2014年人教版七年级数学下册6.2《立方根》教案
人教版七年级数学下册6.2《立方根》说课稿
人教版七年级数学下册6.2《立方根》说课稿一. 教材分析《立方根》是人教版七年级数学下册第六章第二节的内容。
本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,以及能够运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、思考、操作、交流等活动,体验数学的探索过程,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但是,学生对立方根的概念可能还比较陌生,需要通过实例和操作来帮助理解。
此外,学生可能对求立方根的方法不够熟悉,需要通过练习和指导来提高。
三. 说教学目标1.知识与技能目标:学生能够理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、思考、操作、交流等活动,学生能够体验数学的探索过程,培养数学思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和信心,培养良好的学习习惯和合作意识。
四. 说教学重难点1.教学重点:学生能够理解立方根的概念,掌握求立方根的方法。
2.教学难点:学生能够运用立方根解决一些实际问题,理解并应用立方根的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,激发学生的学习兴趣,引导学生主动参与数学学习。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果和学生的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引入立方根的概念,激发学生的兴趣。
2.探究:学生通过观察、操作、思考等活动,理解立方根的概念,掌握求立方根的方法。
3.练习:学生进行一些练习题,巩固对立方根的理解和运用。
4.应用:学生通过解决一些实际问题,运用立方根的知识,提高解决问题的能力。
5.总结:教师引导学生总结立方根的概念和求法,加深对知识的理解。
七. 说板书设计板书设计要清晰、简洁,能够突出立方根的概念和求法。
人教版数学七年级下册第19课时《6.2立方根(1)》教案
人教版数学七年级下册第19课时《6.2立方根(1)》教案一. 教材分析《6.2立方根(1)》是人教版数学七年级下册的教学内容,本节课主要让学生掌握立方根的概念、性质和运算法则。
通过学习,学生能理解和掌握立方根的定义,会运用立方根解决一些实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力。
二. 学情分析学生在七年级上学期已经学习了实数的概念,对有理数、无理数有一定的了解。
在此基础上,学生需要进一步理解立方根的概念,并掌握立方根的性质和运算法则。
学生的学习兴趣较高,但部分学生可能对抽象的数学概念理解起来有一定困难,需要教师耐心引导和讲解。
三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。
2.能运用立方根解决一些实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力和数学运算能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.立方根的运算法则。
3.运用立方根解决实际问题。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过引入生活实例,激发学生的学习兴趣;引导学生主动探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力;小组讨论,提高学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学PPT和多媒体素材。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个生活实例引入立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解立方根的定义,引导学生理解立方根的概念。
如“一个数的立方根,就是另一个数,使得这个数的三次方等于另一个数。
”通过PPT和板书,呈现立方根的性质和运算法则,让学生直观地感受和理解。
3.操练(10分钟)进行一些立方根的运算练习,让学生巩固所学知识。
人教版七年级数学下册教案 6-2 立方根
6.2 立方根一、教学目标【知识与技能】1.了解立方根的概念,会用开立方运算求一个数的立方根.2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值.3.分清一个数的立方根与平方根的区别.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】立方根的概念、求法和性质.【教学难点】立方根的求法,立方根与平方根的联系及区别.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示,二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 1(4)-0.064 (5) 027师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 . 学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 . 学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 . 学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢? 学生答:√−83= -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗? 学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3. 教师问:完成下面的问题:√233= _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433= ___4____;√(−3)33=___-3______.学生3答:√033= ___0____.教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______. √033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03)3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03)3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03)3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12; 学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程: 学生1显示:7所以:√3433=7.学生1显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。
人教版七年级数学下“6.2立方根”说课稿(优秀篇)
因为 , ,所以 ;
因为 , ,所以
由两个例子可归纳出:一般地, ,探讨了一个数的立方根与它的相反数的立方根之间的关系,由此可以将求负数的立方根的问题转化为求正数得出立方根的出问题,引导学生体会这种转化的思想。
(四)典例讲解
例1:求下列各式的值:
(1) (2) (3)
分析:此题的本质还是求立方根.(请三明同学在黑板上板演,其他同学在练习本上完成,并充分利用错误资源,及时给于指导和帮助)
(六)回顾交流,课堂小结
1.本节课你学到了哪些知识,获得了哪些数学思想方法?
2.你认为本节课的易错知识点有哪些?
(1)立方根的根指数不能省略;(2)一个数的立方根只有一个,不能跟平方根相混淆;(3)表示一个负数的立方根时不能直接将负号提前。
(选做题)教材52页第6题
设计意图:检测学生对于课堂知识的理解与掌握程度,从而更好地调整课堂教学。
九、教学评价设计
1.你对于本节课的掌握情况是( )
A.非常好 B.比较好 C.一般
2.谈谈你本节课的收获和不足?
3.通过本节课的学习你对老师有哪些建议?
十、板书设计
主板
副板
1.立方根的概念:
2.立方根的表示方法:
3.开立方的概念:
4.探索立方根的特点:
例题讲解和板演
六、教学方法分析
本节课主要采用通过创设问题情境—启发学生独立思考-引导学生自主探究-发挥小组合作交流—鼓励学生归纳、总结的学习方式,启发学生深度思考,以实现学生对于知识的主动建构!整堂课注意留给学生足够探索和交流的空间,关注数学思想方法的引导和渗透!
七、教学准备:ppt
八、教学过程分析
(一)学前温故
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。
本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。
但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。
2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。
2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。
4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。
3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。
(新人教版)数学七年级下册:6.2《立方根》教案(3份)
《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
人教版数学七年级下册6.2《立方根》教案
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计
人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
人教版七年级数学下册《六章实数62立方根用计算器求立方根用有理数估计一个数立方根的大小》教案4
人教版七年级数学下册《六章实数62立方根用计算器求立方根用有理数估计一个数立方根的大小》教案46.2立方根授课方案教材本源:学校七班级《数学》教科书(人民教育初版社2023年版)内容本源:学校七班级《数学(下册)》第六章实数目标确定的依照:1、课标相关要求:熟悉立方根的看法,会用根号表示数的立方根。
熟悉乘方与开方互为逆运算,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求立方根。
2、教材解析:《立方根》是义务教育课程标准人教版版七班级(下)第六章《实数》内容,支配了2个学时完成.主若是经过对峙方根与平方根的比较与类比,讨论立方根的看法、计算和简洁性质.因此,除了详尽的学问技术(如知道一个数的立方根的意义,会用根号表示一个数的立方根,把握立方根运算,把握求一个数的立方根的方法和技巧)外,还需要昂同学感觉类比的思想方法,为今后的学习打下基础.3、学情解析:在学习了平方根看法的基础上学习立方根的看法,同学比较简洁接受,因此授课重点放在立方根拥有唯一性(实数范围内)的谈论上.在同学对数的立方根看法及个数的唯一性有了必定理解的基础上,再提出数的立方根与数的平方根有什么差异,同学就简洁解决问题.学习目标:1、经过类比平方根和开平方的看法说出立方根及开立方的看法,会用根号表示一个数的立方根,知道开立方与立方互为逆运算。
2、经过讨论,归纳出立方根的性质及求一个负数的立方根的方法。
3、经过与平方根的比较,领悟一个数的立方根的唯一性,分清一个数的立方根与平方根的差异。
4、能依照立方根的相关看法求一个数的立方根。
谈论任务:1、经过复习坚固、类比归纳完成目标1。
2、经过讨论1和讨论2完成目标2。
3、经过填表、比较完成目标3。
4、经过类比归纳、讨论2和例题自学完成目标4。
授课过程:一、复习坚固,引入新课1、状况导入:你还记得正方体的体积与棱长有什么关系吗?问题:要制作一种容积为27m3的正方体外形的包装箱,这种包装箱的边长应当是多少?设这种包装箱的边长为xm,则x3=27这就是求一个数,使它的立方等于27.3由于3=27,因此x=3.即这种包装箱的边长应为3m.2、平方根拥有什么特点?二、类比归纳总结看法:类比平方根的相关看法谈论归纳立方根的相关看法:1、立方根的看法:若是一个数的立方等于a,这个数就叫做a的。
人教版七年级下册6.2立方根第七章:立方根教学设计
人教版七年级下册6.2立方根第七章:立方根教学设计一、教学背景本课程是人教版七年级下册数学教材“6.2立方根”章节的教学设计。
在学习此章节之前,学生应该具备以下知识点:平方数、完全平方数、立方数、完全立方数、乘法分配律、乘除律、指数运算等。
此章节是整个教材中比较重要的一个章节,主要是介绍立方根的概念、计算方法和应用,是学生进一步学习代数和数学基础的重要环节。
二、教学目标知识目标•了解立方根的概念、计算方法和应用;•熟练掌握计算并简化立方根的方法;•锻炼学生的代数计算能力。
能力目标•学会运用所学知识解决实际问题;•提高分析和推理能力;•培养学生的创新意识和实践能力。
情感目标•帮助学生认识数学知识与生活实际的紧密联系,激发学生的学习兴趣和对数学的好奇心;•培养学生的耐心、细致和严谨精神。
三、教学过程3.1 导入环节通过和学生的交流,让学生回忆平方根的概念和计算方法,引出立方根的概念。
让学生反思:如果根号内的数字是2的幂次方,我们会怎么计算它的根号呢?当数字为3的幂次方时我们怎么计算它的立方根?3.2 讲授环节3.2.1 立方根的概念立方根是一个数的三次方的算术平方根,记作∛a。
我们可以将∛a表示为 a的 1/3 次幂,即∛a=a^(1/3),或者写成 a 的 3 次方根。
3.2.2 立方根的计算方法•性质1:对于a、b为非负实数,则∛ab=∛a×∛b;•性质2:对于a、b为正实数,则∛(a/b)=∛a/∛b;•注意事项:当数字a为负数时,则∛a为负数。
3.2.3 立方根的应用掌握了立方根的概念和计算方法之后,我们将学习一些关于立方根的应用。
在此过程中,我们将以一些例子来说明:例1:水箱的体积为1000升,求水箱的边长。
解析:设水箱的边长为x,则水箱的体积为x³,因此,题目所求即为1000=x³,解得x=10(单位:m)。
例2:一个正方体的表面积为96平方厘米,求正方体的边长。
人教版数学七年级下册教学设计6.2《 立方根》
人教版数学七年级下册教学设计6.2《立方根》一. 教材分析《立方根》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了整数乘法、平方根的基础上进行的。
通过学习立方根,让学生体会数学与现实生活的联系,培养学生的空间想象力,提高学生的数学素养。
本节课的内容包括:立方根的定义、求一个数的立方根、立方根的性质及应用等。
二. 学情分析学生在学习本节课之前,已经掌握了平方根的知识,对乘法运算也有一定的了解。
但立方根的概念和求法对学生来说是一个新的知识点,需要通过实例和练习来理解和掌握。
同时,学生对于空间几何图形中的立方体可能还不够熟悉,需要通过观察和操作来提高空间想象力。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求一个数的立方根的方法,了解立方根的性质及应用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力,提高学生的数学素养。
3.情感态度价值观:培养学生对数学的兴趣,体会数学与现实生活的联系,培养学生的团队协作精神。
四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。
2.难点:立方根的性质及应用。
五. 教学方法1.情境教学法:通过实物和几何图形,引导学生观察和操作,激发学生的学习兴趣。
2.启发式教学法:通过提问和讨论,引导学生思考和探索,培养学生的空间想象力。
3.合作学习法:分组讨论和交流,培养学生团队协作精神,提高学生的沟通能力。
六. 教学准备1.教具准备:立方体模型、多媒体课件。
2.学具准备:练习本、笔。
七. 教学过程1.导入(5分钟)通过展示一个立方体模型,引导学生观察和思考,提问:“谁能说出立方体的特点?”、“立方体的体积怎么计算?”等问题,激发学生的学习兴趣,引出立方根的概念。
2.呈现(10分钟)讲解立方根的定义,用多媒体展示立方根的图形,让学生直观地理解立方根的概念。
同时,通过例题讲解求一个数的立方根的方法,让学生学会如何求一个数的立方根。
人教版数学七年级下册6.2《立方根》教案1
人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节的学习,为学生进一步学习实数及其运算打下基础。
二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。
但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。
另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。
三. 教学目标1.理解立方根的概念,掌握立方根的性质。
2.学会求一个数的立方根,能熟练运用立方根解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.求一个数的立方根的方法。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。
2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。
3.实践操作法:让学生动手计算,巩固所学知识。
4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。
通过PPT课件展示立方根的性质,让学生掌握立方根的性质。
3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。
教师选取部分学生的答案进行讲评,巩固所学知识。
5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。
人教版数学七年级下册6.2立方根优秀教学案例
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。
人教版七年级下册6.2立方根教学设计
6.2立方根一、教学目标知识技能:了解立方根概念,会求一些数的立方根。
过程方法:通过类比探究平方根来探究立方根。
情感态度与价值观:感受学习方法的掌握。
二、教学重难点引导学生类比平方根学习立方根的概念和求法。
三、教学过程(一)复习引入1、计算2、你还记得什么是平方根吗?平方根具有什么特征?如果一个数的平方等于a ,那么这个数就叫做a 的平方根(也叫做二次方根).即a x =2,那么x 叫做a 的平方根.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(二)探究新知1、要制作一种容积8 m 3的正方体形状的包装箱,这种包装箱的棱长应该是多少?你还记得正方体的体积与棱长有什么关系吗?如果设这种包装箱的棱长为x m,那么可以得到什么等式?你能类比平方根的定义给出立方根的定义吗?立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根( 也叫做三次方根).即a x =3 那么x 叫做a 的立方根.求一个数a 的立方根的运算叫做开立方.2、根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?因为 32=8,所以8的立方根是( );因为 ,所以0.064的立方根是( );因为 ,所以0的立方根是( );因为 ,所以-8的立方根是( );因为 ,所以 的立方根是( ).3、归纳立方根的特征正数的立方根是正数;负数的立方根是负数;0的立方根是0。
被开方数取何数时,立方根有意义? 4、表示方法 一个数a 的立方根,记作 3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,3不能省略.5、探究规律0.064) (3=0) (3=8) (3-=278-278) (3-=(三)运用新知例1 求下列各数的立方根 (1)-27; (2) (3)0.008 例2 求下列各式的值 :(四)练习巩固1. 64的立方根是( )A 4BC 82. 下列表示71的立方根是( )A B C3. = ( )A -9B 3C -34. 如果一个数的立方根是5,那么这个数是( )A 125B 25C -255. 下列说法正确的是( )A -8有两个立方根B -8只有一个立方根C -8没有立方根(五)小结问题1:什么是立方根?如何求一个数的立方根?问题2:立方根与平方根有哪些区别?练习二:教材51页练习1,复习巩固1(六)作业A 组:倍速B16页1~14B 组:倍速B16页1~14,11和12两题选做833471337171327-。
人教版七年级数学下册教案:6.2立方根
举例:以计算立方根为例,教师需重点讲解如何从一个具体的立方体(如2×2×2)抽象出立方根的概念(即2是8的立方根),并强调立方根的计算步骤。
2.教学难点
-立方根的理解:学生可能难以从平方根的概念跳跃到立方根,理解立方根的本质含义。
-立方根的计算:对于非整数或不规则立方体的立方根,学生可能不知道如何求解,例如求解立方根的近似值。
-立方根使用立方根,以及如何建立数学模型解决相关问题。
举例:对于理解难点,教师可以通过直观的立方体模型或动画,帮助学生形象地理解立方根的概念。对于计算难点,教师可以引导学生通过分解因数的方法(如27=3×3×3,因此3是27的立方根)来求解。在应用难点上,教师可以提供一些实际情境,如计算一个立方体木块的体积,让学生学会如何将立方根应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的三次方的情况?”(如:一个正方体的体积是64立方厘米,那么它的棱长是多少?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版数学七年级下册6.2.1《立方根的概念》教案设计
6.2 立 方 根教学目标知识与技能:1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3.体会一个数的立方根的唯一性.4.分清一个数的立方根与平方根的区别情感态度与价值观:通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点:立方根的概念和求法教学难点:立方根的求法。
教学过程:温故知新:16的平方根是______ -16的平方根是____________ 0的平方根是________ 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.一、创设情境 ,引入新知要制作一种容积为327cm 的正方体形状的包装箱,这种包装箱的棱长应该是多少?二、探索归纳:1.探索:设这种包装箱的边长为xcm ,则273=x ,这就是要求一个数,使它的立方等于27.因为 2733=,所以 3=x ,即这种包装箱的边长应为m 3。
如果体积是35cm 呢?2.归纳:① 立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
② 立方根的表示方法:如果a x =3,那么x 叫做a 的立方根。
记作3a x =,3a 读作三次根号a 。
其中a 是被开方数,3是根指数,3a 中的根指数3不能省略。
③ 开立方的概念:求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算, 可以根据这种关系求一个数的立方根。
3、探索立方根的特点:根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?(1)因为823= ,所以8的立方根是( );(2)因为( 125.0)3=,所以125.0的立方根是( ) ;(3)因为( 0)3=,所以0的立方根是( );(4)因为( 8)3-=,所以8- 的立方根是( );(5)因为( 278)3-=,所以278-的立方根是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根
班级: 学生姓名:
●自学 自学---质疑---解疑
教学目的:1、理解并掌握立方根的概念,会用符号表示一个数的立方根。
2、会求一个数的立方根。
教学重点、难点:
1.重点:理解立方根的概念,理解立方与开立方是互为逆运算。
2.难点与关键:理解3a -与—3a 的相等关系
教学方法:
1、学生独立阅读课本P49-51页,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
●量学 自测---互查---互教
1、回顾算术平方根和平方根的概念。
2、平方根和算术平方根怎样用符号表示。
3.计算:=31 ,=3
)21
( ,=30 =32.0 ,=-3)3.0( ,
=-3)43( ,=-3)5
1( 。
4.填一填:27(____)3=,64(____)3-=,125(____)3-=,125
8(____)3-= 5.要制作一种容积为273
m 的正方体形状的包装箱,这种包装箱的边长应该是多少?解:设这种包装箱的边长是xm ,则有 =27
●助学 展示---反馈---导学---点播
.什么叫立方根?什么叫开立方?
①一般的,如果一个数x 的 等于a ,即a x =3,那么这个数x 叫做 立方根...或. ,.a 叫做 。
求一个数的 的运算,叫做 .立方与 互为逆运算。
②填一填:∵125(____)3=,∴125的立方根是 ;∵0(____)3=,∴0的立方是0根是 ;∵8(____)3-=,∴-8的立方根是 ;∵64
27(__)3-=,∴6427-的立方根是 ;
③.正数的立方根是 数; 0的立方根是 ;负数的立方根是 数。
(一)立方根如何表示?
①一个数a 的立方根记为 ,读作“ ”。
②3a 读作 ,a 叫 ,3叫 。
④38表示 ,38= ,
-27的立方根是 ,-3的立方根是 。
(二)平方根与立方根性质有何区别?
数
项 目
正数 0 负数
平方根 立方根 (三)有何性质?
1.(1)∵_____,8___,833=-=-∴338__________8--;
(2)∵_____,27___,2733=-=-∴3327__________27--。
…
2.一般地,33__________a a --, _____,33=a ,
●测学 巩固---运用---拓展 1.求下列各式的值。
(1)—327102
(2)—36427— (3)3064.0-
2. 若x 、y 满足3x y +-+2(2)x y -=0,求3x 2y +的立方根.
3. 求x 的值:31(23)3606
x --=
●思学 回顾---总结---反思。