数学建模入门

合集下载

数学建模 第一篇第一章

数学建模 第一篇第一章

第一篇 线性规划模型及应用第一章 线性规划问题的数学模型及其解的性质§1-1-1线性规划问题的数学模型引例:某工厂生产某种型号的机床,每台机床上需要2.9米、2.1米和1.5米长的三种轴各一根,这些轴需要用同一种圆钢制作,圆钢的长度为7.4米。

如果要生产100台机床,应如何下料,才能使得用料最省?分析:对于每一根长为7.4米的圆钢,截成2.9米、2.1米和1.5米长的毛坯,可以有若干种下料方式,把它截成我们需要的长度,有以下8种下料方式(表1-1-1):表1-1-1 下料方式及每种方式毛坯的数目下料方式是从大到小、从长到短的顺序考虑的。

1.假若考虑只用3B 方式下料,需要用料100根;2.若采用木工师傅的下料方法:先下最长的、再下次长的、最后下短的(见表1-1-2):表1-1-2 木工师傅的下料情况的用料表动一下脑筋,就可以节约用料4根,降低成本。

但这仍然不是最好的下料方法。

3.如果要我们安排下料,暂不排除8种下料方式中的任何一种,通过建立数学模型(线性规划数学模型)进行求解,寻找最好的下料方案。

设用1B ,2B ,3B ,4B ,5B ,6B ,7B ,8B 方式下料的根数分别为87654321,,,,,,,x x x x x x x x ,则可以建立线性规划数学模型:⎪⎪⎩⎪⎪⎨⎧≥≥+++++≥++++≥++++++++++=0,,,,,,,10043231002321002..m in 8765432187643176532432187654321x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x S 用LINGO 10.0软件求解,程序如下: Min=x1+x2+x3+x4+x5+x6+x7+x8;2*x1+x2+x3+x4>=100;2*x2+x3+3*x5+2*x6+x7>=100;x1+x3+3*x4+2*x6+3*x7+4*x8>=100;根据输出结果,得:,20,4021==x x 90m in ,0,0,30,0,0,0876543=======S x x x x x x (最优解不唯一);或90m in ,0,0,0,0,30,0,50,1087654321=========S x x x x x x x x 。

数学建模基础教程

数学建模基础教程

数学建模新手“必读教程”第一部分基本知识:一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

数学建模入门 适合参加数学建模的同学初步认识建模过程并学习讲解

数学建模入门  适合参加数学建模的同学初步认识建模过程并学习讲解

2019/6/9
数学建模实用教程-高教出版社
12
“有没有傻的不怕死的?”
“都怕死。”
“会不会一枪打死两只?”
“不会。”
“所有的鸟都可以自由活动吗?”
“完全可以。”
“如果您的回答没有骗人,打死的鸟要是挂在
树上没掉下来,那么就剩一只,如果掉下来, 就一只不剩.”
这就是数学建模,从不同的角度思考一个问题,
增强自身的能力、水平和综合素质;
增强自身的综合实力、优势和竞争力;
修炼成常人所没有的特长
----“数学建模能力”.
我晕!真的有这 么悬乎吗?忽悠
我们呀!
2019/6/9
数学建模实用教程-高教出版社
22
兴趣决定思想,思想主导意识,意识 指导行动,行动产生结果.
数学建模途中条条路坎坷,我爱好我
4
模型不是原型,既简单于原型,又高于原型.
模型的分类
具体模型
模型


抽象模型
直观模型 物理模型
思维模型
符号模型


数式模型
数学模型 图形模型
2019/6/9
数学建模实用教程-高教出版社
5
2、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一 个特定目的,根据特有的内在规律,做出一些必要 的假设,运用适当的数学工具得到的一个对问题近 似刻划的数学结构,以便于人们更深刻地认识所研 究的对象 .
具软件的使用,最主要是matlab和lingo. • 选读优秀论文,练习论文写作,提高写作能力.
2019/6/9
数学建模实用教程-高教出版社
27
(4)如何做好数学建模?
Mathematical modeling cannot be learned by reading books or listening to lectures, but only by doing!----Practice!

数学建模基础知识

数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。

它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。

在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。

一、概率与统计概率与统计是数学建模的基础。

概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。

在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。

1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。

离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。

在选择概率模型时,需要根据实际问题的特点进行合理选择。

1.2 统计方法统计方法用于从观测数据中推断总体的特征。

在数学建模中,经常需要根据样本数据对总体参数进行估计。

常用的统计方法包括点估计和区间估计。

点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。

另外,假设检验和方差分析也是数学建模中常用的统计方法。

二、线性代数线性代数是数学建模的重要工具之一。

它研究线性方程组的解法、向量空间与线性变换等概念。

在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。

线性代数还广泛应用于图论、网络分析等领域。

2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。

求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。

高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。

2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。

数学建模入门知识

数学建模入门知识

2008 数码相机定位
2009
制动器试验台的 控制方法分析
眼科病床的合理 安排
2010年上海世博 会影响力的定量 评估 交巡警服务平台 的设置与调度
卫星和飞船的跟 踪测控
输油管的布置 企业退休职工养 老金制度的改革
储油罐的变位识 2010 别与罐容表标定 2011 城市表层土壤重 金属污染分析
2012 葡萄酒的评价
1.4 数学建模的意义
•在一般工程技术领域数学建模仍然大有用武之地; •在高新技术领域数学建模几乎是必不可少的工具; •进入一些数学的新领域,为数学建模开辟了新处女地: 诸如经济、生态、人口、地质等领域。
Chap2 数模竞赛简介
01 数模竞赛的来源 05 数模竞赛的概况 02 数模竞赛的流程 06 数模竞赛的赛题 数模竞赛的知识储备 03 数模竞赛与优研 07 (西电) 04 数模竞赛类别 08 数模竞赛的素质要求

3.2 数学建模的论文撰写
0. 摘要
• • • • a. 模型的数学归类(在数学上属于什么类型) b. 建模的思想(思路) c. 算法思想(求解思路) d. 建模特点(模型优点,建模思想或方法,算法特点,结果 检验,灵敏度分析,模型检验…….) • e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法;符合打印文章 格式; 校对:务必认真。
刊登于次年“数学的实践与认识” 第1期
3.获得高水平学科竞赛奖的学生 满足以下条件之一即可: (1)ACM/ICPC国际大学生程序设计竞赛亚 洲区分站赛银奖及以上获得者; (2)全国大学生电子设计竞赛省级一等奖及 以上获得者; (3)全国大学生电子设计竞赛嵌入式系统专 题邀请赛、信息安全专题邀请赛和模拟电子 系统专题邀请赛国家二等奖及以上获得者; (4)全国大学生工程训练综合能力竞赛国家 二等奖及以上获得者; (5)美国大学生数学建模竞赛一等奖及以上 获得者;全国大学生数学建模竞赛国家一等 奖获奖学生;全国大学生数学建模竞赛国家 二等奖获奖学生且同时获得美国大学生数学 建模竞赛国际二等奖以上奖项1项;全国大学 生数学竞赛全国最高奖项获奖学生; (6)全国大学生“挑战杯”科技作品竞赛一 等奖前三名,二等奖前二名;全国大学生 “挑战杯”创业大赛一、二等奖第一名获奖 学生。

数学建模入门

数学建模入门

数学建模入门1. 简介数学建模是通过数学方法解决实际问题的过程。

它是现代科学和工程领域的重要工具之一。

在数学建模中,研究者根据问题的特点,选择合适的数学模型,并使用数学方法进行求解和分析。

本文将介绍数学建模的基本概念,步骤和常用方法,以帮助初学者入门。

2. 数学建模的步骤数学建模通常包括以下步骤:2.1. 理解问题在开始建模之前,我们首先需要完全理解问题。

这包括确定问题的背景,目标,以及所需要的输入和输出。

2.2. 建立数学模型建立数学模型是数学建模的核心步骤。

在这一步骤中,我们需要根据问题的特点选择适当的数学模型。

常用的数学模型包括线性模型,非线性模型,优化模型等。

2.3. 求解模型一旦模型建立完成,我们就可以使用数学方法来求解模型。

这包括使用数值方法,解析方法和模拟方法等。

2.4. 模型验证和分析在模型求解完成后,我们需要进行验证和分析。

这包括对模型的精度,稳定性和可行性进行评估。

2.5. 结果解释和应用最后,我们需要将模型的结果进行解释和应用。

这可以帮助我们理解问题,制定相应的决策,并进一步优化模型。

3. 常用的数学建模方法在数学建模中,有许多常用的数学方法可以帮助我们解决实际问题。

以下是其中几种常用的方法:3.1. 插值法插值法是通过已知数据点之间的曲线拟合来估计未知数据点的值。

常用的插值方法包括线性插值,拉格朗日插值和样条插值等。

3.2. 最小二乘法最小二乘法是一种基于最小化误差平方和的优化方法。

它可以用来拟合曲线,解决过拟合和欠拟合等问题。

3.3. 线性规划线性规划是一种通过线性目标函数和线性约束条件来进行优化的方法。

它在管理学,经济学和工程学等领域有着广泛的应用。

3.4. 离散事件模拟离散事件模拟是一种用来模拟离散事件和系统行为的方法。

它常用于研究生产过程,供应链管理和交通流动等问题。

4. 数学建模的应用领域数学建模在许多领域中都有着广泛的应用。

以下是其中几个常见的应用领域:4.1. 物理学在物理学中,数学建模被用来研究天体运动,量子力学,流体力学等问题。

数学建模入门

数学建模入门

数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。

随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。

本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。

一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。

只有准确定义问题,才能制定合理的建模方法。

2. 收集信息:在开始建模之前,需要收集相关的信息和数据。

这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。

3. 建立模型:建立模型是数学建模的核心步骤。

根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。

4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。

通过数值计算、优化算法等方法,得到问题的解析结果或近似解。

5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。

如果模型与实际情况有出入,需要对模型进行修正和完善。

6. 结果分析:分析模型的结果,得出对问题的解释和结论。

根据结果进行决策,提出相应的对策和建议。

二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。

包括概率分布、假设检验、回归分析等技术。

2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。

常见的最优化算法包括线性规划、整数规划、动态规划等。

3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。

通过建立微分方程模型,可以预测系统的未来发展趋势。

4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。

通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。

5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。

通过图论和网络模型,可以分析复杂系统的结构和性质。

数学建模基础

数学建模基础

数学建模基础引言数学建模是一种将现实中的问题转化为数学形式,通过数学模型来研究和解决问题的方法。

在现代科学和工程领域中,数学建模被广泛应用于各种领域,例如经济学、物理学、生物学、工程学等等。

本文将介绍数学建模的基础知识,包括数学建模的步骤、数学模型的分类、以及常用的数学建模方法和技巧。

数学建模的步骤数学建模的步骤通常分为以下几个阶段:1.理解问题:首先需要明确问题的背景和目标,了解问题的约束条件和限制,确保对问题的理解准确和全面。

2.建立数学模型:根据问题的特点和所需求解的内容,选择合适的数学模型来描述问题。

常见的数学模型包括方程模型、优化模型、概率模型等等。

3.分析模型:对建立的数学模型进行分析,探索模型的性质和特点。

可以通过数学理论、数值方法、计算机模拟等手段来进行模型的分析。

4.模型求解:根据所选的模型和分析的结果,求解模型并得到问题的解答。

求解方法可以是解析求解、数值求解或者结合两者的混合求解方法。

5.模型验证和评估:验证所建立的数学模型是否合理和可信,并评估模型的准确性和可用性。

可以通过实际数据的比对、模型的稳定性测试等手段来验证和评估模型。

6.结果解释和应用:根据所得的模型解答,解释结果的意义和影响,并探讨解答对实际问题的应用价值。

重要的是将数学模型的结果与实际问题相对应,确保解答的可行性和可操作性。

数学模型的分类数学模型可以按照多种方式进行分类。

常见的分类方式包括:1.静态模型和动态模型:静态模型是对问题在一个特定时刻或时间段内进行分析,不考虑时间的变化;动态模型则对问题随时间的变化进行建模和分析。

2.离散模型和连续模型:离散模型是对问题中离散事件或对象进行建模,通常使用离散数学工具进行分析;连续模型则对问题中连续的变量或对象进行建模,通常使用微积分和微分方程等连续数学工具进行分析。

3.硬性约束模型和软性约束模型:硬性约束模型是对问题中严格的限制条件进行建模,不允许违反;软性约束模型则对问题中某些条件进行宽松处理,允许有一定的违反程度。

第一章数学建模入门

第一章数学建模入门

第二步模型假设
必要而合理化的模 型假设应遵循两条 原则: A.简化问题; B.保持模型与实际 问题的“贴近度”
4)一间屋用相同大小型号的地砖。
2’.变量说明
1)设房间的长为am,宽为bm. (精确到小数点后一位)。 2)设三种型号规格的地砖的边长分别为
d i ( i 1, 2 ,3 )
类似于应用题中 的未知量假设
资料查阅十分重要
模型准备跟炒菜前的准备一样,准备得越 充分,解决问题就会越得心应手.
2.模型假设
1)房间地面是平整的,为一个标准 长方形。 2)假设玻化砖为正方形,三种型 号的边长分别为0.5m,0.6m,0.8m。 3)不考虑磁砖间的缝隙、房间的测 量误差、磁砖的尺寸误差、热胀冷 缩等因素。 抓大放小!
……
情况不一样,结果也不一样。
所以在建模前,必须对复杂的客观 世界进行适当地、合理地假设。 一、模型假设 1.假设用的是有声枪。 2.假设树上的小鸟都处于自然正常状态。
二、模型分析、建立与求解
在正常状态下,用有声枪打死一只后,射击声 音会惊动树上其余6只小鸟使其全飞走。所以最后
树上还剩0只小鸟。
(2)磁砖大小。
资料查阅十分重要
第一步 模型的准备(问题分析)
建模的问题可能来自各行各业,而我们都不 可能是全才.因此,当刚接触某个问题时,我们 可能对其背景知识一无所知.这就需要我们想方 设法地去了解问题的实际背景.通过查阅、学习, 可能对问题有了一个模糊的印象.再通过进一步 的分析,对问题的了解会更明朗化.
第三步 模型的建立
根据所做的假设,利用适当的数学工具(应用相应的数 学知识),建立多个量之间的等式或不等式关系,列出 表格,画出图形,或确定其他数学结构.

数学建模第一讲

数学建模第一讲
数学建模第一讲
目录
• 数学建模简介 • 数学建模基础知识 • 数学建模基本方法 • 数学建模案例分析 • 数学建模实践与挑战
01
数学建模简介
数学建模的定义
数学建模
使用数学语言、符号、公式等工 具,对现实世界的问题进行抽象 、简化、假设和推理,从而得出 数学模型的过程。
数学模型
根据实际问题建立起来的数学结 构,它可以用来描述和预测现象 的发展规律和趋势。
概率论建模方法的特点是能够描述随机性和不确定性,但计算过程可能较为复杂, 需要借助计算机软件进行模拟和计算。
04
数学建模案例分析
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常采用指数增长或逻辑增长模型来描述人口随时间变化的规律。通过收集历史数据并拟合模型参 数,可以预测未来人口数量,为政策制定提供依据。
数学建模的重要性
解决实际问题
数学建模是解决实际问题的有效 手段,通过建立数学模型,可以 更好地理解和解决现实世界中的
问题。
促进跨学科合作
数学建模需要不同领域的专家合作, 可以促进跨学科的合作和交流,推 动科学技术的发展。
提高数学应用能力
数学建模可以提高数学的应用能力, 将理论知识与实践相结合,增强学 生的综合素质。
进行研究和解决。
02
数学建模基础知识
代数基础
代数方程与不等式
掌握代数方程的解法,理解不等式的 性质和求解方法。
函数与极限
理解函数的定义和性质,掌握极限的 概念和计算方法。
微积分基础
导数与微分
理解导数的概念和性质,掌握微分的计算方法。
积分
理解积分的概念和性质,掌握定积分的计算方法。

《数学建模新手入门》课件

《数学建模新手入门》课件
概率论是数学建模中用于描述随机事件和不确定性的工具。它在风险评估、 生物统计和金融领域中起着重要作用。
应用数学技巧--图论
图论是数学建模中用于研究网络结构和路径优化的工具。它在交通规划、社 交网络和通信系统等领域中具有广泛的应用价值。
数据的采集和处理
1 数据收集
通过问卷调查、实验观测等方式收集相关数据。
《数学建模新手入门》
数学建模是一种应用数学的方法,通过数学模型对现实问题进行分析、解决 和预测。本课程将介绍数学建模的基本概念、应用领域以及步骤,帮助新手 快速入门。
数学建模的应用领域
环境科学
评估环境污染和气候变化对生态系统的影响。
医学研究
分析疾病传播和药物反应。
金融领域
预测股市走势和风险管理。
工程设计
常用数学工具和应用场景
统计分析
通过收集和分析数据来推断和 预测现象。
优化算法
寻找最佳解决方案或最小化成 本。
图论
研究网络结构和路径优化。
应用数学技巧--微积分
微积分是数学建模中常用的工具,用于描述变化率和求解最优解等问题。它在物理学、经济学和工程学等领域中有 广泛的应用。
应用数学技巧--概率论
2 数据清洗
对收集到的数据进行筛选、整理和去除异常值。
3 数据分析
应用统计和计算方法对数据进行模式识别和关联分析。
优化建筑结构和产品设计。
数学建模的步骤
1
问题定义
明确研究目标和限制条件。
2
模型建立
选择适当的数学模型来描述问题。
3
求解和分析
通过计算和模拟得到问题的解。
数学建模的基本模型及其应用
线性规划模型
用于优化问题,如资源分配和生 产计划。

数学建模基础知识

数学建模基础知识

数学建模基础知识一、数学基础数学建模是使用数学语言描述实际问题并建立模型的过程。

因此,掌握一定的数学基础知识是进行数学建模的关键。

这包括高等数学、线性代数、概率论与数理统计等学科的基础知识。

1. 高数学是数学建模的基础,主要包括极限、微积分、级数、微分方程等知识。

这些知识在模型构建和数值计算中有着广泛的应用。

2. 线性代数是研究线性方程组的科学,它提供了解决多变量问题的基本工具。

在模型构建和数据处理中,线性代数可以帮助我们理解和操作空间向量、矩阵等重要概念。

3. 概率论与数理统计是研究随机现象的数学科学。

在数据处理和问题解决中,概率论与数理统计的知识可以帮助我们理解和分析不确定性,从而更好地解决问题。

二、模型构建模型构建是数学建模的核心,它包括以下步骤:1. 问题分析:对实际问题进行深入分析,明确问题的主要矛盾和次要矛盾,找到问题的核心。

2. 模型假设:根据问题分析的结果,提出合理的假设,为模型构建提供基础。

3. 模型建立:根据假设,使用数学语言描述实际问题,建立数学模型。

4. 模型验证:将建立的模型用于实际问题,进行数据分析和预测,验证模型的准确性和可靠性。

三、数值计算数值计算是数学建模中不可或缺的一部分,它包括以下步骤:1. 算法设计:根据问题的特点,设计合适的算法,以实现模型的数值计算。

2. 编程实现:使用适当的编程语言实现算法,进行数值计算。

常用的编程语言包括Python、C++、Java等。

3. 结果分析:对计算结果进行分析和解释,为问题解决提供依据。

四、数据处理数据处理是数学建模中非常重要的一环,它包括以下步骤:1. 数据收集:根据实际问题的需要,收集相关的数据。

这可能包括历史数据、调查数据、实验数据等。

2. 数据清洗:对收集到的数据进行清洗和处理,去除无效和错误的数据,确保数据的准确性和完整性。

3. 数据转换:将清洗后的数据进行转换,使其更符合建模需要。

这可能包括数据的缩放、标准化、归一化等操作。

数学建模入门篇

数学建模入门篇

数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。

从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。

简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。

3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。

下面列举一些影响力和认可度较大的比赛。

1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。

2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。

在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。

竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。

赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。

竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。

数学建模基础入门

数学建模基础入门

数学建模基础入门数学建模是一门应用数学领域的学科,它将数学方法和技巧应用于解决实际问题。

在现代科学和工程中,数学建模起着至关重要的作用。

本文将为您介绍数学建模的基本概念和入门知识。

一、引言数学建模是一种基于数学模型来描述和解决实际问题的过程。

它结合了数学理论和实际问题,通过建立合适的数学模型来分析和预测实际系统的行为。

数学建模的目标是通过理论分析和计算求解,得出对实际问题的认识和解决方案。

二、数学建模的基本步骤数学建模的过程可以分为以下几个基本步骤:1. 审题与问题分析:首先需要仔细审题,理解问题的背景和要求。

在问题分析阶段,需要明确问题的目标、所涉及的因素以及问题的约束条件。

2. 建立数学模型:在问题分析的基础上,需要选择合适的数学方法和技巧建立数学模型。

数学模型是对实际问题的抽象和描述,它可以是代数方程、微分方程、概率模型等形式。

3. 模型求解:根据建立的数学模型,采用适当的数值计算方法或者符号计算方法,对模型进行求解。

这一步骤需要运用数学知识和计算工具,得出模型的解析解或近似解。

4. 模型验证与分析:在获得数学模型的解之后,需要对解的合理性进行验证。

通过与实际数据的对比或者数值模拟的方法,验证模型的准确性和可靠性。

同时,对模型的敏感性分析和稳定性分析也是重要的一步。

5. 结果的解释与应用:根据模型求解得到的结果,进行结果的解释和分析。

将模型的结果与实际问题联系起来,给出合理的解释和应用建议。

在实际问题中,模型的结果通常会有多种解释和应用方式,需要综合考虑各种因素来得出最优解决方案。

三、常用的数学方法和技巧数学建模涉及的数学方法和技巧非常丰富,下面列举一些常用的方法和技巧:1. 最优化方法:最优化方法用于求解最大值或最小值问题,常见的最优化方法包括线性规划、整数规划、非线性规划等。

2. 概率统计方法:概率统计方法用于处理不确定性和随机性问题,包括概率分布、假设检验、回归分析等。

3. 微分方程方法:微分方程方法用于研究变化和动态系统,可以用来描述物理、化学、生物等领域的问题。

数学建模初步

数学建模初步

数学建模初步数学建模是一门将数学方法应用于解决实际问题的学科,其目的是通过建立数学模型来描述和解释现实世界的各种现象和规律。

通过数学建模,我们可以利用数学工具和技术来分析问题,提出解决方案,并对其进行验证和预测。

本文将介绍数学建模的基本步骤和应用领域,并讨论一些常见的数学建模方法。

一、数学建模的基本步骤数学建模的过程通常包括以下几个步骤:1. 理解和定义问题:首先需要充分理解和定义待解决的实际问题。

这包括了解问题的背景、目标、限制条件和相关参数等。

2. 建立数学模型:在理解和定义问题的基础上,需要选择适当的数学方法和技术来建立数学模型。

数学模型可以是代数方程、差分方程、微分方程、最优化模型等。

3. 模型求解:一旦建立了数学模型,就需要通过数值计算、解析求解或优化算法等方法,对模型进行求解,得到问题的解决方案。

4. 模型验证和评估:求解得到的结果需要进行验证和评估,确保其在实际应用中的可行性和有效性。

可以通过对比实际数据、进行灵敏度分析和误差分析等方法来验证和评估模型。

5. 结果解释和报告:最后,需要对模型的结果进行解释和报告。

这包括对解决方案的详细描述、结论的分析和结果的可视化等。

二、数学建模的应用领域数学建模广泛应用于科学研究、工程技术和社会经济等领域。

以下是一些常见的数学建模应用领域:1. 物理学:数学建模在物理学中有广泛的应用,如天体物理、量子力学和相对论等领域。

2. 生物学:数学建模在生物学中用于研究生物过程和生物系统的动态行为,如生态模型、生物传播模型和蛋白质结构预测等。

3. 化学工程:数学建模在化学工程中用于优化和设计化学过程,如反应动力学模型和传热传质模型等。

4. 经济学:数学建模在经济学中用于研究经济系统和决策问题,如经济增长模型和投资组合模型等。

5. 社会科学:数学建模在社会科学中用于研究社会系统和社会现象,如人口模型和社交网络模型等。

三、常见的数学建模方法1. 统计建模:统计建模是基于概率统计理论和方法,对数据进行建模和分析。

数学建模准备

数学建模准备

数学建模准备数学建模是指利用数学方法解决现实世界中的问题,需要通过建立数学模型、分析问题、求解问题并对结果进行解释来完成。

在参与数学建模比赛或实际项目前,需要做好充分的准备工作,包括以下几个方面:一、熟悉数学建模基础知识1. 线性代数:了解矩阵运算、向量空间、矩阵的特征值等基本概念。

2. 微积分:熟悉微分、积分、微分方程等概念,能够进行微积分的基本运算。

3. 概率论与数理统计:掌握概率分布、统计量、参数估计等基本知识。

4. 最优化理论:了解线性规划、非线性规划、整数规划等优化方法。

二、掌握数学建模方法1. 建立数学模型:根据实际问题确定问题的数学模型,包括确定变量、建立约束条件、建立目标函数等。

2. 分析问题:对问题进行深入分析,找出问题的关键因素,分析问题的特点和复杂程度。

3. 求解问题:选择合适的数学方法和工具,对建立的数学模型进行求解,得出问题的解决方案。

4. 结果解释:对求解结果进行合理解释,将数学分析的结果转化为实际问题的解决方案。

三、熟练运用数学建模工具1. 数学建模软件:掌握常用的数学建模软件,如Matlab、Mathematica、Python 等,能够灵活运用这些工具进行数学建模和分析。

2. 数据分析工具:熟练使用Excel、SPSS等数据分析工具,对实际问题中的数据进行分析和处理。

3. 编程能力:具备一定的编程能力,能够用编程语言解决数学建模问题,提高问题求解的效率和准确性。

四、参与数学建模实践1. 练习建模:多参加数学建模训练和比赛,提高建模的能力和经验。

2. 解决实际问题:尝试解决实际生活中的问题,将数学建模应用到实践中,提高解决问题的实际能力。

3. 与他人交流:与其他数学建模爱好者和专业人士交流经验,学习他人的建模方法和经验,不断提升自己的建模水平。

综上所述,数学建模准备是一个系统的过程,需要建立扎实的数学基础、掌握数学建模方法、熟练运用建模工具以及参与实践,才能在数学建模领域中取得更好的成绩和实际应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5. 模型分析对模型解答进行数学上的分析。

“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。

还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

二、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1. 标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。

摘要——200-300字,包括模型的主要特点、建模方法和主要结果。

内容较多时最好有个目录。

2. 中心部分1)问题提出,问题分析。

2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。

4)结果分析与检验。

5)讨论——模型的优缺点,改进方向,推广新思想。

6)参考文献——注意格式。

3. 附录部分计算程序,框图。

各种求解演算过程,计算中间结果。

各种图形、表格。

三、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。

很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。

有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。

具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1)概率与数理统计2)统筹与线轴规划3)微分方程;还有与计算机知识交叉的知识:计算机模拟。

上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。

第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。

这些知识大部分都是学生自己利用课余时间学习的。

第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。

要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。

评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。

四、小组中应该如何分工?传统的标准答案是——数学,编程,写作。

其实分工不用那么明确,但有个前提是大家关系很好。

不然的话,很容易产生矛盾。

分工太明确了,会让人产生依赖思想,不愿去动脑子。

理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。

在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。

具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。

另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,Visio就成了。

论文写作:一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。

3. 写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2.答卷的文章结构1)摘要。

2)问题的叙述,问题的分析,背景的分析等。

3)模型的假设,符号说明(表)。

4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。

6)结果表示、分析与检验,误差分析,模型检验。

7)模型评价,特点,优缺点,改进方法,推广。

8)参考文献。

9)附录、计算框图、详细图表。

3. 要重视的问题1)摘要。

包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。

▲ 注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。

务必认真校对。

2)问题重述。

3)模型假设。

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

a. 根据题目中条件作出假设b. 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。

4)模型的建立。

a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。

ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

d.鼓励创新,但要切实,不要离题搞标新立异。

数模创新可出现在:▲ 建模中,模型本身,简化的好方法、好策略等;▲ 模型求解中;▲ 结果表示、分析、检验,模型检验;▲ 推广部分。

e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。

5)模型求解。

a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。

b. 需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称。

c. 计算过程,中间结果可要可不要的,不要列出。

d. 设法算出合理的数值结果。

6)结果分析、检验;模型检验及模型修正;结果表示。

a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。

c. 题目中要求回答的问题,数值结果,结论,须一一列出;d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e. 结果表示:要集中,一目了然,直观,便于比较分析。

▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。

▲ 求解方案,用图示更好。

7)必要时对问题解答,作定性或规律性的讨论。

最后结论要明确。

8)模型评价优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。

9)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:a. 模型的正确性、合理性、创新性b. 结果的正确性、合理性c. 文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理1. 准确――科学性;2. 条理――逻辑性;3. 简洁――数学美;4. 创新――研究、应用目标之一,人才培养需要;5. 实用――建模、实际问题要求。

五、建模理念1. 应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

2. 数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

3. 创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

参赛须知:1.时间和体力的问题竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排,不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力。

开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便一下,到第三天再开始写论文也不迟的。

另外要说的就是体力要跟上,三天一般睡眠只有不到10个小时。

建议是赛前熬夜编程几次,但比赛前一天可不许熬呀,呵呵。

2.团队合作是能否获奖的关键三天的比赛中,团队交流所占用的时间可能会超过一半。

当出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。

合作在竞赛前就应当培养,比如一块儿做一道题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。

3.重视摘要摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中不写结论的话是一定不会得奖的。

摘要至少需要琢磨两个小时,不要轻视了它的重要性。

多看看优秀论文的摘要是如何去写的很有必要的,并要作为赛前准备的课题之一。

相关文档
最新文档