一次函数应用题讲义及答案
一次函数完美讲义
一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量;常量:在一个变化过程中只能取同一数值的量;s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是例题:在匀速运动公式vt________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数;判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数1y=πx 2y=2x-1 3y=错误! 4y=2-1-3x 5y=x2-1中,是一次函数的有A4个 B3个 C2个 D1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域;4、确定函数定义域的方法:1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零;5实际问题中,函数定义域还要和实际情况相符合,使之有意义;例题:下列函数中,自变量x的取值范围是x≥2的是. D.A..函数y=x的取值范围是___________.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表表中给出一些自变量的值及其对应的函数值;第二步:描点在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来;8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;1.判定一次函数的方法:1)从表达式角度考虑:有三条件:自变量x为一次;因变量为一次,系数k≠0.三、考点知识梳理一一次函数的定义一般地,如果y=kx+bk、b是常数,k≠0,那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kxk是常数,k≠0,这时,y叫做x的正比例函数.1.由定义知:y是x的一次函数它的解析式是y=kx+b,其中k、b是常数,且k≠0.2.一次函数解析式y=kx+bk≠0的结构特征:1k ≠0;2x 的次数是1;3常数项b 可为任意实数.它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时,向上平移;当b<0时,向下平移3.正比例函数解析式y =kxk ≠0的结构特征:1k ≠0;2x 的次数是1;3没有常数项或者说常数项为0.温馨提示:正比例函数是一次函数,但一次函数(0)y kx b k =+≠不一定是正比例函数,只有当b=0时,它才是正比例函数;例1 已知y-3与x 成正比例,且x=2时,y=7.1写出y 与x 之间的函数关系式; 2当x=4时,求y 的值;3当y=4时,求x 的值.二一次函数的图象1.一次函数y =kx +bk ≠0的图象是经过点0,b 和-错误!,0的一条直线.2.正比例函数y =kxk ≠0的图象是经过点0,0和1,k 的一条直线.3.一次函数y =kx +bk ≠0的图象与k 、b 符号的关系:1k >0,b >0图象经过第一、二、三象限.2k >0,b <0图象经过第一、三、四象限.3k <0,b >0图象经过第一、二、四象限.4k <0,b <0图象经过第二、三、四象限.温馨提示:画一次函数的图像,只需过图像上两点作直线即可,一般取(0,)b ,(,0)b k-两点; 三一次函数图象的性质一次函数y =kx +b,当k >0时,y 随x 的增大而增大,1) 图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.k 的正负决定直线的倾斜方向:● 两直线k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.|k|=x y ∆∆● 增减性:当k>0时,y 随x 值的增加而增加,当k<0时,y 随x 值的增加而减小,● |k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大直线陡,|k|越小,直线与x 轴相交的锐角度数越小直线缓;增加的快慢由两点的纵坐标之差和横坐标之差的比值来决定,即由k 值的大小决定;点和直线的关系:点Px 0,y 0与直线y=kx+b 的图象的关系1如果点Px 0,y 0在直线y=kx+b 的图象上,那么x 0,y 0的值必满足表达式y=kx+b ;2如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点Px 0,y 0必在函数的图象上. 2) 直线和直线的关系:当平面直角坐标系中两直线平行时,这两个函数解析式中k 1=k 2,且b 1≠b 2.当平面直角坐标系中两直线重合时,这两个函数解析式中k 1=k 2,且b 1=b 2.当平面直角坐标系中两直线相时,这两个函数解析式中k 1≠k 2,.当平面直角坐标系中两直线垂直时,其函数解析式中K 值互为负倒数即两个K 值的乘积为-1● 直线b 1=k 1x+b 1与直线y 2=k 2x+b 2k 1≠0 ,k 2≠0的位置关系:① k 1≠k 2⇔y 1与y 2相交;其交点的横纵坐标分别是两直线表达式所联立的方程组的解; ② ⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点0,b 1或0,b 2; ③ ⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④ ⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合四一次函数的应用1.求一次函数解析式求一次函数解析式,一般是已知两个条件,设出一次函数解析式,然后列出方程,解方程组便可确定一次函数解析式.2.利用一次函数性质解决实际问题用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤答.温馨提示:1.题目中的条件在列等式、不等式时不能重复使用,要仔细寻找题目中的隐含条件;2.正确理解题目中的关键词语:盈、亏、涨、跌、收益、利润、赚、赔、打折、不大于、不小于;3.设未知数相关量要有依据,而代数式为多项式时要加括号,带上单位,列方程时相关量的单位要保持一致;类型一一次函数的图象与性质1已知一次函数y=-3x+2,它的图象不经过第________象限.2若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值A.增加4 B.减小4 C.增加2 D.减小23若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<04如图,一次函数y=-错误!x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a0<a<4且a≠2,过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是A.S1>S2B.S1=S2C.S1<S2D.无法确定点拨准确掌握一次函数的图象与性质是做对此类题的关键.答案1三2A3D4A类型二一次函数的解析式及应用1将直线y=错误!x向下平移3个单位所得直线的解析式为________.2我们知道,海拔高度每上升1千米,温度下降6 ℃,某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.①写出y与x之间的函数关系式;②已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃③此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米点拨一次函数解析式的确定需要明确两个点的坐标,从而求出系数k、b的值,一次函数的应用题需从题意中获取有用的信息.答案1y=错误!x-3.2①y=20-6xx>0;②500米=千米,y=20-60×=17℃;③令-34=20-6x,得x=9千米.五、易错题探究一次函数y=kx+bk为常数且k≠0的图象如图所示,则使y>0成立的x的取值范围为________.解析当y>0时,函数图象在x轴上方,此时x<-2.易错警示不清楚y>0指的是哪部分图象.一、选择题1.若正比例函数的图象经过点-1,2,则这个图象必经过点A.1,2 B.-1,-2 C.2,-1 D.1,-2解析:设y=kxk≠0把-1,2代入得k=-2,∴y=-2x,再把被选项代入验证,选D.2.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k和b的符号判断正确的是A.k>0,b<0 B.k>0,b<0C.k<0,b>0 D.k<0,b<03.若直线y=3x+b与两坐标轴围成的三角形面积为6,则b为A.6 B.-6 C.±6 D.±7二、填空题11.已知一次函数y=2x-6与y=-x+3的图象交于点P,则点P的坐标为________.12.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是________.三、解答题13.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P1,b.1求b的值;2不解关于x、y的方程组错误!请你直接写出它的解;3直线l3:y=nx+m是否也经过点P请说明理由.。
一次函数综合应用(习题及解析)精选全文
精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
一次函数实际应用(带解析)
一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
一次函数基本题型讲解( 附答案版)
一次函数基本题型过关卷题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;2、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 2、 已知点P (3,0),Q(-2,0),则PQ=__________,两点(3,-4)、(5,a )间的距离是2,则a的值为__________; 3、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数综合应用(讲义及解析)
一次函数综合应用(讲义及解析)课前预习如图,直线 l1 的表达式为 y=-3x+3,且 l1 与 x 轴相交于点 D,直线 l 2 经过 A,B 两点,直线 l1,l2 相交于点 C、〔1〕点 D 的坐标为;〔2〕直线 l2 的表达式为;〔3〕点 C 的坐标为.如图,在平面直角坐标系中,点 A(2,0),点 B(0,4).〔1〕△AOB 的面积为;〔2〕点 P 是 y 轴上一点,假设S为.△AOP 1S2△AOB,那么点 P的坐标知识点睛一次函数综合题,往往涉及到多个函数及坐标间的相互转化,梳理信息,理解题意是其关键:理解题意:①确定坐标与表达式间的对应关系;②函数图象不确定时,考虑分类讨论.具体操作:从完整表达式或坐标入手,利用代入或联立的方式进行相互转化.精讲精练直线 l1 与 l2 相交于点 P,直线 l1 的表达式 y=2x+3,点 P 的横坐标为-1,且 l2 交 y 轴于点 A(0,-1).那么直线 l2 的表达式为.函数 y 1 x b 的图象与 x 轴、y 轴分别交与点 A,B,3与函数 y=x 的图象交于点 M,点 M 的横坐标为 3,那么点 A 的坐标为.一次函数 y=kx+b 的图象经过点(-2,5),且与 y 轴相交于点 P,直线与 y 轴相交于点 Q,点 Q 恰与点 P 关于 x 轴对称,那么这个一次函数的表达式为.如图,直线 l1:y=2x+3,直线 l2:y=-x+5,直线 l1,l2 与x 轴分别交于点 B,C,l1,l2 相交于点 A、那么 S△ABC= .如图,直线 y=2x+m〔m>0〕与 x 轴交于点 A(-2,0),直线y=-x+n 〔n>0〕与 x 轴、y 轴分别交于点 B,C 两点,并与直线 y=2x+m〔m>0〕相交于点 D,假设 AB=4.〔1〕求点 D 的坐标;〔2〕求出四边形 AOCD 的面积.直线 y mx 3 中,y 随 x 的增大而减小,且与直线 x=1,x=3 和 x 轴围成的四边形的面积为 8,那么 m=_ .直线 y kx 6 经过第【一】【三】四象限,且与直线 x=-1, x=-3 和 x 轴围成的四边形的面积为 16,那么 k=_ .如图,直线 y=x+2 与 x 轴交于点 A,与 y 轴交于点 B、〔1〕求 A,B 两点的坐标;〔2〕过点 B 作直线 BP,与 x 轴交于点 P,且使 PO=2AO,求直线 B P 的表达式.直线 y=kx+b 经过点(5,0),且与坐标轴所围成的三角形的面积为 2 0,那么该直线的表达式为.假设一次函数 y=kx+3 的图象与坐标轴的两个交点间的距离为5,那么 k 的值为.正比例函数和一次函数的图象都经过点 M(3,4),且正比例函数和一次函数的图象与 y 轴围成的面积为15 ,求此正比2例函数和一次函数的解析式.如图,直线 y=kx+6 与 x 轴、y 轴分别交于点 E,F,点 E的坐标为(8,0),点 A 的坐标为(6,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+6 上的一个动点,当点 P 运动到什么位置时,△OPA 的面积为 9?请说明理由.如图,在平面直角坐标系中,直线 y x 1与 y 3 x 3相交4于点 A,两直线与 x 轴分别交于点 B 和点 C,D 是直线 AC 上的一个动点.〔1〕求点 A,B,C 的坐标;〔2〕当 BD=CD 时,求点 D 的坐标;〔3〕假设△BDC 的面积是△ABC 面积的 2 倍,求点 D 的坐标.。
一次函数应用题(讲义及答案).
一次函数应用题(讲义)➢课前预习1. A,B 两地相距80 km,甲、乙两人沿同一条路从A 地到B地,l1,l2 分别表示甲、乙两人离A 地的距离s(km)与时间t(h)之间的关系.根据图象填空:①乙先出发h 后,甲才出发.②甲的速度是km/h,直线l1 的表达式为;乙的速度是km/h,直线l2 的表达式为.③图象中点M 表示的意义是.④当t=2 h 时,甲、乙两人相距km.➢知识点睛一次函数应用题的处理思路1.理解题意,梳理信息(1)图象信息——通过看、、,把实际场景和函数图象对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义;②看点,明确起点、终点、状态转折点表示的具体意义,还原实际场景,提取每个点对应的数据;③看线,观察每一段的变化趋势(增长或下降等),分析每段数据的变化情况.(2)文字信息——抓取关键词、关键语句、量与量之间的关系.2.建立模型确定一次函数表达式,并把所求目标转化为,借助图象特征,利用表达式进行求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.➢精讲精练1.一辆警车在高速公路的A 处加满油,以每小时60 千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)之间的函数关系图象是如图所示的直线l 上的一部分.(1)求直线l 的表达式;(2)如果警车要回到A 处,且要求警车中的余油量不能少于10 升,那么警车可以行驶到离A 处的最远距离是多少?22.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1 h 后乙出发,甲、乙两人离A 地的距离y 甲(km),y乙(km)与甲出发时间x(h)之间的函数图象如图所示.(1)当1≤x≤5 时,y乙关于x 的函数解析式为;(2)当乙与A 地相距240 km 时,甲已出发h,此时甲与A 地相距km.3.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2 小时时血液中含药量最高,达每毫升6 微克(1 微克=10-3毫克),接着逐步衰减,10 小时时血液中含药量为每毫升3 微克,每毫升血液中含药量y (微克)随时间x(小时)的变化如图所示.(1)y 与x 之间的函数关系式为;(2)如果每毫升血液中含药量为4 微克或4 微克以上时在治疗疾病时是有效的,那么这个有效时间是小时.4.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6 分钟发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后,与姐姐一起骑单车前往图书馆(两人骑单车速度相同).已知骑单车的速度是步行速度的3 倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟;(2)求小亮骑单车从家出发去图书馆时,距家的路程y(米)与出发时间x(分钟)之间的函数关系式;(3)小亮骑单车追上姐姐时,姐姐已从家出发步行了多久?5.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1 500 元制版费;乙印刷厂提出:每份材料收2.5 元印制费,不收制版费.(1)分别写出两印刷厂的收费y甲(元),y乙(元)与印刷数量x(份)之间的关系式;(2)在同一直角坐标系内画出它们的图象;(3)根据图象回答下列问题:①印制800 份宣传材料时,选择哪家印刷厂比较合算?②该公司拟拿出3 000 元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?6.某游泳馆推出了以下两种收费方式.方式一:顾客先购买会员卡,每张会员卡200 元,仅限本人一年内使用,凭卡游泳,每次游泳再付30 元.方式二:顾客不购买会员卡,每次游泳付费40 元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2 与x 之间的函数关系式;(2)在同一平面直角坐标系内画出它们的图象;(3)根据图象回答下列问题:①若小亮一年内来此游泳馆的次数为15 次,选择哪种方式比较划算?②若小亮计划拿出1 400 元用于在此游泳馆游泳,选择哪种付费方式,他游泳的次数比较多?7.中国移动某套餐推出了如下两种流量计费方式:(1)x>0),方式一总费用y1 元,方式二总费用y2 元(总费用不计通话费及其他服务费),写出y1 和y2 关于x 的函数关系式(不要求写出自变量x 的取值范围);(2)如图为在同一平面直角坐标系中画出(1)中的两个函数图象的示意图,记它们的交点为A,求点A 的坐标,并解释点A 坐标的实际意义;(3)根据(2)中函数图象,结合每月使用的流量情况,请直接写出选择哪种计费方式更合算.⎨- 3 x + 27【参考答案】 ➢ 课前预习1. ①1②40,s =40t -40; 40 , s = 40t3 3③乙出发 1.5 h 时,甲在离 A 地 20 km 处追上乙 ④ 40 3➢ 课前预习1. (1)轴、点、线2. 函数元素 ➢ 精讲精练1. (1)y =-6x+60;(2)警车可以行驶到离 A 处的最远距离是250 千米2. (1)y =90x -90;(2) 11,220 3⎧3x (0≤x ≤2) 3. (1) y = ⎪⎪⎩ (2 < x ≤18) 8 4(2)6 4. (1)2(2)y =150x -1 500(10≤x ≤30)(3)小亮骑单车追上姐姐时,姐姐已从家出发步行了 15 分钟5. (1)y 甲=x +1 500,y 乙=2.5x(2) 图略(3) ①印制 800 份宣传材料时,选择乙印刷厂比较合算②选择甲印刷厂印刷宣传材料能多一些6. (1) y 1 = 30x + 200 , y 2 = 40x(2) 图略(3) ①选择方式二比较划算;②选择方式一,他游泳的次数比较多 7. (1) y 1 = x + 8 , y 2 = 0.5x + 28(2)A (40,48),实际意义:当一个月内用移动电话使用 40 G 流量时,方式一与方式二套餐总费用相同,为 48 元;乙(3)当0<x<40 时,选择方式一更合算;当x=40 时,方式一、方式二费用相同;当x>40 时,选择方式二更合算。
一次函数应用题答案
一次函数应用题答案一、解答题1.【答案】(1)10 30(2)解:当0≤x<2时,y=15x,当x≥2时,y=30+10×3(x-2)=30x-30,当y=30x-30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)解:甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【解析】(1)甲登山上升的速度是:(300-100)÷20=10(米/分钟);b=15÷1×2=30.故答案为:10;30.(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系.(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.2.【答案】(1)解:设生产一件甲种产品需x分,生产一件乙种产品需y分,由题意得:,即解这个方程组得:x=20,y=30,即生产一件甲产品需要20分,生产一件乙产品需要30分.(2)解:设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,所以W总额=6×+10×=-x+4000,∵≥45,∴x≥900,由一次函数的增减性,当,x=900时,W取得最大值,此时W=-×900+4000=3970(元),此时甲有:=45(件),乙有:=370(件),所以小王该月最多能得3970元,此时生产甲种产品45件,上产乙种产品370件.【解析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,根据表中数据得出方程组,求出方程组的解即可;(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,根据题意得出W总额=6×+10×,即可求出答案.3.【答案】(1)解:设这前五个月小明家网店销售这种规格的红枣x袋.由题意:(60-40)x+×(54-38)=42000解得x=1500.答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)解:由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】(1)设这前五个月小明家网店销售这种规格的红枣x袋.根据总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题.4.【答案】(1)60(2)解:当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90.(3)220【解析】(1)根据图象得:360÷6=60(km/h);(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)∵乙与A地相距240 km,且乙的速度为360÷(5-1)=90(km/h),∴乙用的时间是240÷90=(h),则甲与A地相距(km).5.【答案】(1)解:设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=-96x+192(0≤x≤2).(2)解:12+3-(7+6.6)=15-13.6=1.4(小时))112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【解析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.6.【答案】(1)解:从小刚家到该景区乘车一共用了4h时间.(2)解:设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴ ,解得.∴y=120x-40(1≤x≤3).(3)解:当x=2.5时,y=120×2.5-40=260,380-260=120(km).故小刚一家出发2.5小时时离目的地120km远.【解析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.7.【答案】(1)解:每分钟向储存罐内注入的水泥量为15÷3=5立方米.(2)解:设y=kx+b(k≠0),把(3,15),(5.5,25)代入,得,解得.∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3.(3)1 11【解析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(1)可知,每分钟向储存罐内注入的水泥量为5立方米,3分钟到5.5分钟这段时间注入5×2.5=12.5立方米,储存罐实际增加10立方米,则这段时间输出12.5-10=2.5立方米,所以储存罐每分钟向运输车输出的水泥量是2.5÷2.5=1立方米;关闭输出口时还输出8-2.5=5.5立方米,用时5.5÷1=5.5分钟,则从打开输入口到关闭输出口共用的时间为5.5+5.5=11分钟.故答案为:1;11.8.【答案】(1)解:由题意可得:y=120x+200(100-x)=-80x+20000,,解得:24≤x≤86.(2)解:∵y=-80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=-80×86+20000=13120(元).【解析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.9.【答案】(1)解:依题意得:=,整理得:900(m-30)=750m,解得:m=180,经检验m=180是原方程的解并符合题意,∴m=180.(2)解:设购进甲种服装y件,购进乙中服装(200-y)件,依题意得:26800≥(320-180)y+(280-150)(200-y)≥26700,解得:80≥y≥70.答:该专卖店有11种进货方案.(3)解:设总利润为w,则w=(140-a)y+130(200-y)=(10-a)y+26000(70≤y≤80),①当0<a<10时,10-a>0,w随着y的增大而增大,∴当y=80时,w有最大值,即此时应购进甲种服装80件,购进乙种服装120件;②当a=10时,w=26000,(2)中所有方案获利都一样;③当10<a<20时,10-a<0,w随着y的增大而减小,∴当y=70时,w有最大值,即此时应购进甲种服装70件,购进乙种服装130件.【解析】(1)用总价除以单价表示出购进服装的数量,根据两种服装的数量相等列出方程求解即可;(2)设购进甲种服装y件,表示出乙种服装(200-y)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据服装的件数是正整数解答;(3)设总利润为w,根据总利润等于两种服装的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.10.【答案】(1)解:由图可知,A、B两城相距300千米.(2)解:设甲对应的函数解析式为:y=kx,300=5k,解得,k=60,即甲对应的函数解析式为:y=60x;设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x-100.(3)解:解,解得,2.5-1=1.5,即乙车出发后1.5小时追上甲车.(4)解:由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=;当乙出发后到乙到达终点的过程中,则60x-(100x-100)=±50,解得,x=1.25或x=3.75;当乙到达终点后甲、乙两车相距50千米,则300-50=60x,得x=.即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.【解析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式;(3)根据(2)甲、乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,分为乙出发前,行驶中,到达后,三种情况相距50千米,从而可以解答本题.11.【答案】(1)解:设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.依题意可知:W=x·(500-150-4×40)+x·(270-150)+(5x+20-x·4)·(70-40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.答:购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)解:涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500-160-4×50)m+(30-m)×(270-160)+(170-4m)×(70-50)=7950-2250,即6700-50m=5700,解得:m=20.答:本次成套的销售量为20套.【解析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元,根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.12.【答案】(1)设小明家共有x人.∴方案一:有一人买全票,其余各人按5折优惠,则Y1=30+15(x-1)=15x+15;方案二:全部按全票的6折优惠,则∴Y2=30×0.6x=18x;(2)当两家旅游景点收费相等时,15x+15=18x,求得x=5;当方案一更优惠时:15x+15<18x,得出:x>5;当方案二更优惠时:x<5.故当x=5时,两种方案一样;当x>5时,方案一更优惠;当x<5时,方案二更优惠.【解析】(1)可以设小明家共有x人,分别表示出方案一、方案二小明一家人的门票费Y1、Y2与他们去的人数x之间的函数关系式;(2)利用不等式分别比较两种方案收费,分情况讨论,选择哪种方案更优惠.13.【答案】解:(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)设函数式为:s=kt,过(3,6)点,∴k=2,∴s=2t(t≥0).(Ⅲ)从图上可知,甲的速度为:6÷3=2km/h,一个小时内乙的速度为:3÷1=3km/h,一个小时后乙的速度为:(6-3)÷(3-1)=1.5km/h.所以第一个小时前甲的行驶速度小于乙的行驶速度;一个小时后甲的行驶速度大于乙的行驶速度.【解析】(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)从图上可看出甲是正比例函数,设出函数式,根据上面的点可求出.(Ⅲ)根据图象求不同阶段的速度,比较大小即可.14.【答案】(1)设A型衬衣进x件,B型衬衣进(80-x)件,则:4288≤50x+56(80-x)≤4300,解得:30≤x≤32.∵x为整数,∴x为30,31,32,∴有3种进货方案:A型30件,B型50件;A型31件,B型49件;A型32件,B型48件.(2)设该商场获得利润为w元,w=(60-50)x+(68-56)(80-x)=-2x+960,∵k=-2<0,∴w随x增大而减小.∴当x=30时w最大=900,即A型30件,B型50件时获得利润最大,最大利润为900元.【解析】(1)本题的不等式关系为:购买A型衬衣的价钱+购买B型衬衣的价钱应该在4288-4300元之间,据此列出不等式组,得出自变量的取值范围,判断出符合条件的进货方案;(2)可根据利润=A衬衣的利润+B衬衣的利润,列出函数式,根据函数的性质和(1)得出的自变量的取值范围,判断出利润最大的方案.15.【答案】(1)先填表(2)∵在一次函数y=-3x+3920中,k=-3<0∴y随x的增大而减小∵0≤x≤70∴当x=70时,y有最小值∴当甲仓库往A、B两工地各运70吨和30吨水泥,乙仓库往A、B两工地各运0吨和80吨水泥时,总运费最省.最省总运费为y=-3×70+3920=3710元.【解析】(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.16.【答案】(1)当0≤x≤3,y1=120-40x;当3<x≤4,y1=0;当4<x≤6,y1=60(x-4)=60x-240;y1与x的图象如图1(2)当0≤x≤3,y2=40x;当3<x≤4,y2=120;当4<x≤6,y1=120+60(x-4)=60x-120;y2与x的图象如图2,【解析】根据y与x的函数图象得到汽车从甲地出法行驶3小时到达乙地,行驶了120千米,则其速度为40千米/时,休息一小时后从乙地返回甲地,用了2个小时,则其速度为60千米/时.(1)分段讨论:当0≤x≤3,汽车距乙地距离等于甲乙之间的距离减去汽车行驶的路程,即y1=120-40x;当3<x≤4,汽车在乙休息,则y1=0;当4<x≤6,汽车从乙出发,则汽车距乙地距离等于此时汽车行驶的路程,则y1=60(x-4)=60x-240;然后根据解析式画图;(2)分段讨论:当0≤x≤3,汽车的路程为其行驶的路程,则y2=40x;当3<x≤4,汽车行驶的路程没变,则y2=120;当4<x≤6,汽车行驶的路程等于甲乙间的距离加上汽车后来行驶的路程,即y1=120+60(x-4)=60x-120;然后根据解析式画图.17.【答案】(1)按“分期付款”方式需支出198元/月×28月=5544(元).∵5544>5346,∴选择“一次付清”的方式付款合算;(2)由题意解得:y=0.5x+198(0≤x≤400),y=398(x>400);(3)0.5元/小时×160小时+198元/月×5个月=1070(元).【解析】(1)从x值的取值范围,来求是否“一次付清”的方式付款合算;(2)由题意按照图标中的情况而得到函数式;(3)由(2)中得到的函数式,代入数值而解得.18.【答案】解:(1)从图象中可知:从B到S城的路程是350千米-150千米=200千米,乙用了2小时,即乙车行驶的速度是200÷2=100(千米/时),从A到S的路程是150千米,甲走了2小时,即甲车行驶的速度是150÷2=75(千米/时),答:甲、乙两车的行驶速度分别是75千米/时、100千米/时;(2)∵150千米÷100千米/时=1.5小时,∴乙车出发后到达A地的时间是2.4+1.5=3.9(小时)答:乙车出发3.9小时后到达A地;(3)设两车出发后x小时第二次相遇,则75(x-2)=100(x-2.4),x=3.6,即两车出发后3.6小时第二次相遇.【解析】(1)从图象中可知:从B到S城的路程是(350-150)千米,乙用了2小时,根据速度公式求出乙车行驶的速度即可;甲从A到S的路程是150千米,甲走了2小时,根据速度公式求出甲车行驶的速度即可;(2)求出乙车走后150千米用的时间,再与2.4小时相加即可;(3)设两车出发后x小时第二次相遇,得出方程75(x-2)=100(x-2.4),求出方程的解即可.19.【答案】(1)设有x名学生,依题意得:需付甲公司的费用是:y甲=3×240+70%×240x=168x+720,需付乙公司的费用是:y =80%(3+x)×240=192x+576;乙(2)当168x+720=192x+576,解得:x=6,当168x+720>192x+576,解得:x<6,当168x+720<192x+576,解得:x>6,答:当学生有6名,则两家公司所需费用一样;当学生人数大于6名,则甲公司更优惠;当学生人数小于6名,则乙公司更优惠.【解析】(1)根据设学生数为x,利用甲乙两公司优惠方案得出函数关系即可;(2)利用(1)中所求函数关系式,再利用不等式求出x的取值范围即可.20.【答案】(1)∵8x+10y+11(10-x-y)=100,∴y与x之间的函数关系式为y=-3x+10.∵y≥1,解得x≤3.∵x≥1,10-x-y≥1,且x是正整数,∴自变量x的取值范围是x=1或x=2或x=3.(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.因为W随x的增大而减小,所以x取1时,可获得最大利润,此时W=20.86(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.【解析】(1)根据“甲、乙、丙三种苹果共100吨”列二元一次方程,变形后得出y与x之间的关系式为y=-3x+10.根据实际意义即y≥1,x≥1,得到x的取值范围是x=1或x=2或x=3;(2)写出利润与x之间的函数关系:W=-0.14x+21,根据W随x的增大而减小,所以x取1时,可获得最大利润20.86万元.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.。
一次函数(含参考答案)
一次函数(含参考答案)一次函数专题【基础知识回顾】一、一次函数的定义:一般的:如果y= (),那么y叫x的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y叫x的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b的同象是经过点(0,b),0)的一条,(-bk正比例函数y= kx的同象是经过点和的一条直线。
【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k≠0),当k>0时,其同象过、象限,此时时y随x的增大而;当k<0时,其同象过、象限,时y随x的增大而。
达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限例2 写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).例3已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).考点三:一次函数解析式的确定例4 一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是__________.考点四:一次函数与方程(组)、不等式(组)的关系例5 函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )A . x ≥B . x ≤3C . x ≤D .x ≥3 考点五:一次函数综合题例6 已知两直线L 1:y =k 1x +b 1,L 2:y =k 2x +b 2,若L 1⊥L 2,则有k 1•k 2=﹣1.(1)应用:已知y =2x +1与y =kx ﹣1垂直,求k ;(2)直线经过A (2,3),且与y =x +3垂直,求解析式.考点六:一次函数的应用例7 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为d 1,d 2,则d 1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【聚焦中考】1.直线y=-x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2. 若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m <33. 将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-24.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为()5. 如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP 的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C 在x 轴上移动时,点P 所在函数图象的解析式.【备考真题过关】一、选择题1.一次函数y =2x +4的图象与y 轴交点的坐标是( )A .(0,﹣4) B . (0,4) C . (2,0) D . (﹣2,0)2.已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( )A .第一象限B . 第二象限C . 第三象限D . 第四象限 3. 正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( )A .B .C .D . 4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③5.一次函数y=kx-k(k<0)的图象大致是()A.B.C.D.6.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.7.正比例函数y=x的大致图象是()A.B.C.D.8.正比例函数y=2x的大致图象是()A.B.C.D.9.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第一、二、四象限10.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限11.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.12.当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限 B.第一、四象限C.第二、三象限 D.第二、四象限二、填空题13.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__________.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.16.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.三、解答题17.已知直线y=2x-b经过点(1,-1),求关于x 的不等式2x-b≥0的解集.18. 已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=-1.(1)应用:已知y=2x+1与y=kx-1垂直,求k;(2)直线经过A(2,3),且与y=−13x+3垂直,求解析式.19. 如图,已知函数y=-12x+b的图象与x轴、y 轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-12x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.20. 如图,一次函数y=-x+m的图象和y轴交于点B,与正比例函数y=32x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.一次函数【重点考点例析】例1 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.例2 解:∵正比例函数y=kx 的图象经过一,三象限, ∴k>0,取k=2可得函数关系式y=2x (答案不唯一). 故答案为:y=2x (答案不唯一).例3 解:∵P 1(1,y 1),P 2(2,y 2)是正比例函数y=x 的图象上的两点, ∴y 1=,y 2=×2=, ∵<, ∴y 1<y 2. 故答案为:<.例4 解:当k >0时,此函数是增函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=3;当x=4时,y=6, ∴,解得,∴=2;当k <0时,此函数是减函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=6;当x=4时,y=3, ∴,解得,∴=﹣7.故答案为:2或﹣7.例5 解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.例6 解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.例7 解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.【聚焦山东中考】1. B.2. C.3. B.4.B.5.解:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB 或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.【备考真题过关】一、选择题1.B.2.A.3.B.4. A.5.A.6.B.7. C.8. B.9. B.10. C.11. C.12. A.二、填空题13.y=3x+2.14.(1,4),(3,1).15. 2200.16. 4.解:(1)把P(2,n)代入y=3x得n=3,2所以P点坐标为(2,3),把P(2,3)代入y=-x+m得-2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=-x+5得y=5,所以B点坐标为(0,5),×5×2=5.所以△POB的面积=12。
初二数学讲义(一次函数(1))(含答案)
初二数学讲义(一次函数(1))一、知识梳理:1.函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
2. 正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ 是一次函数的特殊情况,即在一次函数中b 取零。
当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx (k 是常数,k ≠0)(2)必过点:(0,0)、(1,k )(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3. 一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4.直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2(2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 25.三个一次的关系:任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围二、重点例题与同步训练:1.已知等腰三角形的周长为20cm ,将底边y (cm )表示成腰长x (cm )•的函数关系式是____________,其自变量的取值范围是_____________.2. 若函数21(3)45m y m x x +=++-是一个一次函数.则m=________________.同步训练:已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.3. 已知abc ≠0,而且a b b c c a c a b+++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限4. 过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线 可以作( )(A )4条 (B )3条 (C )2条 (D )1条5. 设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6. 当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a ≠0 (D )-4<a<27.定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4).则g[f(﹣5,6)]等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5) D.(﹣5,6)同步训练:定义:()(0)f x kx b k=+≠,(())()(0)f f x kf x b k=+≠满足:(())43f f x x=+,求()f x的解析式.8.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程11+=1x1m-的解为▲9.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d (P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.10. 如图11-31所示,已知直线y=x+3的图象与x 轴、y 轴交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分,求直线l 的解析式.同步训练. 已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B•在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,•求正比例函数和一次函数的解析式.11. 已知点P 在直线2y x =+上移动,(10),(10)A B -,,,ABP ∆的面积s 的取值范围是12s ≤≤,则点P 的横坐标的取值范围是____________________________.12. 在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( ) (A )2个 (B )4个 (C )6个 (D )8个13. 设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2014),那么S 1+S 2+…+S 2014=_______.14. 已知:一次函数y= x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.(解此题时,可以用定理:若直线11112222(0)(0),y k x b k y k x b k =+≠=+≠与垂直121k =-则k .)课后作业:1.已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >22. 如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( )A .-5B .-2C .3D . 53. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >24. 已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<15. 已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx +2将梯形分成面积相等的两部分,则k 的值为A. -32B. -92C. -74D. -72 6. 若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.7.已知直线1y kx b y x =+=+与直线平行,且该直线与坐标轴所围三角形面积是2,求该直线解析式.8. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换: ①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于【 】A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)9. 已知a,b,c 均为非零实数,且=a b c b c a c a b k c a b +-+-+-==,直线y kx b =+与坐标轴围成的三角形面积是2,求直线解析式.作业答案:1.D ;2.B ;3.D ;4.A ;5.A ;6. y=2x+7或y=-2x+3 ;7.2,2y x y x =+=-;8.C;9.2,2,22y x y x y x y =+=-=-+=--答案:1.y=20-2x, 5<x<10;2. 0m =或3m =-;同步:≠1;-13.3.B;4.C ;5.B ;6.D ;7.A;同步:()21,()23f x x f x x =+=--;8.x=3;9. 【答案】解:(1)由题意,得|x|+|y|=1。
(完整版)利用一次函数解决实际问题(含答案)
利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。
因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。
(完整版)利用一次函数解决实际问题(含答案)
利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。
因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。
一次函数应用题(讲义及答案)
一次函数应用题(讲义)➢课前预习1.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10 km;②出发1.25 h后两人相遇;③出发2 h后甲到达C村庄;④甲每小时比乙多骑行8 km.其中正确的个数是()A.1个B.2个C.3个D.4个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②甲走完全程用了40分钟;③乙用16分钟追上甲;④乙走完全程用了30分钟;⑤乙到达终点时,甲离终点还有300米.其中正确的结论是___________.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y与x之间的函数关系,结合图象解答下列问题:(1)求线段AB所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a的值;(3)出发多长时间,两车相距140千米?3.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有______个,甲机器每小时加工______个零件,乙机器排除故障后每小时加工______个零件;(2)求y与x之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为_____米/分,点M的坐标为__________;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A地出发,经过多长时间在返回途中追上乙?x/分45.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率降低到原来的12;乙运输队在整个运输过程中工作效率保持不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x (天)的函数图象如图所示,结合图象解答下列问题:(1)a=________,b=________.(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50吨物资时x的值.6.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为________千米/时,a=________;(2)求快车的速度和B点坐标;(3)两车出发后几小时相距的路程为200千米?请直接写出答案.【参考答案】➢课前预习1.D➢精讲精练1.①②④2.(1)线段AB所在直线的函数解析式为140280y x=-+;甲乙两地之间的距离为280千米;(2)a的值为210;(3)出发1 h或3 h时,两车相距140千米.3.(1)270,20,40;(2)50(01)2030(136090(36)x xy x xx x<⎧⎪=+<⎨⎪-<⎩≤≤≤);(3)在整个加工过程中,甲加工1.5小时或4.5小时时,甲与乙加工的零件个数相等.4.(1)240,(6,1200);(2)2402640y x=-+;(3)甲从A地出发,经过8分钟在返回途中追上乙;5.(1)5,11;(2)2525y x=+(511)x≤≤;(3)乙运输队比甲运输队多运50吨物资时,x的值为6或9.6.(1)60,360;(2)快车的速度为120km/h,B点的坐标为(4,0);(3)两车出发149h,349h或143h时,相距的路程为200千米.。
一次函数应用题及答案
一次函数应用题及答案一次函数应用题及答案 1有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推。
最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多。
那么这群猴子有多少只?方法一:方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。
所以a+4=b+8,即b=a-4个。
那么就有9a=10(a-4)+8。
解得a=32。
所以桃子有32×10+4=324个。
每只猴子分得32+4=36个,所以猴子有324÷36=9只。
方法二:第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。
那么第一只猴子分得的那1/10是40-8=32个。
所以桃子总数是32×10+4=324个。
每只猴子吃32+4=36个,那么有324÷36=9只猴子。
一次函数应用题及答案 21、题目:某市出租车收费标准为:起步价10元,3千米后每千米的价格为2.4元,小明乘坐出租车走了x千米(x>3),则小明应付车费____元.小明乘坐出租车走了x千米(x>3),则前3千米的费用为10元,超过3千米的费用为:2.4(x3)元,则小明应付车费为:10+2.4(x3)=2.4x+2.8(元).故答案为:2.4x+2.8.2、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.3、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.4、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费46.5元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:46.5÷0.62=75(千瓦时)答:小明家用电75千瓦时.5、题目:某市居民用电的价格为每千瓦时0.52元.小明家上个月付电费44.2元,小明家用电多少千瓦时?小明家用电的千瓦数为:44.2÷0.52=85(千瓦时)答:小明家用电85千瓦时.。
一次函数的简单应用(解析版)
5.5一次函数的简单应用一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.一、单选题1.小苏现已存款180元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y (元)与时间x (月)之间的关系式是( )A .10y x =B .180y x =C .18010y x =-D .18010y x =+ 【答案】D【提示】根据存款总数=已存款180元+x 个月的存款数,可以写出存款总金额y (元)与时间x (月)之间的函数关系式,从而可以解答本题. 【解答】解:由题意可得,18010y x =+. 故选:D .【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出其中的函数关系式. 2.下列变量之间关系中,一个变量是另一个变量的正比例函数的是( ) A .正方形的面积S 随着边长x 的变化而变化 B .正方形的周长C 随着边长x 的变化而变化C .水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化 【答案】B【提示】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A 、正方形的面积S 随着边长x 的变化而变化的关系式,关系式为S =x2,不是正比例函数,故错误;B 、正方形的周长C 随着边长x 的变化而变化,关系式为C =4x ,是正比例函数,故正确;C 、水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化,关系式为V =10−0.5t ,不是正比例函数,故错误;D 、面积为20的三角形的一边a 随着这边上的高h 的变化而变化的关系式为a =40h,不是正比例函数,故错误. 故选:B .【点睛】本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义:形如y=kx (k≠0)的函数为正比例函数是解题的关键.3.小张加工某种机器零件,工作一段时间后,提高了工作效率.小张加工的零件总数m (单位:个)与工作时间t (单位:时)之间的函数关系如图所示,则小张提高工作效率前每小时加工零件( )个A .3B .4C .5D .6【答案】B【提示】此题只要能求出3时之后的一次函数解析式,从而求出当x=3时的纵坐标,除以3即可. 【解答】解:从图象可知3时之后的函数图象为一次函数且经过(5,24),(6,30) 设该时段的一次函数解析式为:y kx b =+,可列出方程组:524630k b k b +=⎧⎨+=⎩,求解得:66k b =⎧⎨=-⎩∴一次函数解析式为:66y x =-,当3x =时,12y =,1234∴÷=故选:B .【点睛】本题考查了一次函数的应用,熟练掌握求解一次函数解析式和掌握图象中的关键拐点含义是解题的关键.4.食用油沸点的温度远高于水的沸点温度(100℃).小明为了用刻度不超过100℃的温度计测量出某种食用油沸点的温度,在锅中倒人一些这种食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表: 时间/s t10 20 30 40油温/y ℃ 10 30 50 70 90而且,小明发现,烧了110s 时,油沸腾了.你估计这种油沸点的温度是( )A .200℃B .230℃C .260℃D .290℃【答案】B【提示】由表中数据发现油温与时间成一次函数关系,根据表中数据,求出一次函数解析式,然后把x=110代入即可.【解答】解:设油温与时间的函数关系是y=kx+b ,则103010b k b =⎧⎨=+⎩,解得210k b =⎧⎨=⎩ ∴y=2x+10,当x=110时,y=2×110+10=230. 故选:B .【点睛】本题主要考查的是一次函数的应用,关键是根据表中数据,求出一次函数解析式. 5.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC 的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<<C .212(012)y x x =-<<D .16(412)2y x x =-<< 【答案】B【提示】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【解答】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >, ∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键.6.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了14.如果加满汽油后汽车行驶的路程为km x ,油箱中的剩油量为L y ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .0.0625,0y x x =>B .500.0625,0y x x =->C .0.0625,0800y x x =≤≤D .500.0625,0800y x x =-≤≤ 【答案】D【提示】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为50 L 的汽车,加满汽油后行驶了200 km 时,油箱中的汽油大约消耗了14,可得:14×50÷200=0.0625L/km ,50÷0.0625=800(km ), 所以y 与x 之间的函数解析式和自变量取值范围是:y =50−0.0625x ,0≤x≤800, 故选D .【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②2分钟后,乙每分钟走50米;③甲比乙提前3分钟到达B 地;④当x=2或6时,甲乙两人相距100米.其中,正确的是( )A.①②③B.②③④C.①②④D.①②【答案】C【提示】根据函数图像中的信息,逐一解答即可判定.【解答】解:由图像可得:①甲图像是正比例函数,甲每分钟走600÷6=100(米),故①正确;②两分钟后,乙每分钟走5003005062-=-(米),故②正确;③甲到达B地所用的时间是6分钟,乙前2分钟走300米,2分钟之后速度为50米/分,2分钟之后所用的时间为600300650-=(分),所以甲比乙提前2分钟到达B地,故③不正确;④当x=2时,甲路程为100×2=200(米),乙路程为300米,则甲乙两人相距100米;当x=6时,甲路程为600米,乙路程为500米,则甲乙两人相距100米,故④正确;故正确的有①②④,故选:C.【点睛】本题考查了一次函数的图像,准确识图并根据函数图像的变化情况获取信息是解题的关键.8.“吉祥物趣事”,某天,墩墩和容融在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速行走3600米、当墩墩领先容融1000米时,墩墩停下来休息,当容融追上墩墩的瞬间,墩墩立即又以原来的速度继续走向终点,在整个行走过程中,墩墩和容融之间的距离y(米)与它们出发时间x(分钟)的关系如图所示,下列说法错误的是()A.容融的速度为40米/分钟B.墩墩休息了23分钟C.第85分钟时,墩墩到达终点D.领先者到达终点时,两者相距200米【答案】B【提示】根据题意和图象中的数据,可以计算出各个选项中的结果是否正确,然后即可判断哪个选项符合题意.【解答】解:由图象可得,容融的速度为:36009040÷=(米/分钟),故选项A正确,不符合题意;÷=(分钟),故选项B错误,符合题意;墩墩休息了:10004025墩墩的速度为:4010005060+÷=(米/分钟),5025(36006050)6085++-⨯÷=(分钟),即第85分钟时,墩墩到达终点,故选项C正确,符合题意;-⨯=(米),(9085)40200即领先者到达终点时,两者相距200米,故选项D正确,不符合题意;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.牛奶配送员小吴从县城出发,骑配送车到米村配送牛奶,途中遇到在县城上学的外甥张聪从米村步行返校上学,小吴在米村配送牛奶后,在返回县城途中又遇到张聪,便用配送车载上张聪一起返回县城,结果小吴比预计时间晚到5分钟.二人与县城间的距离y(km)和小吴从县城出发后所用的时间x(min)之间的关系如图,假设两人之间的交流时间忽略不计,则下列说法正确的有()个.①小吴到达米村后配送牛奶所用时间为25min.②小吴从县城出发,最后回到县城用时100min.③两人第一次相遇时,小吴距离米村2km.④张聪从米村到县城步行速度为0.05km/min.A.1 B.2 C.3 D.4【答案】D【提示】从图中可以看出小吴和张聪并不是同时出发的,小吴还有在A村停留时间30分钟,小吴去A村和返回速度不一样,这些都可以从图中看出来.小吴到达米村后配送牛奶所用时间为停留时间即65与35的差可对①判断;小吴从县城出发到返回县城所用时间,从图中可以看出包括去时用的时间加在A 村待的时间加上返回遇张聪的时间加上原计划时间再加上晚到1分钟,即可对②进行判断;由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小王距县城25×735=5千米,进一步可对③判断;求出两次相遇时的距离及间隔时间即可求出张聪从米村到县城步行速度,从而对④进行判断 【解答】①小吴到达米村后配送牛奶所用时间为60-35=25min ,故①正确; ②从图中可以看出小吴从离城7千米到2千米用时85分钟 小吴返回的速度=(7-2)÷(85-60)=0.2(千米/分钟), 小吴原计划返回用时7÷0.2=35分钟, 结果小吴比预计时间晚到5分钟.故小吴从县城出发,最后回到县城用时为35+25+25+10+5=100min .故②正确; ③由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小吴距米村:7-25×735=7-5=2千米,故③正确;④两次相遇时张聪走的路程为5-2=3千米,用时为85-25=60分钟, 所以步行速度为:3÷60=0.05千米/分钟,故④正确. 正确的结论有4个, 故选:D .【点睛】此题考查了一次函数的应用,注意数形结合以及行程问题的解决方法.10.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,56t =或54或154或256.其中正确的结论有( )A .4个B .3个C .2个D .1个 【答案】A【提示】直接根据函数图像可判断①②;分别求出两条直线的解析式,令y y =甲乙可判断③;令50y y -=甲乙,结合先出发的时间内以及乙到达目的地的时间进行计算可得结论④.【解答】由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-, 解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③正确;令50y y -=甲乙,可得6010010050t t -+=,即1004050t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为56或54或154或256时,两车相距50千米,∴④正确;综上可知正确的有①②③④共4个, 故选:A .【点睛】本题考查了一次函数的实际应用,从函数图像上读取信息,读懂题意,理清甲乙两车的行驶情况,运用数形结合思想解题是关键.11.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时.若用(x 时)表示行走的时间,(y 千米)表示余下的路程,则y 关于x 的函数解析式是______. 【答案】()3400.75y x x =-≤≤【提示】先求出小黄从A 地到B 地所需的时间,从而可得x 的取值范围,再利用余下的路程等于3减去已走的路程即可得.【解答】解:小黄从A 地到B 地所需的时间为340.75÷=(时), 则00.75x ≤≤, 由题意得:34y x =-,则y 关于x 的函数解析式是()3400.75y x x =-≤≤, 故答案为:()3400.75y x x =-≤≤.【点睛】本题考查了一次函数的应用,找准等量关系,并正确求出自变量的取值范围是解题关键. 12.公民的月收入超过5000元时,超过部分须依法缴纳个人所得税,当超过部分在3000 元以内(含3000元)时税率为3%.根据已知信息,公民每月所缴纳税款y (元)与月收入x (元)之间的函数关系式是__________,自变量的取值范围是__________. 【答案】 003150.y x =-+ 5000<x≤8000【提示】超过部分在3000元以内(含3000元)时税率为3%,所以必须从收入中减去5000后,再去考虑缴税多少,即可解答.【解答】解:根据题意可知y 与x 之间的函数关系式为:()50003003150%.y x x =-⨯=-+,(5000<x≤8000).故答案为:003150.y x =-+;5000<x≤8000.【点睛】本题主要考查的是一次函数的实际问题,理解题意,根据题意得出需要缴税的部分为()5000x -元,是解题的关键.13.在槐荫区“勾股数学”杯初中校际联赛中,小明的队伍在第一轮中获得积分50分,第二轮共10道题,每答对一道题得10分,则两轮总积分y (分)与第二轮答对题目数量x (道)之间的关系式为__________(010x ≤≤,x 为正整数). 【答案】5010y x =+【提示】根据“两轮总积分y (分)等于第一轮积分与第二轮积分的和”,用含有x 的代数式表示第二轮的积分即可. 【解答】解:由题意得,故答案为:5010y x =+;【点睛】本题考查函数关系式,理解“两轮总积分y (分)”的意义,掌握“积分=每题得分×答对的题目数”是正确解答的关键.14.某公司准备和A 、B 两家出租车公司中的一家签订合同.设A 、B 两出租车公司收费y (元)与行程x (每千米)的关系分别是l1,l2,若行驶大于2500km ,则选择 _____出租车公司较合算.【答案】A【提示】根据函数图象作出判断即可. 【解答】解:由图象可知:当1500x <时,12y y >;当1500x >时,12y y <; ∵行驶大于2500km ,即2500x >, ∴选择A 出租车公司较合算, 故答案为:A .【点睛】本题考查一次函数的实际应用,根据图象越高费用也越高判断出图象各部分的费用高低,再作出选择是解答本题的关键.15.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方. 月用水量不超过12方部分 超过12方不超过18方部分 超过18方部分收费标准(元/方) 2 2.53【答案】20【提示】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x 方,水费为y 元,继而求得关系式为y=39+3(x-18);将y=45时,代入上式即可求得所用水的方数. 【解答】解:∵45>12×2+6×2.5=39, ∴用户5月份交水费45元可知5月用水超过了18方,设用水x 方,水费为y 元,则关系式为y=39+3(x-18). 当y=45时,x=20, 即用水20方. 故答案为:20.【点睛】本题主要考查了一次函数的应用,用待定系数法求函数的解析式和根据自变量的值求函数值.弄清对应的水费是解决问题的关键.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x (小时)而变化的情况如图所示.研究表明,当血液中含药量5y ≥(微克)时,对治疗疾病有效,则有效时间是__________小时.【答案】3【提示】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得.【解答】解:当2x ≤时,设1y k x =,把(2,6)代入得, 162k =,解得,13k =, ∴当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴当2x >时,82734y x =-+,把5y =代入3y x =中,得53x =,把5y =代入82734y x =-+中,得143x =,则145333-=(小时), 即该药治疗的有效时间是3小时, 故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.2022年4月7日,许昌市首批新能源出租车上路,新车空间更大,舒适度更高,受到大众欢迎.新车的收费方式也做了调整,新车的打车费用y (单位:元)与行驶里程x (单位:千米)的函数关系如图所示.老款出租的收费方式为:不超过2千米收费5元,超过2千米部分收费1.5元/千米,同时,每次再加收1元的燃料附加费.小明爸爸从家到公司打车上班的行驶里程为22千米,则他上班乘坐新车的打车费用比老款车多______元.【答案】3【提示】待定系数法求出x≥2时y 关于x 的函数解析式,再求出x=22时y 的值可求得新车的费用,根据老款车的收费标准进行计算求得老款车的费用,比较即可求解. 【解答】解:当行驶里程x≥2时,设新车的打车费用为y=kx+b , 将(2,7)、(7,15)代入,得:27715k b k b +=⎧⎨+=⎩,解得:85195k b ⎧=⎪⎪⎨⎪=⎪⎩,∴y=85x+195,当x=22时,y=85×22+195=39, 即新车的打车费用为39(元),老款车的费用为:5+1.5×(22-2)+1=36(元),39-36=3(元). 故答案为:3.【点睛】本题主要考查一次函数的图象与待定系数法求一次函数解析式,熟练掌握待定系数法求得一次函数解析式是解题的关键.18.已知A ,C 两地之间有一站点B ,甲从A 地匀速跑步去C 地,2分钟后乙以50米/分钟的速度从站点B 走向C 地,两人到达C 地后均原地休息.甲、乙两人与站点B 的距离y(米)与甲所用的时间x(分钟)之间的关系如图所示.(1)站点B 到C 地的距离为_____米; (2)当x=_____时,甲、乙两人相遇.【答案】 800 10【提示】(1)由图象可知乙从站点B 到C 地所用时间,再用时间×速度=路程得出结论; (2)先求出甲的速度,再根据追击问题写出方程,解方程即可.【解答】解:(1)根据题意,站点B 到C 地的距离为:50×(18-2)=800(米), 故答案为:800;(2)由图象可知甲的速度:400÷5=80(米/分), 设经过x 分钟,甲、乙两人相遇, 则80x=400+50(x-2), 解得x=10,∴甲出发10分钟,甲、乙两人相遇, 故答案为:10.【点睛】本题考查了一次函数的实际应用,理解图象上各点的实际含义,并根据题意列方程是解题的关键.三、解答题19.某种气体在0℃时的体积为100L ,温度每升高1℃,它的体积增加0.37L . (1)写出气体体积()L V 与温度()t ℃之间的函数表达式(2)求当温度为30℃时气体的体积.(3)当气体的体积为107.4L 时,温度为多少摄氏度? 【答案】(1)1000.37V t =+ (2)111.1L (3)20℃【提示】(1)根据题意,直接写出函数表达式即可,气体体积=0℃时的体积+增加的体积; (2)将30t =℃代入(1)中的函数表达式即可; (3)将107.4L V =代入(1)中的函数表达式即可. 【解答】(1)解:根据题意得:1000.37V t =+.(2)当30t =℃时,1000.3730111.1V =+⨯=, ∴当温度为30℃时,气体的体积为111.1L . (3)当107.4L V =时,107.41000.37t =+, 解得:20t =,∴气体的体积为107.4L 时,温度为20℃.【点睛】本题主要考查了一次函数的实际应用,解题的关键是根据题意找出等量关系,写出一次函数的表达式.20.在某一段时期,一年期定期储蓄的年利率为4.14%,规定储蓄利息应付个人所得税的税率为5%.设按一年期定期储蓄存入银行的本金为x 元,到期支取时扣除个人所得税后实得本利和为y 元. (1)求y 关于x 的函数表达式.(2)把18000元钱按一年期定期储蓄存入银行.问:到期支取时,扣除个人所得税后实得本利和为多少元?【答案】(1) 1.03312y x = (2)18707.94元【提示】(1)根据利息=本金⨯利率⨯时间列式计算求出本金;根据税率为利息的20%可得扣除个人所得税后实际利息=利息()120%⨯-;(2)将18000x =代入(1)的解析式进行计算即可求解.【解答】(1)解:依题意,()()1 4.14%1 4.14%5%1 1.04140.00207 1.03933y x x x x =+⨯-⨯⨯=-= 即: 1.03933y x =,(2)当18000x =时, 1.039331800018707.94y =⨯= 到期支取时,扣除个人所得税后实得本利和为18707.94元.【点睛】本题考查了一次函数的应用,根据题意列出函数关系是解题的关键.21.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的销售方式,让大山深处的农产品远销全国各地.若要对某地特色花生与茶叶两种产品助销,已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同. (1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,计划两种产品共助销600千克,若花生销售m 千克()120m ≥,花生和茶叶的销售总利润为w 元,求w 的最大值. 【答案】(1)每千克花生10元,每千克茶叶50元(2)当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200【提示】(1)设每千克花生x 元,每千克茶叶(40)x +元,列出一元一次方程求解即可;(2)设花生销售m 千克,茶叶销售(600)m -千克,先根据总成本不高于1260元,且花生的数量不高于茶叶数量的2倍求出m 的取值范围,再根据利润之和求出函数解析式,根据函数的性质求出最大值.【解答】(1)解:设每千克花生x 元,每千克茶叶(40)x +元, 根据题意得:5010(40)x x =+, 解得:10x =,40401050x +=+=(元),答:每千克花生10元,每千克茶叶50元;(2)解:设花生销售m 千克,茶叶销售(600)m -千克获利最大,利润w 元, 由题意得:(106)(5036)(600)484014108400w m m m m m =-+--=+-=-+,100-<,w ∴随m 的增大而减小,120m ,∴当120m =时,利润w 最大,此时花生销售120千克,茶叶销售600120480-=(千克),1012084007200w =-⨯+=最大(元), ∴当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200.【点睛】本题考查一次函数的性质和一元一次方程的应用,解题的关键是读懂题意,列出方程和函数关系式进行求解.22.某电信公司手机的A 类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计;B 类收费标准如下:没有月租费,但通话费按0.6元/min 计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y (元)与通话时长x (分)之间的关系式: A 类:________;B 类:______.(2)若每月平均通话时长为300分钟,选择类收费方式较少.(3)求每月通话多长时间时,按A ,B 两类收费标准缴费,所缴话费相等. 【答案】(1)0.212y x =+;0.6y x = (2)选择A 收费方式较少 (3)30分钟【提示】(1)根据题目中收费标准可列出函数关系式; (2)根据两种收费方式,计算结果比较得出答案即可;(3)设每月通话时间x 分钟,按A 、B 两类收费标准缴费,所缴话费相等列出方程解答即可. 【解答】(1)解:根据题意,得A 类:0.212y x =+,B 类:0.6y x =;故答案为:0.212y x =+;0.6y x =. (2)解:A 类收费:120.230072+⨯=元;B 类收费:0.6300180⨯=元;18072>,所以选择A 类收费方式;(3)解:设每月通话时间x 分钟,根据题意,得120.20.6x x +=,解得:30x =.答:每月通话时间30分钟,按A 、B 两类收费标准缴费,所缴话费相等【点睛】本题主要考查一次函数的应用,由条件列出相应的函数关系式是解题的关键.23.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元. (1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?【答案】(1)500.4A y x =+,0.6B y x = (2)选择A 类 (3)350元【提示】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解; (2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解;(3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【解答】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+;B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) ∵AB y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元), ∴小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.24.如图,有80名师生要到离学校若干千米的大剧院参加演出,学校只有一辆能做40人的汽车,学校决定采用步行和乘车相结合的办法:先把一部分人送到大剧院,车按原路返回接到步行的师生后开往大剧院,其中车和人的速度保持不变.(学生上下车,汽车掉头的时间忽略不计).y 表示车离学校的距离(千米),x 表示汽车所行驶的时间(小时).请结合图象解答下列问题:(1)学校离大剧院相距 千米,汽车的速度为 千米/小时; (2)求线段BC 所在直线的函数表达式;(3)若有一名老师因临时有事晚了0.5小时出发,为了赶上学生,该老师选择从学校打车前往,已知出租车速度为80千米/小时,请问该老师能在学生全部达到前赶到大剧院吗?并画出相关图象. 【答案】(1)15,60 (2)105604y x =-(3)该老师能在学生全部达到前赶到大剧院,图象见解析【提示】(1)由图象直接可得学校与大剧院的距离,由路程除以时间可得汽车的速度; (2)设步行速度为m 千米/小时,可得:15(60)21532m +=⨯,即可解得15(32B ,15)8,从而可得11(16C ,15),用待定系数法得线段BC 所在直线的函数表达式为105604y x =-; (3)由学生全部达到大剧院时,1116x =,出租车到达大剧院时,15110.58016x =+=,知该老师能在学生全部达到前赶到大剧院,再画出图象即可.【解答】(1)解:由图象可得,学校与大剧院相距15千米, 汽车的速度为115604÷=(千米/小时), 故答案为:15,60;(2)设步行速度为m 千米/小时, 根据题意得:15(60)21532m +=⨯, 解得4m =, ∴步行的路程为15154328⨯=(千米), 15(32B ∴,15)8,。
一次函数的应用含答案
一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。
一次函数解析式典型例题解析及部分题答案
一次函数解析式典型题型一. 定义型(一次函数即X 和Y 的次数为1) 例1. 已知函数y m xm =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30 二. 点斜型(已知斜率和经过的一点)例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数y kx =-3的图像过点(2,-1) ∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。
三. 两点型(已知图像经过的两点)已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为 解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24 四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为y=-2x+2。
y2O 1 x解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k bb∴=-=⎧⎨⎩k b 22故这个一次函数的解析式为y x =-+22 五. 斜截型(已知斜率k 和截距b )两直线平行,则k1=k2;两直线垂直,则k1=-1/k2例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。
当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2。
一次函数应用题及答案
一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中水的深度与注水时间之间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是 .元/件)(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量? (3)由于灾情严重,政府部门决定对药品供应方提供价格 求量增加6应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考______________________________________________________ ______________________________________________________ ______________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+⎧⎨=-+⎩解得:28 xy=⎧⎨=⎩∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数应用题(讲义)
一、知识点睛
1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函
数图象与_实际场景____________对应起来;
2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;
3.结合实际场景解释所求结果.
二、精讲精练
1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站
后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:
(1)直接写出快、慢两车的速度及A,B两站间的距离;
(2)求快车从B站返回A站时,y与x之间的函数关系式;
(3)出发几小时,两车相距200千米?请直接写出答案.
2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的
函数图象如图中折线所示,该加油站截止至13日调价时的
销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:
请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量x 为
多少时,销售利润为4万元;
(2)求出线段BC 所对应的函数关系式.
3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆
柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题: (1)图2中折线ABC 表示 槽中水的深度与注水时间之间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的
纵
坐
标
表
示
的
实
际
意
义
是 .
(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
元/件)
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积. (4)若乙槽中铁块的体积为112立方厘米(壁厚不计)
,求甲槽底面积(直接写结果).
甲槽
4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图
所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量? (3)由于灾情严重,政府部门决定对药品供应方提供价格 稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
图1
图2
5.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机
前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:
(1)求饮水机的存水量y(升)与放水时间x(分钟)
(x≥2)的函数关系式.
(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?
(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?
三、回顾与思考
______________________________________________________ ______________________________________________________ ______________________________________________________【参考答案】
一、知识点睛
1.轴、点、线;实际场景
2.函数图象
二、精讲精练
1.(1)快车速度为120km/h,慢车速度为80km/h ,
A,B两站间的距离为1200km;
(2)PQ:y=-40x+1320 (11≤x≤15);
QH:y=-120x+2520(15<x≤21);
(3)x=5,7,58
3
时,两车相距200千米.
2.(1)x=4;
(2)y=1.1x(5≤x≤10).
3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2
DE:y=-2x+12
联立
32
212 y x
y x
=+
⎧
⎨
=-+⎩
解得:
2
8 x
y
=⎧
⎨
=⎩
∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.
(3)84立方厘米;
(4)60平方厘米.
4.(1)该药品的稳定价格为36(元/件),
稳定需求量为34(万件);
(2)当药品每件价格在大于36小于70时,
该药品的需求量低于供应量;
(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.
5.(1)
994188
2
1059
y x x
=-+≤≤
();
(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。