选修4-4-3-2曲线的极坐标方程的意义

合集下载

人教B版 高中数学 选修4-4 极坐标与参数方程 知识点归纳、题型归纳(含答案)

人教B版 高中数学  选修4-4   极坐标与参数方程   知识点归纳、题型归纳(含答案)

选修4—4 极坐标与参数方程一、伸缩变换设),(y x P 是平面直角坐标系中任意一点,在变换⎩⎨⎧='='yy x x μλϕ: )0()0(>>μλ的作用下,点),(y x P 对应),(y x P ''',称ϕ为平面直角坐标系中的伸缩变换。

练习1.将1422=+y x 的横坐标压缩为原来的2,纵坐标伸长为原来的21倍,则曲线的方程变为 。

2.在平面直角坐标系中,方程122=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='yy x x 32,后的图形所对应的方程是 .二、极坐标(一)极坐标系与极坐标1、极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox 一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 点称为极点,Ox 称为极轴.2、极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对),(θρ称为点M 的极坐标.ρ称为极径,θ称为极角.注:①在通常情况下,总认为0≥ρ,只在事先说明的情况下,才允许取0<ρ; ①极点O 的坐标为:),0(θ)(R ∈θ①点),(θρ与),(θπρ+关于极点O 对称;点),(θρ与),(θρ-关于极轴对称①点),(θρ,)2,(θπρ+k ,)2.(ππρ+-k (允许ρ小于0时)表示同一点.(二)极坐标与直角坐标的关系设M 为平面上的点,它的直角坐标为),(y x ,极坐标为),(θρ,关系如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+===x y y x y x θρθρθρtan sin cos 222)0(≠x 注:在极坐标系中,αθ=)0(≥ρ表示以极点为起点的一条射线;αθ=)(R ∈ρ表示以极点为起点的一条直线.练习1、点M 的直角坐标为)1,3(--化为极坐标为 .2、极坐标为(1,π)的点M 的直角坐标为 .3、将以下极坐标方程化为对应的直角坐标方程(1)ρ=2cosθ﹣4sinθ (2)ρsin 2θ=4cosθ(3)ρ=4cosθ (4)1)3cos(=-πρx(5)ααρ222cos 3sin 42+=(6)34πθ= )(R ∈ρ(7)2=ρ4、在直角坐标系xOy 中,圆C 的直角坐标方程为1)1(22=+-y x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是33)3sin(2=+πθρ,射线OM :3πθ=与圆C 的交点为P O ,,与直线l 的交点为Q ,求线段PQ 的长.5、在直角坐标系xOy 中,直线1C :2-=x ,圆2C :1)2()1(22=-+-y x ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 、2C 的极坐标方程;(2)若直线3C 的极坐标方程为4πθ=)(R ∈ρ,设2C 与3C 的交点为N M ,,求MN C 2∆的面积.三、参数方程(一)参数方程:在平面上取定了一个直角坐标系xOy ,把坐标y x ,表示为第三个变量t 的函数⎩⎨⎧==)()(t g y t f x b t a ≤≤,如果对于t 的每一个值(b t a ≤≤),由方程组所确定的点),(y x M 都在一条曲线上;而这条曲线上的任一点),(y x M 都可由t 的某个值通过方程组得到,称方程组就叫做这条曲线的参数方程,其中,变量t 称为参数.(二)直线的参数方程1、直线的标准参数方程:直线l 过点),(00y x M ,倾斜角为α的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x 推导如下:设直线的点斜式方程为:)(00x x k y y -=-,其中αtan =k )2(πα≠代入得)(tan 00x x y y -=-α )(cos sin 00x x y y -=-αα 即ααsin cos 00y y x x -=-,令上式的比值为t ,整理得⎩⎨⎧+=+=ααsin cos 00t y y t x x 2、t 的几何意义:表示直线上任一点A 到定点0M 的距离.①当点A 在0M 的上方时,0>t ;①当点A 在0M 的下方时,0<t ;①当点A 与0M 重合时,0=t ;3、结论:直线l 的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x )(为参数t ,其中),(00y x M ,B A ,为直线l 上的任一 点,且B A ,对应的参数分别为21,t t①A 到0M 的距离为1t ,B 到0M 的距离为2t①B A ,两点之间的距离为:21t t AB -=①点B A ,中点对应的参数为:221t t + ①0M 为B A ,中点时:021=+t t ①⎪⎩⎪⎨⎧+⋅-+=-=+=+21212212121004)(t t t t t t t t t t B M A M )0()0(2121>⋅<⋅t t t t 2100t t B M A M ⋅=⋅4、运用直线l 的标准参数方程求弦长和弦的中点坐标(直线l 与曲线相交于不同的两点时): 将直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 代入圆锥曲线方程,得到关于t 的二次方程,得到⎪⎩⎪⎨⎧⋅+>∆21210t t t t ,所以弦长=21221214)(t t t t t t ⋅-+=-,弦的中点对应的参数为221t t +代入直线直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 中,得到弦的中点坐标.5、直线l 的一般参数方程: 过点),(00y x M ,斜率a b k =的直线参数方程为:⎩⎨⎧+=+=bt y y at x x 00 )(为参数t。

高二数学选修4-4教案04圆锥曲线的统一极坐标方程

高二数学选修4-4教案04圆锥曲线的统一极坐标方程

圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

选修4-4二轮专题:极坐标与参数方程

选修4-4二轮专题:极坐标与参数方程

A ,当 t =-1 时,曲线 C1 上的点为 B .以原点 O 为 极点,以 x 轴正半轴为极轴建立极坐标系,曲线 6 C2 的极坐标方程为 ρ= 4+5sin 2θ .
(1) 求 A、B 的极坐标; (2) 设 M 是曲线 C2 上的动点,求|MA | 2+ |MB | 2 的最 大值.
x =-1 解:(1)当 t=1 时, , y= 3 即 A 的直角坐标为 A (-1, 3); x =1 当 t=- 1 时, , y=- 3 即 B 的直角坐标为 B (1,- 3).
(2)弦M1M2的中点⇒t1+t2=0;
(3)|M0M1||M0M2|=|t1t2|.
及时练习
5.[2016· 天津卷]
2 x=2pt , 设抛物线 (t 为参数,p>0)的焦点 y=2pt
为 F,准线为 l.过抛物线上一点 A 作 l 的垂线,垂足为 B.设 7 C(2p,0),AF 与 BC 相交于点 E.若|CF|=2|AF|,且△ACE 的 面积为 3 2,则 p 的值为________. 测试要点:抛物线的参数方程化为普通方程
说明: 一、 参数 t 的有关性质
对于上述直线 l 的参数方程,设 l 上两点 A、B 所对应的参数分别为 tA、tB,则 1.A、B 两点之间的距离为 | AB || t A t B | , 特别地,A、B 两点到点 M0 的距离分别为|tA|、|tB|。
t A tB 2.A、B 两点的中点所对应的参数为 , 2
若点 M0 是线段 AB 的中点,则 tA+tB=0,反之亦然。
x r cos ( 为参数) y r sin x a r cos 2 2 2 ( 为参数) 3.圆(x-a) +(y-b) =r 的参数方程: y b r sin

北师版选修4-4§2 2.3 直线和圆的极坐标方程 2.4 曲线的极坐标方程与直角坐标方程的互化 2.5

北师版选修4-4§2 2.3 直线和圆的极坐标方程 2.4 曲线的极坐标方程与直角坐标方程的互化 2.5

2.3 直线和圆的极坐标方程 2.4 曲线的极坐标方程与直角坐标方程的互化*2.5 圆锥曲线统一的极坐标方程学习目标:1.能在极坐标系中给出简单图形表示的极坐标方程.(重点)2.掌握简单图形的极坐标方程与直角坐标方程的互化.(易错易混点)3.用方程表示平面图形时,会选择适当的坐标系来表示.(难点)教材整理1 曲线的极坐标方程 1.曲线的极坐标方程在极坐标系中,如果曲线C 上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:(1)曲线C 上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0; (2)极坐标满足方程φ(ρ,θ)=0的点都在曲线C 上.那么方程φ(ρ,θ)=0叫作曲线C 的极坐标方程,曲线C 叫作极坐标方程φ(ρ,θ)=0的曲线.2.常见简单曲线的极坐标方程判断(正确的打“√”,错误的打“×”)(1)过极点且垂直于极轴的直线方程为x=π2.()(2)直线ρcos θ=2与直线ρsin θ=2互相平行.()(3)ρ=cos θ表示一个圆.()[解析](1)√过极点且垂直于极轴的直线上的点的极角都可表示为π2,故正确.(2)×ρcos θ=2表示直线x=2,ρsin θ=2表示直线y=2,这两直线互相垂直.(3)√ρ=cos θ可化为x2+y2=x,故正确.[答案](1)√(2)×(3)√教材整理2曲线的极坐标方程与直角坐标方程的互化两坐标方程的互化,我们把极轴与平面直角坐标系xOy的x的正半轴重合,且两种坐标系取相同的长度单位.利用把曲线的两种方程进行相互转化.填空:(1)曲线ρ=1的直角坐标方程为__________________________.(2)方程y=2x的极坐标方程为___________________________.(3)圆ρ=2cos θ的直角坐标方程为_____________________.[解析](1)ρ=1,即ρ2=1,∴x2+y2=1.(2)把y=ρsin θ,x=ρcos θ代入y=2x,得ρsin θ=2ρcos θ,即tan θ=2.(3)ρ=2cos θ即ρ2=2ρcos θ,所以x2+y2=2x,即(x-1)2+y2=1.[答案](1)x2+y2=1(2)tan θ=2(3)(x-1)2+y2=1教材整理3圆锥曲线统一的极坐标方程设定点为F,定直线为l,过定点F作定直线l的垂线,垂足为K,以F为极点,FK的反向延长线Fx为极轴,建立极坐标系.如图,设定点F到直线l的距离|FK|=p,M(ρ,θ)为曲线上任意一点,曲线的极坐标方程为ρ=ep1-e cos θ.①当0<e<1时,方程表示椭圆.②当e=1时,方程表示开口向右的抛物线.③当e>1时,方程只表示双曲线的右支,定点是它的右焦点.【例1】(1)求过点A(1,0)且倾斜角为π4的直线的极坐标方程;(2)求圆心在A ⎝ ⎛⎭⎪⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝ ⎛⎭⎪⎫-2,sin 5π6是否在这个圆上. [精彩点拨] 解答本题先根据题意画出草图,设点M (ρ,θ)后建立关于ρ与θ的方程化简即可.[尝试解答] (1)如图,设M (ρ,θ)(ρ≥0)为直线上除点A 以外的任意一点,则∠xAM =π4, ∠OAM =3π4, ∠OMA =π4-θ.在△OAM 中,由正弦定理得 OM sin ∠OAM =OAsin ∠OMA ,即ρsin 3π4=1sin ⎝ ⎛⎭⎪⎫π4-θ, 所以ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,即ρ⎝ ⎛⎭⎪⎫sin π4cos θ-cos π4sin θ=22, 化简,得ρ(cos θ-sin θ)=1, 经检验点A (1,0)的坐标适合上述方程,所以满足条件的直线的极坐标方程为ρ(cos θ-sin θ)=1.(2)由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连结AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝ ⎛⎭⎪⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝ ⎛⎭⎪⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2, ∴点⎝ ⎛⎭⎪⎫-2,sin 5π6在此圆上.求曲线的极坐标方程通常有以下五个步骤: (1)建立适当的极坐标系; (2)在曲线上任取一点M (ρ,θ);(3)根据曲线上的点所满足的条件写出等式(因涉及的是长度与角度,所以列等式的实质是解三角形);(4)用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程; (5)证明所得的方程是曲线的极坐标方程.通常第(5)步不必写出,只要对特殊点的坐标加以检验即可.1.(1)求过A ⎝ ⎛⎭⎪⎫2,π4且平行于极轴的直线方程.(2)在圆心的极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点的轨迹.[解] (1)如图所示,在直线l 上任意取点M (ρ,θ).∵A ⎝ ⎛⎭⎪⎫2,π4,∴|MH |=2·sin π4=2,在Rt △OMH 中,|MH |=|OM |sin θ,即ρsin θ=2,所以过A ⎝ ⎛⎭⎪⎫2,π4且平行于极轴的直线方程为ρsin θ=2,其中0<θ<π.(2)设M (ρ,θ)是轨迹上任意一点.连结OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ, 得ρ0=8cos θ0,所以2ρ=8cos θ, 即ρ=4cos θ.故所求轨迹方程是ρ=4cos θ.它表示以(2,0)为圆心,2为半径的圆.(1)射线y =3x (x ≤0); (2)圆x 2+y 2+2ax =0(a ≠0).[精彩点拨] 将x =ρcos θ,y =ρsin θ代入―→极坐标方程 [尝试解答] (1)将x =ρcos θ,y =ρsin θ, 代入y =3x ,得ρsin θ=3ρcos θ, ∴tan θ=3,∴θ=π3或θ=4π3.又x ≤0,∴ρcos θ≤0,∴θ=4π3,∴射线y =3x (x ≤0)的极坐标方程为θ=4π3(ρ≥0). (2)将x =ρcos θ,y =ρsin θ代入x 2+y 2+2ax =0,得 ρ2cos 2θ+ρ2sin 2θ+2aρcos θ=0,即ρ(ρ+2a cos θ)=0,∴ρ=-2a cos θ,∴圆x2+y2+2ax=0(a≠0)的极坐标方程为ρ=-2a cos θ,圆心为(-a,0),半径为r=|a|.1.化曲线的直角坐标方程f(x,y)=0为极坐标方程f(ρ,θ)=0,只要将x=ρcos θ,y=ρsin θ代入到方程f(x,y)=0中即可.化为极坐标方程时,如果不加特殊说明,就认为ρ≥0.例如x2+y2=25化为极坐标方程时,有ρ=5或ρ=-5两种情况,由于ρ≥0,所以只取ρ=5.事实上,这两个方程都是以极点为圆心,以5为半径的圆.2.由直角坐标方程化为极坐标方程最后要化简.2.曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为________.[解析]直角坐标方程x2+y2-2x=0可化为x2+y2=2x,将ρ2=x2+y2,x =ρcos θ代入整理得ρ=2cos θ.[答案]ρ=2cos θ(1)ρcos θ=2;(2)ρ=2cos θ;(3)ρ2cos 2θ=2;(4)ρ=11-cos θ.[精彩点拨]极坐标方程――――→ρcos θ=xρsin θ=y直角坐标方程―→曲线的形状[尝试解答]根据点的极坐标化为直角坐标的公式:ρ2=x2+y2,ρcos θ=x,ρsin θ=y.(1)∵ρcos θ=2,∴x =2,是过点(2,0),垂直于x 轴的直线. (2)∵ρ=2cos θ,∴ρ2=2ρcos θ, ∴x 2+y 2-2x =0,即 (x -1)2+y 2=1. 故曲线是圆心在(1,0),半径为1的圆. (3)∵ρ2cos 2θ=2,∴ρ2(cos 2θ-sin 2θ)=2, 即ρ2cos 2θ-ρ2sin 2θ=2,∴x 2-y 2=2.故曲线是中心在原点,焦点在x 轴上的等轴双曲线. (4)∵ρ=11-cos θ,∴ρ=1+ρcos θ,∴x 2+y 2=1+x ,两边平方并整理, 得y 2=2⎝ ⎛⎭⎪⎫x +12.故曲线是顶点为⎝ ⎛⎭⎪⎫-12,0,焦点为F (0,0),准线方程为x =-1的抛物线.1.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入曲线的极坐标方程,整理即得曲线的直角坐标方程.2.解决此类问题常常通过方程变形,构造出形如ρcos θ,ρsin θ,ρ2的式子,进行整体代换.方程的两边同乘以(或同除以)ρ或方程两边平方是常用的变形方法.3.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.[解析] 极坐标系中点⎝ ⎛⎭⎪⎫2,π6对应的直角坐标为(3,1).极坐标系中直线ρsinθ=2对应直角坐标系中直线y =2.故所求距离为1.[答案] 1[1.在极坐标系中,求圆的极坐标方程的一般思路是什么?求直线的极坐标方程呢?[提示] 在圆上设M (ρ,θ)为任意一点,连结OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.求直线的极坐标方程时,首先在直线上设任意一点M (ρ,θ),构造直角三角形,利用勾股定理建立方程.2.在极坐标系内,如何确定某一个点P 是否在某曲线C 上?[提示] 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程,所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.3.我们由曲线的直角坐标方程很容易知道它是哪种曲线,那如何由曲线的极坐标方程确定其是哪一种曲线呢?[提示] 如果对简单的直线和圆的极坐标方程及圆锥曲线统一的极坐标方程熟练的话,可由其判断,否则一般是将其化成直角坐标方程再判断其是哪种曲线.【例4】 在极坐标系中,从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上任意一点,试求RP 的最小值.[精彩点拨] 解答本题可以设出动点P ,M 的极坐标,然后代入条件等式求解即可,也可以转化为直角坐标方程解决.[尝试解答] 法一:(1)设动点P 的极坐标为(ρ,θ),点M 为(ρ0,θ). ∵|OM |·|OP |=12,∴ρ0ρ=12,得ρ0=12ρ. ∵M 在直线ρcos θ=4上, ∴ρ0cos θ=4,即12ρcos θ=4,于是ρ=3cos θ(ρ>0)为所求的点P 的轨迹方程. (2)由于点P 的轨迹方程为ρ=3cos θ=2·32cos θ,所以点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉极点).又直线l :ρcos θ=4过点(4,0)且垂直于极轴,点R 在直线l 上,由此可知RP 的最小值为1.法二:(1)直线l :ρcos θ=4的直角坐标方程为x =4,设点P (x ,y )为轨迹上任意一点,点M (4,y 0),由O P →∥OM →得y 0=4yx (x >0). 又|OM |·|OP |=12, 则|OM |2·|OP |2=144, ∴(x 2+y 2)⎝ ⎛⎭⎪⎫16+16y 2x 2=144, 整理得x 2+y 2=3x (x >0),这就是点P 的轨迹的直角坐标方程.(2)由上述可知,点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉原点).又点R 在直线l :x =4上,由此可知RP 的最小值为1.建立适当的极坐标系,有时会使某些曲线的极坐标方程具有比直角坐标方程更为简洁的形式.可是,由于同一种类型的曲线的极坐标方程的形式多样性,且不同位置的同一曲线的极坐标方程存在较大差异,这给由极坐标方程确定曲线的形状、位置与性质带来不便,为此,往往把极坐标方程化为直角坐标方程,再根据平面直角坐标系中曲线的相关知识将问题求解.4.过极点O 作圆C :ρ=8cos θ的弦ON ,求ON 的中点M 的轨迹方程. [解] 法一:如图,圆心C (4,0),半径r =|OC |=4,连结CM . ∵M 为弦ON 的中点,∴CM ⊥ON ,故M 在以OC 为直径的圆上.所以,动点M 的轨迹方程是ρ=4cos θ.法二:设M 点的坐标是(ρ,θ),N (ρ1,θ1).N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1. ①∵M 是ON 的中点,∴⎩⎨⎧ρ1=2ρ,θ1=θ,代入①式得2ρ=8cos θ,故M 的轨迹方程是ρ=4cos θ.1.极坐标方程ρ=cos ⎝ ⎛⎭⎪⎫π4-θ表示的曲线是( ) A .双曲线B .椭圆C .抛物线D .圆[解析] 方程可化为ρ2=22ρcos θ+22ρsin θ,即x 2+y 2-22x -22y =0,所以曲线表示圆.[答案] D2.过点A (2,0),并且垂直于极轴的直线的极坐标方程是( )A .ρcos θ=2B .ρsin θ=2C .ρcos θ=1D .ρsin θ=1[解析] 如图所示,设M (ρ,θ)为直线上除点A (2,0)外的任意一点,连结OM ,则有△AOM 为直角三角形,并且∠AOM =θ,|OA |=2,|OM |=ρ,所以有|OM |cosθ=|OA |,即ρcos θ=2,显然当ρ=2,θ=0时,也满足方程ρcos θ=2,所以所求直线的极坐标方程为ρcos θ=2.[答案] A3.在极坐标系中,极点到直线ρcos θ=2的距离是________.[解析] ρcos θ=2,即x =2.所以极点到直线的距离为2.[答案] 24.两直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 016,ρsin ⎝ ⎛⎭⎪⎫θ-π4=2 015的位置关系是________.(判断垂直或平行或斜交)[解析] 两直线方程可化为x +y =2 0162,y -x =2 0152,故两直线垂直.[答案] 垂直5.求以C (4,0)为圆心,半径等于4的圆的极坐标方程.[解] 设P (ρ,θ)为圆C 上任意一点(不与O ,A 点重合),圆C 交极轴于另一点A ,则|OA |=8.在Rt △AOP 中,|OP |=|OA |cos θ,即ρ=8cos θ,经验证点O ,点A 也满足该等式,所以ρ=8cos θ.这就是圆C 的极坐标方程.。

极坐标与参数方程知识讲解

极坐标与参数方程知识讲解
把上述对应关系的坐标系叫做球坐标系(或空间 极坐标系),有序数组(r , , )叫做点P的球坐标, 记作P(r , , ), 其中r 0,0 ,0 2
x o θ φ
z P(r,φ,θ) r y Q
空间点P的直角坐标( x, y, z )与柱坐标(r , , ) 之间的变换公式为 x r sin cos { y r sin sin z r cos
一般地,建立空间直角坐标系Oxyz, 设P是空间 任意一点,它在Oxy平面上的射影为Q, 用( , ) ( 0,0 2 )表示点Q在平面Oxy上的极坐 标,这时点P的位置可用有序数组( , , z )( z R) 表示。这样,我们建立了空间的点与有序数组 ( , , z )之间的一种对应关系。
( x, y ) ,极坐标是 ( , ) ( 0 ),于是极坐标与直角坐标的互化
公式如表:
点M
直角坐标 ( x, y )
极坐标 ( , )
互化公式
x cos y sin
2 x2 y 2
tan y ( x 0) x
注:在一般情况下,由 tan 确定角时,可根据点 M 所在的象限最小正角. 极坐标和直角坐标的两组互化公式必须满足三个条件才能使用:(1)原点和极点重合;(2)x 轴正
第 5 页 共 17 页
半轴与极轴重合;(3)两坐标系中长度单位相同.极坐标和直角坐标的互化中,更要注意等价性。 直角坐标方程转化为极坐标方程很方便,直接带入
x cos 即可。反之,则比较麻烦,所以 y sin
直线和圆的极坐标方程对应的直角坐标方程需要记住,直接可以应用。由曲线的极坐标方程判 断曲线的类型,通常是将极坐标方程化为直角坐标方程再去判断.而求曲线的极坐标方程的常 用方法是直接法、转化法和待定系数法. 6、柱坐标系与球坐标系: 柱坐标:

选修4-4第二讲参数方程(文)

选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。

2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。

3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。

4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。

二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。

难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。

三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。

一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。

知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。

人教版A版高中数学选修4-4:简单曲线的极坐标方程

人教版A版高中数学选修4-4:简单曲线的极坐标方程

归纳:求曲线的极坐标方程步骤 1、根据题意画出草图;
2、设点M(, )是曲线上任意一点;
3、连接MO;
4、根据几何条件建立关于 , 的方 程,并化简; 5、检验并确认所得的方程即为所求(可 以省略)。
例1.已知圆O的半径为a,建立怎样的极坐标 系,可以使圆的极坐标方程更简单?
1、求以下常见圆的极坐标方程,并作图:
满足的条件,另一方面,可以验证,坐标适合 等式(1)的点都在这个圆上。
一、定义:如果曲线C上的点与方程f(,)=0有 如下关系:
(1)曲线C上任一点的坐标(所有坐标中至少有一 个)符合方程f(,)=0 ;
(2)方程f(,)=0的所有解为坐标的点都在曲线C 上。
则方程f(,)=0叫做曲线C的极坐标方程.
是A,那么OA=2a,设M (, )为圆上除点O,A
以外的任意一点,那么OM AM。在RtAMO
中OM OA cosMOA即=2a cos...........(1) 可以验证,点O(0, ), A(2a,0)的坐标满足等式(1)
2
所以,等式(1)就是圆上任意一点的极坐标(, )
4
; ; ;
பைடு நூலகம்; 。
例 2.方程互化
(1)化直角坐标方程 x 2 y 2 8 y 0 为 极坐标方程
6 cos( ) ( 2)化极坐标方程
为直角坐标方程 [来源:]
3
练习:
1、把下列极坐标方程化为直角坐标方程,并作图:(1) 2 ;(2) 4sin .
2、求下列圆的圆心的极坐标:
(1) 5cos ; (2) 2 sin( ) .
4
小结:知识、思想方法、数学核心素养

高中数学 曲线的极坐标方程与直角坐标方程的互化2.5圆锥曲线统一的极坐标方程导学案北师大版选修4-4

高中数学 曲线的极坐标方程与直角坐标方程的互化2.5圆锥曲线统一的极坐标方程导学案北师大版选修4-4

2.3 直线和圆的极坐标方程2.4 曲线的极坐标方程与直角坐标方程的互化*2.5 圆锥曲线统一的极坐标方程1.能在极坐标系中,求直线或圆的极坐标方程.2.会进行曲线的极坐标方程与直角坐标方程的互化. 3.了解圆锥曲线统一的极坐标方程.1.直线和圆的极坐标方程 (1)极坐标方程与曲线.在极坐标系中,曲线可以用含有ρ,θ这两个变量的方程φ(ρ,θ)=0来表示.如果曲线C 上的点与一个二元方程φ(ρ,θ)=0建立了如下关系:①曲线C 上的每个点的极坐标中__________满足方程φ(ρ,θ)=0; ②极坐标满足方程φ(ρ,θ)=0的__都在曲线C 上.那么方程φ(ρ,θ)=0叫作曲线C 的__________,曲线C 叫作极坐标方程φ(ρ,θ)=0的____.(2)直线的极坐标方程.直线l 经过极点,倾斜角为α,则直线l 的极坐标方程是__________. (3)圆的极坐标方程.①圆心在极点,半径为r 的圆的极坐标方程是______;②圆心在(a,0)(a >0),半径为a 的圆的极坐标方程是________.【做一做1-1】在极坐标系中,过点M ⎝⎛⎭⎪⎫2,π2,且平行于极轴的直线的极坐标方程是__________.【做一做1-2】在极坐标系中,圆心在点⎝⎛⎭⎪⎫a ,π2(a >0)处,且过极点的圆的极坐标方程是( ).A .ρ=2a cos θB .ρ=2a sin θ(0≤θ≤π)C .ρ=a tan θD .ρ=2a tan θ(0≤θ≤π) 2.曲线的极坐标方程与直角坐标方程的互化根据点的直角坐标与极坐标互化关系式,曲线方程两种形式的互化可以顺利完成. 点的直角坐标与极坐标互化关系如下:(1)点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的公式:⎩⎪⎨⎪⎧x = ,y = ;(2)点M 的直角坐标(x ,y )化为极坐标(ρ,θ)的公式:⎩⎪⎨⎪⎧ρ2= ,tan θ= x ≠0.【做一做2-1】极坐标方程cos θ=22(ρ≥0)表示的曲线是( ). A .余弦曲线 B .两条相交直线 C .一条射线 D .两条射线【做一做2-2】直角坐标方程x 2+(y -2)2=4化为极坐标方程为__________. 3.圆锥曲线统一的极坐标方程圆锥曲线统一的极坐标方程是ρ=________, 当0<e <1时,它表示____; 当e =1时,它表示______; 当e >1时,它表示______.【做一做3】把极坐标方程ρ=42-cos θ化为直角坐标方程.1.求曲线的极坐标方程的步骤剖析:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上的任意一点;(2)由曲线上的点所满足的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式f (ρ,θ)=0;(3)将列出的关系式f (ρ,θ)=0进行整理,化简,得出曲线的极坐标方程;(4)证明所得的方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,这一证明可以省略.2.直角坐标与极坐标互化时的注意事项剖析:(1)两组公式是在三个条件规定下得到的;(2)由直角坐标求极坐标时,理论上不是唯一的,但一般约定只在规定范围内求值; (3)由直角坐标方程化为极坐标方程,最后要化简;(4)由极坐标方程化为直角坐标方程时要注意变形的等价性,通常总要用ρ去乘方程的两端.答案:1.(1)①至少有一组(ρ,θ) ②点 极坐标方程 曲线 (2)θ=α(ρ∈R ) (3)①ρ=r ②ρ=2a cos θ 【做一做1-1】ρsin θ=2(ρ≥0) 如图,设P (ρ,θ)(ρ≥0)为所求直线上任意一点, 在Rt △OMP 中,ρcos ⎝ ⎛⎭⎪⎫π2-θ=2(ρ≥0),即ρsin θ=2(ρ≥0).【做一做1-2】B 如图所示,圆与射线OP 的交点为P ⎝⎛⎭⎪⎫2a ,π2,在圆上任取一点M (ρ,θ),连接OM 和MP ,则有OM ⊥MP ,在Rt △MOP 中,由Rt △MOP 的边角关系可得ρ=2a cos ⎝ ⎛⎭⎪⎫π2-θ=2a sin θ(0≤θ≤π). 2.(1)ρcos θ ρsin θ (2)x 2+y 2yx【做一做2-1】D ∵cos θ=22,∴ρcos θ=22ρ. 两边平方,得x 2=12(x 2+y 2),即y =±x .又∵ρ≥0,∴ρcos θ=x ≥0.∴y =±x (x ≥0)表示两条射线.【做一做2-2】ρ=4sin θ x 2+(y -2)2=4可化为x 2+y 2=4y ,把x =ρcos θ,y =ρsin θ代入,得(ρcos θ)2+(ρsin θ)2=4ρsin θ,化简得ρ=4sin θ.3.ep1-e cos θ椭圆 抛物线 双曲线 【做一做3】解:由ρ=42-cos θ变形得2ρ-ρcos θ=4,把ρ=x 2+y 2,x =ρcos θ代入,平方,得4x 2+4y 2=x 2+8x +16,即3x 2-8x +4y 2-16=0.题型一 求直线的极坐标方程【例1】设P ⎝⎛⎭⎪⎫2,π4,直线l 过P 点且倾斜角为3π4,求直线l 的极坐标方程.分析:设M (ρ,θ)(ρ≥0)是直线l 上除P 点外的任意一点,极点为O ,构造三角形求OM . 反思:在极坐标系中,求直线的极坐标方程的一般方法为:设M (ρ,θ)为直线上任意一点,极点为O ,连接OM ,构造出含有OM 的三角形,再找出我们需求的ρ与θ的关系,即为直线的极坐标方程.也可以先求出直角坐标方程,再化为极坐标方程.题型二 求圆的极坐标方程【例2】求以C (4,0)为圆心,半径等于4的圆的极坐标方程.反思:在极坐标系中,求圆的极坐标方程时,关键是找出曲线上的点满足的关系,将它用坐标表示并化简,得到ρ和θ的关系,即为所求极坐标方程.题型三 极坐标方程和直角坐标方程的互化【例3】将下列式子进行直角坐标方程与极坐标方程之间的互化.(1)x 2+y 2=4;(2)(x -1)2+(y +2)2=4;(3)ρ=3c O s θ;(4)ρ=c O s ⎝⎛⎭⎪⎫θ-π4. 反思:极坐标系和直角坐标系都是用一对有序实数来确定平面上点的位置的方法,都是研究平面图形的重要工具.在进行极坐标方程与直角坐标方程互化时,除了正确使用互化公式外,还要注意变形的等价性.题型四 圆锥曲线的极坐标方程【例4】平面直角坐标系中,有一定点F (2,0)和一条定直线l :x =-2.求与定点F 的距离和定直线l 的距离的比等于常数12的点的轨迹的极坐标方程.分析:用待定系数法求极坐标方程.反思:求圆锥曲线的极坐标方程,关键是建立极坐标系,明确P 的几何意义,求出e 和P ,圆锥曲线的极坐标方程就求出来了.答案:【例1】解:如图所示,设M (ρ,θ)(ρ≥0)为直线l 上除P 点外的任意一点,极点为O ,连接OM ,OP ,该直线交Ox 于点A ,则有|OM |=ρ,|OP |=2,∠MOP =|θ-π4|,∠OPM =π2,所以|OM |cos ∠MOP =|OP |,即ρcos ⎪⎪⎪⎪⎪⎪θ-π4=2,即ρcos ⎝⎛⎭⎪⎫θ-π4=2,显然点P 也在这条直线上. 故所求直线的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=2. 【例2】解:如图所示,由题设可知,这个圆经过极点,圆心在极轴上,设圆与极轴的另一个交点是A ,在圆上任取一点P (ρ,θ),连接OP ,PA,在Rt △OPA 中,|OA |=8,|OP |=ρ,∠AOP =θ,∴|OA |·cos θ=ρ,即8cos θ=ρ,即ρ=8cos θ就是圆C 的极坐标方程. 【例3】解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=4得(ρcos θ)2+(ρsin θ)2=4,即ρ2=4.(2)将(x -1)2+(y +2)2=4展开得x 2-2x +y 2+4y =-1.将x =ρcos θ,y =ρsin θ代入x 2-2x +y 2+4y =-1,得(ρcos θ)2-2ρcos θ+(ρsin θ)2+4ρsin θ=-1.化简,得ρ2-2ρcos θ+4ρsin θ+1=0.(3)因为ρ=3cos θ,所以ρ2=3ρcos θ,即x 2+y 2=3x .(4)由ρ=cos ⎝⎛⎭⎪⎫θ-π4=cos θcos π4+sin θsin π4 =22cos θ+22sin θ. 整理,得ρ2=22ρcos θ+22ρsin θ, 即x 2+y 2=22x +22y . 即x 2-22x +y 2-22y =0. 【例4】解:过定点F 作定直线l 的垂线,垂足为K ,以F 为极点,FK 的反向延长线Fx 为极轴,建立极坐极系.由题意,设所求极坐标方程为ρ=ep1-e cos θ,∵定点F (2,0),定直线l :x =-2,∴p 为F 点到直线l 的距离,为2-(-2)=4.又常数12=e ,∴所求点的轨迹的极坐标方程为ρ=ep 1-e cos θ=12×41-12cos θ,即ρ=42-cos θ.1极坐标方程为ρ=2cos θ的圆的半径是( ).A .1B .2C .12D .3 2过点A (2,0),并且垂直于极轴的直线的极坐标方程是( ). A .ρc O s θ=2 B .ρsin θ=2 C .ρc O s θ=1 D .ρsin θ=13已知一条直线的极坐标方程为πsin 42ρθ⎛⎫+=⎪⎝⎭,则极点到该直线的距离是__________.4从原点O 引直线交直线2x +4y -1=0于点M ,P 为射线OM 上一点,已知|OP |·|OM |=1.求P 点的轨迹的极坐标方程.答案:1.A ∵ρ=2cos θ,∴ρ2=2ρcos θ,即x 2+y 2=2x .化简,得(x -1)2+y 2=1.∴半径为1. 2.A 如图所示,设M (ρ,θ)为直线上除A (2,0)外的任意一点,连接OM ,则有△AOM 为直角三角形,并且∠AOM =θ,|OA |=2,|OM |=ρ,所以有|OM |cos θ=|OA |,即ρcos θ=2,显然当ρ=2,θ=0时,也满足方程ρcos θ=2,所以所求直线的极坐标方程为ρcos θ=2.3.22 ∵ρsin ⎝⎛⎭⎪⎫θ+π4=ρsin θcos π4+ρcos θsin π4 =22ρsin θ+22ρcos θ=22, ∴ρsin θ+ρcos θ=1,即x +y =1.则极点到该直线的距离d =|0+0-1|2=22.4.解:以O 为极点,x 轴正方向为极轴建立极坐标系,直线2x +4y -1=0的方程可化为2ρcos θ+4ρsin θ-1=0,设M (ρ0,θ0),P (ρ,θ),则2ρ0cos θ0+4ρ0sin θ0-1=0.由⎩⎪⎨⎪⎧θ=θ0,ρ0·ρ=1,知⎩⎪⎨⎪⎧θ0=θ,ρ0=1ρ.代入2ρ0cos θ0+4ρ0sin θ0-1=0,得2×1ρcos θ+4×1ρsin θ-1=0,整理,得ρ=2cos θ+4sin θ.所以P 点的轨迹的极坐标方程为ρ=2cos θ+4sin θ.。

高中数学选修4-424曲线的极坐标方程和直角坐标方程的互化教案

高中数学选修4-424曲线的极坐标方程和直角坐标方程的互化教案
科目:高二数学授课时间:第12周星期三
单元(章节)课题
本节课题
2.4曲线的极坐标方程与直角坐标方程的互化
三维目标
知识与技能:掌握极坐标方程和直角坐标方程的互化关系式;会进行曲线的极坐标方程与直角坐标方程的互化.
过程与方法:通过学生自主探究极坐标方程和直角坐标方程的互化关系式,培养学生自主学习能力和阅读能力;
情感,态度与价值观:培养学生数学表达能力。
提炼的课题
极坐标方程与直角坐标方程的互化
教学重难点
重点:掌握极坐标方程和直角坐标方程的互化关系式.
难点:实现ห้องสมุดไป่ตู้坐标方程和直角坐标方程之间的互化.
教学过程
一、情境导入
1.点的直角坐标与极坐标互化关系如下:
(1)点M的极坐标 化为直角坐标 的公式:
(2)点M的直角坐标 化为极坐标 的公式:
(1)将方程转化成含、、的式子;
(2)将 分别换成、、;
(3)整理、化简。
2.将曲线的直角坐标方程化成极坐标方程的基本步骤:
(1)将 分别换成、、;
(2)整理、化简。
五、课堂小结
你今天主要学习了什么?都有哪些收获?
课堂检测内容
1.把下面的极坐标方程转化为直角坐标方程.
(1) (2)
2.课本P17练习1.
课后作业布置
课本第18页A组5,6
预习内容布置
完成《极坐标习题二》
(1) (2) (3)
2.直角坐标方程化为极坐标方程的公式
(1) (2) (3)
三、典型例题
题型一:极坐标方程化为直角坐标方程
例1、将下列曲线的极坐标方程化成直角坐标方程:
题型二:直角坐标方程化为极坐标方程
例2.将下列曲线的直角坐标方程化成极坐标方程。

高三数学专题复习--极坐标与参数方程

高三数学专题复习--极坐标与参数方程

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1

它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.

高中数学北师大版选修4-4+2.4曲线的极坐标方程和直角坐标方程的互化教案

高中数学北师大版选修4-4+2.4曲线的极坐标方程和直角坐标方程的互化教案

精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中数学 选修4-4 4.简单曲线的极坐标方程

高中数学 选修4-4 4.简单曲线的极坐标方程

4.简单曲线的极坐标方程教学目标 班级______姓名________1.了解简单曲线的极坐标方程.2.熟练掌握曲线极坐标方程与直角坐标方程的相互转化.教学过程一、知识要点.1.极坐标与直角坐标的相互转化.(1)直角坐标),(y x 化极坐标),(θρ:22y x +=ρ,xy arctan =θ; (2)极坐标),(θρ化直角坐标),(y x :θρcos ⋅=x ,θρsin ⋅=y .2.简单曲线的极坐标方程.(1)直线:①过极点,倾斜角为α:αθ=或παθ+=.②过),(αa A ,垂直于极轴:αθρcos cos ⋅=⋅a .(2)圆:①以极点为圆心,a 为半径:a =ρ.②过)0,0(O ,)0,2(a A )0(>a ,以OA 为直径:θρcos 2a =.3.极坐标方程的解题思想:(1)将极坐标转化成直角坐标;(2)在直角坐标系中解决问题;(3)再将结果转化成极坐标.二、例题分析.1.极坐标方程化直角坐标方程.例1:把下列极坐标方程化成直角坐标方程.(1)2sin =θρ; (2)04)sin 5cos 2(=-+θθρ;(3)θρcos 10-=; (4)θθρsin 4cos 2-=.2.直角坐标方程化极坐标方程.例2:把下列直角坐标方程化成极坐标方程.(1)4=x ; (2)02=+y ;(3)0132=--y x ; (4)1622=-y x .作业:1.求下列曲线的极坐标方程.(1)过点)3,2(π,且与极轴垂直的直线;(2)圆心在)4,1(πA ,半径为1的圆.2.已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.。

高中数学选修4-4-极坐标与参数方程-知识点与题型

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化点M 直角坐标(x ,y ) 极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( )A .3)4πB .5()4π-C .5(3,)4πD .3(3,)4π-3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程 点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C所截得的弦长.2、曲线C的极坐标方程为:ρ=acosθ(a>0),直线l的参数方程为:(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相切,求a值.3、在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离最小值.综合应用 1、曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、 B 11(0,)(,0)52、 C (0,4)(8,0)-、 D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( )(3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x15.参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 所表示的曲线是( )A .直线B .两条射线C .线段D .圆16.下列参数方程(t 是参数)与普通方程y x 2=表示同一曲线的方程是: ( )A .x t y t ==⎧⎨⎩2B .x t y t ==⎧⎨⎩sin sin 2C .x t y t ==⎧⎨⎪⎩⎪D .⎪⎩⎪⎨⎧=+-=t y t t x tan 2cos 12cos 13.由参数方程()⎪⎭⎫⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθθ为参数,y x 给出曲线在直角坐标系下的方程是 。

高中数学 第一章 坐标系 1-2-4 曲线的极坐标方程与直角坐标方程的互化课件 北师大版选修4-4

高中数学 第一章 坐标系 1-2-4 曲线的极坐标方程与直角坐标方程的互化课件 北师大版选修4-4

3.将直角坐标方程 x2+y2+2x+2y=0 化为极坐标方程为
()
A.ρ=-2cosθ
B.ρ=-2sinθ
C.ρ=-2(cosθ+sinθ)
π D.ρ=-2cos(θ+ 4 )
答案 C 解析 依题意得 ρ2+2ρcosθ+2ρsinθ=0, 所以 ρ+2cosθ+2sinθ=0 或 ρ=0, 又曲线 ρ+2cosθ+2sinθ=0 经过极点, 所以 ρ=-2(cosθ+sinθ).故选 C.
π ∴这是过极点且倾斜角为 3 的射线的极坐标方程.
π ∴射线 y= 3x(x≥0)的极坐标方程为 θ= 3 (ρ≥0).
(2)将 x=ρcosθ,y=ρsinθ代入 x2+y2=r2,得 ρ2cos2θ+ρ2sin2θ=r2,∴ρ2=r2(r>0). ∵ρ≥0,∴ρ=r 为所求.
题型二 极坐标方程化为直角坐标方程
(2)圆心为(2,23π),半径为 3.
π (3)圆心为(2, 3 ),半径为 3.
结束 语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
【答案】 (1)(x-12)2+(y+ 23)2=1, (2)(x- 23)2+(y-12)2=1, (3)x- 3y-2=0, (4) 3x+y-2=0
题型三 极坐标方程的应用
例 3 (2015·新课标全国Ⅰ)在直角坐标系 xOy 中,直线 C1: x =-2,圆 C2:(x-1)2+(y-2)2=1,以坐标原点为极点, x 轴 的正半轴为极轴建立极坐标系.
π 由此题总结:直线 ρcosθ=1 绕极点逆时针旋转 3 ,即得直线
π
π
ρcos(θ- 3 )=1,其中点(1,0)转到(1, 3 ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学运用
例3、 、 为极坐标方程; (1)化在直角坐标方程 2+y2-8y=0为极坐标方程; )化在直角坐标方程x 为极坐标方程 为直角坐标方程。 (2)化极坐标方程 )化极坐标方程ρ=6cos(θ -π/3) 为直角坐标方程。Biblioteka 变式训练3: 变式训练 :
1、把下列下列极坐标方程化为直角坐标方程: 、把下列下列极坐标方程化为直角坐标方程: (1) ρ cosθ=4 (2) ρ = 5 (3) ρ = 2r sinθ 把代入上式, (1)解:把代入上式,得它的直角坐标方程 x=4 ) 两边同时平方, (2)解:两边同时平方,得ρ 2=25 ) 代入上式, 把ρ 2=x2+y2代入上式,得它的直角坐 标方程x 标方程 2+y2=25 (3)解:两边同时乘以ρ,得ρ 2=2rρ sinθ,把ρ 2=x2+y2, ) ρ sinθ =y代入上式,得它的直角坐标方程 2+y2=2ry 代入上式, 代入上式 得它的直角坐标方程x 即x2+(y-r)2=r2
课堂小结
1. 在极坐标系中 我们可以用一个角度和一个距离来 在极坐标系中,我们可以用一个角度和一个距离来 确定点的位置. 确定点的位置 2. 极坐标系和直角坐标系是两种不同的坐标系,同一 极坐标系和直角坐标系是两种不同的坐标系, 个点可以用极坐标表示,也可以用直角坐标表示, 个点可以用极坐标表示,也可以用直角坐标表示,这 样就需要掌握两种坐标在一定条件下的互化方法. 样就需要掌握两种坐标在一定条件下的互化方法

x = ρ cosθ y = ρ s in θ

ρ = x2 + y 2 y tanθ = ( x ≠ 0) x
求曲线极坐标方程的基本步骤: 求曲线极坐标方程的基本步骤:
建立适当的极坐标系; 第一步 建立适当的极坐标系; 在曲线上任取一点P( 第二步 在曲线上任取一点 ( ρ , θ ) 第三步 根据曲线上的点所满足的条件写出等 式; 表示上述等式, 第四步 用极坐标ρ 、θ表示上述等式,并化简 得极坐标方程; 得极坐标方程; 证明所得的方程是曲线的极坐标程。 第五步 证明所得的方程是曲线的极坐标程。
曲线的极坐标 方程的意义
洛阳第二实验中学 南院
复习回顾
1、直角坐标系和极坐标系中怎样描述点的位置? 、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义? 、曲线的方程和方程的曲线(直角坐标系中)定义? 3、求曲线方程的步骤。 、求曲线方程的步骤。
知识探究
1. 情境:以极点 为圆心 1为半径的圆上任意一点极径 情境:以极点O为圆心 为半径的圆上任意一点极径 为圆心, 的点都在这个圆上。 为1,反过来,极径为 的点都在这个圆上。 ,反过来,极径为1的点都在这个圆上 因此, 以极点为圆心, 为半径的圆可以用方程 为半径的圆可以用方程ρ=1来表 因此 以极点为圆心 1为半径的圆可以用方程 来表 示. 2. 问题:曲线上的点的坐标都满足这个方程吗? 问题:曲线上的点的坐标都满足这个方程吗?
设圆上任意一点为P(ρ,θ),连结PA, ),连结 设圆上任意一点为P(ρ,θ),连结PA,则 |=ρ, |OP|= ,∠POx=θ |= = 在Rt△POA中,由于 △ 中 由于cos∠POA=|OP|/|OA|, ∠ ,
π A(2r, ) 2 P(ρ,θ) π C(r, ) 2
cos( − θ ) = ρ / 2r , 2
说明: 说明:
由于点的极坐标表示不唯一,因此,在极坐标 由于点的极坐标表示不唯一,因此, 系中, 系中,曲线上的点的极坐标中只要有满足曲线方程 的坐标, 的坐标,但不要求曲线上的点的任意一个极坐标都 满足方程。 满足方程。 由于点的极坐标表示不唯一,导致曲线的极坐 由于点的极坐标表示不唯一, 标方程也不唯一。 标方程也不唯一。 为圆心, 为半径的圆可以用方程 如:以极点O为圆心,1为半径的圆可以用方程 以极点 为圆心 ρ =1表示,也可以用方程ρ =-1表示 表示, 表示. 表示 表示
在直角坐标平面上,曲线可以用 、 的二元方 在直角坐标平面上 曲线可以用 x、y的二元方 来表示, 程f (x , y)=0来表示,这种方程也称为曲线的直角 来表示 坐标方程。 坐标方程。 同理,在极坐标平面上 同理,在极坐标平面上, 曲线也可以用关于ρ、θ 的 二元方程f 来表示, 二元方程 (ρ , θ )=0来表示 这种方程称为曲线的极坐 = 来表示 标方程。 标方程。 3、定义:一般地, 如果一条曲线上任意一点都有一个 、定义:一般地 反之, 极坐标适合方程f = 极坐标适合方程 (ρ , θ )=0 ; 反之 极坐标适合方程 f (ρ , θ )=0的点在曲线上 那么这个方程称为这条曲线 的点在曲线上, 方程称为这条曲线 = 的点在曲线上 那么这个方程 极坐标方程, 这条曲线称为这个极坐标方程的曲线 曲线称为这个极坐标方程的曲线. 的极坐标方程 这条曲线称为这个极坐标方程的曲线
求曲线的极坐标方程: 求曲线的极坐标方程:
类似于曲线直角坐标方程的求法,可以求曲线的极坐标方程。 类似于曲线直角坐标方程的求法,可以求曲线的极坐标方程。
例1、求过点 、求过点A(2,0)且垂直于极轴的直线的极坐标方程 且垂直于极轴的直线的极坐标方程 上任取一点P( 解:如图所示,在所求直线 l 上任取一点 ρ , θ ), 如图所示, , 连结OP, 则 OP=ρ ,∠POA=θ 连结 = = 在Rt△POA中,由于 △ 中 由于OPcosθ =OA, , 所以 ρ cosθ =2, 所以 ρ cosθ =2为所求直线的极坐 为所求直线的极坐 标方程。 标方程。
所以
π
即 sin θ = ρ / 2r ,
ρ=2rsinθ为所求圆的极坐标方程。 为所求圆的极坐标方程。 为所求圆的极坐标方程
θ O x
特别地, 在直角坐标系中,x=k(k为常数 表示 特别地 我们知道,在直角坐标系中 为常数)表示 我们知道 在直角坐标系中, 为常数
一条平行于y轴的直线; 为常数)表示一条平行 一条平行于 轴的直线;y=k(k为常数 表示一条平行 轴的直线 为常数 于x轴的直线。 轴的直线。 轴的直线 我们可以证明(具体从略),在极坐标系中, 我们可以证明(具体从略),在极坐标系中, ),在极坐标系中 ρ=k(k为常数 表示圆心在极点、半径为 的圆; 为常数)表示圆心在极点 的圆; 为常数 表示圆心在极点、半径为k的圆 θ=k(k为常数 表示极角为 的一条直线(过极点)。 = 为常数 表示极角为k的一条直线 过极点)。 为常数)表示极角为 的一条直线(
O ρ θ A(2,0) x P(ρ, θ)
变式训练1:已知点 的极坐标为 的极坐标为(1,π),那么过点 且 变式训练 :已知点P的极坐标为 ,那么过点P且 垂直于极轴的直线极坐标方程。 垂直于极轴的直线极坐标方程。
例2、求圆心在C(r,0),半径为r的圆的极坐标方程。 求圆心在C(r,0),半径为r的圆的极坐标方程。 C(r,0),半径为 解:如图所示, 如图所示, 为圆上任意一点,由于OP⊥ 设P ( ρ , θ )为圆上任意一点,由于 ⊥AP |OA|=2r,∠POA= θ , = 则|OP|=|OA|cos∠POA = ∠ 即 ρ =2rcos 所以, 所以,所求圆的极 坐标方程为ρ =2rcos θ
θ
变式训练2:求圆心在 半径为r的圆的极坐 变式训练 :求圆心在C(r,π/2), 半径为 的圆的极坐 标方程。 标方程。
解: 如图所示,由题意可知,所求圆的圆心在垂直于极轴且位于极轴上方的射线上, 如图所示,由题意可知,所求圆的圆心在垂直于极轴且位于极轴上方的射线上, 而圆周经过极点。 而圆周经过极点。 设圆与垂直于极轴的射线的另一交点为A, 点的极坐标为( 设圆与垂直于极轴的射线的另一交点为 ,则A点的极坐标为(2r, π /2)。 点的极坐标为 。
相关文档
最新文档