七年级数学期末复习培优提高训练(五)及答案 (2).pptx
七年级上册数学 期末试卷(培优篇)(Word版 含解析)
七年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab2.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .3.下列运算正确的是 A .325a b ab += B .2a a a +=C .22ab ab -=D .22232a b ba a b -=- 4.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab5.下列立体图形中,俯视图是三角形的是( )A .B .C .D .6.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个 8.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小9.如图所示的几何体的左视图是( )A .B .C .D .10.27-的倒数是( ) A .72 B .72-C .27D .27-11.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,712.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 14.-3的相反数为( )A .-3B .3C .0D .不能确定15.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________. 17.计算:3-|-5|=____________.18.已知23a b -=,则736a b +-的值为__________.19.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.20.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 21.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________. 23.如果方程21(1)20m m x --+=是一个关于x 的一元一次方程,那么m 的值是__________.24.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).27.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么? 28.解方程:(1)()()210521x x x x -+=+-(2)1.7210.70.3 x x--=29.解方程:(1)5(x﹣1)+2=3﹣x(2)21211 36x x-+=-30.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用块小正方体搭成的.31.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A=80°,则∠A的半余角的度数为;(2)如图1,将一长方形纸片ABCD沿着MN折叠(点M在线段AD上,点N在线段CD 上)使点D落在点D′处,若∠AMD′与∠DMN互为“半余角”,求∠DMN的度数;(3)在(2)的条件下,再将纸片沿着PM折叠(点P在线段BC上),点A、B分别落在点A′、B′处,如图2.若∠AMP比∠DMN大5°,求∠A′MD′的度数.32.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,若这样的几何体最少要个a小正方体,最多要b个小正方体,则+a b的值为___________.33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.36.如图,数轴上点A、B表示的点分别为-6和3(1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.37.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.38.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()26120a b-++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.39.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C是线段AB上的一点,M是AC的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0n a b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论. 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.2.D【解析】 【分析】根据余角、补角的定义计算. 【详解】根据余角的定义,两角之和为90°,这两个角互余. D 中∠1和∠2之和为90°,互为余角. 故选D . 【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.D解析:D 【解析】 【分析】根据整式的加减,合并同类项得出结果即可判断. 【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确, 故选D. 【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.4.A解析:A 【解析】 【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案. 【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意. 故选A . 【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.5.C【解析】【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.B解析:B【解析】【分析】根据正方体的表面展开图的常见形式即可判断.【详解】选项A、C 、D经过折叠均不能围成正方体;只有B能折成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.7.B解析:B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.9.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A . 10.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.11.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.12.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.15.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可. 【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a解析:-4,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a=-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.17.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.18.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.19.【解析】【分析】设输入的数是x ,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±解析:2±【解析】【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷3=1,x 2-1=3,x=±2,故答案为:±2.【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程. 20.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次 解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】 本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键.21.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12 (180°-64°)=58°. 【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°, 故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.-1【解析】【分析】根据一元一次方程的定义可得出,,求解即可.【详解】解:由题意可得,,,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义解析:-1【解析】【分析】 根据一元一次方程的定义可得出2m 11-=,m 10-≠,求解即可.【详解】 解:由题意可得,2m 11-=,m 10-≠,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义是解此题的关键.24.【解析】【分析】根据题意表达出,将其代入计算即可.【详解】解:∵代数式的值为 1∴∴∴∴故答案为:【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.解析:1-4【解析】【分析】 根据题意表达出235=44x x +,将其代入2314x x --计算即可. 【详解】解:∵代数式2434x x +-的值为 1∴2434=1x x +-∴243=5x x + ∴235=44x x + ∴23511=1-=-444x x -- 故答案为:1-4 【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.25.30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB=90°,∠COD=90°,∠AOD=150°,解析:30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB =90°,∠COD =90°,∠AOD =150°,所以∠BOC =∠AOB +∠COD -∠AOD =30°. 故答案为:30°.【点睛】本题以学生常见的三角板为载体,主要考查了角的和差关系,解答的关键是通过观察发现图形中所求角与已知各角的关系.三、解答题26.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】 (1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系.【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t .故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t )解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45)解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60解得:t =10.故答案为5或10. ②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°.【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.27.(1)30°;(2)相等,理由见解析【解析】【分析】(1)根据对顶角相等求出∠BOD的度数,设∠BOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF的度数即可.【详解】(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠AOF=∠AOC,【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.28.(1)x=−43;(2)x=1417.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:2x−x−10=5x+2x−2,移项合并得:-6x=8,解得:x=−43;(2)方程整理得:101720173x x--=,去分母得:30x-21=7(17-20x),移项合并得:170x=140,解得:x=14 17.【点睛】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.29.(1)x =1;(2)x =32-. 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)先左右两边同时乘以6去掉分母,然后再按照去括号,移项,合并同类项,系数化为1的步骤求解即可.【详解】解:(1)去括号得:5x ﹣5+2=3﹣x ,移项得:5352x x +=+-合并同类项得:6x =6,系数化为1得:x =1;(2)去分母得:2(2x ﹣1)=2x +1﹣6,去括号得:4x ﹣2=2x +1﹣6,移项得:42162x x -=-+合并同类项得:2x =﹣3,系数化为1得:x =32-. 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.30.(1)见解析;(2)9【解析】【分析】(1)根据主视图、左视图和俯视图的定义和几何体的特征画出三视图即可;(2)根据三视图的特征分析该几何体的层数和每层小正方体的个数,然后将每层小正方体的个数求和即可判断.【详解】解:(1)根据几何体的特征,画三视图如下:(2)从主视图看,该几何体有3层,从俯视图看,该几何体的最底层有6个小正方体;结合主视图和左视图看,中间层有2个或3个小正方体,最上层只有1个小正方体,故该几何体有6+2+1=9个小正方体或有6+3+1=10个小正方体,如果只看三视图,这个几何体还有可能是用9块小正方体搭成的,故答案为:9.【点睛】此题考查的是画三视图和根据三视图还原几何体,掌握三视图的定义、三视图的特征和几何体的特征是解决此题的关键.31.(1)35°或125°;(2)45°或75°;(3)10°或130°.【解析】【分析】(1)设∠A的半余角的度数为x°,根据半余角的定义列方程求解即可;(2)设∠DMN为x°.根据折叠的性质和半余角的定义解答即可;(3)分两种情况讨论:①当∠DMN=45°时,∠DMD'=90°,∠AMP=50°,∠DMA'=80°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.②当∠DMN=75°时,∠DMD'=150°,∠AMP=80°,∠DMA'=20°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.【详解】(1)设∠A的半余角的度数为x°,根据题意得:|80°-x|=45°80°-x=±45°∴x=80°±45°,∴x=35°或125°.(2)设∠DMN为x°,根据折叠的性质得到∠D'MN=∠DMN=x°.∴∠AMD'=180°-2x.∵∠AMD′与∠DMN互为“半余角”,∴|180°-2x-x|=45°,∴|180°-3x|=45°,∴180°-3x=45°或180°-3x=-45°,解得:x=45°或x=75°.(3)分两种情况讨论:①当∠DMN=45°时,∠D'MN=45°,∴∠DMD'=90°,∠AMP=∠A'MP=45°+5°=50°,∴∠DMA'=180°-2∠AMP=80°,∴∠A′MD′=∠DMD'-∠DMA'=90°-80°=10°.②当∠DMN=75°时,∠D'MN=75°,∴∠DMD'=150°,∠AMP=∠A'MP=75°+5°=80°,∴∠DMA'=180°-2∠AMP=20°,∴∠A′MD′=∠DMD'-∠DMA'=150°-20°=130°.综上所述:∠A′MD′的度数为10°或130°.【点睛】本题考查了一元一次方程的应用以及折叠的性质.理解“半余角”的定义是解答本题的关键. 32.(1) 10; (2) 主视图、左视图和俯视图见解析;(3) 22.【解析】【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.33.(1)图见解析;(2)图见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)根据题意,画图即可.【详解】解:(1)根据直线和射线的定义:作直线BD和射线C B,如图所示:直线BD和射线C B即为所求;,如下图所示,AD和DF即为所(2)连结AD并延长线段AD至点F,使得DF AD求.【点睛】此题考查的是画直线、射线和线段,掌握直线、射线和线段的定义及画法是解决此题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.36.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是。
初中数学七年级数学期末复习培优提高训练1.docx
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:一个角的余角是它的补角的,这个角的补角是()A.30°B.60°C.120°D.150°试题2:一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为()道A.16B.17C.18D.19试题3:∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3=________.试题4:已知轮船在逆水中前进的速度为m千米/时,水流的速度为2千米/时,则这轮船在顺水中航行的速度是_____千米/时试题5:金佰客超市举办迎新春送大礼的促销活动,全场商品一律打8折,宋老师花了992元买了热水器,那么该商品的原售价为_ ___元.试题6:假设有足够多的黑白围棋子,按照一定的规律排列成一行请问第2007个棋子是黑的还是白的?答:_ ___.试题7:若∠AOB=∠COD=∠AOD,已知∠COB=80°,求∠AOB、∠AOD的度数.试题8:已知关于x的方程(m+3)x|m|-2+6m=0…①与nx-5=x(3-n) …②的解相同,其中方程①是一元一次方程,求代数式(m+x)2000·(-m2n+xn2)+1的值.试题9:某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套?原计划多少天完成?试题10:如图1所示的棱柱有 ( )A.4个面B.6个面C.12条棱D.15条棱试题11:.为直线外一点,为上三点,且,那么下列说法错误的是()、三条线段中最短、线段叫做点到直线的距离、线段是点到的距离、线段的长度是点到的距离试题12:如图所示是计算机程序计算,若输入=-1,则最后输出结果是试题13:不在同一直线上的四点最多能确定 条直线。
七年级数学期末复习培优提高训练(五)及答案
……七年级数学期末复习培优提高训练(五)1.如图:由AB=CD 可得AC 与BD 的大小关系 ( )A .AC>BDB .AC<BDC .AC=BD D .不能确定 2.下面各题去括号错误的是( )A.x -(6y -21)=x -6y +21 B.2m +(-n +31a -b )=2m -n +31a -bC.-21(4x -6y +3)=-2x +3y +3D.(a +21b )-(-31c +72)=a +21b +31c -723.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( )A.3块B.4 块C.5块D.6块4.已知代数式x+2y 的值是3,则代数式2x+4y+3值是 ( )A. 9B. 6C. 7D. 不能确定5.如果a -b =12,那么-3(b -a )的值时( ) A.-35 B.23 C.32 D.166.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色地砖_____________块。
7.(本题满分18分)主 视 图左 视 图俯 视 图O P FE D CBA 如图,直线AB 与CD 相交于点O , OP 是∠BOC 的平分线,OE ⊥AB ,OF ⊥CD. (1)如果∠AOD =40°①那么根据 ,可得∠BOC = 度。
②那么∠POF 的度数是 度。
(2)图中除直角外,还有相等的角吗?请写出三对: ① ;② ;③ 。
8.(12分)计算:① ()312624-⨯-÷-- ② (1876597+-)()()84182-÷-+⨯9.(12分)① 计算:)3()2()232(323323223y y x x y xy x xy y x x -+-++----②解方程1615312=--+x x10.(本题满分12分)已知关于x 的方程1232=-x a ,在解这个方程时,粗心的小王误将x 3-看成了x 3+,从而解得3=x ,请你帮他求出正确的解。
2021人教版七年级数学下册《第5章相交线与平行线》期末复习培优提升训练2(附答案)
2021人教版七年级数学下册《第5章相交线与平行线》期末复习培优提升训练2(附答案)1.如图,ABCD为一长条形纸带,AB∥CD.将ABCD沿EF折叠,A、D两点分别与A'、D'对应,若∠1=2∠2,则∠CFD'的度数为.2.如图,AB∥CD,EM是∠AMF的平分线,NF是∠CNE的平分线,EN,MF交于点O.若∠E+60°=2∠F,则∠AMF的大小是.3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=30°,则∠2的大小为度.4.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2﹣∠1=.5.如图,已知长方形纸带ABCD,AB∥CD,AD∥BC,∠C=90°,∠DEF=52°,将纸带沿EF折叠后,点C、D分别落在H、G的位置,则下列结论中,正确的序号是.①∠BFE=52°;②∠BMG=52°;③∠AEG=76°;④∠BFH=76°.6.如图,点D,E,F分别是三角形ABC的边BC,CA,AB.上的点,且DE∥AB,DF∥CA.(1)求证∠A=∠FDE;(2)若∠A=3∠B,∠C=∠B+30°,求证:AB⊥AC.7.如图,AC∥EF,∠1+∠3=180°.(1)判定∠F AB与∠4的大小关系,并说明理由;(2)若AC平分∠F AB,EF⊥BE于点E,∠4=72°,求∠BCD的度数.8.如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)求证:AD∥EF;(2)求证:AD是∠BAC的平分线.9.如图,已知AB∥CD,∠B=∠D,AE交BC的延长线于点E.(1)求证:AD∥BE;(2)若∠1=∠2=60°,∠BAC=2∠EAC,求∠DCE的度数.10.已知:如图EF∥CD,∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠CGD的度数.11.如图,AC∥FE,∠1+∠2=180°.(1)判定∠F AB与∠BDC的大小关系,并说明理由;(2)若AC平分∠F AB,EF⊥BE于点E,∠BDC=76°,求∠BCD的度数.12.如图,AD∥EF,∠1+∠2=180°.(1)若∠1=50°,求∠BAD的度数;(2)若DG⊥AC,垂足为G,∠BAC=90°,试说明:DG平分∠ADC.13.如图,已知∠1=∠BDE,∠2+∠FED=180°.(1)证明:AD∥EF.(2)若EF⊥BF于点F,且∠FED=140°.求∠BAC的度数.14.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.证EM∥FN;(2)如图(2),EG平分∠MEF,EH平分∠AEM,直接写出∠GEH与∠EFD的数量关系.15.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.16.如图,已知∠1+∠2=180°,且∠3=∠B.(1)求证:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠2=110°,∠3=50°,求∠ACB的度数.17.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.18.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=60°,求∠BED的度数;(2)若∠A﹣∠ABD=31°,∠EDC=76°,求∠A的度数.参考答案1.解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠2,∵∠1=2∠2,设∠1=2x,则∠AEF=∠2=∠FEA′=x,∴4x=180°,∴x=45°,∴∠2=45°,∴∠DFE=180°﹣45°=135°,∴∠D′FE=135°,∴∠CFD'=135°﹣45°=90°.故答案为:90°.2.解:作EH∥AB,如图,∵AB∥CD,∴EH∥CD,∴∠1=∠AME,∠2=∠CNE,∵EM是∠AMF的平分线,∴∠AME=∠AMF,∵∠MEN=∠1+∠2,∴∠MEN=∠AMF+∠CNE,同理可得,∠F=∠AMF+∠CNE,∴2∠F=2∠AMF+∠CNE,∴2∠F﹣∠MEN=∠AMF,∵∠MEN+60°=2∠F,即2∠F﹣∠MEN=60°,∴∠AMF=60°,故答案为:40°.3.解:如图,延长F A,由折叠的性质,可得∠3=∠1=30°,∴∠4=180°﹣30°﹣30°=120°,∵CD∥BE,BE∥AF,∴∠ACD=∠4=120°,又∵AC∥BD,∴∠2=180°﹣∠ACD=180°﹣120°=60°.故答案为:60.4.解:由题意可得:∠DEF=∠GEF.∵DE∥BC,∴∠DEF=∠EFG=50°.∴∠DEF=∠GEF=∠EFG=50°.∴∠1=180°﹣∠GFD=180°﹣100=80°.∵AE∥BG,∴∠1+∠2=180°.∴∠2=100°.∴∠2﹣∠1=100°﹣80°=20°.故答案为:20°.5.解:四边形ABCD是长方形,∴∠C=∠D=90°,AD∥BC,∴∠BFE=∠DEF=52°,①正确;∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°﹣∠DEF=128°,由折叠得,∠DEF=∠GEF,∠EFC=∠EFH,∠G=∠D=90°,∠C=∠H=90°,∴∠BFH=∠EFH﹣∠EFB=128°﹣52°=76°,④正确;∵∠H+∠BFH+∠HBC=180°,∴∠HMC=180°﹣90°﹣76°=14°,∵∠BMG=∠HMC,∴∠BMG=14°,②错误;∵∠AEG+∠GEF+∠DEF=180°,∴∠AEG=180°﹣52°﹣52°=76°,③正确.故答案为:①③④.6.(1)证明:∵DE∥BA,∴∠A+∠AFD=180°,∵DF∥CA,∴∠FDE+∠AFD=180°,∴∠FDE=∠A;(2)∵∠A=3∠B,∠C=∠B+30°,由三角形内角和定理得:∠A+∠B+∠C=180°,即3∠B+∠B+∠B+30°=180°,解得:∠B=30°,∴∠A=3∠B=90°,∴AB⊥AC.7.证明:(1)∠F AB=∠4.理由如下:∵AC∥EF,∴∠1+∠2=180°,又∵∠1+∠3=180°,∴∠2=∠3,∴AF∥CD,∴∠F AB=∠4;(2)∵AC平分∠F AB,∴∠2=∠CAD,又∵∠2=∠3,∴∠3=∠CAD,又∵∠4=∠3+∠CAD,∴72°=2∠3,∴∠3=36°,∵EF⊥BE,EF∥AC,∴∠FEC=90°,∠ACB=90°,∴∠BCD=∠ACB﹣∠3=90°﹣36°=54°.8.证明:(1)∵∠BDA+∠CEG=180°,∠BDA+∠CDA=180°,∴∠CEG=∠CDA,∴AD∥EF;(2)∵∠EDH=∠C,∴DH∥AC,∴∠H=∠EGC,∵∠F=∠H,∴∠F=∠EGC,∵AD∥EF,∴∠BAD=∠F,∠CAD=∠EGC,∴∠BAD=∠CAD,∴AD平分∠BAC.9.(1)证明:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)解:∵AB∥CD,∠2=60°,∴∠BAE=∠2=60°,∠BAC=∠ACD,∴∠EAC+∠BAC=60°,∵∠BAC=2∠EAC,∴∠EAC=20°,∴∠BAC=∠ACD=40°,∵∠1+∠ACD+∠DCE=180°,∴∠DCE=180°﹣∠1﹣∠ACD=180°﹣60°﹣40°=80°.10.(1)证明:∵EF∥CD,∴∠1+∠ECD=180°,又∵∠1+∠2=180°,∴∠2=∠ECD,∴GD∥CA.(2)解:由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°,∵GD∥CA,∴∠ACB+∠CGD=180°,∴∠CGD=180°﹣∠ACB=180°﹣80°=100°.11.解:(1)∠F AB=∠BDC,理由如下:∵AC∥EF,∴∠1+∠F AC=180°,又∵∠1+∠2=180°,∴∠F AC=∠2,∴F A∥CD,∴∠F AB=∠BDC;(2)∵AC平分∠F AB,∴∠F AC=∠CAD,∴∠F AD=2∠F AC,由(1)知∠F AC=∠2,∴∠F AD=2∠2,∴∠2=∠BDC,∵∠BDC=76°,∴∠2=×76°=38°,∵EF⊥BE,AC∥EF,∴AC⊥BE,∴∠ACB=90°,∴∠BCD=90°﹣∠2=52°.12.(1)解:∵AD∥EF,∴∠BAD+∠2=180°,∵∠1+∠2=180°,∴∠1=∠BAD,∵∠1=50°,∴∠BAD=50°;(2)证明:∵DG⊥AC,∴∠DGC=90°,∵∠BAC=90°,∴∠BAC=∠DGC,∴AB∥DG,∴∠BAD=∠ADG,由(1)得∠1=∠BAD,∴∠1=∠ADG,∴DG平分∠ADC.13.解:(1)∵∠1=∠BDE,∴AC∥DE,∵∠2+∠FED=180°,∴∠ADE+∠DEF=180°,∴AD∥EF;(2)∵EF⊥BF,∴∠F=90°,∵AD∥EF,∠FED=140°,∴∠F AD+∠F=180°,∠ADE+∠DEF=180°∴∠DAF=90°,∠ADE=40°,∴∠2=∠ADE=40°,∴∠BAC=180°﹣∠2﹣∠DAF=50°.14.证明:(1)∵∠1=∠2,∠3=∠4,∴∠MEF=180°﹣∠1﹣∠2,∠EFN180°﹣∠3﹣∠4,∴∠MEF=∠EFN,∴EM∥FN.(2)∠EFD=2∠HEG,理由如下:∵EH平分∠AEM,EG平分∠MEF,∴∠AEH=HEM.∠FEG=∠MEG,∵AB∥CD,∴∠EFD=∠AEF,∵∠AEH=∠HEM,∴∠AEF+∠FEH=∠HEG+∠MEG,∴∠AEF=∠HEG+∠FEG﹣∠FEH=∠HEG+∠HEG=2∠HEG,∴∠EFD=2∠HEG.15.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.16.(1)证明:∵∠1+∠2=180°,∠1+∠FDE=180°,∴∠FDE=∠2,∵∠3+∠FEC+∠FDE=180°,∠2+∠B+∠ECB=180°,∠B=∠3,∴∠FEC=∠ECB,∴EF∥BC,∴∠AFE=∠ACB;(2)解:∵∠3=∠B,∠3=50°,∴∠B=50°,∵∠2+∠B+∠ECB=180°,∠2=110°,∴∠ECB=20°,∵CE平分∠ACB,∴∠ACB=2∠ECB=40°.17.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.18.解:(1)∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°,∵BD是∠ABC的角平分线,∴∠EBC=2∠ABD=30°,∵DE∥BC,∴∠BED+∠EBC=180°,∴∠BED=180°﹣30°=150°;(2)∵BD是∠ABC的角平分线,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC=∠ABD,∵∠ADE+∠EDB+∠BDC=∠EDB+∠ADE+∠A+∠ABD=180°,∴∠A+2∠ABD=76°,又∵∠A﹣∠ABD=31°,∴∠A=46°。
人教版数学七年级上 新课标与核心素养期末冲刺培优测试卷(含答案及详解)
人教版数学七年级上册期末15天提分卷2018年8月期末数学试卷班级姓名考号一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内.1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是( )A.B.C.D.2.沿图中虚线旋转一周,能围成的几何体是下面几何体中的( )A.B.C.D.3.下列说法错误的是( )A.长方体、正方体都是棱柱B.六棱柱有六条棱、六个侧面C.三棱柱的侧面是三角形D.球体的三种视图均为同样的图形4.a与b的平方的和可表示为( )A.(a+b)2B.a2+b2C.a2+b D.a+b25.下列说法正确的是( )A.是单项式B.是五次单项式C.ab2﹣2a+3是四次三项式D.2πr的系数是2π,次数是1次6.下列计算正确的是( )A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b7.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是( )A.150°B.135°C.120°D.105°8.将21.54°用度、分、秒表示为( )A.21°54′B.21°50′24″ C.21°32′40″ D.21°32′24″9.若单项式﹣x2a﹣1y4与2xy4是同类项,则式子(1﹣a)2015=( )A.0 B.1 C.﹣1 D.1 或﹣110.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为( )A.2+6n B.8+6n C.4+4n D.8n二、填空题:本大题共6小题,每小题4分,共24分.11.某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为__________吨.12.两个有理数a、b在数轴上的位置如图所示,则a+b__________0;ab__________0(填“<”或“>”).13.用“>”、“<”填空:0__________;__________.14.的倒数是__________;3的相反数为__________;﹣2的绝对值是__________.15.如果代数式5x﹣8与代数式3x的值互为相反数,则x=__________.16.在长为48cm的线段AB上,取一点D,使AD=AB,C为AB的中点,则CD=__________cm.三、解答题(一):本大题共3小题,每小题6分,共18分,要有必要的运算过程或演算步骤.17.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).18.计算:8×+(﹣2)3÷4.19.解方程:x+2=6﹣3x.四、解答题(二):本大题共3小题,每小题7分,共21分.20.根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.22.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.五、解答题(三):本大题共3小题,每小题9分,共27分.23.连州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问:(1)若设乙旅行社的人数为x,请用含x的代数式表示甲旅行社的人数;(2)甲、乙两个旅游团各有多少人?24.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是__________(填“普查”或“抽样调查”),样本容量是__________;(2)表中a=__________,b=__________,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是__________.25.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×__________2=__________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内.1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是( )A.B.C.D.【考点】简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图形判定即可.【解答】解:长方体的主视图是:长方形,此图有两个长方体组成,因此主视图是两个长方形,再根据长方体的摆放可得:A正确,故选;A.【点评】此题主要考查了几何体的三视图,从正面看到的图叫做主视图,再注意长方体的摆放位置即可.2.沿图中虚线旋转一周,能围成的几何体是下面几何体中的( )A.B.C.D.【考点】点、线、面、体.【分析】根据该图形的上下底边平行且相等的特点可得旋转一周后得到的平面应是平行且全等的关系,据此找到正确选项即可.【解答】解:易得该图形旋转后可得上下底面是平行且半径相同的2个圆,应为圆柱,故选B.【点评】长方形旋转一周得到的几何体是圆柱.3.下列说法错误的是( )A.长方体、正方体都是棱柱B.六棱柱有六条棱、六个侧面C.三棱柱的侧面是三角形D.球体的三种视图均为同样的图形【考点】认识立体图形;简单几何体的三视图.【分析】利用常见立体图形的特征分析判定即可.【解答】解:A、长方体、正方体都是棱柱,此选项正确,B、六棱柱有六条棱、六个侧面,此选项正确,C、三棱柱的侧面是平行四边形或长方形或正方形,此选项错误,D、球体的三种视图均为同样的图形,此选项正确,故选:C.【点评】本题主要考查了认识立体图形及简单几何体的三视图,解题的关键是熟记常见立体图形的特征.4.a与b的平方的和可表示为( )A.(a+b)2B.a2+b2C.a2+b D.a+b2【考点】列代数式.【分析】用a加上b的平方列式即可.【解答】解:a与b的平方的和可表示为a+b2.故选:D.【点评】此题考查列代数式,理解题意,搞清运算的顺序与方法即可.5.下列说法正确的是( )A.是单项式B.是五次单项式C.ab2﹣2a+3是四次三项式D.2πr的系数是2π,次数是1次【考点】多项式;单项式.【分析】分别根据单项式以及多项式的定义判断得出即可.【解答】解:A、是分式,不是单项式,故此选项错误;B、﹣a2b3c是六次单项式,故此选项错误;C、ab2﹣2a+3是三次三项式,故此选项错误;D、2πr的系数是2π,次数是1次,故此选项正确.故选:D.【点评】此题考查了多项式和单项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.下列计算正确的是( )A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.7.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是( )A.150°B.135°C.120°D.105°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.8.将21.54°用度、分、秒表示为( )A.21°54′B.21°50′24″ C.21°32′40″ D.21°32′24″【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.9.若单项式﹣x2a﹣1y4与2xy4是同类项,则式子(1﹣a)2015=( )A.0 B.1 C.﹣1 D.1 或﹣1【考点】同类项.【分析】利用同类项的定义求解即可.【解答】解:∵单项式﹣x2a﹣1y4与2xy4是同类项,∴2a﹣1=1,解得a=1,∴(1﹣a)2015=0,故选:A.【点评】本题主要考查了同类项,解题的关键是熟记同类项的定义.10.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为( )A.2+6n B.8+6n C.4+4n D.8n【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.【解答】解:第n条小鱼需要(2+6n)根,故选A.【点评】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.二、填空题:本大题共6小题,每小题4分,共24分.11.某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为8.92×109吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8920000000有10位,所以可以确定n=10﹣1=9.【解答】解:8 920 000 000=8.92×109.故答案为:8.92×109.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.两个有理数a、b在数轴上的位置如图所示,则a+b<0;ab<0(填“<”或“>”).【考点】数轴.【分析】先根据数轴确定a,b的取值范围,根据有理数的加法、乘法,即可解答.【解答】解:由数轴可得:a<0<b,|a|>|b|,∴a+b<0,ab<0,故答案为:<,<.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b的取值范围.13.用“>”、“<”填空:0>;<.【考点】有理数大小比较.【专题】综合题.【分析】前两个数可直接比较大小.利用负数小于0,后两个数,先求它们的绝对值,再利用绝对值大的反而小比较即可.【解答】解:∵|﹣|==,|﹣|==,∴>,∴﹣<﹣.故答案为:>,<.【点评】本题利用了负数小于0,两个负数相比较绝对值大的反而小的知识.14.的倒数是;3的相反数为﹣3;﹣2的绝对值是2.【考点】倒数;相反数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得答案;根据只有负号不同的两个数互为相反数,可得答案;根据负数的绝对值等于它的相反数,可得答案.【解答】解:的倒数是;3的相反数为﹣3;﹣2的绝对值是2,故答案为:,﹣3,2.【点评】本题考查了倒数,求倒数:分子分母交换位置;求相反数:在一个数的前面加上符号就是这个数的相反数.15.如果代数式5x﹣8与代数式3x的值互为相反数,则x=1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣8+3x=0,移项合并得:8x=8,解得:x=1,故答案为:1【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.在长为48cm的线段AB上,取一点D,使AD=AB,C为AB的中点,则CD=8cm.【考点】两点间的距离.【分析】根据线段间的比例,可得AD的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【解答】解:由AB=48(cm),AD=AB,得AD=AB=×48=16(cm).由C为AB的中点,得AC=AB=×48=24(cm),由线段的和差,得CD=AC﹣AD=24﹣16=8(cm),故答案为:8.【点评】本题考查了两个点间的距离,利用线段中点的性质得出AC的长,利用线段的和差.三、解答题(一):本大题共3小题,每小题6分,共18分,要有必要的运算过程或演算步骤.17.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【考点】有理数的加减混合运算.【专题】计算题;实数.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.18.计算:8×+(﹣2)3÷4.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=6﹣4﹣8÷4=6﹣4﹣2=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.解方程:x+2=6﹣3x.【考点】解一元一次方程.【分析】按照解一元一次方程的步骤依次移项、合并同类项、系数化为1可得方程的解.【解答】解:移项,得:x+3x=6﹣2,合并同类项,得:4x=4,系数化为1,得:x=1.【点评】本题主要考查解一元一次方程的基本素质,严格遵循解方程的一般步骤是解方程基础.四、解答题(二):本大题共3小题,每小题7分,共21分.20.根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【考点】直线、射线、线段.【专题】作图题.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.【考点】数轴.【专题】数形结合.【分析】(1)读出数轴上的点表示的数值即可;(2)两点的距离,即两点表示的数的绝对值之和;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2.5;(2)依题意得:AB之间的距离为:1+2.5=3.5;(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.【点评】本题主要考查了学生对数轴的掌握情况,要会画出数轴,会读准数轴.22.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a﹣8a+2﹣3+4a=﹣a﹣1,当a=时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(三):本大题共3小题,每小题9分,共27分.23.连州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问:(1)若设乙旅行社的人数为x,请用含x的代数式表示甲旅行社的人数;(2)甲、乙两个旅游团各有多少人?【考点】一元一次方程的应用.【分析】(1)设甲旅游团个有x人,乙旅游团有(2x﹣5)人.(2)根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程,再解即可.【解答】解:(1)乙旅游团有(2x﹣5)人.(2)由题意得:2x﹣5+x=55,解得:x=20,所以2x﹣5=35(人)答:甲旅游团有35人,乙旅游团有20人.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是抽样调查(填“普查”或“抽样调查”),样本容量是40;(2)表中a=0.350,b=5,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.【分析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数c;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;【解答】解:(1)填抽样调查或抽查;总人数为:8÷0.200=40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;频数分布直方图如图所示:(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:抽样调查,40;a=0.350,b=5;45°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查了中位数、频率和频数的定义.25.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【专题】规律型.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∴(2n+1)2﹣4n2=4n+1.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。
初中数学七年级数学期末复习培优提高训练5.docx
xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元。
获得一等奖的 人,二等奖 人. 试题2:将一张长方形的纸对折,可得到一条折痕,继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 15条折痕,如果对折n 次,可以得到 条 折痕. 试题3:点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 表示的数是__________;已知∠α与∠β互余,∠α=400,则∠β的补角是_______度. 试题4:五边形ABCDE 中, 从顶点A 最多可引_______条对角线, 可以把这个五边形分成_______个三角形. 若一个多边形的边数为n, 则从一个顶点最多可引_______________条对角线. 试题5:某足协举办了一次足球比赛, 记分规则为:胜一场积3分; 平一场积1分; 负一场积0分. 若甲队比赛了5场后共积7分, 则甲队平__________场. 试题6:两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( )A. 相等B. 互补C. 互余D. 无法确定 试题7:图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为()试题8:设P=2y-2, Q=2y+3, 有2P-Q=1, 则y的值是( )A. 0.4B. 4C. -0.4D. -2.5试题9:儿子今年12岁, 父亲今年39岁, _____父亲的年龄是儿子年龄的4倍. ( )A. 3年后B. 3年前C. 9年后D. 不可能试题10:下列四个图形中, 能用∠1、∠AOB、∠O三种方法表示同一个角的图形是 ( )A B CD试题11:点M、N都在线段AB上, 且M分AB为2:3两部分, N分AB为3:4两部分, 若MN=2cm, 则AB的长为 ( )A. 60cmB. 70cmC. 75cmD. 80cm试题12:轮船在静水中速度为每小时20km, 水流速度为每小时4km, 从甲码头顺流航行到乙码头, 再返回甲码头, 共用5小时(不计停留时间), 求甲、乙两码头的距离. 设两码头间的距离为x km, 则列出方程正确的是( )A. (20+4)x+(20-4)x=5B. 20x+4x=5C. D.试题13:我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了 (a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:,它只有一项,系数为1;(a+b)1=a+b它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2它有三项,系数分别为1,2,1,系数和为4;,它有四项,系数分别为1,3,3,1,系数和为8;……根据以上规律,解答下列问题:(1)展开式共有项,系数分别为;(2)展开式共有项,系数和为.试题14:试题15:试题16:5(x+8)-5=-6(2x-7)试题17:试题18:据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?试题19:当n为何值时关于x的方程的解为0?试题20:如图,BO、CO分别平分∠ABC和∠ACB,(1)若∠A=60°。
人教版七年级数学上册期末培优复习卷 含答案
人教版七年级数学上册期末培优复习卷一.选择题1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A.2×16x=22(27﹣x)B.16x=22(27﹣x)C.22x=16(27﹣x)D.2×22x=16(27﹣x)2.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°3.王涵同学在某月的日历上圈出了三个数a,b,c,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是()A.B.C.D.4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…利用你所发现的规律,得230的末位数字(个位上的数字)是()A.2 B.4 C.6 D.85.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么n条直线最多有()个交点.A.2n﹣3 B.2n2C.D.n(n﹣1)二.填空题6.已知多项式﹣﹣6是五次四项式,单项式0.4x2n y5﹣m的次数与这个多项式的次数相同,则m=,n=.7.若A、B、P是数轴上的三点且点A表示的数为﹣2,点B表示的数为1,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值为.8.如图是小明用火柴搭的1条、2条、3条“金鱼”…,则搭n条“金鱼”需要火柴根.9.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:其中表示∠B余角的式子有.(填序号)①90°﹣∠B;②∠A﹣90°;③(∠A﹣∠B);④(∠A+∠B).10.如图,观察表中数字的排列规律,则数字2000在表中的位置是第行,第列.1 3 5 7 9 …2 6 10 14 18 …4 12 20 28 36 …8 24 40 56 72 …16 48 80 112 144 …………………三.解答题11.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?12.一种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过50件部分 2.6元/件超过50件不超过100件部分 2.2元/件超过100件部分2元/件(1)若买50件花元,买100件花元;买200件花元;(2)小明买这种商品花了196元,列方程求购买这种商品多少件?(3)若小明花了n元(n>130),恰好购买0.45n件这种商品,求n的值.13.已知:如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,(1)若线段AB=a,CE=b,|a﹣16|+(b﹣4)2=0,求a+b的值;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=17,AD=2BE,求线段CE的长.14.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=﹣4,则a的值为(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.15.如图,在数轴上每相邻两点间的距离为一个单位长度.点A、B、C、D对应的数分别是a、b、c、d,且d﹣3a=20.(1)a=,b=,c=.(2)点A以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点B到达D点处立刻返回,返回时,点A与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、C两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动,同时,点B从图上的位置出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC =AD时,点A对应的数是多少?16.已知∠AOC=50°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图,当点A与点M重合,点B与点N重合,且射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s 时,求∠DOP的度数.17.已知∠AOB=m°,与∠AOC互为余角,与∠BOD互为补角,OM平分∠AOC,ON平分∠BOD,(1)如图,当m=35°时,求∠AOM的度数;(2)在(1)的条件下,请你补全图形,并求∠MON的度数;(3)当∠AOB为大于30°的锐角,且∠AOC与∠AOB有重合部分时,请求出∠MON的度数.(写出说理过程,用含m的代数式表示)18.已知,如图1,OB,OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,∠AOC与∠BOD互补,∠AOB+∠COD=40°.(1)求∠AOD的度数;(2)如图2,射线OM,ON分别为∠AOB,∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AON的度数不变;②∠MON的度数不变,其中只有一个是正确的,请你做出正确的选择并求值;(3)如图3,OE,OF是∠AOD外部的两条射线,且∠EOB=∠COF=110°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化?若不变,求出其度数;若变化,说明理由,19.数轴上点A对应的数为a,点B对应的数为b,且多项式x3y﹣2xy+5的二次项系数为a,常数项为b.(1)直接写出:a=,b=;(2)数轴上点A,B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x﹣5|﹣|6﹣x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动,同时点N从点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达点A后立即返回并向右继续移动,速度保持不变.试求出经过多少秒后,M,N两点相距1个单位长度?20.观察下面三行数:﹣1,4,﹣9,16,﹣25,…;①0,6,﹣6,20,﹣20,…;②﹣2,3,﹣10,15,﹣26,…;③(1)分析第一行数的排列规律,请用代数式表示第n个数.(2)分析第②③行数分别与第①行数的关系.请用代数式表示每行的第n个数.(3)取每行的第n个数,计算这三个数的和,并求当n=100时的值.21.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?22.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.23.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.参考答案一.选择题1.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母22个或螺栓16个,∴可得2×16x=22(27﹣x).故选:A.2.解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.3.解:A、设最小的数是x.x+x+7+x+14=45,解得x=8,故本选项不合题意;B、设最小的数是x.x+x+1+x+8=45,解得:x=12,故本选项不符合题意;C、设最小的数是x.x+x+6+x+12=45,解得:x=9,故本选项不合题意;D、设最小的数是x.x+x+6+x+14=45,解得:x=,故本选项符合题意.故选:D.4.解:∵末位数以2,4,8,6的顺序周而复始又∵30÷4=7 (2)∴230的末位数应该是第2个数为4.故选:B.5.解:∵两条直线相交,最多有1个交点,三条直线相交,最多有1+2=3个交点,四条直线相交,最多有1+2+3=6个交点.…∴n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.故选:C.二.填空题6.解:∵多项式﹣﹣6是五次四项式,∴m+1=3,∴m=2,∵单项式0.4x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=5,∴n=1,故答案为:2,1.7.解:①当A到B、P的距离相等时,AB=AP,∴3=|x+2|,∴x=1或x=﹣5,∵x=1时,P与B重合,∴x=﹣5;②当B到A、P的距离相等时,AB=BP,∴3=|1﹣x|,∴x=﹣2或x=4,∵x=﹣2时,P点与A点重合,∴x=4;③当P到A、B的距离相等时,AP=BP,∴P是AB的中点,∴x=﹣;④当P与A重合时,BP=AB,则x=﹣2;⑤当P与B重合时,AP=AB,则x=1.∴x的值为﹣5或4或﹣或﹣2或1.故答案为﹣5或4或﹣或﹣2或1.8.解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n﹣1)=6n+2.9.解:①根据互余角定义知,∠B的余角为:90°﹣∠B,此题结论正确;②∵∠A和∠B互补,∴∠B=180°﹣∠A,∴90°﹣∠B=90°﹣180°+∠A=∠A﹣90°,故此题结论正确;③∵∠A和∠B互补,∴∠A+∠B=180°,∴90°﹣∠B=(∠A+∠B)﹣∠B=,故此题结论正确;④∵∠A和∠B互补,∴∠A+∠B=180°,∴=90°,不是∠B的余角,故此题结论错误.故答案为:①②③.10.解:由表格中的数据可知,第一行是一些连续的奇数,第二行的数据是对应的第一行数据的2倍,第三行的数据是对应的第二行数据的2倍,第四行的数据是对应的第三行数据的2倍,…,∵2000=2×1000,1000=2×500,500=2×250,250=2×125,125=2×63﹣1,∴数字2000在表中的位置是第5行,第63列,故答案为:5,63.三.解答题11.解:(1)第①种方案应付的费用为:10×40+(40﹣10)×8=640(元),第②种方案应付的费用为:(10×40+40×8)×90%=648(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x个时,两种方案所付的费用相同,由题意得:10×40+(x﹣10)×8=(10×40+8x)×90%,解得:x=50;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.12.解:(1)买50件花:2.6×50=130(元),买100件花:2.6×50+2.2×(100﹣50)=240(元),买200件花:2.6×50+2.2×50+2×(200﹣100)=440(元),故答案为:130,240,440;(2)设小明购买这种商品x件,∵196<240,∴小明购买的件数少于100件,∴130+2.2(x﹣50)=196,解得:x=80;答:小明购买这种商品80件.(3)①当130<n≤240时,130+2.2(0.45n﹣50)=n,解得:n=2000(不符合题意,舍去),②当n>240时,240+2(0.45n﹣100)=n,解得:n=400,综上所述:n的值为400.13.解:(1)∵|a﹣16|+(b﹣4)2=0,∴a﹣16=0,b﹣4=0,∴a=16,b=4,∴a+b=16+4=20;(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=AB=8,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=AE=6,(3)设BE=x,则AD=2BE=2x,∵点D为线段AE的中点,∴DE=AD=2x,∵AB=17,∴AD+DE+BE=17,∴x+2x+2x=17,解方程得:x=,即BE=,∵AB=17,C为AB中点,∴BC=AB=,∴CE=BC﹣BE=﹣=.14.解:(1)∵b=﹣4,AB=14,∴14=a+4,∴a=10,故答案为10;(2)当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,m=,所以,OA=,点A在原点O的右侧,a的值为.当A在原点的左侧时(如图),a=﹣,综上,a的值为±;(3)当点A在原点的右侧,点B在点C的左侧时(如图),c=﹣a,﹣b=3(c﹣b),a﹣b=14,∴c=﹣;当点A在原点的右侧,点B在点C的右侧时(如图),c=﹣8.当点A在原点的左侧,点B在点C的右侧时,c=.当点A在原点的左侧,点B在点C的左侧时,c=8.综上,点c的值为:±8,±.15.解:(1)由数轴可知,d=a+8,∵d﹣3a=20,∴a+8﹣3a=20,∴a=﹣6,∴b=﹣8,c=﹣3,故答案为﹣6,﹣8,﹣3;(2)∵a=﹣6,∴d=2,∴BD=10,B点运动到D点需要时间为2.5秒,此时A点运动到﹣6+2×3.5=1,∴AB距离为1,∴AB相遇时间为=秒,此时A点位置为1+=,∴A、B相遇时的点为.(3)设运动时间为t秒,A点运动t秒后对应的数为﹣6﹣2t,C点运动t秒后对应的数为﹣3﹣3t,B点运动t秒后对应的数为﹣8+t,∴AB=|﹣6﹣2t+8﹣t|=|2﹣3t|,AC=|﹣6﹣2t+3+3t|=|t﹣3|,AD=|2+6+2t|=|8+2t|,∵AB+AC=AD,∴|2﹣3t|+|t﹣3|=|4+t|,当0≤t≤时,2﹣3t+3﹣t=4+t,∴t=,当<t≤3时,3t﹣2+3﹣t=4+t,∴t=3,当t>3时,3t﹣2+t﹣3=4+t,∴t=3,∴t=或t=3,∴A点表示的数是﹣或﹣12.16.解:(1)如图1,∵∠COD=180°﹣50°﹣30°=100°,OP是∠COD的平分线.∴∠COP=∠DOP=∠COD=50°,∴∠BOP=∠BOD+∠DOP=30°+50°=80°,∴∠BOP的余角为90°﹣80°=10°;(2)如图2,由(1)可知∠AOC=50°,∠BOD=30°,由旋转可得,∠BON=5×6=30°,∠MOA=3×6=18°,∴∠MOC=∠AOC﹣∠MOA=50°﹣18°=32°,∴∠COD=180°﹣∠MOC﹣∠BOD﹣∠BON=180°﹣32°﹣30°﹣30°=88°,∵OP平分∠COD,∴∠DOP=∠COP=∠COD=×88°=44°,17.解:(1)∵∠AOB=m°,且与∠AOC互为余角,∴∠AOC=90°﹣m°,∵OM平分∠AOC,∴∠AOM=∠AOC==27.5°;(2)分两种情况:i)当∠AOB和∠BOD没有重合部分时,如图1所示,∵∠BOD与∠AOB互补,∴∠BOD=180°﹣m°,∵ON平分∠BOD,∴∠BON=;∴∠MON=∠BOM+∠BON==135°;ii)当∠AOB和∠BOD有重合部分时,如图2所示,∵∠BOD与∠AOB互补,∴∠BOD=180°﹣35°=145°,∵ON平分∠BOD,∴∠BON=72.5°,∴∠MON=∠BON﹣∠BOM=72.5°﹣62.5°=10°;(3)当30°<m≤45°时,分两种情况:①如图3,当∠AOB和∠BOD没有重合部分时,∵OM平分∠AOC,∴∠AOM=∠AOC=,∵ON平分∠BOD,∴∠DON=,∴∠MON=180°﹣∠DON﹣∠AOM=180°﹣﹣=(45+m)°;②如图4,当∠AOB和∠BOD有重合部分时,则∠AON=∠BOD﹣∠AOB﹣∠NOD=180﹣m°﹣m°﹣=,∴∠MON=∠AON+∠AOM=+=(135﹣2m)°,当45°<m<90°时,分三种情况:①如图5,当45°<m°<67.5°时,∠AOB和∠BOD有重合部分时,∠MON=∠BON﹣∠BOC﹣∠COM,=﹣(m°﹣∠AOC)﹣∠AOC,=∠BOD﹣m°+∠AOC,=(180°﹣m°)﹣m°+(90°﹣m°),=(135﹣2m)°;②如图6,当67.5°<m°<90°时,∠AOB和∠BOD有重合部分时,∠MON=∠BOM﹣∠BON,=∠AOB﹣∠AOM﹣∠BON,=m°﹣﹣,=(2m﹣135)°;②如图7,当∠AOB和∠BOD没有重合部分时,∠MON=180°﹣∠AOM﹣∠DON=180°﹣﹣=(45+m)°,综上所述,∠MON的度数为:(45+m)°或(135﹣2m)°或(2m﹣135)°.18.解:(1)∵∠AOC与∠BOD互补,∴∠AOB+∠COD+2∠BOC=180°,∵∠AOB+∠COD=40°,∴∠BOC=70°,∴∠AOD=∠AOB+∠COD+∠BOC=110°;(2)②正确,∠MON的度数为90°不变;理由如下:∵射线OM,ON分别为∠AOB,∠COD的平分线,∴∠CON+∠BOM=(∠COD+∠AOB)=,∴∠MON=∠CON+∠BOM+∠BOC=20°+70°=90°,故②正确,∠MON的度数为90°不变;(3)∠POQ的大小不变为130°,∵∠EOB=∠COF=110°,∠BOC=70°,∴∠COE=∠BOF=110°﹣70°=40°,∵∠COE+∠BOF=∠COD+∠DOE+∠AOB+∠AOF=80°,∵∠AOB+∠COD=40°,∴∠DOE+∠AOF=40°,∵OP平分∠EOD,OQ平分∠AOF,∴∠DOP+∠AOQ=(∠DOE+∠AOF)=20°,∴∠POQ=∠DOP+∠AOQ+∠AOD=20°+110°=130°.19.解:(1)∵多项式x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5.故答案为:﹣2;5.(2)由题意,可知:﹣2≤x≤5,∴|2x+4|+2|x﹣5|﹣|6﹣x|=2x+4﹣2(x﹣5)﹣(6﹣x)=x+8.(3)设经过t秒后,M,N两点相距1个单位长度.分两种情况讨论:①当点N从点B向点A移动,即0≤t≤3.5时,点M表示的数为﹣2+t,点N表示的数为5﹣2t,由题意得:|﹣2+t﹣(5﹣2t)|=1,解得:t1=2,t2=;②当点N从点A向右移动,即t>3.5时,点M表示的数为﹣2+t,点N表示的数为﹣2+2(t﹣3.5)=2t﹣9,由题意得:|﹣2+t﹣(2t﹣9)|=1,解得:t3=6,t4=8.综上所述,经过2秒、秒、6秒或8秒后,M,N两点相距1个单位长度.20.解:(1)∵﹣1,4,﹣9,16,﹣25,…,∴第n个数为:(﹣1)n•n2;(2)∵﹣1,4,﹣9,16,﹣25,…;①0,6,﹣6,20,﹣20,…;②﹣2,3,﹣10,15,﹣26,…;③∴第②行第n个数为:(﹣1)n•n2+n,第③行第n个数为:(﹣1)n•n2﹣1;(3)取每行的第n个数,则这三个数的和为:(﹣1)n•n2+[(﹣1)n•n2+n]+[(﹣1)n•n2﹣1]=(﹣1)n•3n2+n ﹣1,当n=100时,(﹣1)100•3×1002+100﹣1=1×3×10000+100﹣1=30000+100﹣1=30099.21.解:(1)如图所示:图形编号 1 2 3 4 5 6 图形中的棋6 9 12 15 18 21子(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子.22.解:(1)∵数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,∴数轴上点B表示的数是6﹣11=﹣5,∵点P运动到AB中点,∴点P对应的数是:×(﹣5+6)=0.5,故答案为:﹣5,0.5;(2)设点P与Q运动t秒时重合,点P对应的数为:6﹣3t,点Q对应的数为:﹣5+2t,∴6﹣3t=﹣5+2t,解得:t=2.2,∴点P与Q运动2.2秒时重合;(3)①运动t秒时,点P对应的数为:6﹣3t,点Q对应的数为:﹣5﹣2t,∵点P追上点Q,∴6﹣3t=﹣5﹣2t,解得:t=11,∴当点P运动11秒时,点P追上点Q;②∵点P与点Q之间的距离为8个单位长度,∴|6﹣3t﹣(﹣5﹣2t)|=8,解得:t=3或t=19,当t=3时,点P对应的数为:6﹣3t=6﹣9=﹣3,当t=19时,点P对应的数为:6﹣3t=6﹣57=﹣51,∴当点P与点Q之间的距离为8个单位长度时,此时点P在数轴上所表示的数为﹣3或﹣51.23.解:(1)由题意,得AB=﹣10﹣(﹣24)=14,BC=10﹣(﹣10)=20.故答案为:14,20;(2)答:不变.∵经过t秒后,A、B、C三点所对应的数分别是﹣24﹣t,﹣10+3t,10+7t,∴BC=(10+7t)﹣(﹣10+3t)=4t+20,AB=(﹣10+3t)﹣(﹣24﹣t)=4t+14,∴BC﹣AB=(4t+20)﹣(4t+14)=6.∴BC﹣AB的值不会随着时间t的变化而改变.(3)经过t秒后,P、Q两点所对应的数分别是﹣24+t,﹣24+3(t﹣14),由﹣24+3(t﹣14)﹣(﹣24+t)=0解得t=21,①当0<t≤14时,点Q还在点A处,∴PQ═t,②当14<t≤21时,点P在点Q的右边,∴PQ=(﹣24+t)﹣[﹣24+3(t﹣14)]=﹣2t+42,③当21<t≤34时,点Q在点P的右边,∴PQ=[﹣24+3(t﹣14)]﹣(﹣24+t)=2t﹣42.。
培优训练人教版七年级数学下册5ppt
B.-3<b≤-2
解:解不等式①得x><-a-2,1. 解不等式②得x≤4+a.
∴类不型等三式组已的知解不集等是式-组2有<、x≤无4+解a求. 字母系数的取值范围
谢谢! 解请不根等 据式上②述得定义x>解-决6问. 题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是____________.
10.若关于 x 的不等式组x3+x+1<5>a① x-,7② 有解,求实数 a 的取值范围. 解:解不等式①得x<a-1.解不等式②得x>-6. ∵不等式组有解,∴-6<a-1.∴a>-5.
∴一不元等一式次组不的等解式集(组是)中-含2<字x母≤4+a.
解 A.:-解3不<b等<-式2①得x<式x>(组-式)6中. 含组字母 的解集是-2<x≤4+a.
解不等式②得x>-6.
类型三 已知不等式组有、无解求字母系数的取值范围
∵不等式组恰好有两个整数解, 类型一 已知解集求字母系数的值或取值范围
解:解不等式①得x<a-1.
5.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是( )
6.对于任意实数m,n,定义一种新运算m※n=mn-m -n+3,等式的右边是通常的加减和乘法运算,例如: 3※5=3×5-3-5+3=10.请根据上述定义解决问题: 若a<2※x<7,且解集中有两个整数解,则a的取值范 围是___4_≤__a_<__5___.
5x+1>3(x-1)①,
A.-3<b<-2
解不等式②得x>-6.
类型一 已知解集求字母系数的值或取值范围
类型二 已知整数解的情况求字母系数的取值范围
解:解不等式①得x>-2,解不等式②得x≤4+a. ∴不等式组的解集是-2<x≤4+a.
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
《第五章相交线与平行线》期末复习培优提升训练2020-2021学年人教版七年级数学下册
2020-2021学年人教版七年级数学下册《第5章相交线与平行线》期末复习培优提升训练(附答案)1.如图,若AB∥CD,则下列结论正确的是()A.∠A=∠D B.∠A=∠C C.∠ABE=∠C D.∠ABC=∠D 2.平面内将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB 上)按图中所示位置摆放,两条斜边EF,BC互相平行,则∠BDE等于()A.20°B.15°C.12°D.10°3.如图所示,直线m∥n,∠1=63°,∠2=34°,则∠BAC的大小是()A.73o B.83o C.77o D.87o4.将一副三角板按如图所示方式叠放在一起,其中直角顶点重合于点O,若AB∥OD,则∠1的度数为()A.60°B.65°C.70°D.75°5.将一块含30°角的直角三角板ABC(∠C=90°,∠B=30°)和一把直尺按如图所示的位置放置,若∠CED=43°,则∠BAF的度数为()A.47°B.43°C.17°D.13°6.如图所示,CD∥AB,OE平分∠AOD,∠EOF=80°,∠D=60°,则∠BOF为()A.35°B.40°C.25°D.20°7.如图,AB∥CD,∠1+∠2=110°,则∠GEF+∠GFE的度数为()A.110°B.70°C.80°D.90°8.直线l1∥l2,∠A=125°,∠B=85°,∠1=15°,则∠2=()A.15°B.25°C.35°D.20°9.一副三角板按如图所示放置,BC∥DF,则∠ACF的度数为()A.10°B.15°C.20°D.25°10.已知:如图,直线l1∥l2,∠ABC=∠C,若∠1=40°,则∠2=.11.如图,把一块长方形纸条ABCD沿EF折叠,若∠EFG=34°,那么∠BGD'=度.12.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b 反射,如果被b反射出的光线n与光线m平行,且∠1=37°,那么∠2的度数为.13.如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3=.14.如图,AB∥DE,∠1=26°,∠2=116°,则∠BCD=°.15.如图,直线AB∥CD,点E,F分别在直线AB,CD上,EP,CP分别平分∠AEF,∠ACF,且EP,CP交于点P,∠EAC=110°,∠EFC=m°,则∠EPC的度数为.(用含m的式子表示)16.如图,AB∥CD,∠AGE=136°,HM平分∠EHD,则∠MHD的度数是.17.如图,AE∥CF,∠BCD=90°,∠1=45°,∠B=25°,则∠2的度数为.18.如图,已知AB∥CD,点P、Q分别是直线AB,CD上两点,点G在两平行线之间,连接PG,QG,点E是直线CD下方一点,连接EP,EQ,且GQ的延长线平分∠CQE,PE平分∠APG,若2∠PEQ+∠PGQ=120°,则∠CQE的度数是.19.如图,一条公路两次转弯后,和原来的方向相同,如果第一次的拐角∠A是135°,则第二次的拐角∠B是°.20.已知:如图,点M,N分别在直线AB、CD上,且AB∥CD,若在同一平面内存在一点O,使∠OMB=60°,∠OND=35°,则∠MON=.21.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=43°,则∠2=.22.如图,AB∥CD,∠B=100°,∠D=25°,则∠E的度数为.23.如图,D是AE上的点,AE∥BC,∠1+∠2=180°.求证:∠A=∠C.24.如图,已知AB∥CD,直线分别交AB、CD于点E,F,∠EFB=∠B,FH⊥FB.(1)已知∠B=20°,求∠DFH;(2)求证:FH平分∠GFD;(3)若∠CFE:∠B=4:1,求∠GFH的度数.25.如图,在三角形ABC中,BF⊥AC,FG∥BC交AB于点G.点H在AB的延长线上,过点H作HE⊥AC交BC于点D,垂足为E.求证:∠1=∠2+∠H.26.如图,已知AD∥BC,∠1=∠2,其中A,B,E三点在一条直线上,求证:∠A=∠C.27.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE 的中点,连接CF并延长交AD于点G.(1)求证:∠BCG=∠DCG.(2)若∠CGD=50°,∠ABC=58°,求∠ADE的度数.28.如图,BD∥GE,∠AFG=∠1=50°,AQ平分∠F AC,交BD的延长线于点Q,交DE 于点H,∠Q=15°,求∠CAQ的度数.29.已知,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BME=35°,∠CNE=110°,则∠MEN=°;(2)如图2,∠AME的角平分线MF与∠END的角平分线的反向延长线NF交于点F,且满足∠E﹣∠F=60°,求∠MEN的度数;(3)在(2)的条件下,如图3,NG平分∠CNF,交MF于点H,交MG于点G,且∠AMG=2∠FMG,∠G=30°,求∠NHF的度数.30.如图,AB∥CD,请你直接写出下面四个图形中∠APC与∠P AB、∠PCD的关系,并从所得到的关系中选第3个加以说明.(适当添加辅助线,其实并不难)31.【感知】如图①,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.(提示:过点P作直线PQ∥AB)【探究】如图②,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β,(1)当点P在线段AB上运动时,∠CPD,∠α,∠β之间的数量关系为.(2)当点P在线段A,B两点外侧运动时(点P与点A,B,O三点不重合),直接写出∠CPD,∠α,∠β之间的数量关系为.32.小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)将图2中的点B移到点A的右侧,得到图3,其他条件不变,若∠F AD=α°,∠ABC=β°,请你求出∠BED的度数(用含α,β的式子表示).参考答案1.解:∵AB∥CD,∴∠ABE=∠C,故选项C正确,故选:C.2.解:如图,BC与DE相交于点M,∵∠A=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=45°,∠B=30°,∵EF∥BC,∴∠CMD=∠E=45°,∵∠CMD=∠B+∠BDE,∴∠BDE=∠CMD﹣∠B=15°,故选:B.3.解:∵直线m∥n,∴∠3=∠2=34°.∵∠1+∠BAC+∠3=180°,∠1=63°,∠3=34°,∴∠BAC=180°﹣63°﹣34°=83°.故选:B.4.解:由题意可知,∠B=45°,∠D=30°,∵AB∥OD,∴∠BOD=∠B=45°,∵∠1=∠BOD+∠D,∴∠1=45°+30°=75°,故选:D.5.解:由题意知DE∥AF,∠CED=43°,∴∠CAF=∠CED=43°,∵∠B=30°,∠C=90°,∴∠CAB=90°﹣∠B=60°,∴∠BAF=∠CAB﹣∠CAF=60°﹣43°=17°,故选:C.6.解:∵CD∥AB,∴∠AOD+∠D=180°,∵∠D=60°,∴∠AOD=180°﹣∠D=180°﹣60°=120°,∵OE平分∠AOD,∴∠AOE=∠AOD=×120°=60°,∵∠EOF=80°,∴∠BOF=180°﹣∠AOE﹣∠EOF=180°﹣60°﹣80°=40°.故选:B.7.解:∵AB∥CD,∴∠BEF+∠DFE=180°,∵∠1+∠2=110°,∴∠GEF+∠GFE=180°﹣110°=70°.故选:B.8.解:延长AB两端,如图所示:∵∠1+∠3=125°,∠2+∠4=85°,∴∠1+∠3+∠2+∠4=210°,∵l1∥l2,∴∠3+∠4=180°,∴∠1+∠2=210°﹣180°=30°,∵∠1=15°,∴∠2=30°﹣15°=15°.故选:A.9.解:∵BC∥DF,∴∠BCF=∠DFC=30°,∴∠ACF=∠ACB﹣∠BCF=45°﹣30°=15°.故选:B.10.解:∵∠ABC=∠C,∴AE∥CD,∴∠2+∠3=180°.又∵l1∥l2,∠1=40°,∴∠1=∠3=40°,∴∠2=180°﹣40°=140°.故答案为:140°.11.解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠EFG=34°,∠BGD'=∠AEG.由折叠的性质得:∠DEG=2∠DEF=68°,∴∠AEG=180°﹣∠DEG=180°﹣68°=112°,∴∠BGD'=112°.故答案为:112.12.解:∵∠1=∠4=37°,∴∠3=180°﹣37°﹣37°=106°,∵m∥n,∴∠2+∠3=180°,∴∠2=180°﹣∠3=74°,故答案为:74°.13.解:∵AB∥CD,∴∠A+∠ACD=180°,∠2=∠3,∴∠ACD=180°﹣∠A=180°﹣100°=80°,又∵∠1=∠2,∴∠2=40°,∴∠3=∠2=40°.故答案为:40°.14.解:过点C作CF∥AB,如图所示:∵AB∥DE,CF∥AB,∴CF∥DE,∴∠2+∠4=180°,又∵∠2=116°,∴∠4=180°﹣∠2=64°,又∵CF∥AB,∴∠1=∠3,又∵∠1=26°,∴∠3=26°,又∵∠BCD=∠3+∠4,∴∠BCD=90°,故答案为:90.15.解:如图,过点P作PQ∥AB,则PQ∥AB∥CD,∵AB∥CD,∴∠ACF+∠EAC=180°,∠AEF+∠EFC=180°,∴∠ACF=180°﹣∠EAC,∠AEF=180°﹣∠EFC,∵EP,CP分别平分∠AEF,∠ACF,∴∠PCF=∠ACF=90°﹣∠EAC,∠AEP=∠AEF=90°﹣∠EFC,∵PQ∥AB∥CD,∴∠CPQ=∠PCF,∠AEP+∠EPQ=180°,∴∠CPQ=90°﹣∠EAC,∠EPQ=180°﹣∠AEP=90°+∠EFC,由角的和差,得∠EPC=∠CPQ+∠EPQ=90°﹣∠EAC+90°+∠EFC,∵∠EAC=110°,∠EFC=m°,∴∠EPC=90°﹣×110°+90°+•m°=125°+m°=(125+m)°.故答案为:(125+m)°.16.解:由题意得:∠AGE=∠BGF=136°,∵AB∥CD,∴∠EHD=180°﹣∠BGF=44°,又∵HM平分∠EHD,∴∠MHD=∠EHD=22°.故答案为:22°.17.解:∵∠1=45°,∠B=25°,∴∠BAE=180°﹣∠1﹣∠B=110°,∵AE∥CF,∴∠FCB=∠BAE=110°,∵∠BCD=90°,∴∠2=∠FCB﹣∠BCD=20°.故答案为:20°.18.解:如图,过点G作GM∥AB,过点E作EN∥AB,∵AB∥CD,∴AB∥GM∥CD∥EN,设∠CQF=x,∠APE=y,∵QF平分∠CQE,PE平分线∠APG,∴∠EQF=∠CQF=x,∠GPE=∠APE=y,∵AB∥GM∥CD,∴∠PGM=180°﹣∠APG=180°﹣2y,∠MGQ=∠CQF=x,∴∠PGQ=∠PGM+∠MGQ=180°﹣2y+x,∵AB∥CD∥EN,∴∠APE=∠PEN=y,∠CQE=∠QEN=2x,∴∠PEQ=∠PEN﹣∠QEN=y﹣2x,∵2∠PEQ+∠PGQ=120°,∴2(y﹣2x)+180°﹣2y+x=120°,∴x=20°,∴∠CQE=2×20°=40°,故答案为:40°.19.解:∵道路是平行的,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为:135.20.解:分两种情况:当点O在AB,CD之间时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM,∠OND=∠PON,∵∠OMB=60°,∠OND=35°,∴∠POM=60°,∠PON=35°,∴∠MON=∠POM+∠PON=60°+35°=95°;当点O在AB下方时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM,∠OND=∠PON,∵∠OMB=60°,∠OND=35°,∴∠POM=60°,∠PON=35°,∴∠MON=∠POM+∠PON=60°﹣35°=25°;故答案为:95°或25°.21.解:如图,过点E作EF∥AB,则EF∥AB∥CD,∴∠2=∠3,∠1=∠4,∵∠1=43°,∴∠4=43°,∵∠M=30°,∴∠MEN=∠3+∠4=90°﹣∠M=60°,∴∠2=∠3=17°,故答案为:17°.22.解:延长EB,交DC于点M,∵AB∥CD,∠B=100°,∴∠EMN=∠B=100°,∵∠EMN=∠E+∠D,∠D=25°,∴∠E=100°﹣25°=75°,故答案为:75°.23.证明:∵∠1+∠2=180°,∴AB∥CD,∴∠A=∠EDC,∵AE∥BC,∴∠C=∠EDC,∴∠A=∠C.24.(1)解∵AB∥CD,∠B=20°,∴∠BFD=∠B=20°,∵FH⊥FB,∴∠BFH=90°,∴∠DFH=∠BFH﹣∠BFD=90°﹣20°=70°,∴∠DFH=70°.(2)证明:∵∠EFB=∠B,∠BFD=∠B,∴∠BFD=∠EFB,∵FH⊥FB,∴∠BFD+∠DFH=90°,∠BFE+∠GFH=90°,∴∠DFH=∠GFH,∴FH平分∠GFD.(3)解:∵∠CFB=∠BFD=∠B,∠CFE:∠B=4:1,∴∠CFE:∠EFB:∠BFD=4:1:1,∵∠CFE+∠EFB+∠BFD=180°,∴∠EFB=30°,∴∠GFH=180°﹣90°﹣30°=60°.25.证明:∵BF⊥AC,HE⊥AC,∴BF∥EH.∴∠H=∠ABF,∠2=∠FBC.∵FG∥BC,∴∠1=∠ABC.∵∠ABC=∠ABF+∠FBC,∴∠1=∠2+∠H.26.证明:∵AD∥BC,∴∠A=∠3,又∵∠1=∠2,∴DC∥AE,∴∠3=∠C,∴∠A=∠C.27.(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=∠ABC,∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即∠BCG=∠DCG.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=58°,∴∠BCD=122°.∵CG平分∠BCD,∴∠GCD=∠BCD=61°,∵∠ADE=∠GCD+∠CGD,∠CGD=50°,∴∠ADE=111°.28.解:∵∠EHQ是△DHQ的外角,∴∠EHQ=∠1+∠Q,∵∠1=50°,∠Q=15°,∴∠EHQ=65°,∵BD∥GE,∴∠E=∠1=50°,∵∠AFG=∠1=50°,∴∠E=∠AFG,∴DE∥AF,∴∠F AQ=∠EHQ=65°,∵AQ平分∠F AC,∴∠CAQ=∠F AQ=65°.29.解:(1)过点E作EF∥AB,如图,∵EF∥AB,∴∠MEF=∠BME=35°.∵EF∥AB,AB∥CD,∴EF∥CD.∴∠FEN+∠CNE=180°.∵∠CNE=110°,∴∠FEN=70°.∴∠MEN=∠MEF+∠NEF=105°.故答案为:105°.(2)分别过点F、E作FQ∥AB,EP∥AB,如图,又∵AB∥CD,∴AB∥EP∥CD∥FQ.∴∠BME=∠PEM,∠DNE=∠PEN,∠AMF=∠MFQ,∠KND=∠KFQ.∴∠MEN=∠BME+∠END,∠MFN=∠AMF﹣∠KND.∵MF、NK分别平分∠AME与∠END,∴.∴∠MEN=180°﹣2∠AMF+2∠KND,∠MFN=∠AMF﹣∠KND.∵∠MEN﹣∠MFK=60°,∴∠AMF﹣∠KND=40°,即∠MFK=40°.∴∠MEN=100°.(3)如图:过点G作GL∥AB,又∵AB∥CD,∴AB∥CD∥GL.∴∠AMG=∠MGL.∵∠MGN=30°,∴∠AMG=∠CNG+30°.∵NG平分∠CNF,∴∠CNG=.∴.∵∠AMG=2∠FMG,∴.由(2)知∠AMF=∠MFN+∠CNF,且∠MFN=40°,∴∠AMF=40°+∠CNF.∴.∴∠CNF=20°.∴∠NHF=130°.30.解:①如图1,∠APC=∠P AB+∠PCD,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠P AB,∠2=∠PCD,∴∠APC=∠1+∠2=∠P AB+∠PCD;②如图2,∠P AB+∠APC+∠PCD=360°,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1+∠P AB=180°,∠2+∠PCD=180°,∴∠1+∠2+∠P AB+∠PCD=360°,∴∠P AB+∠APC+∠PCD=360°;③如图3,∠P AB=∠APC+∠PCD,延长BA,交PC于点E,∵AB∥CD,∴∠1=∠PCD,∴∠P AB=∠APC+∠1=∠APC+∠P AD;④如图4,∠PCD=∠P AB+∠APC,∵AB∥CD,∴∠1=∠PCD,∴∠PCD=∠1=∠APC+∠PCD.31.解:过P作PE∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴∠APQ=180°﹣∠P AB=50°,∠CPQ=180°﹣∠PCD=60°,∴∠APC=50°+60°=110°;(1)∠CPD=∠α+∠β,理由如下:如图②,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当点P在A、M两点之间时,∠CPD=∠β﹣∠α;理由:如图③,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当点P在B、O两点之间时,∠CPD=∠α﹣∠β.理由:如图④,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.32.解:(1)成立,理由:如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=60°,∴∠F AD=∠ADC=60°,∵DE平分∠ADC,∠ADC=60°,∴∠EDC=∠ADC=30°,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°,∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,∴∠BED=∠BEH+∠DEH=50°.(3)∠BED的度数改变.如图3,过点E作EG∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠F AD=m°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=m°,∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEG=m°,∴∠BED=∠BEG+∠DEG=180°﹣n°+m°.。
北师大版2020-2021学年度七年级数学第一学期期末综合复习优生提升训练题(附答案详解)
北师大版2020-2021学年度七年级数学第一学期期末综合复习优生提升训练题(附答案详解)一、单选题1.一个质点在第一象限及x 轴、y 轴上运动, 在第一秒钟,它从原点运动到()0,1,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .()0,9B .()9,0C .()0,8D .()8,02.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a +b +c +d +e 的值为( ) A .1 B .2 C .-1 D .-2 3.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数,给出下列结论(1)x 3=3,(2)x 5=1,(3)x 76>x 77,(4)x 103<x 104,(5)x 2018>x 2019其中,正确结论的个数是( )A .1个B .2个C .3个D .4个 4.如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点11M N ,;第二次操作:分别取线段1AM 和1AN 的中点22,M N ;第三次操作:分别取线段2AM 和2AN 的中点33,M N ;……连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010M N M N M N +++=( )A .910202-B .910202+C .1010202-D .1010202+ 5.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是( )A .3(x +4)=4(x +1)B .3x +4=4x +1C .13x +4=14x +1 D .13x ﹣4=14x ﹣16.一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43πB .83πC .163πD .3π 7.任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m 3分裂后,其中有一个奇数是2019,则m 的值是( )A .46B .45C .44D .438.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③ 9.若0a b c d <<<<,则以下四个结论中,正确的是( )A .+++a b c d 一定是正数B .d c a b +--可能是负数C .d c b a ---一定是正数D .c d b a ---一定是正数10.下列图案均是用长度相同的小木棒按一定的规律拼搭而成;拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此规律,拼搭第10个图案需小木棒( )根A .120B .125C .130D .135二、填空题11.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是12,部分②的面积是14,部分③的面积是18,…,以此类推,第n 部分的面积是12n (n 是大于1的整数).请你用“数形结合”的思想计算12+14+18+…+12n =______.12.观察下列各式:11112122==-⨯, 111162323==-⨯, 1111123434==-⨯,…, 根据规律完成下列各题.(1)1910⨯= ; (2)计算111112612209900++++⋯+的值为 . 13.若如图中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到如图称第1次操作,再将如图中的每一段类似变形,得到如图即第2次操作,按上述方法继续得到如图为第3次操作,则第4次操作后折线的总长度为_____.14.一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度到达终点,可得到终点表示的数是2-,起点和终点之间的距离是2个单位长度,已知点A ,B 是数轴上的点,完成下列各题:(1)如果点A 表示数3-,将点A 向右移动7个单位长度到达终点,那么终点B 表示的数是__________,A ,B 两点间的距离是__________个单位长度.(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度到达终点,那么终点B 表示的数是_____, A ,B 两点间的距离为________个单位长度.(3)一般地,如果点A 表示数a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度到达终点,那么请你猜想终点B 表示的数是__________,A ,B 两点间的距离是__________个单位长度.15.从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m 个格子中所填整数之和是2014,则m 的值为_______ 9 a b c -5 1 …16.观察下面一列数:﹣1,2,﹣3,4,﹣5,6……将这列数排成如图的形式按照上述规律排下去,那么第13行左边第12个数是_____.17.如图,用灰白两色正方形瓷砖铺设地面,第2019个图案中白色瓷砖块数为_____________.18.由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):若规定坐标号(m ,n )表示第m 行从左向右第n 个数,则(7,4)所表示的数是_____;(5,8)与(8,5)表示的两数之积是_______;数2012对应的坐标号是_________ 19.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60︒的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60︒的方向运动到O 上的点4A 处;40A A 间的距离是________;…按此规律运动到点2019A 处,则点2019A 与点0A 间的距离是________.20.把一张厚度为0.1mm 的纸对折5次后的厚度为__________mm21.已知方程(a +1)x +2=0的解是正整数时,整数a 取值为_________________. 22.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________分钟.三、解答题23.有理数a ,b ,c 在数轴上的位置如下图所示:(1)若|||1|||m a b b a c =+----,求201312013()m c -+的值.(2)若2a =-,3b =-,23c =,且a ,b ,c 对应的点分别为A ,B ,C ,问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍.若存在,请求出P 点对应的有理数;若不存在,请说明理由.24.(1)一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和2-的两点之间的距离是5,那么a =__________;(2)若数轴上表示数a 的点位于2-与6之间,求|2||6|a a ++-的值;(3)当a 取何值时,|7||2||3|a a a ++-+-的值最小,最小值是多少?请说明理由.25.解方程,(1)0.10.030.20.03300.20.34x x +--+= (2)20142016201820202013201520172019x x x x ----+=+26.化简求值:4a 2﹣4ab +2b 2﹣2(a 2﹣ab +3b 2),其中a 2+ab =5,b 2+ab =3.27.A、B两地相距480km,C地在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地岀发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间;(3)若轿车到达B地后,立刻以120km/h的速度原路返回,再次经过C地,两次经过C地的时间间隔为2.2h,求C地距离A地路程.28.已知数轴上三点M,O,N对应的数分别为-3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等.(直接写出答案)29.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.30.我们知道:在数轴上,点M表示实数为x,点N表示实数为y,当x<y 时,点M,N之间的距离记作:MN =Y-X;当x>y时,点M,N之间的距离记作:MN = x-y,例如:x=-3,y=2,则MN =2-(-3)=5.如图,点A,B,C是数轴上从左向右依次排列的三点,且AC=17,BC=11,点B表示的数是-6.(1) 点A表示的数是,点C表示的数是;(2) 动点M,N分别从A,C同时出发,点M沿数轴向右运动,速度为1个单位长度∕秒,点N沿数轴向左运动,速度为2个单位长度∕秒,运动t秒后:①点M表示的数,点N表示的数;(用含t的代数式表示)②求当t为何值时,点M,N,B三点中相邻两个点之间的距离相等.(M、N、B三点中任意两点不重合)31.已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小,则最小距离为.32.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面。
七年级数学期末复习培优提高训练(五)
(1)①两直线相交,对顶角相等,40;②70;(2)有;①∠POC=∠POB;②∠EOC=∠FOB;③ ∠AOC=∠FOA。
8.-15;4;9.①-2y3;②x=-3;10.x=-3; 11.(1)、(2)略;(3)1/2;(4)略
图
4.已知代数式x+2y的值是3,则代数式2x+4y+3值是
左
俯
视
视
图
图
()
A. 9
B. 6
C. 7
D. 不能确定
1
5.如果 a - b = 2 ,那么-3( b - a )的值时(
)
3 A.- 5
2 B. 3
3 C. 2
1 D. 6
6.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;
3.思路点拨。教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳。加强 提醒引导,鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师提醒引导。
4.作业适宜。布置作业要有针对性,有层次性,应对各种资料进行筛选,力求每一次练习都起到最大 的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,作出分类总结,进行透彻的 评讲,并针对有关情况及时改进教学方法,做到有的放矢。
3. 爱岗敬业,教书育人 为师者,一言一行都会对学生产生深远的影响, 特别是师范类学生,自己的形象会对他们日后的教学方式、工作态度产生潜移 默化的影响,进而影响到他们的学生。所以,作为师范要时刻谨记我们面对不 是眼前的这一名学生,而是他们背后的几代人。所以对于自己的爱岗敬业提出 了更高的要求,应该以近乎完美的苛刻标准来要求自己,评判自己的工作,塑 造自己形象,要做一个甘于物质清贫而精神富足的人。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word版含解析)一、选择题1.如果整式x n﹣3﹣5x2+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.62.如图,C 是线段AB上一点, AC=4,BC=6,点M、N 分别是线段AC、BC的中点,则线段MN的长是( )A.5 B.92C.4 D.33.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个4.下列几何体中,是棱锥的为()A.B.C.D.5.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线6.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1C.13x﹣1 D.6x2+13x﹣17.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个8.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°9.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-10.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >0 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.如果向北走2 m ,记作+2 m ,那么-5 m 表示( ) A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m13.在同一平面内,下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐15.2-的相反数是( ) A .2-B .2C .12D .12-二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.18.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.19.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.20.如图,将一张长方形的纸片沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12∠EFM ,则∠BFM 的度数为_______21.多项式32ab b +的次数是______. 22.0的绝对值是_____.23.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.24.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值. 27.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)28.化简:(1)()632m m n --+ (2)()()22835232ab aab ab a ----29.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.30.先化简,再求值:已知a 2+2(a 2﹣4b )﹣(a 2﹣5b ),其中a =﹣3,b =13. 31.计算 (1)157()362612+-⨯ (2)()421723-+÷-32.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.33.(1)根据如图(1)所示的主视图、左视图、俯视图,这个几何体的名称是 . (2)画出如图(2)所示几何体的主视图、左视图、俯视图.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.尺规作图是指用无刻度的直尺和圆规作图。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题 1.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-=D .60101213x x +-= 2.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 3.下列各数是无理数的是( )A .﹣2B .227C .0.010010001D .π4.如图所示的几何体的左视图是( )A .B .C .D .5.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-=6.画如图所示物体的主视图,正确的是( )A .B .C .D .7.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( )A .7.5米B .10米C .12米D .12.5米 8.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .9.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小 10.如果向北走2 m ,记作+2 m ,那么-5 m 表示( ) A .向东走5 m B .向南走5 m C .向西走5 m D .向北走5 m 11.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣1202012.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A13.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养14.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒ 15.对于任何有理数a ,下列各式中一定为负数的是( )A .(3)a --+B .2a -C .1a -+D .1a --二、填空题16.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2k n =(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.17.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.18.多项式32ab b +的次数是______.19.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.20.0的绝对值是_____.21.已知222x y -+的值是 5,则 22x y -的值为________. 22.若5x =是关于x 的方程2310x m +-=的解,则m 的值为______.23.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .24.数轴上到原点的距离等于122个单位长度的点表示的数是__________. 25.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm .三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .27.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.28.甲、乙两车都从A地出发,在路程为360千米的同一道路上驶向B地.甲车先出发匀速驶向B地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B地.(1)甲车的速度为千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发小时与甲车相距10千米?29.如图,已知三角形ABC,D为AB边上一点.(1) 过点D画线段BC的平行线DE,交AC于点E;过点A画线段BC的垂线AH,垂足为点H.(2)用符号语言分别描述直线DE与线段BC及直线AH与线段BC的位置关系.(3)比较大小:线段BH线段BA,理由为.30.如图,点O是直线AB上一点, OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.31.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1?32.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远?(3)经过几小时,两车相距50千米?33.(探索新知)如图1,点C 在线段AB 上,图中共有3条线段:AB 、AC 和BC ,若其中有一条线段的长度是另一条线段长度的两倍,则称点C 是线段AB 的“二倍点”.(1)①一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)②若线段20AB =,C 是线段AB 的“二倍点”,则BC = (写出所有结果) (深入研究)如图2,若线段20AB cm =,点M 从点B 的位置开始,以每秒2cm 的速度向点A 运动,当点M 到达点A 时停止运动,运动的时间为t 秒.(2)问t 为何值时,点M 是线段AB 的“二倍点”;(3)同时点N 从点A 的位置开始,以每秒1cm 的速度向点B 运动,并与点M 同时停止.请直接写出点M 是线段AN 的“二倍点”时t 的值.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题.(1)请直接写出a 、b 、c 的值. a = b = c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.39.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.40.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?41.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数.42.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.43.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.2.C解析:C【解析】【分析】根据图形和题意可以分别判断各个选项是否正确.【详解】解:由图可得,AD +BD =AB ,故选项A 中的结论成立,BD ﹣CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC =,故选项D 中的结论成立, 故选:C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答. 3.D解析:D【解析】试题分析:A .是整数,是有理数,选项错误;B .是分数,是有理数,选项错误;C .是有限小数,是有理数,选项错误;D .是无理数,选项正确.故选D .考点:无理数.4.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A . 5.C解析:C【解析】【分析】设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.【详解】解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .【点睛】本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.6.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A .【点睛】本题考查三视图,基础知识扎实是解题关键7.D解析:D【解析】【分析】根据题意,画出图形,即可发现,甲乙每迎面相遇一次,两人共行驶50米,从而求出第十次迎面相遇时的总路程,然后除以速度和即可求出甲行驶的时间,从而求出甲行驶的路程,然后计算出甲行驶了几个来回即可判断.【详解】解:根据题意,画出图形可知:甲乙每迎面相遇一次,两人共行驶25×2=50米,∴第十次迎面相遇时的总路程为50×10=500米∴甲行驶的时间为500÷(1+0.6)=1250 4s∴甲行驶的路程为12504×1=12504米∵一个来回共50米∴12504÷50≈6个来回∴此时距离出发点12504-50×6=12.5米故选D.【点睛】此题考查的是行程问题,掌握行程问题中的各个量之间的关系是解决此题的关键.8.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.9.C解析:C【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.10.B解析:B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】由题意知:向北走为“+”,则向南走为“﹣”,所以﹣5m 表示向南走5m.故选:B.【点睛】本题考查了具有相反意义的量.解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B .【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.12.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.13.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D .【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.14.C解析:C【解析】【分析】观察图形可知∠1和∠2是一对邻补角,由136∠=︒,可求∠2.【详解】解:因为直线a ,b 相交于点O ,所以12180∠+∠=︒,又因为136∠=︒,所以2180118036144∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题考查了邻补角的性质,解题的关键是结合图形,熟练运用邻补角的性质,此题比较简单,易于掌握.15.D解析:D【解析】【分析】负数一定小于0,分别将各项化简,然后再进行判断.【详解】解:A . (3)a --+=3-a ,当a 3≤时,原式不是负数,选项A 错误;B . 2a -,当a=0时,原式不是负数,选项B 错误;C . 1a -+,当a 1≠-时,原式才符合负数的要求,选项C 错误;D . 1a --10≤-<,原式一定是负数,符合要求,选项D 正确.故选:D .【点睛】本题考查的知识点是有理数的加减法以及绝对值,正确的将各项化简是解此题的关键.二、填空题16.4【解析】【分析】计算n=24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是: =1;若n=24,第1次结果为:,第2次解析:4【解析】【分析】计算n =24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是:242=1; 若n=24,第1次结果为:32432=, 第2次结果为:3×3+1=10, 第3次结果为:11052=,第4次结果为:3×5+1=16,第5次结果为:41612=, 第6次结果为:3×1+1=4,第7次结果为:2412=, 第8次结果为: 3×1+1=4,…可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数为奇数时,结果是1,次数是偶数时,结果是4,而100次是偶数,因此最后结果是4.故答案为:4.【点睛】本题为找规律的题型,关键在于列出结果找到规律.17.【解析】【分析】由余角的定义可得的度数,根据对顶角相等可得解.【详解】解:故答案为:【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.解析:40︒【解析】【分析】由余角的定义可得BOD ∠的度数,根据对顶角相等可得解.【详解】解:EO AB ⊥90BOE ︒∴∠=905040BOD BOE EOD ︒︒︒∴∠=∠-∠=-=40AOC BOD ︒∴∠=∠=故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.18.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b 的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.19.过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM 与ON 重合(平面内,经过一点有且只有解析:过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM ⊥l ,ON ⊥l ,∴OM 与ON 重合(平面内,经过一点有且只有一条直线与已知直线垂直),故答案为:平面内,经过一点有且只有一条直线与已知直线垂直.【点睛】本题考查了垂线,利用了垂线的性质:平面内过一点有且只有一条直线与已知直线垂直. 20.0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.解析:0【解析】【分析】根据绝对值的意义求解即可.【详解】解:根据绝对值的意义,得|0|=0.【点睛】本题考查绝对值,比较基础,应熟练掌握基础知识.21.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 22.-3【解析】【分析】根据方程的解的定义把x=5代入方程可得关于m 的方程,解方程即可解决问题.【详解】解:∵是关于的方程的解∴∴m=-3故答案为:-3.【点睛】本题考查方程的解,解解析:-3【解析】【分析】根据方程的解的定义把x=5代入方程可得关于m 的方程,解方程即可解决问题.【详解】解:∵5x =是关于x 的方程2310x m +-=的解∴25310m ⨯+-=∴m=-3故答案为:-3.【点睛】本题考查方程的解,解题的关键是理解题意,属于中考中较常考题型.23.3【解析】【分析】求出BC 长,根据中点定义得出CDBC ,代入求出即可.【详解】∵AB=4cm ,AC=10cm ,∴BC=AC ﹣AB=6cm .∵D 为BC 中点,∴CDBC=3cm .故答案解析:3【解析】【分析】求出BC 长,根据中点定义得出CD 12=BC ,代入求出即可. 【详解】∵AB =4cm ,AC =10cm ,∴BC =AC ﹣AB =6cm .∵D为BC中点,∴CD12=BC=3cm.故答案为:3.【点睛】本题考查了有关两点间的距离的应用,关键是求出BC的长和得出CD12=BC.24.【解析】【分析】设数轴上到原点的距离等于个单位长度的点表示的数是x,则有|x|=,进而可得出结论.【详解】解:设数轴上到原点的距离等于个单位长度的点表示的数是x,则有|x|=,解得,.解析:1 22±【解析】【分析】设数轴上到原点的距离等于122个单位长度的点表示的数是x,则有|x|=122,进而可得出结论.【详解】解:设数轴上到原点的距离等于122个单位长度的点表示的数是x,则有|x|=122,解得,1x22 =±.故答案为:122±.【点睛】本题考查的知识点是数轴上点到原点的距离,需要注意的是数轴上有两个点到原点的距离相等.25.5或11.【解析】试题分析:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB﹣BC=8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意解析:5或11.【解析】试题分析:分为两种情况:①如图1,AC =AB +BC =8+3=11;②如图2,AC =AB ﹣BC =8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.三、解答题26.(1)详见解析;(2)=,对顶角相等;(3)详见解析.【解析】【分析】(1)根据直线、射线的定义画出图形即可;(2)根据对顶角相等即可解决问题;(3)根据垂线段作法可作出垂线;【详解】(1)画直线AC ,射线BD ,交于点O ,图形如下图所示;(2)AOD ∠=BOC ∠,理由是对顶角相等,故答案为:=,对顶角相等;(3)画出从点A 到CD 的,垂足为H ,即垂线段AH 即为所求.【点睛】本题考查直线、射线、对顶角、垂线段等知识,解题关键是熟练掌握基本知识,属于中考常考题型.27.(1)150°;(2)20°;(3)32°;(4)30°.【解析】【分析】(1)根据角的和差即可得出结论;(2)根据角的和差即可得出结论;(3)根据角的和差即可得出结论.【详解】(1)∵∠EBC =∠EBD +∠ABC ,∴∠EBC =90°+60°=150°.(2)∵∠EBC =∠EBD +∠DBA +∠ABC ,∴∠α=∠EBC -∠EBD -∠ABC =170°-90°-60°=20°;(3)∵∠EBC =∠EBD +∠DBC =∠EBD +∠ABC -∠α,∴∠α=∠EBD +∠ABC -∠EBC =90°+60°-118°=32°;(4)∵∠ABE =∠DBE -∠α=90°-∠α,∠DBC =∠ABC -∠α=60°-∠α,∴∠ABE -∠DBC =(90°-∠α)-(60°-∠α)=90°-∠α-60°+∠α=30°.【点睛】本题考查了角的和差的计算.结合图形得出角的和差关系是解答本题的关键.28.(1)80;(2)60千米/时;(3)16或76或236. 【解析】【分析】(1)设甲车的速度为x 千米/时,根据甲车时间比乙车时间多用10分钟,路程为360千米,列方程求解即可;(2)设乙车装货后的速度为x 千米/时,根据“满载货物后,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时”列方程,求解即可; (3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,列方程求解即可;②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.列方程求出x 的值,再加上3小时20分钟即可.【详解】(1)设甲车的速度为x 千米/时,根据题意得: (1310360+)x =360 解得:x =80. 答:甲车的速度为80千米/时.(2)设乙车装货后的速度为x 千米/时,根据题意得:13203(40)(3)360360x x ++--= 解得:x =60.答:乙车装货后行驶的速度为60千米/时.(3)分两种情况讨论: ①装货前,设乙车出发x 小时两车相距10千米,根据题意得:1010080()1060x x -+= 解得:x =16或x =76. ②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.此时乙车在前,甲车在后. 乙车装货结束时,甲车行驶的路程=80×(3+3060)=280(千米),乙车行驶的路程=100×3=300(千米).根据题意得:280+80x +10=300+60x解得:x =0.5乙车一共用了202330.5606++=(小时). 答:乙车出发16小时或76小时或236小时与甲车相距10千米. 【点睛】本题考查了一元一次方程的应用.分类讨论是解答本题的关键. 29.(1)详见解析;(2)DE //BC ,AH ⊥BC ;(3)线段BH<线段BA ,直线外一点与直线上各点连成的所有线段中,垂线段最短【解析】【分析】(1)根据题意,作出平行线和垂线即可;(2)用符号语言表示出来即可;(3)根据垂线段最短,即可得到答案.【详解】解:(1)如图;(2)用数学符号表示为:DE //BC ,AH ⊥BC ;(3)线段BH<线段BA ,直线外一点与直线上各点连成的所有线段中,垂线段最短【点睛】本题考查了基本作图,以及考查了垂线段最短,解题的关键是正确的作出平行线和垂线. 30.50°【解析】【分析】由O C ⊥OE ,可得∠COE =90°,从而求得,∠EOF 的度数,然后利用角平分线的定义得到∠AOE =2∠EOF =130°,从而使问题得解.【详解】解:因为O C ⊥OE所以∠COE =90°因为∠COF =25°所以∠EOF =∠COE -∠COF =65°因为OF 平分∠AOE所以∠AOE =2∠EOF =130°因为∠AOB =180°所以∠BOE =∠AOB -∠AOE =50°【点睛】本题考查了角平分线的定义及角的和差,数形结合思想解题是本题的解题关键.31.(1)a=-8,b=4;(2)-1或6;(3)115秒,135秒或234秒. 【解析】【分析】(1)根据()232+4=0ab b +-,利用绝对值及偶次方的非负性即可求出;(2)若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,分三种情况讨论; (3)当MN =1时,根据运动情况,可分三种情形讨论,列出方程解答.【详解】(1)解:(1)∵()232+4=0ab b +-,∴ab=-32,b-4=0,∴a=-8,b=4.(2)根据题意,若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,线段AB 的中点表示的数为-2,设点P 表示的数为x ,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x )=2(-x ),解得:x=-1;②当0≤x<4时,则x+8-(4-x )=2x ,方程无解③当x≥4时,则x+8-(x-4)=2x ,解得:x=6.综上:存在点P ,表示的数为-1或6.(3)设运动时间为t ,根据运动情况,可知MN=1的情况有三种:①M 在A →O 上,且M 在N 左侧,则2t+3t+1=12,。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=2.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线 3.单项式24x y 3-的次数是( ) A .43-B .1C .2D .34.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .65.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯6.倒数是-2的数是( ) A .-2B .12-C .12D .27.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( ) A .100.30千克B .99.51千克C .99.80千克D .100.70千克8.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .359.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°10.画如图所示物体的主视图,正确的是( )A .B .C .D .11.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4 B .-2C .2D .412.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6D .2(2x +1)﹣10x +1=113.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变 14.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 15.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-二、填空题16.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______. 17.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____.18.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .19.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.20.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .21.某市2019年参加中考的考生人数约为98500人,将98500用科学记数法表示为______.22.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时. 23.计算t 3t t --=________.24.已知∠α=28°,则∠α的余角等于___.25.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数.28.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ; ⑵如果∠AOD=40°,求∠POF 的度数.29.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bc d=ad-bc ,当2x 43x 23-=10时,求代数式2(x-2)-3(x+1)的值.30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价 (单位:元/立方米)2019年单价 (单位:元/立方米)第一阶梯 0-300(含) a3 第二阶梯 300-600(含) 0.5a + 3.5 第三阶梯600以上1.5a +5(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值; (3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.如图,点C 是线段AB 的中点,6AC =.点D 在线段AB 上,且12BD AD =,求线段CD 的长.32.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 37.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.38.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据合并同类项的法则进行运算依次判断. 【详解】解:A.两项不是同类项不能合并,错误; B. 532y y y -=,错误; C. 78a a a +=,错误; D.正确. 故选D. 【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.2.D解析:D 【解析】 【分析】根据各项定义性质判断即可. 【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D. 【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.3.D解析:D 【解析】 【分析】直接利用单项式的次数的定义得出答案. 【详解】单项式43-x 2y 的次数是2+1=3. 故选D . 【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.4.D解析:D 【解析】 【详解】根据题意得到n ﹣3=3,即可求出n 的值. 解:由题意得:n ﹣3=3, 解得:n=6. 故选D5.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将98.46万用科学记数法表示为59.84610⨯. 故选:C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B 【解析】 【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解. 【详解】 解:12()12-⨯-=∴倒数是-2的数是12-故选:B 【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.7.C解析:C【解析】【分析】根据题意,明确“正”和“负”所表示的意义求出合格产品的范围,再求解即可.【详解】依题意,合格面粉的质量应大于等于97.75千克,小于等于100.25千克选项中只有99.75<99.8<100.25故答案选C【点睛】本题考查了正负数的意义,本题难度较小,解决本题的关键是理解正负数的意义.8.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用. 9.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A.故选:A.【点睛】本题考查三视图,基础知识扎实是解题关键11.A解析:A【解析】【分析】根据相反数的性质并整理可得a 4b -=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a 和14b -互为相反数,∴a +14b -=0整理,得a 4b -=-1()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.12.C解析:C【解析】【分析】方程的分母最小公倍数是6,方程两边都乘以6即可.【详解】方程两边都乘以6得:2(2x +1)﹣(10x +1)=6.故选:C .【点睛】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.13.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.14.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.15.A解析:A【解析】【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可.【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9.故选A .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题16.17【解析】【分析】根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3解析:17【解析】【分析】根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,故三边长为3,7,7故周长为17.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.17.–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2解析:–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2(a+2b)–3=2×(–1)–3=–5,故答案为–5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:53.8410⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将384000用科学记数法表示为:53.8410⨯.故答案为:53.8410⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b解析:b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b-a|-|a+1|=b-a-(-a-1)=b-a+a+1=b+1.故答案为:b+1.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,绝对值的知识,正确把握相关知识是解题的关键.20.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 21.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1解析:49.8510⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】98500=49.8510⨯.故答案为:49.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.22.【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:解得:x =解析:【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =3,答:他们合作整理这批图书的时间是3h .故答案是:3.【点睛】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.23.-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.解析:-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.24.62°.【解析】【分析】互为余角的两角和为,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为而解得.解析:62°.【解析】【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.25.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD ,再代入计算即可求解.【详解】∵AB=a ,CD=b ,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b .故解析:a b +【解析】【分析】观察图形可知AD +BC =AC +CD +BD +CD =AB +CD ,再代入计算即可求解.【详解】∵AB =a ,CD =b ,∴AD +BC =AC +CD +BD +CD =AB +CD =a +b .故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.三、解答题26.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH+∠FHD=180°,利用同旁内角互补两直线平行,证明FG∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识. 27.(1)30,30,∠EOD;(2)87°【解析】【分析】(1)根据13BOE EOC∠=∠,即可得到∠BOE,然后求出∠AOB,利用角平分线的定义求出∠BOD,再然后根据求出∠EOD的度数,与∠AOB相等;(2)根据角平分线的定义求出∠AOB,再求出∠BOC,然后求解即可.【详解】解:(1)∵OE AC⊥,O是直线AC上一点∴∠EOC=∠AOE=90°又∵13BOE EOC ∠=∠∴190303BOE∠=⨯=∴∠AOB=90°-30°=60°∵OD平分AOB∠∴1302BOD AOB∠=∠=∵∠EOD=∠BOD+∠BOE=60°所依∠AOB=∠EOD故答案为:30,30,∠EOD;(2)因为OD平分∠AOB,所以∠AOB=2∠AOD.因为∠AOD=32°,所以∠AOB=64°.所以∠COB=180°-∠AOB =116°.因为∠BOE=13∠EOC,所以∠EOC=34∠COB=31164⨯︒=87°.【点睛】本题考查了垂直的定义,角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.(1)∠EOD,∠AOF都是∠EOC的补角;(2)∠POD=70°.【解析】【分析】(1)首先根据垂直定义可得∠AOE=∠DOF=90°,然后再证明∠EOD=∠AOF,根据补角定义可得∠EOD,∠AOF都是∠EOC的补角;(2)根据对顶角相等,可得∠BOC的度数,根据角平分线的定义,可得∠COP,根据余角的定义,可得答案.【详解】(1)∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,∴∠EOA+∠AOD=∠DOF+∠AOD,即:∠EOD=∠AOF,∵∠EOC+∠EOD=180°,∴∠AOF+∠EOC=180°,∴∠EOD,∠AOF都是∠EOC的补角;(2)由对顶角相等,得∠BOC=∠AOD=40°,由OP是∠BOC的平分线,得∠COP=12∠BOC=20°,由余角的定义,得∠POD=∠COD-∠COP=90°-20°=70°.【点睛】此题主要考查了补角、垂直、以及角的计算,关键是理清图中角之间的和差关系.29.203 -.【解析】【分析】利用题中的新定义运算方法求出x的值,代入原式计算即可得到结果.【详解】解:根据题中的新定义运算方法得:6x-4(3x-2)=10, 去括号得:6x-12x+8=10, 解得:x=13-, ∴2(x-2)-3(x+1) =2x-4-3x-3 =-x-7 =-(13-)-7 =203-. ∴代数式2(x-2)-3(x+1)的值是203-. 【点睛】考查了解一元一次方程,以及代数式求值,解一元一次方程的步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.30.(1)280a ;(2)2.5;(3)丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米 【解析】 【分析】(1)根据题意即可列出代数式; (2)根据题意列出方程即可求解a 的值;(3)根据题意分①2019年用气量不超过300立方米,②2019年用气量超过300立方米,但不超过600立方米分别列出方程即可求解. 【详解】(1)甲用户家2018年用气总量为280立方米,则总费用为280a 元, 故答案为:280a .(2)由题意得:()3001500.51200a a ++=. 解得: 2.5a =. ∴a 的值为2.5.(3)设丙用户家2019年用气x 立方米,2018年用气()1200x -立方米. ∵2018年用气量大于2019年用气量,∴2018年用气量大于600立方米,2019年用气量小于600立方米. ①2019年用气量不超过300立方米,由题意得:()7509004120060033625x x ++--+=. 解得:425x =.不合题意,舍去.②2019年用气量超过300立方米,但不超过600立方米.由题意得:()75090041200600x ++--()3300 3.5300x +⨯+⨯-3625=. 解得:550x =,符合题意. ∴1200650x -=.答:丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米. 【点睛】本题考查了一元一次方程的应用,解题的关键是根据收费标准,列式计算;找准等量关系,正确列出一元一次方程. 31.CD=2 【解析】 【分析】因为点C 是线段AB 的中点,6AC =,所以12AB =. 由12BD AD =,得到13BD AB ==4,即可列式CD BC BD =-计算得到答案. 【详解】 解:点C 是线段AB 的中点,6AC =, 12AB ∴=.12BD AD =, 13BD AB ∴==4. 642CD BC BD AC BD ∴=-=-=-=.【点睛】本题考查线段的和差分倍,解题的关键是掌握线段的和差分倍计算方法. 32.(1)12;(2)79. 【解析】 【分析】(1)按照整数的运算法则运算即可. (2)按照分数的运算法则运算即可. 【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=.(2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.33.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】(1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系. 【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t . 故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t ) 解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45) 解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30 解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60 解得:t =10. 故答案为5或10.②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°. 【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.四、压轴题34.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】 【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可, (2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可, (4)根据(3)的结果计算即可. 【详解】(1)观察数轴可知,4a =-,1b =,6c =. 故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =, 则若将数轴在点B 处折叠,点A 与点C 能重合. 故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +. (4)5AB t =+, ∴3153AB t =+. 又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10. 【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.35.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【解析】 【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论; 【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3; ∴AB=9;∵P 到A 和点B 的距离相等,。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word版含解析)一、选择题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x的和为( )A.30 B.35 C.42 D.392.下列几何体中,是棱锥的为()A.B.C.D.3.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1 B.-2 C.3 D.b-4.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.45.下列合并同类项结果正确的是( )A.2a2+3a2=6a2B.2a2+3a2=5a2C.2xy-xy=1 D.2x3+3x3=5x6 6.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°7.下列各组代数式中,不是同类项的是()A.2与-5 B.-0.5xy2与3x2y C.-3t与200t D.ab2与-8b2a 8.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.不确定9.下列各数是无理数的是()A.﹣2 B.227C.0.010010001 D.π10.如图所示的几何体的左视图是()A.B.C.D.11.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.12.数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.513.把方程213148x x--=-去分母后,正确的结果是()A.2x-1=1-(3-x)B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3+x D.2(2x-1)=8-3-x 14.-5的相反数是()A.15B.±5 C.5 D.-1515.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )A .B .C .D .二、填空题16.3615︒'的补角等于___________︒___________′.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________. 18.计算: x(x-2y) =______________19.若∠α=68°,则∠α的余角为_______°.20.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.21.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.22.单项式-4x 2y 的次数是__.23.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个24.某地2月5日最高温度是3℃,最低温度是-2℃,则最高温度比最低温度高________. 25.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________三、解答题26.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数; (3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数. 27.解下列方程:(1)2(2)6x --= .(2)121123x x -+=-. 28.解方程(1)610129x x -=+; (2)21232x x x +--=-. 29.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.30.定义一种新运算“⊕”:a ⊕b=2a ﹣ab ,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5 (1)求(﹣2)⊕3的值;(2)若(﹣3)⊕x=(x+1)⊕5,求x 的值; (3)若x ⊕1=2(1⊕y ),求代数式2x+4y+1的值.31.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问: (1)学校印制多少份节目单时两个印刷厂费用是相同的? (2)学校要印制1500份节目单,选哪个印刷厂所付费用少?32.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例. 33.2020年8月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为200/km h (动车的长度不计),高铁的平均速度为300/km h (高铁的长度不计),扬州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟 (1)求宝应站到扬州高铁站的路程;(2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟. ①求高铁经过多长时间追上动车;②求高铁经过多长时间后,与动车的距离相距20千米.四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 36.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word版含解析)一、选择题1.在钟表上,下列时刻的时针和分针所成的角为90°的是()A.2点25分B.3点30分C.6点45分D.9点2.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.3.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为()A.116元B.145元C.150元D.160元4.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A.2a B.-2b C.-2a D.2b5.方程1502x--=的解为()A.4-B.6-C.8-D.10-6.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.7.27-的倒数是()A.72B.72-C.27D.27-8.如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A .50°B .60°C .70°D .100°9.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1310.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( ) A .()21313x x -+= B .()21313x x ++= C .()23113x x ++= D .()23113x x +-= 11.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2612.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-13.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .814.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元 B .8.5×103亿元C .8.5×104亿元D .85×102亿元15.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -=二、填空题16.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.17.一个角的的余角为30°15′,则这个角的补角的度数为________. 18.已知3x =是方程35x x a -=+的解,则a 的值为__________.19.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.20.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.21.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 23.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 24.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 25.已知36a ∠=︒,则a ∠的补角的度数是__________.三、解答题26.如图,线段 AB 的中点为 M ,C 点将线段 MB 分成 MC :CB=1:3 的两段,若 AC=10,求AB 的长.27.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m ? 28.如图,点O 是直线AB 上的一点,将一直角三角板如图摆放,过点O 作射线OE 平分BOC ∠.(1)如图1,如果40AOC ∠=︒,依题意补全图形,求DOE ∠度数;(2)当直角三角板绕点O 顺时针旋转一定的角度得到图2,使得直角边OC 在直线AB 的上方,若AOC α∠=,其他条件不变,请你直接用含α的代数式表示DOE ∠的度数为 ;(3)当直角三角板绕点O 继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现DOE ∠与AOC ∠(0180,0AOC DOE ≤∠≤≤∠°°°)≤180°之间有怎样的数量关系?请直接写出你的发现: .29.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)30.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值. 31.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--32.已知A 、B 在直线l 上,28AB =,点C 线段AB 的中点,点P 是直线l 上的一个动点. (1)若5BP =,求CP 的长;(2)若M 是线段AP 的中点,N 是BP 的中点,求MN 的长.33.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.四、压轴题34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 36.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.37.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.38.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.39.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 40.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.2.D解析:D【解析】【分析】点到直线的距离是指垂线段的长度.【详解】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段是解题关键.3.B解析:B【解析】【分析】根据售价-进价=利润这一等量关系,列方程求解即可. 【详解】 解:设标价为x 元, 依题意得:0.8x-100=16, 解得x=145. 即标价为145元. 故答案选B. 【点睛】本题考查了一元一次方程解应用题,解决本题的关键是找到题目中蕴含的等量关系.4.A解析:A 【解析】试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a ∣<∣b ∣,所以可得,a+b>0,a-b<0则=(a+b )+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值5.D解析:D 【解析】 【分析】根据一元一次方程的解法即可求解. 【详解】1502x --= 152x -= x=-10 故选D. 【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知方程的解法.6.B解析:B 【解析】 【分析】根据展开图推出几何体,再得出视图. 【详解】根据展开图推出几何体是四棱柱,底面是四边形. 故选B 【点睛】考核知识点:几何体的三视图.7.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.8.A解析:A【解析】∵AD 平分∠BAC ,∴∠BAD=∠CAD .∵AB ∥CD ,∴∠BAD=∠D .∴∠CAD=∠D .∵在△ACD 中,∠C+∠D+∠CAD=180°,即80°+∠D+∠D=180°,解得∠D=50°,故选A .9.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n 的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.C解析:C【解析】【分析】设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.【详解】解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .【点睛】本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.11.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D.【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 12.A解析:A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0. 13.B解析:B【解析】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4.故选B.14.B解析:B【解析】【分析】科学记数法的一般形式为:a ×10n ,在本题中a 应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.二、填空题16.192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得: 14-2x+8+x+8=26,解得:x=解析:192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.18.【解析】【分析】把x=3代入方程即可得到一个关于a的方程,解得a的值.【详解】解:把x=3代入方程得:9-5=3+a,解得:a=1.故答案为:1.【点睛】本题考查方程的解的定义,解解析:1【解析】【分析】把x=3代入方程即可得到一个关于a的方程,解得a的值.【详解】解:把x=3代入方程得:9-5=3+a,解得:a=1.故答案为:1.【点睛】本题考查方程的解的定义,解题关键是理解定义.19.﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案. 【详解】∵2amb4与-3ab2n是同类项,∴m=1,2n=4,解得:m=1,n=2,则m﹣n=1﹣2=﹣1.解析:﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2a m b4与-3ab2n是同类项,∴m=1,2n=4,解得:m=1,n=2,则m﹣n=1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查了同类项,正确把握同类项的定义是解题的关键.20.-8【解析】【分析】将a=-2,b=3代入a※b=a2+2ab计算可得结果.【详解】(-2)※3=(-2)2+2×(-2)×3=4-12=-8,故答案为:-8【点睛】本题主要考查有理解析:-8【解析】【分析】将a=-2,b=3代入a ※b=a 2+2ab 计算可得结果.【详解】(-2)※3=(-2)2+2×(-2)×3=4-12=-8,故答案为:-8【点睛】本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则,有理数的混合运算顺序与运算法则.21.152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知∵∴故答案为:152.【点睛】本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解解析:152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知360-90-90-αβ∠=∠∵28β∠=︒∴360-90-90-28=152α∠=故答案为:152.【点睛】本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解题的关键. 22.两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条故答案解析:两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,熟记直线的性质是解题的关键.23.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵ ,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.本题考查有理数的除法,掌握除法法则是解答此题的关键. 24.【解析】【分析】将方程看成关于(y+1)的方程即可进行计算即可.【详解】解:∵关于的方程的解是∴关于的方程的解∴故答案为:【点睛】本题考查了方程的解的概念,准确理解方程的解是解题解析:3y=【解析】【分析】将方程1(1)32(1)2020y y b-+=-+看成关于(y+1)的方程即可进行计算即可.【详解】解:∵关于x的方程1322020x x b+=+的解是2x=∴关于()-1y的方程1(1)32(1)2020y y b-+=-+的解12y-=∴3y=故答案为:3y=【点睛】本题考查了方程的解的概念,准确理解方程的解是解题的关键.25.144°【解析】【分析】根据补角的定义即可求出的补角的度数.【详解】解: 的补角的度数是180°-=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角解析:144°【解析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.三、解答题26.16【解析】试题分析:本题需先设MC=x ,根据已知条件C 点将线段MB 分成MC :CB=1:3的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出试题解析:设MC=x ,∵MC :CB=1:3∴BC=3x ,MB=4x .∵M 为AB 的中点.∴AM=MB=4x .∴AC=AM+MC=4x+x=10,即x=2.∴AB=2AM=8x=16.27.(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m . 【解析】【分析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据距离=速度差×时间即可得出关于x 的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m .分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑,根据距离=速度差×时间即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x-x )=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m ,①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米,根据题意得:400y-200y=50,解得:y=14; ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米,根据题意得:400y-200y=350,解得:y=74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50m . 【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据距离=速度差×时间列出关于x 的一元一次方程;(2)分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑.28.(1)补全图形见解析;20DOE ︒∠=;(2)2DOE α∠=;(3)12DOE AOC ∠=∠;11802DOE AOC ︒∠=-∠. 【解析】【分析】 (1)根据角平分线的作法作出OE 平分∠BOC ,先根据平角的定义求出∠BOC ,再根据角平分线的定义求出∠COE ,再根据直角的定义即可求解;(2)先根据平角的定义求出∠BOC ,再根据角平分线的定义求出∠COE ,再根据直角的定义即可求解;(3)分两种情况:0°≤∠AOC≤180°,0°≤∠DOE≤180°,可求∠AOC 与∠DOE 之间的数量关系.【详解】(1)补全图形:解:因为180,40AOC BOC AOC ︒︒∠+∠=∠= 所以140BOC ︒∠=因为OE 平分BOC ∠,所以1702COE BOC ︒∠=∠=; 由直角三角板,得90COD ︒∠=; 因为90,70COD COE ︒︒∠=∠=;所以907020DOE COD COE ︒︒︒∠=∠-∠=-=;(2)∵由∠AOC+∠BOC=180°,∠AOC=α, ∴∠BOC=180°-α; ∵OE 平分∠BOC ,∴∠COE=90°-12α; ∵直角三角板, ∴∠COD=90°;∵∠COD=90°,∠COE=90°-12α, ∴∠DOE=2; (3)①0°≤∠AOC≤180°时, ∵由∠AOC+∠BOC=180°, ∴∠BOC=180°-∠AOC ; ∵OE 平分∠BOC ,∴∠COE=90°-12∠AOC ; ∵直角三角板, ∴∠COD=90°;∵∠COD=90°,∠COE=90°-12∠AOC , ∴∠DOE=12∠AOC ; ②0°≤∠DOE≤180°时,∵由∠AOC+∠BOC=180°, ∴∠BOC=180°-∠AOC ; ∵OE 平分∠BOC ,∴∠COE=12∠BOC=90°-12∠AOC ; ∵直角三角板, ∴∠COD=90°;∴∠DOE=90°+∠COE =180°-12∠AOC ; ∴∠DOE=12∠AOC (0°≤∠AOC≤180°),∠DOE=180°−12∠AOC (0°≤∠DOE≤180°).【点睛】本题考查了余角和补角,角平分线的定义,角的计算,找到各个量之间的关系求出角的度数是解题的关键.29.(1)C 1=C 2,理由详见解析;(2)11π. 【解析】 【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解. 【详解】 解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a , ∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa , ∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11, ∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π. 故答案为:11π. 【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键. 30.(1)①3cm;②见解析;(2)9AP =或11cm. 【解析】 【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论. 【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=, ∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=, ∴2433CD CP PB DB cm =+-=+-=; ②∵8,12AP AB ==,∴4,82BP AC t ==-, ∴43DP t =-,∴2434CD DP CP t t t =+=+-=-, ∴2AC CD =; (2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=, ∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=, 综上所述,9AP =或11cm. 【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段. 31.(1)-3 ;(2)8 【解析】 【分析】(1)先计算乘法,再计算加法,即可得到答案; (2)先计算乘方和括号内的运算,然后再计算乘除法即可. 【详解】解:(1)1136()33-⨯+⨯- =12-- =3-;(2)32(2)4[5(3)]-÷⨯--=84(4)-÷⨯- =8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则. 32.(1)CP 的长为:9或19;(2)MN=14 【解析】 【分析】(1) 分当P 在CB 上时、当P 在CB 的延长线上时两种情况进行分类讨论即可; (2)分当P 在AB 线上时、当P 在AB 的延长线上时、当P 在BA 的延长线上时三种情况进行讨论,利用中点的性质将MM 的和差分别表示出来即可得出答案. 【详解】解:(1)∵点C 线段AB 的中点,28AB =, ∴1142AC CB AB === 当P 在CB 上时,如图:∵5BP = ∴CP=BC -CP=14-5=9当P 在CB 的延长线上时,如图:∵5BP = ∴CP=BC+BP=14+5=19 ∴CP 的长为:9或19 (2)∵M 为AP 的中点∴12AM MP AP == ∵N 为BP 的中点∴12PN NB PB ==当P 在AB 线上时,如图()1111142222MN MP PN AP PB AP PB AB =+=+=+== 当P 在AB 的延长线上时,如图()1111---142222MN MP PN AP PB AP PB AB ===== 当P 在BA 的延长线上时,如图()1111--P 142222MN PN MP PB AP PB A AB =-==== 综上所述:MM=14 【点睛】本题考查了线段的中点,灵活掌握图形不定,需要分类讨论是解题的关键. 33.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】 【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解;(2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解;(3)画出图形后利用角的和差关系进行计算求解即可. 【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. ∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠=∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒ ∴60x y +=︒∴3090MON x y ∠=+︒+=︒ 故答案为: 90︒(2)∵8MON COD ∠=∠ ∴设=,8COD a MON a ∠∠= ∵射线OD 恰好平方MON ∠∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-=∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. ∴OM 平分∠AOC, ON 平分∠BOD∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠=∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒ ∴COD=10∠︒(3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD∴117522DON BOD x ∠=∠=︒- ∴MON COD DON ∠=∠+∠1752x x =+︒-1752x =︒+∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON 117522b a a =++︒- 117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时 ∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠A OC∴12MON AOC ∠=∠∴MON MOD AON ∠=∠+∠1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键.四、压轴题34.(1)3,3,1a -;(2)①42c -;②72-或152;③6【解析】 【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=; 数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=,即代数式15c c 的最小值是6.。
七年级数学期末试卷(培优篇)(Word版 含解析)
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n2.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒3.倒数是-2的数是( )A .-2B .12-C .12D .24.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体5.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120206.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .19 7.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a 8.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20 B .40 C .60 D .809.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a10.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .﹣5x ﹣1B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 11.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°12.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 13.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 14.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.17.正方体切去一块,可得到如图几何体,这个几何体有______条棱.18.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20. 当m = __时,方程21x m x +=+的解为4x =-.21.若 2230α'∠=︒,则α∠的余角等于________.22.已知222x y -+的值是 5,则 22x y -的值为________. 23.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.24.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).25.216x -的系数是________ 三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________; (2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.28.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++= 29.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格 阶梯 用户年用气量(单位:立方米)2018年单价 (单位:元/立方米) 2019年单价 (单位:元/立方米) 第一阶梯0-300(含) a 3 第二阶梯300-600(含) 0.5a + 3.5 第三阶梯 600以上 1.5a +5(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)32.先化简,再求值:()()22225343a b abab a b ---+,其中a=-2,b=12; 33.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.38.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?39.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数:(2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.42.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.2.C解析:C【解析】【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC =∠BFE−∠CFE =x−24°,∵纸条沿BF 折叠,∴∠C ′FB =∠BFC =x−24°,而∠B ′FE +∠BFE +∠C ′FE =180°,∴x +x +x−24°=180°,解得x =68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.3.B解析:B【解析】【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解.【详解】解:12()12-⨯-=∴倒数是-2的数是1 2 -故选:B【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.4.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.5.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.6.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.7.B解析:B【解析】【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【详解】A是两个常数,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.8.A解析:A【解析】根据有理数的实际意义即可求解.【详解】()++-表示拖拉机加油50L,再用去油30L,故剩下20L5030故选A.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.9.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.10.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x2+4x−1)−(3x2+9x)=3x2+4x-1−3x2−9x=−5x−1.故选A.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.11.A【解析】∵AD 平分∠BAC ,∴∠BAD=∠CAD .∵AB ∥CD ,∴∠BAD=∠D .∴∠CAD=∠D .∵在△ACD 中,∠C+∠D+∠CAD=180°,即80°+∠D+∠D=180°,解得∠D=50°,故选A .12.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.13.C解析:C【解析】【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意;故选C .【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.14.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.15.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题16.【解析】【分析】根据题意可知单项式与是同类项,从而可求出m的值.【详解】解:∵若单项式与的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】解析:3【解析】【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3. 17.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.18.29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-解析:29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去)∴满足条件所有x的值是29或6.19.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.20.5【解析】【分析】将代入方程,然后解一元一次方程即可.【详解】解:由题意,将代入方程解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.解析:5【解析】【分析】将4x =-代入方程,然后解一元一次方程即可.【详解】解:由题意,将4x =-代入方程2(4)41m ⨯-+=-+解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.21.【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵的余角为.故答案为:.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此解析:'6730︒【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵ 2230α'∠=︒α∠的余角为9022306730''-︒=︒.故答案为:'6730︒.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此题的关键.22.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 23.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.24.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.25.【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:的系数是.故答案为:.【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数. 解析:16- 【解析】【分析】根据单项式的系数的定义即可求解.【详解】 解:216x -的系数是16-. 故答案为:16-. 【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.三、解答题26.(1)23,40;(2)①225,3;②9(i ﹣1)+j ;或者9 i ﹣9+j ;(3)不能等于2026,见解析.【解析】【分析】(1)根据表格直接得出即可.(2)①根据每行由小到大排列8个数,用2019除以8,根据除数与余数即可求值.②根据表格数据排列规律即可.(3)设5个数最小的为x,用含x 的代数式分别表示出其他4个数,根据求和等式列出方程,解出即可.【详解】解:(1)a 35=23,a 54=40;(2) ①∵2019÷9=224…3,∴2019是第225行的第3个数,∴i =225,j =3.故答案为225,3;②根据题意,可得a ij =9(i ﹣1)+j .故答案为9(i ﹣1)+j ;或者9i -9+j(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +10,x +12, x +20, 根据题意,得x +x +4+x +10+x +12+x +20=2026,解得x =396.∵396÷9=44,∴396是第44行的第9个数,而此时x +4=400是第45行的第4个数,与396不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2026.【点睛】本题为新定义的类型题,读懂题意根据规定计算是解题关键.27.(1)(0,4)-;(2)14x =;(3)不存在,证明详见解析. 【解析】【分析】(1)根据“相关数”的定义和公式进行计算,左右相等的即为答案;(2)代入新定义公式得到方程,解方程即可解答;(3)先假设存在,分别代入新定义公式,假设相等得:m n n m -=-,只有0的相反数仍等于它本身等于0,所以得到,4m n mn =+的值不为0,即m-n≠mn+4,从而得解.【详解】(1)∵数对(1,1):左边:a-b=1-1=0,右边:ab+4=1×1+4=5,左边≠右边,∴(1,1)不是;数对(-2,-6):左边:a-b=-2-(-6)=4,右边:ab+4=(-2)×(-6)+4=16,左边≠右边,∴(-2,-6)不是;数对(0,-4):左边:a-b=0-(-4)=4,右边:ab+4=0×(-4)+4=4,左边=右边,∴(0,-4)是;即数对(1,1),(2,6),(0,4)---中是“相关数”的是(0,4)-;(2)由题意得:(3)34x x --=-+解:334x x +=-+343x x +=-41x =14x = 答:14x =(3)不存在.理由:假设存在(,)m n 满足4m n mn -=+,(,)n m 满足4n m nm -=+,且两个等式右边相同m n n m ∴-=-若满足m n n m -=-,则m n n m -=-=0,4m n mn ∴=+的值不为0m n -和4mn +的结果不同,4m n mn ∴-≠+4n m nm -≠+综上所述,n m -和4nm +的结果不同 ,不存在有理数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,【点睛】本题考查有理数的计算和解方程,解题关键是理解和运用新定义公式.28.12【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭ 12=. 故答案为:12. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.29.小红速度为190 米/分,爷爷速度为114米/分.【解析】【分析】由题意得第一次与爷爷相遇,必定小红比爷爷多跑一圈,所以小红的路程=爷爷的路程+400-20,由该等式列成方程解出即可.【详解】解:设爷爷的速度为x 米/分,小红的速度为53x 米/分. 5·53x =5x +400-20 251538033x x -=103803x = x =11453x =190 米/分. 答: 小红速度为190 米/分,爷爷速度为114米/分.【点睛】本题考查一元一次方程的应用,关键在于读题列出方程.30.(1)280a ;(2)2.5;(3)丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米【解析】【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解a 的值;(3)根据题意分①2019年用气量不超过300立方米,②2019年用气量超过300立方米,但不超过600立方米分别列出方程即可求解.【详解】(1)甲用户家2018年用气总量为280立方米,则总费用为280a 元,故答案为:280a .(2)由题意得:()3001500.51200a a ++=.解得: 2.5a =.∴a 的值为2.5.(3)设丙用户家2019年用气x 立方米,2018年用气()1200x -立方米.∵2018年用气量大于2019年用气量,∴2018年用气量大于600立方米,2019年用气量小于600立方米.①2019年用气量不超过300立方米,由题意得:()7509004120060033625x x ++--+=.解得:425x =.不合题意,舍去.②2019年用气量超过300立方米,但不超过600立方米.由题意得:()75090041200600x ++--()3300 3.5300x +⨯+⨯-3625=.解得:550x =,符合题意.∴1200650x -=.答:丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米.【点睛】本题考查了一元一次方程的应用,解题的关键是根据收费标准,列式计算;找准等量关系,正确列出一元一次方程.31.(1)C 1=C 2,理由详见解析;(2)11π.【解析】【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解.【详解】解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa ,∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π.故答案为:11π.【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键.32.3a 2b-ab 2,132 【解析】【分析】先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】解:()()22225343a b ab ab a b ---+=2222155412a b ab ab a b -+-=223a b ab -将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯= ⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键.33.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】。
2011年七年级数学上册期末复习培优提高训练(五套_含答案)_人教新课标版
七年级数学期末复习培优提高训练(一)1.-31的相反数是 ( ) A .3 B .-3 C .31 D .-312.下列三视图所对应的直观图是 ( )A .B .C .D .3.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为亿米3,用科学记数法表示这个数为( ) A .8.99×105亿米3B .0.899×106亿米3C .8.99×104亿米3 D .89.9×103亿米34.已知单项式32b a m与-2114 n b a 的和是单项式,那么m = ,n = 。
5.如图,点A 在射线OX 上,OA 的长等于2cm 。
如果OA 绕点O 按逆时针方向旋转30°到/OA ,那么点/A 的位置可以用(2,30°)表示。
如果将/OA 再沿逆时针方向继续旋转45°,到//OA ,那么点//A 的位置可以用( , )表示。
XA /AO6.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为 。
7.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位。
(1)请你在下表的空格里填写一个适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a 的值,并计算第21排有多少个座位?8.在平整的地面上,有若干个完全相同的棱长为10cm 的小正方体 堆成一个几何体,如图所示。
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图。
主视图 左视图 俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色。
(3分)(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm 2?(4分)参考答案1.(C )2.(C )3.(A )4.4,3 5.(2,75°)6.10或50 7.(1)a 212+;a 312+;…;a n )1(12-+; (2)12+14a =2)412(a +,解之得:2=a当21=n 时,求得:a n )1(12-+=12+(21-1)×2=52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视
视
图
图
4.已知代数式x+2y 的值是 3,则代数式 2x+4y+3 值是
俯
视
图
(
)
A. 9
B. 6
C. 7
D. 不能确定
5.如果a - b = 1 ,那么-3(b - a )的值时( ) 2
A.- 3 B.
2 C.
3 D.
1
5
3
2
6
6.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖 4 块;
①
;
E
C
② ③。
8.(12 分)计算:① 24 6 2 1
3
;
P
O
7 5A 7
B
② ( )18 42 8
9 6 D18
F
学无止 境 9.(12 分)① 计算: (2x3 3x2 y 2xy2 ) (x3 2xy2 y3) (x3 3x2 y y3)
②解方程 2x 1 5x 1 1
பைடு நூலகம்
3
3
1
C.- (4 x -6 y +3)=-2 x +3 y +3
2
D.(a + 1 b )-(- 1 c + 2 )= a + 1 b + 1 c - 2
2
37
2 37
3.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体(
)
A.3 块
B.4 块
主
左
C.5 块
D.6 块
那么第( n )个图案中有白色地砖
块。
……
7.(本题满分 18 分)
如图,直线 AB 与 CD 相交于点 O, OP 是∠BOC 的平分线,OE⊥AB,OF⊥CD.
(1)如果∠AOD=40°
①那么根据
,可得∠BOC=
度。
② 那 么 ∠POF 的 度 数 是 度 。 (2)图中除直角外,还有相等的角吗?请写出三对:
参考答案
1.C ;2.C;3.B;4.A;5.C ;6.4n+2;
7.(本题满分 10 分) 如图,直线 AB 与 CD 相交于点 O, OP 是∠BOC 的平分线,OE⊥AB,OF⊥CD.
(1)①两直线相交,对顶角相等,40;②70;(2)有;①∠POC=∠POB;②∠EOC=∠FOB;③∠AOC=∠FOA。 8.-15;4;9.①-2y3 ②x=-3;10.x=-3;
3
6
10.(本题满分 12 分)已知关于 x 的方程2a 3x 12 ,在解这个方程时,粗心的小王误将 3x 看成了 3x , 从而解得 x 3 ,请你帮他求出正确的解。
11.(本题满分 16 分)
小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同b
1) 请用代数式表示装饰物的面积:
; 11.(1)、(2)略;(3)1/2;(4)略
学无止 境
2 请用代数式表示窗户能射进阳.光.部分面积
3 若 a=1,b= 2 ,请求出窗户能射进阳光的面积的值 3
窗 a户
(取π≈3)。
学无止 境
(4)小明想享受更多的阳光照耀,你能帮他重新设计窗户的装饰物吗?且用代数式表示装饰物的面积。 (要求装饰物由若干个圆或半圆或四分之一圆组成,且窗户中能射进的阳光部门面积比原来大)。 b 窗 a户
学无止 境
七年级数学期末复习培优提高训练(五)
1. 如 图 : 由 AB=CD 可 得 AC 与 BD 的 大 小 关 系 ( )
A.AC>BD B.AC<BD C.AC=BD D. 不 能 确 定
2.下面各题去括号错误的是( )
A. x -(6 y - 1 )= x -6 y + 1
2
2
B.2 m +(- n+ 1 a - b )=2 m - n+ 1 a - b