a precision lamp assembly for holding the light source, an actuator for precisely moving the lamp and/or lamp assembly, a controller for controlling the operation of the actuator, an optional reflector for reflecting light from the light source, a collimating lens for collimating the light produced by the light source, a filter for filtering the collimated light, an attenuator for attenuating the filtered light, a condensing lens for focusing the attenuated light, and an optical fiber for carrying the focused light into an eye. The controller directs the actuator to move the precision lamp assembly over time to compensate for movement of the hot spot of the light source.[0014] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the invention as claimed. The following description, as well as the practice of the invention, set forth and suggest additional advantages and purposes of the invention.BRIEF DESCRIPTION OF THE DRAWINGS[0015] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.[0016] FIG. 1 is an unfolded view of an ophthalmic endoilluminator according to an embodiment of the present invention.[0017] FIG. 2 is a view of an ophthalmic endoilluminator in a sigma configuration according to an embodiment of the present invention.[0018] FIG. 3 is a graph depicting hot spot movement over time of a typical xenon lamp.[0019] FIGS. 4A-4C are exploded views of the location of a hot spot of a xenon lamp with respect to a small diameter optical fiber as the xenon lamp ages.[0020] FIGS. 5A-5C are exploded views of the anode and cathode of a typical xenon lamp as it ages.[0021] FIG. 6A is a front view of a precision lamp assembly according to an embodiment of the present invention.[0022] FIG. 6B is a perspective view of a precision lamp assembly according to an embodiment of the present invention.[0023] FIG. 7A is a front view of a precision lamp assembly according to an embodiment of the present invention.[0024] FIGS. 7B and 7C are perspective views of a precision lamp assembly according to an embodiment of the present invention.[0025] FIG. 8 is a block diagram of a precision lamp assembly system according to an embodiment of the present invention.[0026] FIG. 9 is a view of an endoilluminator probe as used in an eye according to an embodiment of the present invention.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS[0027] Reference is now made in detail to the exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts.[0028] FIG. 1 is an unfolded view of an ophthalmic endoilluminator according to an embodiment of the present invention. In FIG. 1, the endoilluminator includes optional reflector 103, light source 105, collimating lens 110, optional cold mirror 115, optional hot mirror 116, attenuator 120, condensing lens 125, connector 150, optical fiber 155, hand piece 160, and probe 165.[0029] The light from light source 105 is reflected by optional reflector 103 and collimated by collimating lens 110. The collimated light is reflected and filtered by optional cold mirror 115 and/or optional hot mirror 116. The resulting beam is attenuated by attenuator 120 and focused by condensing lens 125. The focused beam is directed through connector 150 and optical fiber 155 to probe 165 where it illuminates the inside of the eye. [0030] Light source 105 is typically a lamp, such as a xenon lamp. Light source 105 is operated at or near full power to produce a relatively stable and constant light output. In one embodiment of the present invention, light source 105 is a xenon lamp with an arc length of about 0.8 mm, such as a 75 watt xenon lamp manufactured by Osram/Sylvania.RTM..[0031] Optional reflector 103 is a spherical or aspherical optional reflector designed to reflect the light emitted by light source 105 toward collimating lens 110. When light source 105 is a xenon lamp, light is emitted from it in all directions around the lamp surface. The light that is emitted from the side of the lamp opposite the collimating lens is reflected by optional reflector 103 so that it passes through collimating lens. In other words, optional reflector 103 serves to direct a greater portion of the light emitted by light source 105 toward the collimating lens. Using optional reflector 103 increases the light directed at collimating lens 110 by about 25%-40%. [0032] Collimating lens 110 is configured to collimate the light produced by light source 105. As is commonly known, collimation of light involves lining up light rays. Collimated light is light whose rays are parallel with aplanar wave front.[0033] Optional cold mirror 115 is a dichroic optional reflector that reflects visible wavelength light and only transmits infrared and ultraviolet light to produce a beam filtered of harmful infrared and ultraviolet rays. Optional hot mirror 116 reflects long wavelength infrared light and short wavelength ultraviolet light while transmitting visible light. The eye's natural lens filters the light that enters the eye. In particular, the natural lens absorbs blue and ultraviolet light which can damage the retina. Providing light of the proper range of visible light wavelengths while filtering out harmful short and long wavelengths can greatly reduce the risk of damage to the retina through aphakic hazard, blue light photochemical retinal damage and infrared heating damage, and similar light toxicity hazards. Typically, a light in the range of about 430 to 700 nanometers is preferable for reducing the risks of these hazards. Optional cold mirror 115 and optional hot mirror 116 are selected to allow light of a suitable wavelength to be emitted into an eye. Other filters and/or dichroic beam splitters may also be employed to produce a light in this suitable wavelength range. For example, holographic mirrors may also be used to filter light.[0034] Attenuator 120 attenuates or decreases the intensity of the light beam. Any number of different attenuators may be used. For example, mechanical louvers, camera variable aperture mechanisms, or neutral density filters may be used. A variable-wedge rotating disk attenuator may also be used. [0035] Condensing lens 125 focuses the attenuated light beam so that it can be launched into a small diameter optical fiber. Condensing lens 125 is a lens of suitable configuration for the system. Condensing lens 125 is typically designed so that the resulting focused beam of light can be suitably launched into and transmitted by an optical fiber. As is commonly known, a condensing lens may be a biconvex or plano-convex spherical or aspheric lens. In a plano-convex aspheric lens, one surface is planar and the other surface is convex with a precise aspheric surface in order to focus the light to a minimum diameter spot.[0036] The endoilluminator that is handled by the ophthalmic surgeon includes connector 150, optical fiber 155, hand piece 160, and probe 165. Connector 150 is designed to connect the optical fiber 155 to a main console (not shown) containing light source 105. Connector 150 properly aligns optical fiber 155 with the beam of light that is to be transmitted into the eye. Optical fiber 155 is typically a small diameter fiber that may or may not be tapered. Hand piece 160 is held by the surgeon and allows for the manipulation of probe 165 in the eye. Probe 165 is inserted into the eye and carries optical fiber 155 which terminates at the end of probe 165. Probe 165thus provides illumination from optical fiber 155 in the eye.[0037] FIG. 2 is a view of an ophthalmic endoilluminator in a sigma configuration according to an embodiment of the present invention. In FIG. 2, the endoilluminator includes optional reflectors 203, 303, light source 205, collimating lenses 210, 310, optional cold mirrors 215, 315, optional hot mirrors 216, 316, attenuators 220, 320, condensing lenses 225, 325, ports 230, 330, connector 150, optical fiber 155, hand piece 160, and probe 165. [0038] The light from light source 205 is reflected by optional reflectors 203, 303 and collimated by collimating lens 210, 310, respectively. The collimated light is filtered by optional cold mirrors 215, 315 and/or optional hot mirrors 216, 316. The resulting beams are attenuated by attenuators 220, 320 and focused by condensing lenses 225, 325, respectively. The beam focused by condensing lens 325 is directed through connector 150 and optical fiber 155 to probe 165 where it illuminates the inside of the eye. [0039] Light source 105 is typically a lamp, such as a xenon lamp. Light source 105 is operated at or near full power to produce a relatively stable and constant light output. In one embodiment of the present invention, light source 105 is a xenon lamp with an arc length of about 0.8 mm, such as a 75 watt xenon lamp manufactured by Osram/Sylvania.RTM..[0040] Optional reflectors 203, 303 are spherical or aspherical optional reflectors designed to reflect the light emitted by light source 105 toward collimating lenses 210, 310. When light source 105 is a xenon lamp, light is emitted from it in all directions around the lamp surface. The light that is emitted from the side of the lamp opposite the collimating lenses is reflected by optional reflector 103 so that it passes through collimating lenses. In other words, optional reflectors 203, 303 serve to direct a greater portion of the light emitted by light source 105 toward the collimating lenses. [0041] Collimating lenses 210, 310, like collimating lens 110, are configured to collimate the light produced by light source 205. As is commonly known, collimation of light involves lining up light rays. Collimated light is light whose rays are parallel with a planar wave front. [0042] Optional cold mirrors 215, 315 are dichroic optional reflectors that reflect visible wavelength light and only transmit infrared and ultraviolet light to produce a beam filtered of harmful infrared and ultraviolet rays. Optional hot mirrors 216, 316 reflect long wavelength infrared light and short wavelength ultraviolet light while transmitting visible light. The eye's natural lens filters the light that enters the eye. In particular, the natural lens absorbs blue and ultraviolet light which can damage the retina. Providinglight of the proper range of visible light wavelengths while filtering out harmful short and long wavelengths can greatly reduce the risk of damage to the retina through aphakic hazard, blue light photochemical retinal damage and infrared heating damage, and similar light toxicity hazards. Typically, a light in the range of about 430 to 700 nanometers is preferable for reducing the risks of these hazards. Optional cold mirrors 215, 315 and optional hot mirrors 216, 316 are selected to allow light of a suitable wavelength to be emitted into an eye. Other filters and/or dichroic beam splitters may also be employed to produce a light in this suitable wavelength range. For example, holographic mirrors may also be used to filter light.[0043] Attenuators 220, 320 attenuate or decrease the intensity of the light beams. Any number of different attenuators may be used. For example, mechanical louvers, camera variable aperture mechanisms, or neutral density filters may be used. A variable-wedge rotating disk attenuator may also be used.[0044] Condensing lenses 225, 325 focus the attenuated light beams so that they can be launched into small diameter optical fibers. Condensing lenses 225, 325 are lenses of suitable configuration for the system. Condensing lenses 225, 325 are typically designed so that the resulting focused beams of light can be suitably launched into and transmitted by optical fibers. As is commonly known, a condensing lens may be a biconvex or plano-convex spherical or aspheric lens. In a plano-convex aspheric lens, one surface is planar and the other surface is convex with a precise aspheric surface in order to focus the light to a minimum diameter spot.[0045] Ports 230, 330 receive a connector, such as connector 150, of an ophthalmic endoilluminator. Ports 230, 330 provide a connection between a console (not shown) and an endoilluminator that is handled by the ophthalmic surgeon. Ports 230, 330 also serve to align the optical fiber 155 with the beam of light that is to be transmitted into the eye.[0046] The endoilluminator that is handled by the ophthalmic surgeon includes connector 150, optical fiber 155, hand piece 160, and probe 165. Connector 150 is designed to connect the optical fiber 155 to a main console (not shown) containing light source 105. Connector 150 properly aligns optical fiber 155 with the beam of light that is to be transmitted into the eye. Optical fiber 155 is typically a small diameter fiber that may or may not be tapered. Hand piece 160 is held by the surgeon and allows for the manipulation of probe 165 in the eye. Probe 165 is inserted into the eye and carries optical fiber 155 which terminates at the end of probe 165. Probe 165 thus provides illumination from optical fiber 155 in the eye.。

相关文档
最新文档