初中数学应用题复习试题_3
中考数学专题实际应用题(解析版)
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
2020年中考数学 实际应用题----有关增长率及购物问题 复习练习
实际应用题----有关增长率及购物问题一、增长率是初中数学应用题中常出现的考题之一,这种题型是很多学生的弱点,整理了跟增长率有关的数学应用题,希望能帮助大家提供应用题的能力。
此类题的基本量之间的关系:现产量=原产量×(1+增长率)n1.某商品原售价289元,经过连续两次降价后售价为256元,设两次降价的百分率为x,可列方程________。
解:根据题意可得289(1-x)2=2562.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月平均增长率为x,则可列方程为_______解:设平均每月的增长率为x。
根据题意可得:60(1+x)2=100.3.某品牌服装原价173元,连续两次降价后售价为127元,设平均降价率为x,则可列方程为_________解:173(1-X)2=1274.某汽车销售公司2018年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售型号汽车达45辆,求11月份和12月份销量的平均增长率。
解:设11月份和12月份销量的平均增长率为x。
根据题意,得20(1+x)2=45,解得x1=0.5=50%,x2=-2.5(舍去)。
答:11 月份和12月份销量的平均增长率为50%。
5.为进一步发展基础教育,自2016年以来,某县加大了教育经费的投入,2016年该县投入教育经费6000万元。
2018年投入教育经费8640万元。
假设该县这两年投入教育经费的处平均增长率相同。
(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还保持相同的处平均增长率,请你预算2019年该县投入教育经费多少万元。
解:(1)设该县投入教育经费的年平均增长率为x,根据题意得;6000(1+x)2=8640解得x=0.2=20%。
答:该县投入教育经费的年平均增长率为20%;(2)因为2018年该县投入教育经费为8540万元,且增长率为20%,所以2019年该县投入教育经费为:Y=8640×(1+20%)=10368(万元)答:预算2019年县投入教育经费10368万元。
初中数学总复习列方程解应用题
(9)列方程(组)解应用题〖考试内容〗一元一次方程的应用,二元一次方程组的应用,一元二次方程的应用.〖考试要求〗①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型.②能根据具体问题的实际意义,检验方程的解的合理性.〖考点复习〗[例1]一件商品按成本价提高40%后的标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A、x40%80% = 240B、x(1+40%)×80% = 240C、240×40%×80% = xD、40% x = 240×80%[例2]小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?[例3]某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?[例4]某公司2002,2004年的营业额分别为80万元、180万元,若2003,2004,2005这三年的年增长率都相同,则该公司2005年的营业额应为万元.[例5]农民张大伯为了致富奔小康,大力发展家庭养殖业。
他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈。
(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由。
[例6]某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.〖考题训练〗1.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A、106元B、105元C、118元D、108元2.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了。
初中数学应用题知识点总结及练习
如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。
单位的一致等。
内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。
初中数学应用题试题
初中数学应用题试题题目1:购物计算小明去商场购买了一件T恤,原价为100元,商场正在进行九折促销活动。
同时,商场还提供了满200元减30元的优惠活动。
请帮助小明计算最终需要支付的金额。
解答:首先,计算T恤的九折价格:100元 × 0.9 = 90元。
然后,判断是否满足满减优惠条件。
由于小明购买的商品总价为90元,未满足满减条件,所以没有享受该优惠。
最终,小明需要支付的金额为90元。
题目2:旅行费用计算小红和小明要一起去旅行,他们计划乘坐火车和公交车到达目的地。
火车票价为20元,公交车票价为5元。
小红决定乘坐火车,而小明则选择乘坐公交车。
请帮助他们计算两人总共需要支付的费用。
解答:小红乘坐火车需要支付的费用为20元。
小明乘坐公交车需要支付的费用为5元。
总共需要支付的费用为20元 + 5元 = 25元。
题目3:运动会奖牌计算某校举行运动会,共有三个班级参加比赛。
每个班级按照接力赛、跳远赛和铅球赛三个项目进行比拼。
根据每个班级在各项目中获得的名次,决定最终的奖牌归属。
请根据以下表格帮助计算各个班级获得的金牌、银牌和铜牌的数量。
班级接力赛跳远赛铅球赛班级1 一等奖二等奖三等奖班级2 二等奖一等奖二等奖班级3 三等奖三等奖一等奖解答:班级1获得了一枚金牌(接力赛)、一枚银牌(跳远赛)、一枚铜牌(铅球赛)。
班级2获得了一枚金牌(跳远赛)、二枚银牌(接力赛和铅球赛)。
班级3获得了一枚金牌(铅球赛)、二枚银牌(接力赛和跳远赛)。
题目4:赛车比赛圈数计算一辆赛车参加了一场比赛,比赛规定赛车必须完成4圈才能计算成绩。
该赛车的速度稳定在每小时200公里,每圈的长度为2.5公里。
请帮助计算该赛车完成比赛所需的时间。
解答:该赛车每小时可行驶200公里,而每圈的长度为2.5公里。
因此,完成一圈所需的时间为2.5公里 / 200公里/小时 = 0.0125小时,换算为分钟为0.0125 × 60 = 0.75分钟。
北师大版八年级数学下第八章二元一次方程组解应用题训练题
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
2025年教师资格考试初级中学学科知识与教学能力数学试题及解答参考
2025年教师资格考试初级中学数学学科知识与教学能力复习试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、下列哪个函数是偶函数?A.f(x)=2x3−3x2+1B.g(x)=frac1xC.ℎ(x)=sinx+cosxD.j(x)=√x2−4x+52、下列哪个数列是等差数列?A.1,3,6,10,15B.0,2,4,6,8C.1,2,3,5,8D.2,3,5,7,113、下列关于平面图形的叙述,错的是 ( )A. 平行四边形不一定对角互补B. 等腰三角形的两条边的长度相等C. 矩形的对角线相等且垂直互相平分D. 放射图形的面积等于原来的图形的面积4、一个几何图形的特征是“两条相边的长度都相等”,则这个图形可能是 ( )A. 平行四边形B. 等腰三角形C. 长方形D. 以上都是5、下列选项中的四个数字均来自教师资格考试题库中填空题试题的参考答案,其中不是整数的是:A. 1B. 3C. 0.7D. 99.996、在“同分母分数相加减”的教学中,教师让学生通过分物操作经历“同分母分数相加”的过程,这里教师采用的教学方法是:A. 练习法B. 探究法C. 实验法D. 讨论法7、下列数学定理不属于勾股定理的应用范畴的是()A.直角三角形的斜边平方等于两直角边的平方和。
B.已知三角形三边长度,求三角形的面积。
C.解决某些与几何图形相关的最优化问题。
D.三角形相似的判定定理。
8、在解决初中数学应用题时,下列哪种方法不是常用的策略?()A.建立数学模型。
B.直接套用公式。
C.逻辑推理分析。
D.猜测答案。
二、简答题(本大题有5小题,每小题7分,共35分)第一题题目:简述二次函数的性质,并举例说明。
答案及解析:第二题小明在学习函数时,将下列函数:y = 2x + 3 与 y = (x + 2)^2 用相同的方式进行图像变换,得出两个新的函数。
其中一个新的函数的图像与 y = 2x + 3 的图像平移,另一个新的函数的图像与 y = (x + 2)^2 的图像平移。
初中数学方案选择类应用题复习专题
初中数学应用题复习专题一、方程型例1、(长沙市)“5·12”汶川大地震后.灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线.工厂决定转产.计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线.一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线.一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产.是否可以如期完成任务?练习:中考关键分P15 第20题例2、某市剧院举办大型文艺演出.其门票价格为:一等席300元/人,二等席200元/人.三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
练习:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机.出厂价分别为A种每台1500元.B种每台2100元.C种每台2500元。
(1)若家电商场同时购进两种不同型号的电视机共50台.用去9万元.请你研究一下商场的进货方案。
(2)若商场销售一台A种电视机可获利150元.销售一台B种电视机可获利200元.销售一台C种电视机可获利250元.在同时购进两种不同型号的电视机方案中.为了使销售时获利最多.你选择哪种方案?二、不等式型例3、(青岛市)2008年8月.北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张.B种船票120元/张.某旅行社要为一个旅行团代购部分船票.在购票费不超过5000元的情况下.购买A、B两种船票共15张.要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张.请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?练习:中考关键分P17 第10题三、一次函数型例4、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台.现在运往甲、乙两地支援建设.其中甲地需要15台.乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机.运这批挖掘机的总费用为y元.运往甲地的费用运往乙地的费用从A地500元/台400元/台从B地300元/台600元/台(1)写出y与x之间的函数关系式;(2)公司应设计怎样的方案.能使运这批挖掘机的总费用最省?练习:(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机.其中甲型20台.乙型30台.现将这50台联合收割机派往A、B两地收割小麦.其中30•台派往A地.20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机.租赁公司这50台联合收割机一天获得的租金为y(元).请用x表示y.并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元.说明有多少种分派方案.并将各种方案写出.四、二次函数型例4、(2013•咸宁)为鼓励大学毕业生自主创业.某市政府出台了相关政策:由政府协调.本市企业按成本价提供产品给大学毕业生自主销售.成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元.出厂价为每件12元.每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元.那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元).当销售单价定为多少元时.每月可获得最大利润?(3)物价部门规定.这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元.那么政府为他承担的总差价最少为多少元?练习:(13年山东青岛、22)某商场要经营一种新上市的文具.进价为20元.试营销阶段发现:当销售单价是25元时.每天的销售量为250件.销售单价每上涨1元.每天的销售量就减少10件(1)写出商场销售这种文具.每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时.该文具每天的销售利润最大;(3)商场的营销部结合上述情况.提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件.且每件文具的利润至少为25元请比较哪种方案的最大利润更高.并说明理由。
中考数学练习试题 列方程(组)解应用题
义务教育基础课程初中教学资料课后强化训练8 列方程(组)解应用题一、选择题1.某商品的标价为200元,打八折销售后仍赚40元,则该商品的进价为(B ) A. 140元 B. 120元 C. 160元 D. 100元【解析】 设该商品的进价为x 元,则200×0.8-x =40,解得x =120.2.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2 kg ,求小亮妈妈两种水果各买了多少千克.设小亮妈妈买了甲种水果x (kg ),乙种水果y (kg ),则可列方程组为(A )A. ⎩⎪⎨⎪⎧4x +6y =28,x =y +2B. ⎩⎪⎨⎪⎧4y +6x =28,x =y +2 C. ⎩⎪⎨⎪⎧4x +6y =28,x =y -2 D. ⎩⎪⎨⎪⎧4y +6x =28,x =y -2 【解析】 由“甲种水果用钱+乙种水果用钱=28元”,得4x +6y =28;由“乙种水果比甲种水果少买了2 kg ”,得x =y +2.故选A.(第3题)3.如图,小李要在一幅长90 cm 、宽40 cm 的风景画四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整幅挂图面积的54%.若设金色纸边的宽度是x (cm ),根据题意所列的方程是(B )A. (90+x )(40+x )×54%=90×40B. (90+2x )(40+2x )×54%=90×40C. (90+x )(40+2x )×54%=90×40D. (90+2x )(40+x )×54%=90×40【解析】 挂图的长为(90+2x ) cm ,宽为(40+2x ) cm ,故可列方程(90+2x )(40+2x )×54%=90×40.4.为保证某高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程是(B )A.1x -10+1x -40=1x +14B.1x +10+1x +40=1x -14C.1x +10-1x +40=1x -14D.1x -10+1x +14=1x -40【解析】 由“甲、乙队单独完成的工作效率之和等于两队合作的工作效率”得1x +10+1x +40=1x -14. 5.某校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列方程正确的是(B )A.2401.5x -200x =4B.200x -2401.5x =4C.1.5×200x -240x =4D.1.5×200x +4=240x【解析】 由文学书的数量比科普书多4本, 得200x -2401.5x=4. 6.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数是(C ) A.25 B.36C.25或36D.-25或-36【解析】 设这个两位数的个位数字为x ,则十位数字为x -3.由题意,得10(x -3)+x =x 2,解得x 1=5,x 2=6.∴这个两位数是25或36. 二、填空题7.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x 支球队参赛,根据题意,可列出方程12x (x -1)=28,解这个方程,得x 1=8,x 2=-7W.合乎实际意义的解为x =8W. 8.今年“五一”节,A ,B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组⎩⎪⎨⎪⎧3x +2y =16,5x +3y =25W.(第9题)9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒露出水面的长度是它总长的13,另一根铁棒露出水面的长度是它总长的15.已知两根铁棒的长度之和为55cm ,则此时木桶中水的深度是20cm.【解析】 设两根铁棒的长分别为x (cm )和y (cm ),由题意,得⎩⎪⎨⎪⎧x +y =55,23x =45y ,解得⎩⎪⎨⎪⎧x =30,y =25.∴木桶中水的深度是23x =23×30=20(cm ).10.有甲、乙、丙三种商品,如果购买甲3件、乙2件、丙1件共需315元,购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙三种商品各一件共需 150 元.【解析】 设购买甲、乙、丙1件分别需x 元,y 元,z 元,则⎩⎪⎨⎪⎧3x +2y +z =315,①x +2y +3z =285,② ①+②,得4x +4y +4z =600,∴x +y +z =150. 三、解答题11.有若干只鸡和兔关在同一个笼子里,从上面数,有30个头;从下面数,有84条腿,问:笼中有几只鸡?几只兔?【解析】 设这个笼中有x 只鸡,y 只兔,根据题意,得⎩⎪⎨⎪⎧x +y =30,2x +4y =84,,解得⎩⎪⎨⎪⎧x =18,y =12.答:笼中有18只鸡,12只兔.12.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降50元时,平均每天就能多售出4台.若商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?【解析】 设每台冰箱降价x 元,由题意,得(2900-x -2500)×⎝⎛⎭⎫8+x50×4=5000, 整理,得x 2-300x +22500=0,(x -150)2=0,∴x 1=x 2=150.∴2900-150=2750(元).答:每台冰箱的定价应为2750元.13.某市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24 km.远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6 h ,求学生步行的平均速度.【解析】 设学生步行的平均速度是x (km/h ),则服务人员骑自行车的平均速度是2.5x (km/h ).由题意,得242.5x +3.6=24x,解得x =4. 经检验,x =4是原方程的解,且符合题意. 答:学生步行的平均速度是4 km/h.14.某电器超市销售每台进价分别为200元、170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:销售时段 销售数量 A 型号 B 型号 销售收入 第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号电风扇的销售单价.(2)若超市准备用不多于5400 元的金额再次采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30 台电风扇能否实现利润为1400 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解析】 (1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元,由题意,得⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100,解得⎩⎪⎨⎪⎧x =250,y =210. 答:A ,B 两种型号电风扇的销售单价分别为250元,210元.(2)设最多能采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.由题意,得200a +170(30-a )≤5400,解得a ≤10. 答:A 种型号的电风扇最多能采购10台. (3)不能.理由:由题意,得 (250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下,超市不能实现利润为1400元的目标.15.某新建火车站站前广场需要绿化的面积为46000 m 2,施工队在绿化了22000 m 2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少平方米?(2)该项绿化工程中有一块长为20 m ,宽为8 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56 m 2,两块绿地之间及周边留有宽度相等的人行通道(如图所示).问:人行通道的宽度是多少米?(第15题)【解析】 (1)设该项绿化工程原计划每天完成x (m 2), 根据题意,得46000-22000x -46000-220001.5x =4,解得x =2000.经检验,x =2000是原方程的解且符合题意. 答:该绿化工程原计划每天完成2000 m 2. (2)设人行通道的宽度是x (m ),根据题意,得 (20-3x )(8-2x )=56,解得x 1=2,x 2=263(不合题意,舍去).答:人行通道的宽度是2 m. 16.某市为打造古运河风光带,将一段长为180 m 的河道整治任务交由A ,B 两个工程队先后接力完成.A 工程队每天整治12 m ,B 工程队每天整治8 m ,共用时20天.(1)根据题意,甲、乙两位同学分别列出了尚不完整的方程组如下:甲:⎩⎪⎨⎪⎧x +y = ,12x +8y = ;乙:⎩⎨⎧x +y = ,x 12+y 8= .根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度W. (2)A ,B 两个工程队分别整治河道多少米(写出完整的解答过程)?【解析】 (1)甲:⎩⎪⎨⎪⎧x +y =20,12x +8y =180;乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20.(2)若解甲的方程组⎩⎪⎨⎪⎧x +y =20,12x +8y =180,得⎩⎪⎨⎪⎧x =5,y =15, ∴12x =60,8y =120.∴A ,B 两个工程队分别整治河道60 m 和120 m. 若解乙的方程组⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20,得⎩⎪⎨⎪⎧x =60,y =120,∴A ,B 两个工程队分别整治河道60 m 和120 m.。
数学中考实际应用题选择题
数学中考实际应用题选择题1. 题目:小明家的果园里有苹果树和梨树,共有100棵树。
已知苹果树有30棵,那么梨树有多少棵?选项:A. 70棵 B. 80棵 C. 90棵 D. 100棵2. 题目:小华有20元钱,他想买一些水果。
苹果每千克10元,梨每千克8元。
如果他买2千克苹果和1千克梨,他还需要带多少钱?选项:A. 5元 B. 10元 C. 15元 D. 20元3. 题目:小明的妈妈买了一箱牛奶,共有24盒。
如果每盒牛奶需要3元,那么这箱牛奶一共多少钱?选项:A. 72元 B. 66元 C. 60元 D. 54元4. 题目:一辆公交车从A地出发,以每分钟60米的速度向B地行驶。
如果B地距离A地有2400米,那么公交车到达B地需要多少时间?选项:A. 40分钟 B. 30分钟 C. 20分钟 D. 10分钟5. 题目:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积。
选项:A. 40平方厘米 B. 32平方厘米 C. 20平方厘米 D. 16平方厘米6. 题目:小华有一些糖果,如果他每天吃2颗,那么糖果可以吃6天。
如果他每天吃3颗,那么糖果可以吃几天?选项:A. 4天 B. 5天 C. 6天 D. 7天7. 题目:一个正方形的边长是10厘米,求这个正方形的对角线长度。
选项:A. 14厘米 B. 12厘米 C. 10厘米 D. 8厘米8. 题目:小王有一些铅笔,如果他每天用3支,那么铅笔可以用来12天。
如果他每天用5支,那么铅笔可以用来几天?选项:A. 8天 B. 6天 C. 4天 D. 3天9. 题目:一个圆的半径是5厘米,求这个圆的面积。
选项:A. 78.5平方厘米 B. 75平方厘米 C. 70平方厘米 D. 65平方厘米10. 题目:一辆自行车以每小时15公里的速度行驶,如果行驶了3小时,那么它一共行驶了多少公里?选项:A. 45公里 B. 30公里 C. 15公里 D. 20公里11. 题目:一个三角形的底是8厘米,高是5厘米。
初中数学中考方程应用题
6.一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现在甲、乙两车要从M 地沿同一公路运输救援物资往玉树灾区的N 地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y 〔km 〕,甲车行驶时间为t 〔h 〕,y 〔km 〕与t 〔h 〕之间函数关系的图象如下列图.结合图象解答以下问题〔假设甲、乙两车的速度始终保持不变〕:〔1〕乙车的速度是_________km/h ;〔2〕求甲车的速度和a 的值.7.某商店销售A ,B 两种商品,销售一件A 种商品可获得利润10元,销售一件B 种商品可获得利润15元. 〔1〕该商店销售A ,B 两种商品共100件,获利润1350元,那么A ,B 两种商品各销售多少件?〔5 分〕〔2〕根据市场需求,该商店准备购进A ,B 两种商品共20件,其中B 种商品的件数不多于A 种商品件数的3倍.为了获得最大利润,应购进A ,B 两种商品各多少件?可获得最大利润为多少元?〔5分〕8.〔9分〕国家推行“节能减排,低碳经济〞的政策后,某企业推出一种叫“CNG 〞的改烧汽油为天然气的装置,每辆车改装费为b 元.据市场调查知:每辆车改装前、后的燃料费〔含改装费〕0y 、1y 〔单位:元〕与正常运第23题试根据图像解决以下问题:〔1〕每辆车改装前每天的燃料费a=元,每辆车的改装费b=元.正常运营天后,就可以从节省燃料费中收回改装本钱.〔2〕某出租汽车公司一次性改装了100辆车,因而,正常运营多少天后共节省燃料费40万元?9.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批一样,但每件进价比第一批多了9元.〔1〕第一批该款式T恤衫每件进价是多少元?〔2〕老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,假设要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?〔利润=售价﹣进价〕10.某高科技公司根据市场需求,方案生产A、B两种型号的医疗器械,其局部信息如下:信息一:A、B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.信息三:A、B两种医疗器械的生产本钱和售价如下表:根据上述信息.解答以下问题:〔1〕〔6分〕该公司对此两种医疗器械有哪-几种生产方案?哪种生产方案能获得最大利润?a>〕.〔2〕〔4分〕根据市场调查,-每台A型医疗器械的售价将会提高a万元〔0每台A型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价-本钱)13.某蔬菜公司收购到一批蔬菜,方案用15天加工后上市销售.该公司的加工能力是:每天可以精加工3吨或者粗加工8吨,且每吨蔬菜精加工后的利润为2000元,粗加工后为1000元.公司售完这批加工后的蔬菜,共获得利润100000元.请你根据以上信息解答以下问题:〔1〕如果精加工x天,粗加工y天,依题意填写以下表格:精加工粗加工加工的天数〔天〕x y获得的利润〔元〕〔2〕求这批蔬菜共多少吨14、甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.A、C两城的距离为360km,B、C 两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.〔1〕根据题意填写下表:行驶的路程〔km〕速度〔km/h〕所需时间〔h〕甲车360 x+10乙车320 x〔2〕求甲、乙两车的速度.。
初中数学一元一次方程应用题类型及拔尖试题
初中数学一元一次方程应用题类型及拔尖试题工程类型应用题类型:工作量=工作效率×工作时间1.相遇类型:S快 + S慢 = S总2.追击类型:S快 - S慢 = S初3.顺风(水)类型:顺风(水)速度=静风(水)速度+风(水)速度4.逆风(水)类型:逆风(水)速度=静风(水)速度-风(水)速度5.环形跑道类型:同向:S快 + S慢 = C反向:S快 - S慢 = C6.计算利息类型:本息和=本金+利息=本金+本金×利率×期数7.利润类型:利润=利润率×成本8.一元一次方程类型9.形积变化类型10.劳力调配类型11.储蓄类型12.配套类型13.方案类型:弄清配套的比例,列方程组,求正整数解14.数字类型:数字=位上的数字乘以进率解应用题步骤:1.审清题意2.设未知数3.列方程4.解方程5.验证答案6.写出答语工程问题:1.工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1.即完成某项任务的各工作量的和=总工作量=1.例1:一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?解:设还需要x天完成,依题意,得(1/10+1/15)×4+x=1,解得x=5.例2:某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?解:设甲、乙两个龙头齐开x小时。
由已知得,甲每小时灌池子的2,乙每小时灌池子的3.列方程:2×0.5+(2+3)x=3,解得x=1(小时)。
例3:某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?解:设原计划生产x件,由已知得(26+x/24)×24=x+60,解得x=780.例4:某工程,甲单独完成需20天,乙单独完成需12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?解:1-6/20-12=x/12,解得x=2.4.已知甲和乙合作一项工程,甲独立完成需要25天,乙独立完成需要20天。
初中数学经济类应用题复习
讨 论:
CD过点(40,50)(80,250)
Y(元) 250 150 50 0 A C 40 80 X(千克)
80千克时,乙费用250元
乙
D 如何将文字语言转 化为数学语言?
甲
B
讨 论: ⑵甲、乙两航空公司各可以 ⑵甲、乙两航空公司各可以免
20 30 费托运行李_____ 、 _____千克。 免费托运行李多少千克?
甲
B
80
X(千克)
解:设甲公司票价为m元,则 乙公司票价为90%m元,可知: 甲公司的费用y 甲=150+m 乙公司的费用y 乙=250+ 90%m 若y 甲= y 乙, 则m=1000 , 此时选甲或乙都可以 ; 若m>1000 , 则y 甲> y 乙, 此时选乙划算; 若m<1000 , 则y 甲< y 乙, 此时选甲划算。
第一种是A30,B20,第二种是A31,B19,第三种是A32,B18 . 更多资源 ⑵ 设生产A种产品x件,y=-500x+6000,
x的取值范围是30,31,32. 当x=30时获总利润最大, 最大利润是4500元
16、辽南素以“苹果之乡”著称,某乡组织20辆汽车装运A、B、C 三种水果42吨到外地销售。按规定每辆车只装同一种苹果,且必须 装满。每种苹果不少于2车。
2、某厂生产一种机械零件,固定成本为2万元,每个零件成本为3 元,其售价为5元,应缴纳税为总销售额的10%。若要使纯利润超过 固定成本,则该零件至少要生产销售 13334 个。 3、从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的 20%,即储蓄利息的20%由各银行储蓄点代扣代收。某人在1999年 12月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息 税72元,则他存入的人民币为( B )元.
七年级数学期末复习三(应用题)
期末复习三(应用题)第8题:依题意列方程例1:某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求未参加竟赛的人数.设未参加的学生有x 人,以下方程正确的是( )A .(x+6)+2(x+6)=(x+3x)-6 B.(x -6)+2(x -6)=(x+3x)+6 C.(x+6)+3(x+6)=(x+2x)-6 D.(x+6)+3(x+6)=(x+3x)+6练习1:1.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为( )A .3x -20=4x +25B .3x +20=4x -25C .425320-=+x x D .425320+=-x x 2.武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔5米栽l 棵,则树苗缺21棵;如果每隔6米栽l 棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( ) A.5(x +21-1)=6(x -l ) B. 5(x +21)=6(x -l ) C. 5(x +21-1)=6x D. 5(x +21)=6x3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( ) A.12(2)x x +=-B.32(1)x x +=-C.1112x x +-=+ D.12(3)x x +=-4.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x 列的方程是【 】 A .12x=18(28-x ) B .12x=2×18(28-x ) C .2×18x=18(28-x ) D .2×12x=18(28-x )5.某校九年级学生毕业时,每个同学都将自己的相片给全班其他同学各送一张留做纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出的方程为( )A.(1)2070x x -=B. (1)2070x x +=C. 2(1)2070x x +=D. (1)20702x x +=6.某品牌服装折扣店蒋某件衣服按进价提高50%后标价,在打八折,售价为240元.设这件衣服进价为x 元.根据题意,列出的方程为( )A. (150%)80%240x ∙+⨯=B.50%80%240x ∙⨯=C. 24050%80%x ⨯⨯=D.(150%)24080%x ∙+=⨯第23题:应用题例2:整理一批图书,如果由一个人单独做要用30小时,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?练习2:1.有一些相同房间需要粉刷,一天3名师傅(每名师傅的工作效率相同)去粉刷8个房间,结果其中有40 cm 2的墙面未来得及粉刷;同样的时间内5名徒弟(每名徒弟的工作效率相同)粉刷了9个房间的墙面.每名师傅比每名徒弟一天多粉刷30 cm 2的墙面 (1) 求每个房间需要粉刷的墙面面积(2) 已知一名师傅一天的工钱比一名徒弟一天的工钱多40元,现有36间房需要粉刷,全部请徒弟粉刷比全部请师傅粉刷少付300元工钱,求一名徒弟一天的工钱是多少?2.某车间接到一批限期(可以提前)完成的零件加工任务,如果每天加工120个,则恰好按期完成,如果每天加工160个,则可提前6天完成. (1) 求这批零件的个数;(2) 车间按每天加工160个零件的速度加工了y 个零件后,提高了加工速度,每天加工180个零件,结果比原计划提前7天完成了生产任务,求y 的值.3.甲组4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额6倍少20件.如果甲组工人实际完成次月人均定工作量比乙组少2件,那么次月人均定额是多少件?4.用A 型和B 型机器生产同样的产品,已知5台A 型机器一天的产品装满8箱后还剩4个,7台B 型机器一天的产品装满11箱后还剩1个,每台A 型机器比B 型机器一天多生产1个产品,求每箱涨多少个产品.5.整理一批数据,由一人做需80h 完成。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (84)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价和售价如表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?【答案】(1)两种商品全部卖完后可获得1950元利润;(2)9折【解析】【分析】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x-30)件,根据题意列出方程求出其解就可以;(2)设第二次甲种商品的售价为每件y元,根据第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,建立方程求出其解即可.【详解】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x﹣30)件,根据题意列方程,得:30x+22(2x﹣30)=6000,解得:x=90,所以甲商品的件数为:2x﹣30=2×90﹣30=150(件),可获得的利润为:(29﹣22)×150+(40﹣30)×90=1950(元).答:两种商品全部卖完后可获得1950元利润;(2)设第二次乙种商品是按原价打y折销售,根据题意列方程,得:y﹣30)×90×3=1950+720,(29﹣22)×150+(40×10解得:y=9,答:第二次乙种商品是按原价打9折销售.【点睛】本题考查了列一元一次方程解实际问题的运用及一元一次方程的解法的运用.解答时根据题意建立方程是关键.解题时注意利润=售价-进价的运用.32.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,如表是调控后的价目表.价目表注:水费按月结算.(1)若该户居民8月份用水8吨,则该用户8月应交水费元;若该户居民9月份应交水费26元,则该用户9月份用水量为吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?【答案】(1)20;9.5;(2)该用户10月份用水量为10.25吨;(3)11月份交16元,12月份交36元或11月份交36元,12月份交16元.【解析】【分析】(1)因为用水量为8 吨,所以计算单价分为两段,列式计算即可;先计算用水量为6吨和10吨的总价,与26对比,发现9月份用水量x的取值范围,从而列出方程求解;(2)与(1)类似,由题意得出水费30元,用水量超过了10吨,列方程求未知数即可;(3)设该户居民11月、12月共应交的水费为W元,由题意表示出11月用水量;分三种情况进行讨论:当0≤a≤6时,当6<a≤8时,当8<a<9时,列式表示即可.【详解】解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∵6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;故答案是:20;9.5;(2)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(3)设11月份用水x吨,12月份用水(18﹣x)吨,∵当0≤x≤6时,18﹣x>10,由题意得:2x+2×6+4×4+8[(18﹣x)﹣10]=52.即:﹣6x+92=52,(舍去),解得x=203∵当6<x≤8时,18﹣x≥10,2×6+4(x﹣6)+2×6+4×4+8[(18﹣x)﹣10]=52,解得x=7,18﹣x=11.故11月份的水费是:6×2+1×4=16(元)12月份的水费是:6×2+4×4+1×8=36(元).同理可得:11月份交36元,12月份交16元.答:11月份交16元,12月份交36元或11月份交36元,12月份交16元.【点睛】本题考查了一元一次方程的应用,居民交水费问题,明确单价、用水量、总价的关系;因为单价分三种,较为麻烦,容易出错,因此计算时要耐心细致;首先要弄清每个单价部分的最大值,这样才能知道某月水费价格与水量之间的关系,尤其是第(3)问,不但要注意11月的用水量的范围,还要注意12月的用水量的范围.33.在“十一”期间,小明,小亮等同学随家长共15人一同到游乐园游玩,售票员告诉他们:大人门票每张50元,学生门票是6折优惠.结果小明他们共花了650元.那么小明他们一共去了几个家长,几个学生?【答案】小明他们一共去了10个家长,5个学生.【解析】【分析】设小明他们一共去了x个家长,(15﹣x)个学生,根据题意总价=家长总票价+学生总票价,列出方程解答即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,可得:50x+50×0.6×(15﹣x)=650,解得:x=10.答:小明他们一共去了10个家长,5个学生.【点睛】考查利用一元一次方程解决实际问题,关键在于找等量关系列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.34.商场举行优惠活动,活动规则如下:①一次性购物不超过60元不享受任何优惠;②一次性购物超过60元但不超过180元,一律打九折;③一次性购物超过180元,一律打八折.(1)小刚和朋友在活动中各自单独购买了原价为a,b元()<<<的商品,则他们实际付款金额之和为元.a b60,60180(2)小明在商场分别购买了两次商品,共花费193.2元,其中第二次商品原价是第一次商品原价的4倍,那么这两次商品原价总和是多少元?【答案】(1)a+0.9b;(2)210元或230元【解析】【分析】(1)根据小刚花的钱不优惠,他的朋友打九折计算即可;(2)分三种情况求解即可.【详解】解:(1)由题意得他们实际付款金额之和为(a+0.9b)元.故答案为:a+0.9b;(2)设第一次购物的原价是x元,则第二次购物4x元.①当60<4x≤180,即15<x≤45时,由题意得x+4x×0.9=193.2,解得x=42,∴4x=168,∴x+4x=210,即这两次商品原价总和是210元;②当180<4x<240,即45<x<60时,由题意得x+4x×0.8=193.2,解得x=46,∴4x=184,∴x+4x=230,即这两次商品原价总和是230元;③当x>60时,4x>240,不合题意.综上可知,这两次商品原价总和是210元或230元.【点睛】本题考查了列代数式,一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.35.已知:如图,点A在原点左侧,点B在原点右侧,且点A到原点的距离是点B到原点距离的2倍,AB=15.(1)点A表示的数为________,点B表示的数为________;(2)点P从点A出发,以每秒1个单位长度的速度向点B方向运动;同时,点Q从点B出发,先向点A方向运动,当与点P重合后,马上改变方向与点P同向而行且速度始终为每秒2个单位长度。
专题03 一元一次方程重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版
专题03 高分必刷题-一元一次方程重难点题型分类(解析版)专题简介:本份资料包含《一元一次方程》这一章除应用题之外的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:等式的性质、一元一次方程的定义、已知一元一次方程的解求参数、解一元一次方程、 同解或错解方程、含参方程解的个数问题、定义新运算类压轴题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一 等式的性质1.(青竹湖)运用等式的性质,下列等式变形错误的是( ) A .若x ﹣1=2,则x =3 B .若,则x ﹣1=2xC .若x ﹣3=y ﹣3,则x =yD .若3x =2x +4,则3x ﹣2x =4【解答】解:A 、若x ﹣1=2,根据等式的性质1,等式两边都加1,可得x =3,原变形正确,故这个选项不符合题意;B 、若x ﹣1=x ,根据等式的性质2,两边都乘以2,可得x ﹣2=2x ,原变形错误,故这个选项符合题意;C 、两边都加上3,可得:x =y ,原变形正确,故这个选项不符合题意;D 、两边都减去﹣2x ,可得:3x ﹣2x =4,原变形正确,故这个选项不符合题意; 故选:B .2.(师大)下列变形后的等式不一定成立的是( )A .若x y =,则x y +5=+5B .若x y =,则()x ya a a=≠0 C .若x y -3=-3,则x y = D .若mx my =,则x y = 【解答】解:A 、在等式x =y 的两边同时加上5,等式仍成立,即x +5=y +5,故本选项正确;B 、在等式x y =的两边同时除以以a (0≠a ),等式仍成立,即()x ya a a=≠0,故本选项正确;C 、在等式﹣3x =﹣3y 的两边同时除以﹣3,等式仍成立,即x =y ,故本选项正确;D 、若m =0时,x =y 不一定成立.故本选项错误; 故选:D .3.(广益)ma mb =,那么下列等式不一定成立的是( ) A.a b = B.66ma mb -=- C.118822ma mb -+=-+D.22ma mb +=+【解答】解:A、当m≠0时,由ma=mb两边除以m,得:a=b,不一定成立;B、由ma=mb,两边减去6,得:ma﹣6=mb﹣6,成立;C、由ma=mb,两边乘以﹣,再同时加上8,得:﹣ma+8=﹣mb+8,成立,D、由ma=mb,两边加上2,得:ma+2=mb+2,成立;故选:A.题型二一元一次方程的定义4.(青竹湖)已知下列方程,属于一元一次方程的有()①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.A.5个B.4个C.3个D.2个【解答】解:一元一次方程有0.5x=1,=8x﹣1,x=0,共3个,故选:C.5.(一中)已知关于x的方程(m﹣2)x|m﹣1|﹣3=0是一元一次方程,则m的值是()A.2B.0C.1D.0 或2【解答】解:由题意,得|m﹣1|=1,且m﹣2≠0,解得m=0,故选:B.6.(广益)关于x的方程(m﹣2)x|m|﹣1﹣2=0是一元一次方程,则m=.【解答】解:由题意,知|m|﹣1=1,且m﹣2≠0.解得m=﹣2.故答案是:﹣2.题型三已知一元一次方程的解去求参数7.(长郡)已知2-=的解,则a=________.x=是方程102x ax【解答】解:∵x=2是关于x的方程10﹣2x=ax的解,∴10﹣2×2=2a,解得a=3.故答案是:3.8.(西雅)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.9.(长梅)如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?【解答】解:当y =3时,2+m ﹣3=6,解得:m =7, 将m =7代入方程2mx =(m +1)(3x ﹣5)得:14x =8(3x ﹣5),即14x =24x ﹣40,解得:x =4.题型四 解一元一次方程10.(西雅)下列变形中:①将方程34x =-的系数化为1,得34x =-;②将方程52x =-移项得52x =-; ③将方程()()221331x x ---=去括号得42391x x ---=; ④将方程213132x x --=+去分母得()()221133x x -=--. 其中正确的变形有( ) A.0个B.1个C.2个D.3个【解答】解:①将方程3x =﹣4的系数化为1,得x =﹣,错误; ②将方程5=2﹣x 移项得x =2﹣5,错误;③将方程2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x +9=1,错误; ④将方程=1+去分母得2(2x ﹣1)=6+3(x ﹣3),错误;故选:A .11.(青竹湖)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1 C .方程,系数化为1得,t =1D .方程,去分母得,5( x ﹣1)﹣2x =1【解答】解:A 、方程3x ﹣2=2x+1,移项得:3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号得:3﹣x =2﹣5x+5,不符合题意; C 、方程t =,系数化为1得:t =,不符合题意; D 、方程﹣=1,去分母得:5(x ﹣1)﹣2x =1,符合题意,故选:D . 12.(长郡)将方程212134x x -+=-去分母,得( ) A.()()421132x x -=-+B.()()421122x x -=-+C.()()21632x x -=-+D.()()4211232x x -=-+【解答】解:去分母得:4(2x ﹣1)=12﹣3(x +2),故选:D . 13.(一中)方程1134x x +-=去分母后,正确的是( ) A.4133x x -=- B.4133x x -=+ C.41233x x -=-D.41233x x -=+【解答】解:方程两边乘以12得:4x ﹣12=3(x +1),即4x ﹣12=3x +3, 故选:D .14.(长郡)解方程: (1)()331x x -=+(2)223246x x +--= 【解答】解:(1)去括号,得3x ﹣9=x +1,移项,得3x ﹣x =9+1,合并,得2x =10, 系数化为1,得x =5;(2)去分母,得3(x +2)﹣2(2x ﹣3)=24,去括号,得3x +6﹣4x +6=24, 移项,得3x ﹣4x =24﹣6﹣6,合并,得﹣x =12,系数化为1,得x =﹣12. 15.(青竹湖)解方程:(1) 1071453x x x +=-- (2)25123x x +-=-【解答】解:(1)10x +7=14x ﹣5﹣3x ,10x +3x ﹣14x =﹣5﹣7,﹣x =﹣12,x =12;(2)=1﹣,3(x +2)=6﹣2(x ﹣5),3x +6=6﹣2x +10,3x +2x =6+10﹣6,5x =10,x =2.16.(一中)解下列方程: (1)()()2441x x x --=-(2)2113322x x x --+=-【解答】解:(1)去括号得:x ﹣2x +8=4﹣4x ,移项合并得:3x =﹣4,解得:x =﹣; (2)去分母得:6x +2x ﹣1=6﹣x +1,移项合并得:9x =8,解得:x =.17.(广益)解下列方程:(1)2(21)(34)2x x +--= (2)3157146y y ---=【解答】解:(1)去括号得:4x +2﹣3x +4=2,移项合并得:x =﹣4;(2)去分母得:3(3y ﹣1)﹣12=2(5y ﹣7),去括号得:9y ﹣3﹣12=10y ﹣14, 移项合并得:﹣y =1,解得:y =﹣1.题型五 同解、错解方程18.(青竹湖)已知关于x 的方程325+=x m .若该方程的解与方程2158-=+x x 的解相同,则m 的值是( ) A.7B.-2C.1D.3【解答】解:2x ﹣1=5x +8,移项,得2x ﹣5x =8+1,合并同类项,得﹣3x =9,解得 x =﹣3. 把x =﹣3代入3x +2m =5,得3×(﹣3)+2m =5.移项,得2m =5+9.合并同类项,得2m =14,系数化为1,得m =7. 故选:A .19.(长郡)已知方程7236x x +=-与1x k -=的解相同,则231k -的值为( ) A .18B .20C .26D .26-【解答】解:由7x +2=3x ﹣6,得x =﹣2,由7x +2=3x ﹣6与x ﹣1=k 的解相同,得﹣2﹣1=k ,解得k =﹣3.则3k 2﹣1=3×(﹣3)2﹣1=27﹣1=26, 故选:C .20.(雅礼)一元一次方程解答题已知关于x 的方程23x m mx -=-与()1221x x -=-的解互为倒数,求m 的值.【解答】解:方程x ﹣1=2(2x ﹣1),去括号得:x ﹣1=4x ﹣2,解得:x =, 将x =3代入方程得,=3﹣,去分母得:9﹣3m =18﹣2m ,解得:m =﹣9.21.(青竹湖)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程; (1)若关于x 的两个方程24x =与1mx m =+是同解方程,求m 的值;(2)若关于x 的两个方程21x a =+与32x a -=-是同解方程,求a 的值;(3)若关于x 的两个方程()34513x m mn ++=与()19213x mn m -=-+是同解方程,求此时符合要求的正整数m ,n 的值.【解答】解:(1)解方程2x =4得x =2,把x =2代入mx =m +1得2m =m +1,解得m =1; (2)关于x 的两个方程2x =a +1与3x ﹣a =﹣2得x =,x =,∵关于x 的两个方程2x =a +1与3x ﹣a =﹣2是同解方程,∴=,解得a =﹣7;(3)解关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)得x =,x =,∵关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)是同解方程, ∴=,∴mn ﹣3m ﹣3=0,mn =3(m +1),∵m ,n 是正整数,∴m =3,n =4或m =1,n =6.22.(青竹湖)我们把解相同的两个方程称为同解方程.例如:方程:26x =与方程412x =的解都为3x =,所以它们为同解方程.(1)若方程2311x -=与关于x 的方程453x k +=是同解方程,求k 的值;(2)若关于x 的方程3[2()]43k x x x --=和3151128x k x+--=是同解方程,求k 的值;(3)若关于x 的方程223x a b -=和243x a b ++=是同解方程,求22214686a ab a b +++的值.【解答】解:(1)∵方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,∴2x ﹣3=11,解得x =7,把x =7代入方程4x +5=3k ,解得k =11,所以k 的值为11; (2)∵方程3[x ﹣2(x ﹣)]=4x 和﹣=1是同解方程,∴3[x ﹣2(x ﹣)]=4x 解得,x =,﹣=1解得,x =(27﹣2k ),∴=(27﹣2k ),解得k =;所以k 的值为;(3)∵方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,∴2x ﹣3a =b 2即4x ﹣6a =2b 2,∴4x =6a +2b 2,∵4x +a +b 2=3,∴6a +2b 2+a +b 2=3,即7a +3b 2=3,∴14a 2+6ab 2+8a +6b 2=2a (7a +3b 2)+7a +3b 2+a +3b 2=6a +3+a +3b 2=7a +3b 2+3=3+3=6. 所以14a 2+6ab 2+8a +6b 2的值为6.题型六 含参方程解的个数问题23.问当a 、b 满足什么条件时,方程bx a x -=-+152:(1)有唯一解;(2)有无数解;(3)无解。
中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题
专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。
人教版七年级数学上册 3.4 一元一次方程应用题分类集训(word版有答案)
一元一次方程应用题分类集训和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是;(2)解决这个问题,得x= .答:这个县原来贫困农户有户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好?6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?7.三个连续偶数和为24,求这三个数.8.一个数的4倍与这个数的13的差为1112,求这个数.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是( ) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m2,种植A,B,C三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A种农作物的种植面积是2x m2,根据题意可列出方程为 .12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.15.如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元·kg-1) 3.0 3.5这天该经营户批发了茄子和豆角各多少千克?路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是( )A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?6.列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?7.汽车从甲地到乙地,如果以35 km/h的速度行驶,就要迟到2小时;如果以50 km/h的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x千米,则所列方程为 .8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度.10.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?(直接写出结果)11.列方程解应用题:成雅高速公路全长147 km,上午八时一辆货车由雅安到成都,车速是每小时60 km,半小时后,一辆小轿车从雅安出发去追赶货车,车速是80 km/h,问:(1)小车几小时能追上货车?(2)小车追到货车时行驶了多少千米?(3)能在到达成都之前追上货车吗?(4)小轿车追上货车时距离成都还有多少千米?12.列方程解应用题:如图,现有两条乡村公路AB,BC,AB长为1 200米,BC长为1 600米,一个人骑摩托车从A处以200 m/min的速度匀速沿公路AB,BC向C处行驶;另一人骑自行车从B处以100 m/min的速度从B向C行驶,并且两人同时出发.(1)求经过多少分钟摩托车追上自行车?(2)求两人均在行驶途中时,经过多少分钟两人在行进路线上相距150米?工程问题1.甲、乙两个人给花园浇水,甲单独做需要4小时完成任务,乙单独做需要6小时完成任务,现在由甲、乙合做,完成任务需要几个小时?2.一项工程,甲队单独做需要5天完成,乙队单独做需要8天完成,甲队和乙队先合做一段时间,后来又有新任务,剩下的工作由乙队来完成,结果这项工程用了4天就全部竣工了,求甲队干了几天?3.一项工作,小李单独做需要6小时完成,小王单独做需要9小时完成,现小李先做几小时后,再由小李和小王合做125小时完成,求小李单独做的小时数.4.整理一批图书,由一个人做要40 h 完成,现计划由一部分人先做4 h ,然后增加2人与他们一起再做8 h ,就能完成这项工作.假设这些人的工作效率相同,具体应先安排的人数为 .5.修筑一条公路,由3个工程队分筑,第一工程队筑全路的13;第二工程队筑剩下的13;第三工程队筑了20 km 把这条公路筑完.问:这条公路共长多少千米?6.一项工程,甲独做需要10天,乙独做需要12天,丙独做需要15天.现甲、乙、丙3人合做2天后,乙因有事提前离去,余下的由甲和丙合作完成.问还需几天能完成这项工程?7.整理一批图书,若由一个人独做需要80个小时完成,假设每人的工作效率相同. (1)若限定32小时完成,一个人先做8小时,需再增加多少人帮忙才能在规定的时间内完成? (2)计划由一部分人先做4小时,然后增加3人与他们一起做4小时,正好完成这项工作的34,应该安排多少人先工作?储蓄、利润及增长率问题 增长率问题1.某农场今年粮食总产量为500吨,比去年增产25%,求去年粮食总产量,设去年粮食总产量为x吨,则可列出方程( )A.25%x=500B.(1+25%)x=500C.x=500×25%D.(1-25%)x=5002.一件羽绒服降价10%后售出价是270元,设原价x元,得方程( )A.x(1-10%)=270-xB.x(1+10%)=270C.x(1+10%)=x-270D.x(1-10%)=2703.某所中学现有学生4 200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问:这所学校现在的初中在校生和高中在校生人数分别是多少?4.国家规定:银行一年定期储蓄的年利率为 3.25%.小明有一笔一年定期存款,如果到期后全取出,可取回1 239元.若设小明的这笔一年定期存款是x元,则下列方程中正确的是( ) A.x+3.25%=1 239 B.3.25%x=1 239C.1+3.25%x=1 239D.x+3.25%x=1 2395.王海的爸爸想用一笔钱买年利率为5.5%的5年期国库券,如果他想5年后本息和为2万元,现在应买这种国库券多少元?如果设应买这种国库券x元,那么可以列出方程( )A.x×(1+5.5%×5)=20 000B.5x×(1+5.5%)=20 000C.x×(1+5.5%)5=20 000D.x×5.5%×5=20 0006.王先生手中有30 000元钱,想买年利率为5.18%的三年期国库券,到银行时,银行所剩国库券已不足30 000元,王先生全部买下这部分国库券后,余下的钱改存三年定期银行存款,年利率为5%,三年后,王先生得到的本息和为34 608元.求王先生买了多少元国库券?在银行存款是多少元?7.某商店进行年终促销活动,将一件标价为690元的羽绒服7折售出,仍获利15%,则这件羽绒服的进价为( )A.380元B.420元C.460元D.480元8.苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?9.某商品的售价为每件900元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时可获利10%.求此商品的进价.10.高速发展的芜湖奇瑞汽车公司,去年汽车销量达到18万辆,该公司今年汽车总销售目标为25.2万辆,则奇瑞公司今年的汽车销量将比去年增加的百分率为( )A.40%B.32%C.9%D.15%11.已知银行一年期定期储蓄的年利率为3.25%,所得利息要缴纳20%的利息税,例如:某人将100元按一年期的定期储蓄存入银行,到期储户纳税后所得利息的计算公式为:税后利息=100×3.25%-100×3.25%×20%=100×3.25%×(1-20%).已知某储户有一笔一年期的定期储蓄,到期纳税后,得到利息650元,问:该储户存入了多少本金?12.一个计算器,若卖100元,可赚原价的25%;若卖120元,则可以赚原价的百分之几?13.时代中学现有校舍面积20 000平方米,为改善办学条件,计划拆除部分旧校舍,新建教学楼.如果新建教学楼的面积是拆除旧校舍面积的3倍,那么计划完成后校舍总面积增加20%,拆除旧校舍多少平方米?14.某商品的进价是100元,提高50%后标价售出,在销售旺季过后,经营者想得到5%的销售利润,请你帮他想一想,该商品需打几折销售?15.如表是某电脑进货单,其中进价一栏被墨迹污染,请求出这台电脑的进价.商场进货单进价(进货价格)标价(预售价格) 5 850元折扣8折利润率 20%16.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?17.某集团公司有甲、乙两个商场,一月份甲、乙两商场销售总额为2 000万元,二月份甲商场因内部装修,影响销售,致使销售额比一月份下降10%;而乙商场大搞促销活动,因而销售额比一月份增加了20%,这样整个集团公司(甲、乙两商场)的销售总额比一月份还要增加3.5%.问甲、乙两商场二月份的销售额分别是多少万元?18.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完,该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( )A.4x +8=4.5xB.4x -8=4.5xC.4x =45x +8D.4(x +8)=4.5x19.设有x 个人共种m 棵树苗,若每人种8棵,则剩下2棵树苗未种;若每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A.x 8-2=x 10+6B.x 8+2=x10-6 C.m -28=m +610 D.m +28=m -61020.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,请问该小组共有多少人?计划做多少个“中国结”? 根据题意,小明、小红分别列出了如下尚不完整的方程: 小明:5x□( )=4x□( ); 小红:y□( )5=y□( )4.(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x 、y 表示的意义:小明所列方程中x 表示 小红所列方程中y 表示 .(2)请选择小明、小红中任意一种方法,完整的解答该题目.等积变形问题1.根据图中给出的信息,可得正确的方程是( )A.π×(82)2×x =π×(62)2×(x +5)B.π×82×x =π×62×5C.π×(82)2×x =π×(62)2×(x -5)D.π×82×x =π×62×(x -5)2.一块棱长2分米的立方体钢块,可以锻造成一块长8分米、宽25分米、厚 分米的钢板.3.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2,100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了8 cm ,求甲中水的高度.4.全班同学去春游,准备租船游玩,如果比计划减少一条船,那么每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有 个同学.5.已知5台A 型机器一天生产的产品装满8箱后还剩4个,7台B 型机器一天生产的产品装满11箱后还剩1个,每台A 型机器比B 型机器一天多生产1个产品.求每箱装多少个产品.6.桌面上有甲、乙两个圆柱形的杯子,杯深均为20 cm,各装有10 cm高的水且下表记录了甲、乙两个杯子的底面积.今小明将甲杯内一些水倒入乙杯,过程中水没溢出,使得甲、乙两杯内水的高度比变为3∶4.若不计杯子厚度,则甲杯内水的高度变为多少厘米?几何图形及动点问题几何图形问题1.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,设原正方形花圃的边长为x m,由此可得方程为( )A.x+2=28B.4(x+2)=28C.2(x+2)=28D.4x+2=282.一块长方形黎锦的周长为80 cm,已知这块黎锦的长比宽多5 cm,求它的长和宽.设这块黎锦的宽为x cm,则所列方程正确的是( )A.x+(x+5)=40B.x+(x-5)=40C.x+(x+5)=80D.x+(x-5)=803.一个三角形的三边长的比为3∶4∶5,最短的边比最长的边短6 cm,则这个三角形的周长为 cm.4.一个角的余角的3倍比它的补角小10°,求这个角的度数.5.如图,用总长为6米的铝合金条制作“日”字形窗框,已知窗框的高比宽多0.5米,求窗框的高和宽.动点问题6.已知:如图所示,在△ABC中,AB=5 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,BP=BQ?7.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则所列方程为8.图1是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm3.9.如图,悦悦将一张正方形纸片剪去一个宽为3 cm的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1 cm的长条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍.求:(1)原正方形纸片的边长;(2)第二次剪下的长方形纸条的面积.10.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B,点C表示的数;(2)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求D点表示的数是多少?11.将长为40 cm,宽为15 cm的长方形白纸按如图所示的方法粘合起来,粘合部分宽为5 cm.你认为白纸粘合起来总长度可能为2 019 cm吗?为什么?12.如图1,在长方形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,BP=7?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A 移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半?图1 图2一元一次方程应用题分类集训答案和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是x=25%x+600;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是25%x=x-600;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是600=x-25%x;(2)解决这个问题,得x=800.答:这个县原来贫困农户有800户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?解:设高中学生捐的书为x册,则初中学生捐的书为30%x册,根据题意,得x+30%x=5 200.解得x=4 000.答:高中学生捐的书为4 000册.3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.解:设此产品的标价为x元,依题意,得80%x-25=10.解得x=43.75.答:此产品的标价为43.75元.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?解:设乙班种树x株,则甲班种树(2x+1)株,依题意,有x+(2x+1)=31.解得x=10.则2x+1=20+1=21.答:甲班种树21株,乙班种树10株.5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好? 解:设需要x 天才能挖好,根据题意,得 130x +90x =1 320. 解得x =6.答:需要6天才能挖好.6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?解:设这本名著共有x 页,根据题意,得 36+14(x -36)=38x ,解得x =216.答:这本名著共有216页.7.三个连续偶数和为24,求这三个数.解:设这三个连续偶数分别为n -2,n ,n +2.依题意,得 n -2+n +n +2=24.解得n =8.从而有n -2=6,n +2=10. 答:这三个数分别为6,8,10.8.一个数的4倍与这个数的13的差为1112,求这个数.解:设这个数为x ,依题意,得 4x -13x =1112.解得x =14.答:这个数为14.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?解:设乙数为x ,则甲数为2x ,丙数为12x ,依题意,得x +2x +12x =14.解得x =4.从而有2x =8,12x =2.答:甲、乙、丙三个数分别为8,4,2.10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是(D) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m 2,种植A ,B ,C 三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A 种农作物的种植面积是2x m 2,根据题意可列出方程为2x +3x +4x =1_080.12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 解:设应安排x 名工人生产螺钉,则安排(22-x)名工人生产螺母.根据题意,得 2 000(22-x)=2×1 200x. 解得x =10. 则22-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?解:设有x名客人,依题意,得1 2x+13x+14x=65.解得x=60.答:有60名客人.14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.解:(1)根据题意,得第二组有(2m-10)人,第三组有12(2m-10)=(m-5)人,则三个小组一共有m+(2m-10)+(m-5)=(4m-15)人.(2)因为七年级(1)班共有45名学生,所以4m-15=45,解得m=15.15.(邯郸魏县期中)如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?解:(1)记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是x+2,x+10,x+12.根据题意,得x+(x+2)+(x+10)+(x+12)=156.解得x=33.从而有x+2=35,x+10=43,x+12=45.答:这四个数分别是33,35,43,45.(2)不能.理由如下:假设能框住这样的4个数,它们的和等于220,则x+(x+2)+(x+10)+(x+12)=220,解得x=49.则x+2=51,x+10=59,x+12=61.因为49在最右边,51在最左边,所以不能.16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:这天该经营户批发了茄子和豆角各多少千克?解:设这天该经营户批发茄子x kg,则批发豆角(50-x)kg.由题意,得3.0x+3.5(50-x)=160.解得x=30.从而有50-30=20(kg).答:批发茄子30 kg,批发豆角20 kg.路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得(C)A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?解:设经过x小时两人相遇,依题意,得15x+20x=70.解得x=2.答:经过2小时两人相遇.3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?解:设乙车出发x小时后两车相遇.依题意,得60+(60+40)x=300.解得x=2.4.答:乙车出发2.4小时后两车相遇.追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是(B)A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?解:设经过x小时快车追上慢车.根据题意,得115x-85x=90,解得x=3.答:经过3小时快车追上慢车. 6.(衡水枣强县期中)列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?解:设快马x 天可以追上慢马,由题意,得 240x -150x =150×12. 解得x =20.答:快马20天可以追上慢马.7.汽车从甲地到乙地,如果以35 km/h 的速度行驶,就要迟到2小时;如果以50 km/h 的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x 千米,则所列方程为x 35-2=x50+1. 8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?解:设从北京到上海的G5次列车行驶x 小时与G102次列车相遇,根据题意,得 200(x +12)+280x =1 180.解得x =2.25. 2.25时=2时15分, 7时+2时15分=9时15分. 答:两车于9点15分相遇.9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km ,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度. 解:设甲车每小时走x km ,则乙车每小时走(x +12)km.由题意,得 4(x +12)=1.5×4x. 解得x =24.则x +12=24+12=36.。
元二次方程应用题复习含答案版
一元二次方程应用题1.参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?2.参加一次足球联赛的每两个队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛?3.要组织一次篮球联赛,赛制为单循环形式(每两个队之间赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?5.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?6、用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗?7、某超市一月分销售额是20万元,以后每月的利润都比上个月的利润增长10%,则二月分销售额是多少? 3月的销售额是多少?8、某企业2007年利润为50万元,如果以后每年的利润都比上年的利润增长x%。
那么2009年的年利润将达到多少万元?9. 某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到%)?10、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?11、某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果每件商品的售价每上涨10元,每个月少卖1件,售价为多少时利润为7500元?12、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元13、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?14、某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨元,其销售量就可以减少10元,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学-应用题复习试题
一、数字问题:
*1、两位数54的值是十位数字5乘以10加上4,即5×10+4。
则65表示_______________;
三位数251表示的意思是________________。
*2、一个两位数的十位数字比个位数字大3,个位数字为x ,则这个两位数的值是___10(x+3)+x________ *3、一个两位数的十位数字是a ,十位数字与个位数字的和是12,则这个两位数的值是_______10a+(12-a)_______________。
**4、一个两位数个位数字是a 、十位数字是b ,则将十位数字与个位数字交换位置后得到的新两位数的值是_______________10a+b________。
**5、一个两位数,个位数字是x ,十位数字比个位数字大3,将这个两位数的十位数字和个位数字交换位置,得到的两位数的值是____10x+(x+3)__________,如果新的两位数比原来的两位数大27,则可以列出等式:_______[10(x+3)+x]–[10x+(x+3)]=27_____________。
**6、已知一个两位数的十位数字是个位数字的2倍多1,将这个两位数的个位数字和十位数字交换位置后,得到新的两位数是原两位数减去1后的一半,求这个两位数。
设个位数字为x ,那么十位数字为2x+1, 10x+(2x+1)=2
1{[10(2x+1)+x]-1} **7、有一个两位数,个位上的数字是十位上数字的4倍,如果把个位上数字与十位上数字对调,所得的两位数比原数大54,求原来的两位数。
**若用ab 表示b a +⨯10,则abcd 表示____________________________。
***有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
二、总和问题:
*1、拖拉机耕地x 亩,第一天耕了这片地的41,那么剩下了___x 43___亩,第二天耕了剩下的2
1多12亩,则第二天耕了______122
143+⨯x _____________亩,剩下了_________________亩。
*2、李雷看书,第一天看了全书的一半,第二天看了剩下的一半多25页,剩下36页没有看,若设全书共有x 页,则第二天看的页数用x 表示为____________________,由题意可以列出方程得_____________________________。
**3、某工厂加工一批零件,第一天完成了零件的31又25件,第二天完成的零件是剩下的3
2少12件,第三天完成了剩下的64件,求零件总数。
三、分配问题:
*1、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
设房间个数为x ,学生人数为y ,则
*2、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
设小明看了x 天,书有y 页,则
*3、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
四、调配问题:
*1、甲、乙仓库有粮食41吨,现在甲仓库运进粮食11吨,乙仓库运进粮食6吨,这样甲仓库存的粮食是乙仓库的2倍还多1吨,求原来两仓库的粮食储量。
设甲仓库有粮食x 吨,乙仓库有粮食y 吨,则
*2、学校数学兴趣小组与自然兴趣小组共有98名成员,抽调数学兴趣小组的12名学生到自然兴趣小组后,自然兴趣小组的人数是数学兴趣小组的3
2,求两小组原有成员的人数。
设数学兴趣小组人数为x ,自然兴趣小组人数有y 人,则
五、质量分数问题:
*1、两种酒精,一种浓度为60%,乙种浓度为90%,现在要配制70%的酒精300克,每种酒精各需多少?
*2、有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?
**3有若干4%的盐水,蒸发了一些水分后变成了10%的盐水,再加入300克4%的盐水,混合或变成
6.4%的盐水,问最初加入的盐水质量。
(只需列出方程)
**4、有12升纯酒精,倒出一部分近竟后注满水,再倒出与前次相同质量的混合液,再注满水,此时容器内的水是纯酒精的3倍,求第一次倒出的水的质量。
(只需列出方程)
六、配套问题:
*1、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
设:裁上衣的花呢用了x 米,裁裤子用的花呢用了y 米,则
**2、包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
**3、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
七、年龄问题:
*小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。
八、时钟问题:
**1、在5点和6点间,时钟分针和时针重合?
**2、求3点45分时,分针和时针所成的角度?
九、百分比问题:
*1、某储户将12000元人民币存入银行一年,取出时共得到人民币12240元,求该储户所存储种的利率。
*2、某商品降价12%后的售价为176元,求该商品的原价。
*3、受季节影响,一个月内,某商品涨价10%后有下跌了10%,现在售价297元,求该商品原价。
十、比例问题:
*1、一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
*2、图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
十一、几何问题:
*1、将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
*2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?。