1024高一数学(2.2.2-2对数函数的性质)
高一数学对数函数的性质
情节概括.一类是概括事件:找准主要人物,主要事件.按照“他(她)做了什么事,结果如何”的模式进行概括.第二类概括部分情节 概括故事开端、发展、高潮、结局,或概括故事的起因、经过、结果.解题思路:先划分出情节的各个阶段,再进行概括,筛选出文中的关键词语或
自己概括来填空.①去邻居家读“报纸墙”;②借小人书读;③捡包鞭炮的纸读;④到废品收购人家的院子里读;⑤来到乡里读书,月光下读… 【考点定位】筛选文中的信息。能力层级为C。 【考点定位】体会重要语句的含意,品味语言表达艺术。能力层级为鉴赏评价D。 20.试题分
放学回家的路上,我在街的拐弯处又见到了他。“我已经等你很久了。”“卖掉诗了吗?”他摇摇头,说:“我院里有棵挺好的芒果树。现在芒果都熟透了,红彤彤的,果汁又多又甜。我等你是想请你去吃芒果。” 诗人住在一间小棚屋里,家具很少,显得很冷清。院子里绿茵茵的,还
有一棵高大的芒果树。他说得不错,芒果汁又多又甜
知识探究(二):函数y loga x(0 a 1)的性质
2.2.2 对数函数及其性质 第二课时 对数函数的性质
问题提出
1.什么是对数函数?其大致图象如何?
2.由对数函数的图象可得到哪些基本性 质?
知识探究(一):函数y loga x(a 1)的性质
y
思考1:函数图象分布
在哪些象限?与y轴的 相对位置关系如何?
1
0
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
台边,一股清凉,几声蟋蟀鸣的浪漫场景,却是在少年的记忆里,飘飘欲仙。 后来啊,读书的种类,读书的桌子,读书的茶台,读书的座椅,读书的场地……慢慢丰富起来,读书的每一个刹那,都仿佛是时光滋养的花枝,慢慢开出耀眼的花来。 多年以后,到底还是因为这书,生出了一
高一数学对数函数及其性质2
(
2 x 8)
函数的奇偶性
例3、函数 y log2 (x x2 1)(x R)的奇偶性为
()
A.奇函数而非偶函数 C.非奇非偶函数
B.偶函数而非奇函数 D.既奇且偶函数
二 函数的单调性
例4
1.求函数 y log 2 (x2 2x)
例2 求函数的值域
1 f ( x) log2 x
2 f ( x) loga x
x [1,2]
x [1,2]
3 f ( x) log 2( x2 2)
4 f ( x) log 2(8x x2 7)
5 f
(x)
(log2
x 2 )(log2
x) 4
2.2.2 对数函数及其性质(二)
对数函数y=log a x<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
质 x>1时, y>0
(4) 0<x<1时, y>0; x>1时, y<0
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结
高中数学第二章基本初等函数(ⅰ)2.2对数函数2.2.2第一课时对数函数的图象及性质aa高一数学
[点睛] 形如 y=2log2x,y=log2 x3都不是对数函数,可 称其为对数型函数.
2021/12/12
第二页,共十八页。
2.对数函数的图象及性质
a 的范围
0<a<1
4.已知 y=ax 在 R 上是增函数,则 y=logax 在(0,+∞)上是 ________函数.(填“增”或“减”)
答案:增
2021/12/12
第六页,共十八页。
对数函数(duìshù hán shù)的概念
[例 1] 指出下列函数哪些是对数函数? (1)y=3log2x; (2)y=log6x;(3)y=logx5; (4)log2x+1.
[活学活用] 1.函数 f(x)=(a2-a+1)log(a+1)x 是对数函数,则实 数 a=________.
解析:a2-a+1=1,解得 a=0 或 1. 又 a+1>0,且 a+1≠1,∴a=1. 答案:1
2021/12/12
第九页,共十八页。
求对数(duìshù)型函数的定义域
[例 2] 求下列函数的定义域: (1)y=log5(1-x); (2)y=log(1-x)5; (3)y=lnx4--3x; (4)y= log0.54x-3.
2.2.2 对数函数及其性质
第一课时 对数函数的图象及性质
预习课本 P 70~73,思考并完成以下问题
(1)对数函数的概念是什么?它的解析式具有什么特点?
(2)对数函数的图象是什么,通过图象可观察到对数函数具有 哪些性质?
(3)反函数的概念是什么?
2021/12/12
高一数学对数函数2
( 0 a 1)
例2:比较下列各组中两个值的大小:
(1) log23 , log23.5 (2) log0.71.6 , logo.71.8
(1)考察对数函数y=log2x,因为 2>1, 3<3.5所以 解: log23<log23.5 (2)考察对数函数y=log0.7x,因为 0.7<1 , 1.6<1.8所以
2.2.2对数函数2
讲课人:郑雨生 内蒙古卓资县职业中学
复习
指数数函数的定义、图象、性质
一定义: 函数y=logax(a>0,a≠, 定义域是(0,+,叫对 数函数。
图 象
定义域 值域 单调性 奇偶性 过定点 0<x<1 x>1
0 <a < 1
y
1
a> 1
y 0
1
o
x
x
x( 0,+) R 单调递减 非奇非偶 (1,0) y> 0 y<0
(2)因为 4-x>0,所以x<4,即函数y=loga(4-x)的定义域为
(3) 因为 3-x>0 x-1>0 x-1≠ 所以 1<x<3,x≠2即函数 y=log(x-1)(3-x)的定义域 为
(1,2)
(4)因为 4x-3>0 x>3/4
log0.5(4x-3)0 定义域为
4x-3≤
x( 0,+) R 单调递增 非奇非偶 ( 1,0 ) y<0 y>0
Y
3
Y=log2x Y=lgx 1 2 3 4 5 6 7 8 9 X
2 1
O -1 -2 -3
Y=log1/2x
第二章 2.2.2 第2课时 对数函数及其性质(二)
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质
2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质一、教材分析本节课选自人教版高一数学(必修一)第二单元2.2.2《对数函数及其性质》第一课时。
对数函数是重要的基本初等函数之一,是指数函数知识的拓展和延伸. 它的教学过程,体现了“数形结合”的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨论证的思维能力有重要作用.本节课也为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情分析学生前面已经学习了指数函数,用研究指数函数的方法,进一步研究和学习对数函数的概念、图像和性质以及初步应用,启发引导学生进一步完善初等函数的知识的系统性,加深对函数的思想方法的理解。
教学过程中,发挥大多数学生动手能力较强的特点,让学生自己通过列表、描点、连线画对数函数图像。
这样也利于对对数函数性质的理解。
三、教学目标1.知识目标:让学生掌握对数函数的概念,能正确描绘对数函数的图象,掌握对数函数的性质.2.能力目标:通过对对数函数的学习,培养学生观察,思考,分析,归纳的思维能力.3.情感目标:培养学生勇于探索的精神,让学生主动融入学习.四、教学重点和难点重点:在理解对数函数定义的基础上,掌握对数函数的图象和性质。
难点:对数函数性质的应用。
五、教法与学法说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,教师主导,学生为主体,根据这样的原则和所要完成的教学目标,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
2.2.2对数函数及其性质教案(1)
2.2.2对数函数及其性质教案(1)2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.认知对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.重新认识事物之间的广泛联系与相互转变;2.用联系的观点看看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、对数的概念:如果ax=n,那么数x叫作以a为底n的对数,记作logan=x(a>0,a≠1)2、指数函数的定义:函数y=ax(a>0,且a≠1)叫作指数函数,其中x就是自变量,函数的定义域就是r.3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y就是对立次数x的函数,这个函数可以用指数函数y=2则表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个??细胞,那么,分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x?log2y.如果用x则表示自变量,y则表示函数,这个函数就是y?log2x.带出新课--对数函数.二、新授内容:1.对数函数的定义:函数y?logax(a?0且a?1)叫做对数函数,定义域为(0,??),值域为(??,??).x第1页共11页例1.求下列函数的定义域:(1)y?logax2;(2)y?loga(4?x);(3)y?loga(9?x2).分析:此题主要利用对数函数y?logax的定义域(0,+∞)解.求解:(1)由x>0得x?0,∴函数y?logax2的定义域就是?x|x?0?;2(2)由4?x?0得x?4,∴函数y?loga(4?x)的定义域是?x|x?4?;2(3)由9?x?0得-3?x?3,∴函数y?loga(9?x2)的定义域是?x|?3?x?3?.2.对数函数的图象:通过列表、描点、连线作y?log2x与y?log1x的图象:232.532.5221.51-11.510.51110.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5思索:y?log2x与y?log1x的图象存有什么关系?23.练习:教材第73页练习第1题.1.图画出来函数y=log3x及y=log1x的图象,并且表明这两个函数的相同性质和相同性质.3解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=log3x的图象是上升的曲线,y=log1x的图象3就是上升的曲线,这表明前者在(0,+∞)上就是增函数,后者在(0,+∞)上就是减至函数.4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.32.52a>132.520<a<11.51.5图象1-111110.50.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5性定义域:(0,+∞)第2页共11页质值域:r过点(1,0),即当x=1时,y=0x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是增函数三、讲解范例:基准2.比较以下各组数中两个值的大小:x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是减函数⑴log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a?0,a?1).解:⑴考查对数函数y?log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4?log28.5.⑵考查对数函数y?log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上就是减至函数,于是log0.31.8?log0.32.7.小结1:两个同底数的对数比较大小的一般步骤:①确认所必须考查的对数函数;②根据对数底数推论对数函数多寡性;③比较真数大小,然后利用对数函数的多寡性推论两对数值的大小.⑶当a?1时,y?logax在(0,+∞)上就是增函数,于是loga5.1?loga5.9;当0?a?1时,y?logax在(0,+∞)上就是减至函数,于是loga5.1?loga5.9.小结2:分类探讨的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练1。
高一数学对数函数及其性质2
a>1.
1 求函数 y=log (3+2x-x2)的单调区间和值域. 2 【思路点拨】 由题目可以获取以下主要信息: 1 ①函数由 y=log2u 与 u=3+2x-x2 复合. ②要注意在函数定义域内讨论单调性.
1 【解析】 由 3+2x-x2>0 解得函数 y=log2 (3+2x-x2)的定义域是{x|-1<x<3}. 设 u = 3 + 2x - x2( - 1<x<3) , 又 设 - 1<x1<x2≤1, 1 1 则 u1<u2.从而 log2u1>log2u2,即 y1>y2. 故函数 y 1 =log2(3+2x-x2)在区间(-1,1]上单调递减. 同理可得函数在区间(1,3)上单调递增. 函数 u=3+2x-x2(-1<x<3]的值域是(0,4], 1 1 2 故函数 y=log (3+2x-x )的值域是 y≥log 4. 2 2 即{y|y≥-2}.
1.(2009 年全国卷)设 a=log3π,b=log2 3, c=log3 2,则( A.a>b>c C.b>a>c 【解析】 1 log23∈ 2,1 ,
1 1 c=log3 2=2log32∈0,2 ,
) B.a>c>b D.b>c>a
设u=f(x)(f(x)>0).当a>1时,y=logaf(x)与u=f(x)的单调性相同;
当0<a<1时,y=logaf(x)与u=f(x)的单调性相反.
求y=log2(x2-2x-3)的单调递增区间.
高中数学第二章基本初等函数(ⅰ)2.2.2对数函数及其性质第1课时对数函数的图象及性质
【解析】(1)由xlg+x1+>01,-3≠0, 得xx>+-1≠1,103, ∴x>-1 且 x≠999. ∴函数的定义域为{x|x>-1 且 x≠999}.
(2)由xx>≠01,, 2-x>0,
得xx>≠01,, x<2,
∴函数的定义域为{x|0<x<2 且 x≠1}.
12/9/2021
第二十页,共三十四页。
logax(a>0且a≠1)的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x.
12/9/2021
第十一页,共三十四页。
1. 函 数 f(x) = (a2 - a + 1)log(a + 1)x 是 对 数 函 数 , 则 实 数 a =
【答案】(2,1)
【解析(jiě xī)】函数图象过定点,则与a无关,故loga(x-1)=0, ∴x-1=1,x=2,y=1.∴y=loga(x-1)+1的图象过定点(2,1).
5.函数y=ln x的反函数是________. 【答案】y=ex
【解析】由同底指数函数和对数函数互为反函数,可得y=ln x的 反函数为y=ex.
2.2 对数函数(duìshùhán shù)
2.2.2 对数函数(duìshù hán shù)及其性质
第1课时 对数函数的图象(tú xiànɡ)及性质
12/9/2021
第一页,共三十四页。
目标定位
1.理解对数函数的概念. 2.初步掌握对数函数的图 象及性质. 3.会类比指数函数,研究 对数函数的性质.
过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标
从左向右依次为c,d,a,b,显然b>a>1>d>c.
2.2.2对数函数及其性质(一)
质
x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
质
x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.
2
思 考:
y
y log2 x
两图象有什么
关系?
O
x
y log 1 x
2
练习 教材P.73练习第1题
画出函数 y log3 x 及 y log 1 x
的图象,并且说明这两个函数的3 相
同点和不同点.
3. 对数函数的性质:
a>1
图 象
0<a<1
性 质
3. 对数函数的性质:
图y 象O
a>1
x
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1 质 在R上是增函数 在 R 上是减函数
x>0时,ax>1;
x<0时,0<ax<1
2. 指数函数的图象和性质
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
2.2.2对数函数 及其性质
云阳中学高一数学组
复习引入
高一数学对数函数及其性质2
比较下列各组数的大小:
(1)log2π与log20.9;
(2)log20.3与log0.20.3; (3)3log45与2log23;
(4)log1/30.3,log20.8
【思路点拨】 由题目可获取以下主要信息: (1)中底数相同,真数不同;
(2)中底数不同,真数相同;
(3)(4)中底数与真数各不相同.解答本题可考虑利用对数函数的单 调性或图象求解.
①函数y=loga(2-ax)在[0,1]有意义,
②函数在[0,1]上是减函数. 解决本类问题应注意复合函数单调性的判定方法.
【解析】 设y=f(x)=loga(2-ax),因为f(x)在[0,1]上是减函数,
则f(0)>f(1),即loga2>loga(2-a).
因为 a 为对数的底数,则 a>0,且 a≠1,
(2)若底数为同一字母,则可按对数函数的单调性对底数进行分类讨
论; (3)若底数不同,真数相同,则可利用对数函数的图象或利用换底公
式化为同底,再作比较.
(4)若底数、真数均不相同,则可借助中间值-1,0,1等作比较.
2.复合函数单调区间的求法 关于形如y=logaf(x)(a>0,且a≠1)一类函数的单调性:
而log2u1<log2u2 ∴函数y=log2(3+2x-x2)在(-1,1]上单调递增,
同理在[1,3)上单调递减.
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞) 【思路点拨】 由题目可以获取以下主要信息:
2a>a-1 即 ,解得 a>1.即实数 a 的取值范围是 a-1>0
高一数学第二章 2.2.2(一)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.2.2(一)
定义域 值域 单调性 共点性 函数值特点
(0,+∞)
R
在(0,+∞)上是增函数 在(0,+∞)上是减函数
图象过点 (1,0) ,即 loga1=0 x∈(0,1)时,y∈ (-∞,0) ; x∈(0,1)时,y∈ (0,+∞) ; x∈[1,+∞)时,y∈[0,+∞) x∈[1, +∞)时, y∈ (-∞,0] 函数 y=logax 与 y= log1 x 的图象关于 x轴 对称
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.2(一)
探究点一 :对数函数的概念
1 >0 (3)由1-3x 1-3x≠0
1 ,得 x< ; 3
1 ∴所求函数定义域为x|x<3 ;
x>0 (4)由 log3x≥0 x>0 ,得 x≥1
当堂测、查疑缺
明目标、知重点
2.2.2(一)
1.理解对数函数的概念. 2.掌握对数函数的性质. 3.了解对数函数在生产实际中的简单应用.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.2.2(一)
1.对数函数的定义 一般地, 我们把 函数 y=logax(a>0,且 a≠1)叫做对数函数, 其中 x 是自变量, 函数的定义域是 (0,+∞) . 2.对数函数的图象与性质 定义 底数 图象 y=logax (a>0,且 a≠1) a>1 0<a<1
高一数学人教A版必修1课件:2.2.2 对数函数及其性质(第1课时)
∴函数 y loga x2 的定义域是x | x 0
二、例题讲解
例1、求下列函数的定义域
(3) y log(2x1)(4x 8)
2x 1>0
(3)
由题意可得
2
x
1
1
4x 8>0
解得
x> 1 2
x1
1、函数 y loga x (其中a 0, a 1)的图象恒过
定点__(_1_,0_)__
2、函数 y loga (x 2)(其中a 0, a 1)的图象恒过
定点__(_3_,0_)__ 定 3、点函_数_(_3_y,_0_)_loga (5x 2)(其中a 0, a 1)的图象恒过 4、函数5 y 3loga (5x 2)+1(其中a 0, a 1)的图象 恒过定点__( _5_,_1_)_
七y 、lo小g结a x与y log1 x 的图象关于x轴对称
y loga x
a
a>1
0<a<1
y
y
y log a x
图
(a 1)
(1, 0)
象
o (1, 0)
xo
y loga x x
(0 a 1)
当 x > 1 时, y > 0
定义当域0<x <1 时,y < 0
当 x > 1 时, y < 0
定义当域0<x <1 时,y < 0
当 x > 1 时, y < 0
(0,) 当0< x<1 时, y>0
第二章 2.2.2 第1课时 对数函数及其性质(一)
2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.知识点一 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).知识点二 对数函数的图象与性质对数函数y =log a x (a >0,且a ≠1)的图象和性质如下表:1.由y =log a x ,得x =a y ,所以x >0.( √ )2.y =2log 2x 是对数函数.( × )3.y =a x 与y =log a x 的单调区间相同.( × )4.由log a 1=0,可得y =log a x 恒过定点(1,0).( √ )题型一 对数型函数的定义域 例1 求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x ). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是(-3,3). (2)由16-4x >0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x )的定义域为(-∞,2).反思感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变. 跟踪训练1 求下列函数的定义域. (1)y =x 2-4lg (x +3);(2)y =12-x+ln(x +1). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞).(2)要使函数有意义,需⎩⎪⎨⎪⎧2-x >0,x +1>0,即⎩⎪⎨⎪⎧x <2,x >-1,∴-1<x <2. 故所求函数的定义域为(-1,2). 题型二 对数型函数的求值问题例2 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,log 3x ,x >0,(1)求f ⎝⎛⎭⎫f ⎝⎛⎭⎫127的值; (2)若f (a )=12,求a 的值.解 (1)∵f ⎝⎛⎭⎫127=log 3127=-3, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫127=f (-3)=2-3=18. (2)当a >0时,由f (a )=12,得log 3a =12.∴a =123= 3.当a ≤0时,由f (a )=12,得2a =12,∴a =-1,综上所述a 的值为-1或 3.反思感悟 理解运算对象,选择运算方法即对于分段函数要注意分类讨论,掌握运算法则,即指数、对数的运算法则,求得运算结果,所以本题充分体现了数学运算的核心素养. 跟踪训练2 已知函数f (x )=log 3(x +1),若f (a )=1,则a 等于( ) A.0 B.1 C.2 D.3 答案 C解析 ∵f (a )=log 3(a +1)=1,∴a +1=3,∴a =2.题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )答案 C(2)画出函数y =lg|x -1|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 (1)先画出函数y =lg x 的图象(如图).(2)再画出函数y =lg|x |的图象(如图).(3)最后画出函数y =lg|x -1|的图象(如图).延伸探究1.把本例(1)的条件“y =log a x ”改为“y =log a (-x )”,则函数y =a -x 与y =log a (-x )的图象可能是( )答案 C解析 ∵在y =log a (-x )中,-x >0,∴x <0, ∴图象只能在y 轴的左侧,故排除A ,D ; 当a >1时,y =log a (-x )是减函数, y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ; 当0<a <1时,y =log a (-x )是增函数, y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C. 2.把本例(2)改为f (x )=|log 2(x +1)|+2,试作出其图象. 解 第一步:作y =log 2x 的图象,如图①所示.第二步:将y=log2x的图象沿x轴向左平移1个单位长度,得y=log2(x+1)的图象,如图②所示.第三步:将y=log2(x+1)的图象在x轴下方的部分作关于x轴的对称变换,得y=|log2(x+1)|的图象,如图③所示.第四步:将y=|log2(x+1)|的图象沿y轴向上平移2个单位长度,即得到所求的函数图象,如图④所示.反思感悟现在画图象很少单纯依靠描点,大多是以基本初等函数为原料加工,所以一方面要掌握一些常见的平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点.1.下列函数为对数函数的是()A.y=log a x+1(a>0且a≠1)B.y=log a(2x)(a>0且a≠1)C.y=log(a-1)x(a>1且a≠2)D.y=2log a x(a>0且a≠1)考点对数函数的概念题点对数函数的概念答案 C2.函数y=log2(x-2)的定义域是()A.(0,+∞)B.(1,+∞)C.(2,+∞)D.[4,+∞)考点对数函数的定义域题点对数函数的定义域答案 C3.函数f(x)=3-x+lg(x+1)的定义域为()A.[-1,3)B.(-1,3)C.(-1,3]D.[-1,3] 答案 C4.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象只能是下图中的( )答案 B解析 由y =log a (-x ),知-x >0,即x <0,可排除A ,C.当a >1时,B 适合. 5.若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 考点 对数函数的性质 题点 对数函数图象过定点问题 答案 (1,3)1.含有对数符号“log ”的函数不一定是对数函数.判断一个函数是否为对数函数,不仅要含有对数符号“log ”,还要符合对数函数的概念,即形如y =log a x (a >0,且a ≠1)的形式.如:y =2log 2x ,y =log 5x5都不是对数函数,可称其为对数型函数.2.研究y =log a f (x )的性质如定义域、值域、比较大小,均需依托对数函数的相应性质.一、选择题 1.给出下列函数:①223log y x ;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A.1个 B.2个 C.3个 D.4个 考点 对数函数的概念 题点 对数函数的概念 答案 A解析 ①②不是对数函数,因为对数的真数不是只含有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A.{x |x >-1} B.{x |x <1} C.{x |-1<x <1}D.∅考点 对数函数的定义域 题点 对数函数的定义域 答案 C解析 ∵M ={x |1-x >0}={x |x <1}, N ={x |1+x >0}={x |x >-1}, ∴M ∩N ={x |-1<x <1}.3.函数y =log 2(x -1)2-x 的定义域是( )A.(1,2]B.(1,2)C.(2,+∞)D.(-∞,2) 答案 B解析 由⎩⎪⎨⎪⎧ x -1>0,2-x >0,得⎩⎪⎨⎪⎧x >1,x <2,∴1<x <2.∴函数的定义域为(1,2).4.下列函数中,与函数y =x 相等的是( ) A.y =(x )2 B.y =x 2 C.2log 2xy =D.y =log 22x答案 D解析 因为y =log 22x 的定义域为R ,且根据对数恒等式知y =x . 5.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是( ) A.(2,1) B.(2,0) C.(2,-1) D.(1,1) 答案 A解析 令2x -3=1,则x =2.∴y =log a (2x -3)+1的图象恒过定点(2,1).6.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A7.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( ) A.-2 B.2 C.12 D.-12考点 对数函数的性质 题点 对数函数图象过定点问题 答案 B解析 代入(6,3),3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.8.若函数f (x )=log a (x +b )的图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的图象大致是( )考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 D解析 由f (x )的图象可知0<a <1,0<b <1, ∴g (x )的图象应为D. 二、填空题9.函数f (x )=log 2x -2的定义域是________. 答案 [4,+∞)解析 由题意知⎩⎪⎨⎪⎧ x >0,log 2x -2≥0,即⎩⎪⎨⎪⎧x >0,x ≥4,∴x ≥4,∴函数f (x )的定义域为[4,+∞). 10.已知0<a <1,0<b <1,若log (3)1b x a -<,则x 的取值范围是__________.考点 对数不等式 题点 解对数不等式 答案 (3,4)解析 ∵0<a <1, ∴log (3)1b x a-<=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4.11.函数12log (3)y x a =- 的定义域是⎝⎛⎭⎫23,+∞,则a =________. 答案 2解析 由12log (3)y x a =-知,3x -a >0,即x >a3.∴a 3=23,即a =2. 三、解答题12.求下列函数的定义域: (1)f (x )=log (x -1)(3-x ); (2)f (x )=2x +3x -1+log 2(3x -1). 解 (1)由题意知⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1,解得1<x <3,且x ≠2,故f (x )的定义域是(1,2)∪(2,3). (2)由题意知⎩⎪⎨⎪⎧2x +3≥0,x -1≠0,3x -1>0,解得x >13,且x ≠1.故f (x )的定义域是⎝⎛⎭⎫13,1∪(1,+∞).13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的解析式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ), ∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg (x +1),x >0,0,x =0,-lg (1-x ),x <0,∴f (x )的大致图象如图所示,14.已知log a (3a -1)恒为正,则a 的取值范围是________. 考点 对数函数的图象 题点 对数函数的图象答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪13<a <23或a >1 解析 由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数, ∴3a -1>1,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪13<a <23或a >1. 15.已知函数f (x )=log 21+x1-x .(1)求证:f (x 1)+f (x 2)=f ⎝ ⎛⎭⎪⎫x 1+x 21+x 1x 2;(2)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值.(1)证明 左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2=log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2.右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)解 因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b=-12, 利用(1)可知f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab ,所以f (a )-12=1, 解得f (a )=32.。
对数函数[二]
a3
小 结:
若函数y=f(x)的图象经过点(a, b),
则其反函数的图象经过点(b, a).
例3 已知函数y=f (x)= x 1,
求f -1(3)的值. f -1(3)=4
函数y=f(x) 反函数y=f-1(x) 定义域 值域 A C C A
例1.求下列函数的反函数 (1) y=4x (x∈R)
1 x (3) y=( ) (x∈R) 3
(2) y=0.25x (x∈R) (4) y= ( 2 ) x (x∈R)
(5) y=lgx (x>0)
例2 函数f(x)=loga (x-1)(a>0且a≠1) 的反函数的图象经过点(1, 4),求a的值.
2.2.2 对数函数及其性质(二)
反函数的概念:
在指数函数y=2x中,x为自变量(x∈R),y是x的函 数(y>0),由指数式y=2x可得到对数式x=log2y,对于任 意一个y∈(0,+∞)通过式子x=log2y,x在R中都有唯 一确定的值和它对应.也就是说,可以把y作为自变量, x作为y的函数,这时我们就说x=log2y ( y>0 )是函数 y=2x(x∈R)的反函数. 由上述概念可知,对数函数y=log2x( x >0 )是指 数函数y=2x(x∈R)的反函数;同时,指数函数y=2x (x∈R)也是对数函数y=log2x( x >0 )的反函数.因 此,指数函数y=2x(x∈R)与对数函数y=log2x(x >0 ) 互为反函数.
一般地,对数函数y=logax(a>0且a≠1)和指数 函数 y=ax( a>0且a≠1 )互为反函数. 它们的图象 关于直线 y=x 对称.
1 x y( ) 2
y
y 2x
y x
y log 2 x
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)
2。
2。
2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。
因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。
只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。
像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。
对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。
5x 的图象.利用换底公式可以得到:y=log 0。
5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。
5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。
"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。
(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。
高中数学第二章基本初等函数(ⅰ)2.2对数函数2.2.2第2课时对数函数及其性质的应用
第三页,共三十一页。
1.y=ln(x2+1)的值域是( A.R C.(0,+∞) 答案:B
[双基自测] ) B.[0,+∞) D.(-∞,0)
12/9/2021
第四页,共三十一页。
2.设 a=log54,b=log53,c=log 1 5,则( )
3
A.a<c<b
B.c<a<b
C.b<a<c
第二十页,共三十一页。
3.(1)若 f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则 a 的取值范围是( )
A.[1,2)
B.[1,2]
C.[1,+∞)
D.[2,+∞)
(2)求函数 f(x)=log2(x2-x-2)的单调减区间.
解析:(1)令函数 g(x)=x2-2ax+1+a=(x-a)2+1+a-a2 的对称轴为 x=a,要
12/9/2021
第二十九页,共三十一页。
(2)令 f(x)-g(x)>0,得 f(x)>g(x), 即 loga(x+1)>loga(4-2x), 当 a>1 时,可得 x+1>4-2x,解得 x>1. 由(1)知-1<x<2,∴1<x<2; 当 0<a<1 时,可得 x+1<4-2x,解得 x<1, 由(1)知-1<x<2,∴-1<x<1. 综上,当 a>1 时,x 的取值范围是(1,2);当 0<a<1 时,x 的取值范围是(-1,1).
C.(1,+∞)
D.(0,1)
12/9/2021
第二十五页,共三十一页。
解析:当 a>1 时,loga34<0<1,成立.
当 0<a<1 时,y=logax 为减函数.
由
loga34<1=logaa,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,a≠1);
(4)log75,log67.
7
例2 求下列函数的定义域、值域:
(1) y= 1 log3 ( x 1) ; (2) y=log2(x2+2x+5).
8
例3 溶液酸碱度的测量: 溶液酸碱度是通过pH刻画的. pH 的计算公式为pH=-lg[H+],其中[H+] 表示溶液中氢离子的浓度,单位是摩尔 /升. (1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢离 子的浓度之间的变化关系; (2)已知纯净水中氢离子的浓度为[H+ =10-7摩尔/升,计算纯净水的pH.
2.2.2
对数函数及其性质
第二课时
对数函数的性质
1
问题提出
1.什么是对数函数?其大致图象如何? 2.由对数函数的图象可得到哪些基本性 质?
2
知识探究(一):函数y loga x(a 1)的性质
y
思考1:函数图象分布 在哪些象限?与y轴的 相对位置关系如何?
0
1
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
思考3:函数图象的升降情况如何?由此说 明什么性质?
3
思考4:图象在x轴上、下 两侧的分布情况如何? 由此说明函数值有那些 变化?
思考5:若a b 1 ,则 函数 y log a x 与
y
y
0
1
1
x
y logb x
y log a x
y logb ቤተ መጻሕፍቲ ባይዱ的图象的相
0
1
x
对位置关系如何?
4
知识探究(二):函数y loga x(0 a 1)的性质 思考1:函数的定义域、值
y
域、单调性、函数值分布 分别如何?
思考2:若0 b a 1,则 x 函数 y log a与
y
0
1
x
y logb x的图象的相
对位置关系如何?
x 0
1
y logb x y log a x
9
作业: P73 练习:3 P74 习题2.2B组:1, 2,3.
10
5
思考3:对数函数具有奇偶性吗?
思考4:对数函数存在最大值和最小值 吗?
n则 思考5:设 a 0, a 1 ,若 log a m log a , m与n的大小关系如何?若log a m log a n , 则m与n的大小关系如何?
6
理论迁移
例1 比较下列各组数中的两个值的大小: (1)log23.4,log28.5 ;