高一数学对数函数7

合集下载

高一数学人必修课件对数函数及其性质

高一数学人必修课件对数函数及其性质

THANKS
感谢观看
渐近线与拐点
渐近线
对数函数的图像没有水平渐近线和垂直渐近线。但是,当x趋近于正无穷或负无穷时, 函数的值分别趋近于正无穷或负无穷,因此可以说对数函数的图像有两条斜渐近线,即
y=±∞。
拐点
对数函数的图像没有拐点。因为对数函数在其定义域内是单调的,所以其图像不可能出 现拐点。
03
对数运算规则及应用
对数运算法则
01
02
03
04
乘法法则
log_b(MN) = log_b(M) + log_b(N)
除法法则
log_b(M/N) = log_b(M) log_b(N)
指数法则
log_b(M^n) = n * log_b(M)
换底公式
log_b(M) = log_a(M) / log_a(b)
换底公式及应用
换底公式
形如$y=a^x$($a>0$,$aneq1$)的函数叫 做指数函数。
指数函数的图像与性质
当$a>1$时,函数图像在定义域内单调递增,值 域为$(0,+infty)$;当$0<a<1$时,函数图像在 定义域内单调递减,值域为$(0,+infty)$。
指数函数的运算性质
包括同底数幂的乘法、除法、幂的乘方和积的乘 方等。
答案及解析提供
对于第一题,利用对数的定义转化为 指数方程求解,得到 x = 4
第三题需要先确定 f(x) 的定义域,再 将其应用到复合函数中,得到 x < 0 或x > 2
第二题需要分别讨论 a 的不同取值范 围,结合复合函数的单调性判断方法 ,得到不同情况下的单调性
第四题利用对数函数的单调性比较大 小,得到 log₃π > log₅10 > log₂0.8

高一必修一对数函数知识点

高一必修一对数函数知识点

高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。

对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。

本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。

一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。

其中,a称为底数,x称为指数,y称为对数。

2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。

- 当0<a<1时,对数函数关于x轴对称。

- 当a>1时,对数函数关于y轴对称。

二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。

2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。

- 对数函数的图像经过点(1, 0),即loga(1) = 0。

- 对数函数在x=1时取到最小值,即loga(1) = 0。

- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。

三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。

2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。

五、常用对数的计算常用对数是以10为底的对数,用logx表示。

高一数学对数函数课件

高一数学对数函数课件
高一数学对数函数课件
目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。

高一数学对数函数知识点总结

高一数学对数函数知识点总结

1.对数(1)对数的定义:如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的`定义函数y=loga某(a>0,a≠1)叫做对数函数,其中某是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数那么要大于0且不为1对数函数的底数为什么要大于0且不为1呢在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比方log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比方,log(-2) 4^(-2) 就不等于(-2)某log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当某=1时,y=0.④当a>1时,在(0,+∞)上是增函数;当0。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

高一数学知识点对数函数

高一数学知识点对数函数

高一数学知识点对数函数对数函数是数学中重要的一类函数,它在高一数学学习中占据着重要的地位。

本文将对数函数的定义、性质和应用进行探讨,帮助同学们更好地理解和应用对数函数。

一、对数函数的定义对数函数是指以一个正数为底数,另一个正数为真数,求得的指数称为对数。

对数函数可以表示为y=logₐx,其中a为底数,x 为真数,y为对数。

在对数函数中,底数a通常取常用对数的底数10或自然对数的底数e。

二、对数函数的性质1. 对数函数的定义域和值域对数函数的定义域是正实数集,即x>0。

值域是全体实数集,即y∈R。

2. 对数函数的单调性对数函数随着真数的增大而单调增加。

3. 对数函数的图像特点对数函数的图像是一条逐渐上升的曲线,对数函数在x轴上的渐近线是y=0,对数函数在y轴上的渐近线是x=0。

4. 对数函数的奇偶性对数函数是奇函数,即f(-x)=-f(x)。

三、对数函数的应用1. 对数函数在科学计算中的应用对数函数在科学计算中有着广泛的应用。

以常用对数为例,常用对数的底数为10,它可以简化大数的运算。

例如,当我们需要计算10的n次方时,可以利用对数函数的性质,将幂运算转化为乘法运算。

2. 对数函数在指数增长中的应用对数函数在描述指数增长过程中经常被使用。

例如,人口增长模型中常常使用对数函数来描述人口的增长趋势,因为人口的增长一开始是指数级的,但随着时间的推移,增长速度逐渐减缓。

3. 对数函数在音乐与声音领域的应用对数函数在音乐与声音领域具有重要的应用。

在音乐中,音高是以对数函数的形式进行调节的,从而使得音高变化更加连续平稳。

在声音领域,声音强度的测量也可以利用对数函数进行,这是由于人类对声音的感知呈现对数关系。

四、对数函数的解题技巧在解题过程中,对数函数可以利用其性质和公式来简化计算。

常见的计算技巧包括:1. 对数与指数的互化对数函数和指数函数之间可以相互转化,通过利用对数函数和指数函数之间的相互关系,可以简化问题的计算。

高一数学对数函数题型及解题技巧

高一数学对数函数题型及解题技巧

高一数学对数函数题型及解题技巧对数函数是高一数学中的一个重要概念,它的应用非常广泛。

下面我们来了解一些对数函数的题型及解题技巧。

一、基本概念对数函数的定义是:设a>0且a≠1,那么我们称y=loga(x)为以a为底,x的对数。

其中a称为底数,x称为真数,y称为以a为底,x的对数。

以10为底的对数函数常用符号是log(x),而以e(自然对数)为底的对数函数常用符号是ln(x)。

二、题型分类1. 求解对数函数的定义域和值域。

定义域是x>0,值域是R(实数集)。

2. 计算对数函数的值。

根据定义,可以用对数的转化公式来计算对数函数的值。

例如log3(81)=4,因为3的4次方等于81。

3. 求解对数方程。

对数方程一般可以转化为指数方程来求解。

例如,求解log2(x)=3,可以将其转化为2的3次方等于x,即x=8。

4. 求解等比数列。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

如果要求等比数列的第n项,则有an=a1*q^(n-1),其中q=loga(r),a是公比的底数。

5. 求解对数函数的性质。

对数函数有多种性质,如对称轴、单调性、奇偶性等。

可以根据对数函数的图像来分析求解。

三、解题技巧1. 掌握对数函数的基本概念,理解对数函数的定义、性质和应用。

2. 熟练掌握对数函数的计算方法,掌握对数的转化公式、对数方程的转化方法和等比数列的求解方法。

3. 学会对数函数的图像分析方法,掌握对数函数的对称轴、单调性、奇偶性等特点,从而更好地解决对数函数相关的问题。

以上是关于高一数学对数函数题型及解题技巧的介绍,希望能够帮助大家更好地掌握对数函数的应用。

新教材苏教版高中数学必修一 知识点07 指数与对数

新教材苏教版高中数学必修一 知识点07 指数与对数

高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点7指数与对数指数根式-------- n 次方根,根式1.a 的n 次方根的定义一般地,如果x n =a ,那么x 叫作a 的n 次方根,其中n >1,且n ∈N *. 2.a 的n 次方根的表示3.(1)负数没有偶次方根.(2)0的n 次方根等于0,记作n0=0.(3)(na )n =a (n ∈N *,且n >1).(4)na n =a (n 为大于1的奇数).(5)na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0(n 为大于1的偶数).4.指数幂的运算对有理数指数幂的运算性质的三点说明:(1)有理数指数幂的运算性质是由整数指数幂的运算性质推广而来,可以用文字语言叙述为:∈同底数幂相乘,底数不变,指数相加;∈幂的幂,底数不变,指数相乘;∈积的幂等于幂的积.(2)有理数指数幂的运算性质中幂指数运算法则遵循:乘相加,除相减,幂相乘.(3)化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.对数1.对数的定义:一般地,如果a b=N(a>0,且a≠1),那么就称b是以a为底N的对数,记作log a N=b,其中a叫作对数的底数,N叫作真数.如图所示:2.对数式中求值的基本思想和方法(1)基本思想在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解.(2)基本方法∈将对数式化为指数式,构建方程转化为指数问题.∈利用幂的运算性质和指数的性质计算.3.对数式化简与求值的基本原则和方法(1)基本原则:对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法∈“收”,将同底的两对数的和(差)收成积(商)的对数;∈“拆”,将积(商)的对数拆成同底的两对数的和(差).4.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=n log a M(n∈R).解决对数应用题的一般步骤一、由根式化简求值例题1若=,则实数a的取值范围是()A.a∈R B.a=1 2C.a>12D.a≤12【答案】D【分析】由|1﹣2a|=1﹣2a,于是2a-1≤0,解出即可.【详解】,所以|2a-1|=1-2a,即2a-1≤0.所以a≤1 2 .故选D【点睛】本考查根式的运算性质、绝对值的性质例题2下列说法正确的个数是()∈16的4次方根是2;的运算结果是±2;∈当n为大于1a∈R都有意义;∈当n为大于1a≥0时才有意义.A .1B .2C .3D .4【答案】B【分析】根据根式的概念和性质求解. 【详解】∈16的4次方根应是±2;, 由根式的性质得∈∈.正确. 故选:B【点睛】考查根式的概念和性质训练1则实数a 的取值范围是A .(),3-∞B .1,3⎛⎤-∞ ⎥⎝⎦C .1,3⎡⎫+∞⎪⎢⎣⎭D .1,3⎛+∞⎫ ⎪⎝⎭【答案】B=,可得130a -≥,从而求得结果.【详解】2696a -=== 130a ∴-≥,解得:13a ≤即a 的取值范围为1,3⎛⎤-∞ ⎥⎝⎦ 故选B【点睛】本题考查根式的化简求值问题训练2=a 的取值范围是( )A .1[,)2+∞ B .1(,]2-∞C .11[,]22-D .R【答案】B 【详解】=可得2112a a -=-,所以120a -≥,即12a ≤. 故选:B.=.二、根式与分数指数幂的互化例题1化简43]的结果为()A .5BC .D .5-【答案】B【分析】先看根式下的式子易得22(5)5-=,再结合分数指数幂的意义,mna=子进行化简;再根据指数幂的运算性质*()(,)m n mn a a m n N =∈,将上式的结果化简,继而得到原式的值. 【详解】解:()311132244234]555⨯⨯====故选:B.【点睛】考查的是实数指数幂的化简运算,考生要掌握实数指数幂的运算性质以及分数指数幂的意义. 例题2的结果是( ) A .132- B .122-C .232-D .322-【答案】B【分析】化根式为分数指数. 【详解】13111323222222⨯⎛⎫==-⨯=-=- ⎪⎝⎭.故选:B.【点睛】考查根式与分数指数的转化训练10a >)的分数指数幂形式为( ) A .34a-B .34aC .43a-D .43a【答案】A【分析】由根式和分数指数幂的意义,先将根式中的部分化为分数指数幂,再化整体即可. 【详解】1333242411aa a⨯-====.故选:A.【点睛】考查根式和分数指数幂的互化、指数的运算法则,属基础题.训练2设0a>2表示成分数指数幂的形式,其结果是()A.12a B.56aC.76a D.32a【答案】C【分析】把根式化成指数幂的形式,再运用幂的运算法则可得出结果.【详解】57222226656aa aa-=====.故选:C.【点睛】考查根式运算化成指数幂的形式三、指数式与对数式的互化例题1log b N=a(b>0,b≠1,N>0)对应的指数式是()A .a b =NB .b a =NC .a N =bD .b N =a【答案】B【分析】利用指数式与对数式的互化即可求解. 【详解】由log b N =a (b >0,b ≠1,N >0), 则b a =N 故选:B【点睛】考查了指数式与对数式的互化 例题2把物体放在冷空气中冷却,如果物体原来的温度是1θ∈,空气的温度是0θ∈,经过t 分钟后物体的温度θ∈可由公式010()ektθθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的大于0的常数.现有80∈的物体,放在20∈的空气中冷却,4分钟以后物体的温度是40∈,则k 约等于(参考数据:ln 3 1.099≈)( ) A .0.6 B .0.5 C .0.4 D .0.3【答案】D【分析】80∈的物体,放在20∈的空气中冷却,4分钟以后物体的温度是40∈,则44020(8020)k e -=+-,从而413ke-=,由此能求出k 的值. 【详解】由题知,80∈的物体,放在20∈的空气中冷却,4分钟以后物体的温度是40∈,则44020(8020)k e -=+-,从而413ke-=, 14ln ln33k ∴-==-,得1 1.009ln 30.344k =≈≈.故选:D【点睛】考查指数与对数的运算训练1下列指数式与对数式互化不正确的一组是( )A .01e =与ln10=B .13182-=与811log 23=-C .3log 92=与1293=D .7log 71=与177=【答案】C【分析】根据指数式与对数式的互化关系逐一判断即可. 【详解】01ln10e =⇔=,故A 正确;13182-=⇔811log 23=-,故B 正确;23log 9239=⇒=,129193log 32=⇒=,故C 不正确; 17log 7177=⇔=,故D 正确.故选:C .【点睛】考查了指数式与对数式的互化训练2指数式 x 3=15的对数形式为: A .log 3 15=x B .log 15 x=3 C .log x 3= 15 D .log x 15= 3【答案】D【分析】根据指数式与对数式关系判断求解.【详解】因为指数式 x 3=15的对数形式为log x 15= 3,所以选D. 【点睛】考查指数式与对数式相互关系,考查基本分析判断能力.四、对数的概念判断与求值例题1下列指数式与对数式的互化不正确的一组是A .100=1与lg1=0B .131273-=与271log 33=-C .log 39=2与32=9D .log 55=1与51=5【答案】B【分析】根据对数和指数的换算关系可判断A ,C ,再由对数的运算公式得到D 是正确的,进而得到结果. 【详解】100=1即lg 1=0,A 正确;131273-=对应的对数式应为2711log 33=-.B 不正确3 92log =即2 39=,故C 是正确的;log 55=1即51=5, D 是正确的; 故选B .【点睛】考查了对数与指数的关系,当a >0,且a ≠1时,log b a a N b N =⇔=,对数log (0,1)a N a a 且>≠具有以下性质:(1)负数和零没有对数,即0N >;(2)1的对数等于0,即log 10a =;(3)底数的对数等于1,即log 1a a =. 例题2下列语句正确的是∈对数式log a N=b 与指数式a b =N 是同一关系的两种不同表示方法. ∈若a b =N (a>0且a≠1,N>0),则log a N a N =一定成立. ∈对数的底数可以为任意正实数. ∈log a a b =b 对一切a>0且a≠1恒成立. A .∈∈∈∈ B .∈∈∈ C .∈∈∈ D .∈∈∈【答案】B【分析】根据对数函数的概念以及对数的运算公式依次对选项进行判断即可得到答案. 【详解】由对数概念及log ba a Nb N =⇔=知∈正确;若a b =N (a>0且a≠1,N>0),则log a N=b ,log a N b a a N ==,故∈正确;由对数的性质知∈正确.对数的底数不能为1,故∈错误. 故选B .【点睛】考查了对数的概念,以及对数的简单公式,对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底 N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.训练1下列函数是对数函数的是 A .3log (1)y x =+ B .()y log 2a x = (a 0,a 1)>≠ C .ln y x = D .2y log a x = (a 0,a 1)>≠【答案】C【分析】对数函数的基本形式为log a y x = 【详解】由对数函数定义可以,本题选C . 【点睛】对对数函数的定义 训练2 有下列说法: ∈零和负数没有对数;∈任何一个指数式都可以化成对数式; ∈以10为底的对数叫做常用对数; ∈以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2C .3D .4【答案】C【分析】∈利用对数的概念即可判断;∈当底数是负数时不可以,比如:(﹣2)3; ∈根据常用对数的概念即可判断; ∈利用自然对数的定义即可判断. 【详解】对于∈,零和负数没有对数,正确;对于∈,任何一个指数式都可以化成对数式,错误,当底数是负数时不可以, 比如:(﹣2)3;对于∈,以10为底的对数叫做常用对数,正确; 对于∈,以e 为底的对数叫做自然对数,正确. 综上所述,正确命题的个数为3个, 故选C .【点睛】考查命题的真假判断与应用,着重考查对数的概念综合式测试一、单选题1.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞C .1(0,][10,)10+∞ D .1[,10]10【答案】B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =,所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值.2.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 3.计算log 916·log 881的值为( ) A .18 B .118C .83D .38【答案】C【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C .【点睛】考查对数的运算性质,换底公式以及其推论的应用,属于基础题.4.已知log 45m =,log 98n =,0.8log 0.5p =,则m ,n ,p 的大小关系为( ) A .p m n >> B .m n p >>C .m p n >>D .p n m >>【答案】A【分析】先转化对数式为指数式,求解,m n ,再转化2152014225612433m n ⎛⎫==> ⎪⎝⎭,再利用中间值2,可比较,m p 的大小,即得解 【详解】依题意,54m =,故125542m ==;而89n =,故118493n ==,所以122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以m n >,因为0.80.8log 0.5log 0.642p =>=,2522m =<, 所以p m n >> 故选:A【点睛】考查了指数式对数式大小的比较,数学运算能力,属于中档题 5.若35225a b ==,则11a b +=( ) A .12B .14C .1D .2【答案】A【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b ==根据指数式与对数式的转化可得35log 225,log 225a b ==由换底公式可得lg 2252lg15lg 2252lg15,lg3lg3lg5lg5a b ==== 由对数运算化简可得11lg3lg52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152==故选:A【点睛】考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.6.某食品加工厂2018年获利20万元,经调整食品结构,开发新产品.计划从2019年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(已知lg 20.3010=,lg30.4771=).( ) A .2023年 B .2024年C .2025年D .2026年【答案】C【分析】列出函数关系,设第n 年获利y 元,则20 1.2,n y n N *=⨯∈,解不等式20 1.260n ⨯>即可得解. 【详解】设第n 年获利y 元,则20 1.2,n y n N *=⨯∈,2019年即第1年,20 1.260n⨯>, 1.2lg3lg30.4771log 3 6.03lg1.2lg32lg 210.47710.60201n >===≈+-+-, 所以7n ≥,即从2025年开始这家加工厂年获利超过60万元. 故选:C【点睛】考查函数模型的应用,涉及解指数不等式,转化为对数进行计算,利用换底公式计算化简. 7.已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg20.301=) A .6 B .7C .8D .9【答案】B【分析】根据题意得出20.2%5n⎛⎫< ⎪⎝⎭,将指数式化为对数式,解出n 的取值范围,即可得出结果. 【详解】抽气机抽()n n N *∈次后,容器内的空气为原来的25n⎛⎫ ⎪⎝⎭, 由题意可得210.2%5500n⎛⎫<= ⎪⎝⎭, 325210lg1lg5000lg5003lg 22log 6.782510500012lg 2lg lg lg 522n --∴>====≈-, 因此,至少要抽的次数是7. 故选:B.【点睛】考查指数模型的应用,同时也考查了指数不等式的求解,考查运算求解能力,属于中等题. 8.函数()51f x ax bx =-+,若()()5lg log 105f =,则()()lg lg5f 的值为( )A .3-B .5C .5-D .9-【答案】A【分析】设()lg lg5t =,由已知()()5lg log 105f =可得()5f t -=,又()51f x ax bx =-+,计算()f t -与()f t ,相加即可求解.【详解】()()51lg log 10lg lg lg5lg5⎛⎫==- ⎪⎝⎭,设()lg lg5t =,则()()()5lg log 105f f t =-=.因为()51f x ax bx =-+,所以()515f t at bt -=-++=,则()51f t at bt =-+,两式相加得()52f t +=,则()253f t =-=-,即()()lg lg5f 的值为3-. 故选:A【点睛】考查了对数的运算,函数求值,换元法,属于中档题. 二、填空题92log 3125(log 10)4-++【答案】10【分析】由指数幂与对数的运算公式,准确运算,即可求解. 【详解】由指数幂与对数的运算公式,可得:原式22239lg 252lg 252(12lg 2)log log =++=++-12lg 25lg 412lg10010=--=-=【点睛】考查了指数幂与对数的运算及性质,着重考查运算与求解能力,属于基础题.10.若,a b 是方程242(lg )lg 10x x -+=的两个实根,则 lg()(log log )a b ab b a +的值为______. 【答案】12【分析】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=,利用换元法令1t lga =,2t lgb =,再根据对数的运算法则,即可得答案;【详解】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=.设方程22410t t -+=的两根为1t ,2t ,则122t t +=,1212t t =. 由已知a ,b 是原方程的两个根.可令1t lga =,2t lgb =,则2lga lgb +=,12lga lgb ⋅=, ()()·a b lg ab log b log a ∴+ lg lg (lg lg )lg lg ⎛⎫=++ ⎪⎝⎭b a a b a b 22(lg lg )(lg )(lg )lg lg ⎡⎤++⎣⎦=a b b a a b2(lg lg )2lg lg (lg lg )lg lg b a a ba b a b+-=+⋅2122221212-⨯=⨯=.故答案为:12.【点睛】考查对数方程的求解及对数运算法则求值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.11.如图,矩形ABCD 的三个顶点,,A B C分别在函数y x =,12y x =,2xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.【答案】11,24⎛⎫⎪⎝⎭【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x =的图像上,所以2A x =,即212A x ==⎝⎭. 因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数x y =⎝⎭的图像上,所以414C y ==⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】考查指数、对数和幂函数的图像和性质12.已知()232log 3x f x =⋅,则()10072f 等于__________.【答案】2014【分析】令100732x =,即可求出x 的值,代入函数式即可求出()10072f 的值.【详解】令100732x =,则100733log 21007log 2x ==,()100732221007log 2log 32014f ∴=⨯⨯=.故答案为2014.【点睛】考查利用赋值法进行函数求值,同时考查指数式与对数式的互化以及对数运算法则、换底公式推论log log 1a b b a ⋅=的应用. 三、解答题13.(1)计算:5log 3333322log 2log log 8259-+-; (2)1222301322(7.8)3483-⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭-⎭.【答案】(1)7-(2)12【分析】(1)利用对数的运算法则化简求值;(2)利用指数幂的运算法则化简求值. 【详解】(1)解:原式52293log 28log 5237329⨯=-=-=-. (2)解:原式12232⨯⎛⎫= ⎪⎝⎭2323331()()22⨯--+399112442=--+=. 【点睛】考查对数和指数幂的运算法则,意在考查学生对这些知识的理解掌握水平. 14.(1)证明对数换底公式:log log log a b a NN b=(其中0a >且1a ≠,0b >且1b ≠,0N >) (2)已知3log 2m =,试用m 表示32log 18.【答案】(1)证明见解析;(2)322log 185mm+=. 【分析】(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. 【详解】(1)设log b N x =,写成指数式x b N =.两边取以a 为底的对数,得log log a a x b N =.因为0b >,1b ≠,log 0a b ≠,因此上式两边可除以log a b ,得log log a a Nx b=. 所以,log log log a b a NN b=. (2)23333325333log 18log 3log 22log 22log 18log 32log 25log 25mm+++====. 【点睛】考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明.15.已知函数xy a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2xx a f x a =+.(1)求a 的值;(2)证明:()()11f x f x +-=;(3)求12320142015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 【答案】(1)4a =;(2)证明见解析;(3)1007.【分析】(1)分01a <<和1a >两种情况讨论,根据指数函数x y a =的单调性列出关于a 的方程,解出即可得出实数a 的值;(2)由(1)得出()442xx f x =+,然后利用通分以及指数的运算律证明出()()11f x f x +-=;(3)利用(2)中的结论,结合倒序相加法可求出所求代数式的值. 【详解】(1)当01a <<时,函数x y a =在[]1,2上单调递减,则函数x y a =的最大值为max y a =,最小值为2min y a =,由题意得220a a +=,即2200a a +-=,解得4a =或5a =-,均不合乎题意; 当1a >时,函数x y a =在[]1,2上单调递增,则函数x y a =的最小值为min y a =,最大值为2max y a =,由题意得220a a +=,即2200a a +-=,解得4a =或5a =-,4a =合乎题意. 因此,4a =;(2)由(1)知()442xx f x =+,()()11444441442424224x x xx xx x x f x f x --∴+-=+=+++++44421422444242x x x x x x=+=+=+⋅+++; (3)由(2)知12014120152015f f ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,22013120152015f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,…,10071008120152015f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 12320142015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12014220132015201520152015f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1007100820152015f f ⎡⎤⎛⎫⎛⎫+⋅⋅⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1111007=++⋅⋅⋅+=.【点睛】考查利用指数函数的最值求参数,以及利用指数运算证明等式与求值,在涉及指数函数单调性相关的问题时,要注意对底数的取值范围进行分类讨论,考查分类讨论思想与计算能力,属于中等题.。

高一数学对数函数教案集锦7篇

高一数学对数函数教案集锦7篇

高一数学对数函数教案集锦7篇高一数学对数函数教案1学习目标1. 通过详细实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出详细对数函数的图象,探究并了解对数函数的单调性与特别点;3. 通过比拟、对比的方法,引导学生结合图象类比指数函数,探究讨论对数函数的性质,培育数形结合的思想方法,学会讨论函数性质的方法.旧知提示复习:若,则,其中称为,其范围为,称为 .合作探究(预习教材P70- P72,找出怀疑之处)探究1:元旦晚会前,同学们剪彩带备用。

现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。

设所得的彩带的根数为,剪的次数为,试用表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,留意区分,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且 .探究2:你能类比前面争论指数函数性质的思路,提出讨论对数函数性质的内容和方法吗?讨论方法:画出函数图象,结合图象讨论函数性质.讨论内容:定义域、值域、特别点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出以下对数函数的`图象.新知:对数函数的图象和性质:象定义域值域过定点单调性思索:当时,时,; 时,;当时,时,; 时, .典型例题例1求以下函数的定义域:(1) ; (2) .例2比拟大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.学问拓展对数函数凹凸性:函数,是任意两个正实数. 当时,;当时, .学习评价1. 函数的定义域为( )A. B. C. D.2. 函数的定义域为( )A. B. C. D.3. 函数的定义域是 .4. 比拟大小:(1)log 67 log 7 6 ; (2) ; (3) .课后作业1. 不等式的解集是( ).A. B. C. D.2. 若,则( )A. B. C. D.3. 当a1时,在同一坐标系中,函数与的图象是( ).4. 已知函数的定义域为,函数的定义域为,则有( )A. B. C. D.5. 函数的定义域为 .6. 若且,函数的图象恒过定点,则的坐标是 .7.已知,则= .8. 求以下函数的定义域:2.2.2 对数函数及其性质(2)学习目标1. 解对数函数在生产实际中的简洁应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.旧知提示复习1:对数函数图象和性质.a1 0图性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:比拟两个对数的大小:(1) ; (2) .复习3:(1) 的定义域为;(2) 的定义域为 .复习4:右图是函数,,,的图象,则底数之间的关系为 .合作探究(预习教材P72- P73,找出怀疑之处)探究:如何由求出x?新知:反函数试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发觉什么性质?反思:(1)假如在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.典型例题例1求以下函数的反函数:(1) ; (2) .提高:①设函数过定点,则过定点 .②函数的反函数过定点 .③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为 .小结:求反函数的步骤(解x 习惯表示定义域)例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯洁水摩尔/升,计算其酸碱度.例3 求以下函数的值域:(1) ;(2) .课堂小结①函数模型应用思想;②反函数概念.学问拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是穿插相等.学习评价1. 函数的反函数是( ).A. B. C. D.2. 函数的反函数的单调性是( ).A. 在R上单调递增B. 在R上单调递减C. 在上单调递增D. 在上单调递减3. 函数的反函数是( ).A. B. C. D.4. 函数的值域为( ).A. B. C. D.5. 指数函数的反函数的图象过点,则a的值为 .6. 点在函数的反函数图象上,则实数a的值为 . 课后作业1. 函数的反函数为( )A. B. C. D.2. 设,,,,则的大小关系是( )A. B. C. D.3. 的反函数为 .4. 函数的值域为 .5. 已知函数的反函数图象经过点,则 .6. 设,则满意的值为 .7. 求以下函数的反函数.(1) y= ; (2)y= (a1,x (3) .高一数学对数函数教案2教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培育学生数形结合的思想,以及分析推理的力量.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演化延长.教学过程:一、问题情境1.复习对数函数的性质.2.答复以下问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是 .(3)函数y=log (x2-6x+17)的值域 .(4)函数的值域是_______________.例2 推断以下函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.75>1,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a>0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.以下函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出全部正确结论的序号).2.函数y=lg( -1)的`图象关于对称.3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与方法小结(1)借助于对数函数的性质讨论对数型函数的定义域与值域;(2)换元法;(3)能画出较简单函数的图象,依据图象讨论函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学对数函数教案31.把握对数函数的概念,图象和性质,且在把握性质的根底上能进展初步的应用。

高一对数函数公式

高一对数函数公式

高一对数函数公式在咱们高一的数学世界里,对数函数公式那可是个相当重要的角色。

就像一把神奇的钥匙,能帮咱们打开好多数学难题的大门。

先来说说对数函数的定义吧。

如果有一个式子$a^x = N$($a>0$且$a≠1$),那么咱们就把$x$叫做以$a$为底$N$的对数,记作$x = log_aN$。

这就好比是一个密码组合,$a$是密码的规则,$N$是要解开的秘密,而$x$就是解开秘密的关键数字。

咱们常见的对数函数公式有好多呢,比如换底公式:$log_a b =\frac{log_c b}{log_c a}$。

这就像是一个魔法咒语,能让咱们在不同底数之间自由转换,找到解题的最佳路径。

还有对数的运算性质,$log_a (M×N) = log_a M + log_a N$,$log_a \frac{M}{N} = log_a M - log_a N$,$log_a M^n = n log_a M$。

我记得有一次,在课堂上老师出了一道题:计算$log_2 8 + log_2 16 - log_2 4$。

同学们一开始都有点懵,不知道从哪里下手。

这时候我就想啊,先把每个对数都按照定义算出来好像太麻烦了,那不如试试用运算性质呢。

$log_2 8 = log_2 2^3 = 3$,$log_2 16 = log_2 2^4 = 4$,$log_2 4 = log_2 2^2 = 2$,所以原式就变成了$3 + 4 - 2 = 5$。

当我算出答案的时候,心里那叫一个美,感觉自己就像是掌握了神秘魔法的小巫师。

再来说说对数函数的图像和性质。

当底数$a>1$时,函数单调递增;当$0<a<1$时,函数单调递减。

图像恒过点$(1,0)$,就像是一个固定的坐标灯塔,为我们指引方向。

学习对数函数公式可不能死记硬背,得理解着来。

多做几道题,多琢磨琢磨,你就会发现其中的乐趣和规律。

就像拼图一样,一块一块地拼,最后就能看到完整又美丽的图案。

高一数学专题复习第七讲对数函数、幂函数及二分法

高一数学专题复习第七讲对数函数、幂函数及二分法

高一数学专题复习第七讲:对数函数、幂函数及二分法【要点归纳】1.(1)对数的定义:___________________________________________________________________(2)对数恒等式:○1log ________;a Na = ○2log _______.Naa =(0,1a a >≠) (3)对数的运算法则(01,0,0,0a a M Nb >≠>>>且): l o g ()___________a MN ∙= log ()______________;a MN=log ______________;m n a b = (4)换底公式:log log (0,1,0,0,1)log c a c bb a a bc c a=>≠>>≠ 推论:○1log log ________;a b b a ∙= ○2log log ________.a bb c ∙= 2.对数函数的概念、图像与性质(1)定义:形如_____________(0,1)a a >≠的函数叫做对数函数; (2)对数函数的图像与性质:3.关于反函数的三个结论:○1_________________________________________________________________________________________; ○2_________________________________________________________________________________________; ○3_________________________________________________________________________________________ . 4.函数与方程:(1)函数零点的定义:______________________________________________________________________. (2)函数零点与方程的根的关系:方程()0f x =有实根⇔_________________________⇔_____________________⇔___________________(3)零点存在定理:若函数()f x 满足○1______________________;○2__________________________________,那么函数()f x 在区间(,)a b 内至少存在一个零点.4.幂函数的概念、图像及性质(1)定义:形如_____________()a 为常数的函数叫做幂函数; (2)图像与性质:关于幂函数的结论:【典例赏析】例1 对数式的化简与求值:22)2(lg 20lg 5lg 8lg 325lg +++)2log 2(log )3log 3(log 9384+⋅+ 6log ]18log 2log )3log 1[(46626⨯⋅+-.练习1(1)若12()x f x a-=,且(l g )f a =则a =__________.(2)若234log [log (log )]0x =,则x = . 例2 已知q p ==25log ,9log 2732,试用q p ,表示5lg .练习2:(1)设,,0a b c >,且346abc==,则下列等式中成立的是( )A .111c a b =+ B .221c a b =+ C .122c a b =+ D .212c a b=+ (2)已知33lg 2lg 53lg 2lg5a b +=++⋅,求333a b ab ++的值.例3 求下列函数的定义域:(1)(2)log x y -= (2)y =例4 求函数()()212log 4f x x =-的单调区间.练习3 求下列函数的单调区间: (1)22log (3)y x =-;(2)2log (47)a y x x =-+(0a >,且1)a ≠.(3).已知)3(log ax y a -=在]2,0[上是x 的减函数,则a 的取值范围为_______________. 例5 设2log 3=a ,2ln =b ,125c -=,则a ,b ,c 的大小关系为____________________.练习4 (1)已知log 4log 4m n <,则m ,n 的大小关系为___________________________.(2)函数2()log )f x x =的最小值为_____________.例5判断函数2()log )f x x =的奇偶性.例6 作出函数|lg |1||y x =-的图象,并写出其单调区间.练习4 例3.画出下列函数的简图,并根据简图写出单调区间:(1)2|log |y x =; (2)2log ||y x =. 例7 函数223()(1)m m f x m m x +-=--是幂函数,且当(0,)x ∈+∞时,()f x 是增函数,求()f x 的解析式.例8 已知幂函数y x α=在第一象限的图象如图,且α取11,,2,32-四个值,则相应的曲线1C ,2C ,3C ,4C 的α值依次为 . 【自主反馈】1.若0a >,且1a ≠,0x >,0y >,下列式子中正确的个数是( ) ① log ()log log a a a xy x y =⋅②log ()log log a a a x y x y +=+③ log ()log log a a a x y x y +=⋅④log ()log log a a a xy x y =+ ⑤ log ()log log a a a x y x y -=-⑥log log log a aa xx y y= ⑦log log log a a a x x y y =-⑧log log ()log a a a xx y y-=A .2B .3C .4D .52.函数2()log (31)x f x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞3.已知函数0.5()2log f x x =的值域为[1,1]-,则其定义域为( )A .B .[1,1]-C .1[,2]2D .([2,)-∞+∞ 4.已知5.0log ,4.0log ,5.14.05.14.0===c b a ,则( )A .c b a <<B .b c a <<C .c a b <<D .a c b <<5.若09log 9log <<n m ,则m ,n 满足的条件是( ) A .1>>n m B .1>>m n C .10<<<m nD .10<<<n m6.1)log (3+= . 4.若2510a b==,则11a b+= . 7.已知14log 7a =,14log 5b =,则35log 28=____________.(用a ,b 表示)8.(1)20.5log (613)y x x =++的单增区间为________.(2))32(log )(25.0--=x x x f 的递增区间是 . 9.(1)已知42,lg ,ax a ==则x =________. (2) 已知2349a =(0a >),则23log a =________.10.若函数()y f x =是函数x y a =(0a >,且1)a ≠的反函数,其图象经过点)a ,则()f x 等于( )A .2log xB .12log xC .12xD .2x11.若22lg =a ,33lg =b ,55lg =c ,则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<12.已知幂函数223()m m f x x --+=,其中{|22,}m x x x Z ∈-<<∈.满足:(1)是区间(0,)+∞上的增函数;(2)对任意的x R ∈,都有()()0f x f x -+=.求同时满足(1),(2)的幂函数()f x 的解析式,并求[0,3]x ∈时()f x 的值域.13. 判断函数()ln 26f x x x =+-的零点的个数,并求其近似解(精确度0.1).14.借助计算器或计算机用二分法求方程237x x +=的近似解(精确度0.1).。

高一数学对数函数性质知识点

高一数学对数函数性质知识点

高一数学对数函数性质知识点对数函数是高中数学中重要的函数之一,它在解决各种实际问题中扮演着重要的角色。

在学习对数函数的性质时,我们需要掌握以下几个知识点。

一、对数函数的定义对数函数是指以一个常数为底数,求指数的运算。

常用的对数函数有以10为底的常用对数函数和以自然对数e为底的自然对数函数。

对于以10为底的对数函数,用log表示;对于以e为底的对数函数,用ln表示。

二、对数函数的性质1. 对数函数的定义域和值域以10为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞);以e为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞)。

2. 对数函数的单调性以10为底的对数函数是递增函数,即当x1 < x2时,logx1 < logx2;以e为底的对数函数是递增函数,即当x1 < x2时,lnx1 < lnx2。

3. 对数函数的图像和对称轴对数函数y = logx或y = ln x的图像都位于一、四象限,并且与y轴互为对称。

4. 对数函数的性质运算(1)对数函数的乘积性质:loga (mn) = loga m + loga n;(2)对数函数的商性质:loga (m/n) = loga m - loga n;(3)对数函数的幂性质:loga (m^k) = k loga m。

三、对数函数的应用对数函数的应用非常广泛,特别是在科学和工程领域。

以下是一些常见的应用示例:1. 指数增长模型对数函数可以用来描述指数增长模型,例如人口增长、病菌的传染速度等。

通过对数函数的计算,我们可以更好地理解和研究这些问题。

2. 负指数衰减模型对数函数也可以用来描述负指数衰减模型,例如放射性物质的衰变速度、温度的下降速度等。

对数函数能够提供我们更多的定量信息,使我们能够更好地预测和分析这些问题。

3. 声音的强度和音量声音的强度和音量与传播距离之间存在着对数关系。

通过对数函数的运算,我们可以计算声音在不同距离上的强度差异,并进行相关的声学研究和设计。

高一数学对数函数7

高一数学对数函数7
36游戏中心
[单选]“科学技术是条一生产力”这一论断对职业道德建设的启示是()A.增强自主性道德观念B.增强学习创新的道德观念C.增强竞争的道德观念D.增强以利益为导向的道德观念 [填空题]从技术角度来说,互联网是一个由()、()和()组成的综合体系。 [单选,A1型题]湮灭辐射是指()A.射线与物质相互作用能量耗尽后停留在物质中B.光子与物质原子的轨道电子碰撞,其能量全部交给轨道电子,使之脱离原子轨道,光子本身消失C.静止的正电子与物质中的负电子结合,正负电子消失,两个电子的静止质量转化为两个方向相反、能量各为511keV [单选]铁路平面无线调车A型号电台,在调车作业中,连结员或制动员按下红键时,辅助语音提示为()。A.停车B.注意减速C.紧急停车(&times;号&times;号)D.&times;号解锁 [多选]施工现场临时用水量计算包括()。A.现场施工用水量B.施工机械用水量C.施工现场生活用水量D.基坑降水计算量E.消防用水量 [单选]临床拟诊为肝管结石,下列哪种成像技术为首选()A.CTB.MRIC.CTAD.DSAE.0.MRA [单选]等角正圆柱投影在航海上常被用来绘制()。A.半球星图B.大圆海图C.墨卡托航用海图D.大比例尺港泊图 [单选,A1型题]既能消食化积又能行气散瘀的药物是()A.神曲B.山楂C.木香D.枳实E.鸡内金 [问答题,简答题]药品监督管理部门违反《药品管理法》规定,为不符合GMP要求、或不符合条件发给GMP认证证书或《药品生产许可证》的,由那个部门责令收回违法发给的证书、撤销药品批准证明文件或依法给予行政处分、构成犯罪的,依法追究刑事责任? [判断题]红外对射在安装过程中对射机的受光端校准电压要不低于1.4伏。A.正确B.错误 [单选]钩体病弥漫肺出血型的治疗下列哪项是错误的()A.短程大剂量肾上腺皮质激素B.维生素K注射止血C.度冷丁镇静D.酌情使用西地兰E.血压偏低时及时使用升压药 [问答题,论述题]试述电动液压推杆松闸器的组成、工作原理及使用中常见故障。 [单选]下列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选]法定的公司成立日期是()。A.公司申请设立登记的日期B.公司开业的日期C.公司营业执照签发日期D.公司申请营业执照的日期 [名词解释]乡村家庭的特点与功能 [问答题,简答题]主变容量、变比? [单选]()是指国家在一定时期内生产的最终产品和服务按价格计算的货币价值总量。A.总需求B.总需求价格C.总供给D.总供给价格 [单选]对鼻咽纤维血管瘤的描述不相符的是()A.常发生于10~25岁的男性B.肿瘤富含血管,极易出血C.肿瘤无明显包膜D.肿瘤呈膨胀性生长E.肿瘤可侵入眼眶及颅内 [名词解释]空气分级 [单选]在SLE应用激素冲击疗法中,下列哪项不是适应症()。A.急性肾衰竭B.NP狼疮的癫痫发作C.NP狼疮的明显精神症状下面关于MRI检查技术的适应证,不合理的是()A.感染B.肿瘤C.肺间质疾病D.寄生虫病E.中毒 [名词解释]人格结构 [问答题,简答题]简述膨胀机的临时停车步骤? [单选]关于安氏Ⅱ类错?,下列说法不正确的是()A.安氏Ⅱ类错?是一个单纯的错类型B.安氏Ⅱ类错?中大多数上颌骨位正常C.在上颌骨位置异常者中,上颌后明显多于上颌前突D.上牙弓后缩多于上牙弓前突E.安氏Ⅱ类错?中约60%患者下颌后缩 [问答题]用于测定绝对地质年代的放射性同位素必须具备哪些条件? [单选,A1型题]WHO提出号召,出生后4~6个月内的婴儿母乳喂养率应达多少以上()A.50%B.60%C.70%D.80%E.90% [单选,A1型题]热射病体温调节中枢失控,下列各项描述错误的是()。A.中心静脉压下降B.心排血量减少C.心功能减退D.体温骤升E.汗腺衰竭 [单选,A2型题,A1/A2型题]下列哪项不属于心理测量标准化要求的内容()A.有固定施测条件B.标准的指导语C.统一的记分方法D.符合实际情况E.使用标准化工具 [单选]风湿性心脏瓣膜病二尖瓣关闭不全时,心脏听诊不可能发现下列哪项体征().A.心尖部全收缩期杂音向左腋下传导B.心尖部第一心音亢进C.肺动脉瓣区第二心音分裂D.心尖部第三心音E.心尖部短促舒张早期杂音 [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [单选]急性肾功能衰竭少尿期最常见的血镁、磷、钙代谢异常是()A.高镁、高磷、低钙B.低镁、高磷、低钙C.高镁、低磷、高钙D.低镁、高磷、高钙E.高镁、高磷、高钙 [多选]MK系列钻机回转器不前进也不后退时,可能的原因是()。A.给进压力太小B.系统压力不够C.给进液压缸活塞内部串油D.拖板与导轨卡住 [单选]黄体由两种细胞组成()A.颗粒黄体细胞和卵泡颗粒层B.颗粒黄体细胞和卵泡膜黄体细胞C.膜黄体细胞和门细胞D.颗粒黄体细胞和门细胞E.膜黄体细胞和卵泡膜细胞 [单选,A2型题,A1/A2型题]梅毒引起的鼻中隔穿孔多位于()。A.Little区B.鼻中隔前上部C.鼻中隔前下部D.鼻中隔骨部E.鼻中隔软骨部 [多选]下面关于“任务导向VS效果导向”的区别说法正确的是?()A、任务导向(指定)B、效果导向(自愿)C、任务导向(负责任)D、效果导向(借口) [单选,A1型题]实施监测的方法包括()A.记录与报告B.审计C.现场考察D.定量与定性调查E.以上均正确 [填空题]泵的运行工况点是()和()的交点。 [单选]关于病原携带状态,下列不正确的是()A.可以出现在显性感染后,也可出现在隐性感染后B.是许多传染病的重要传染源C.并非所有的传染病都有病原携带者D.并非所有的病原携带者都能排出病原体E.机体有免疫反应,但不足以清除病原体 [单选]厨房人员在厨房内的占地面积不得小于()平方米。A、1.8B、1.5C、1.7D、1.4 [多选]关于仲裁协议的效力,下列哪些选项是错误的?()A.当事人对仲裁协议效力有争议的,既可以向法院申请认定,也可以向仲裁委员会申请认定B.作为合同内容的仲裁条款,在合同无效时,其效力不受影响C.仲裁裁决被法院撤销后,当事人可以依原仲裁协议重新申请仲裁D.仲裁裁决被法院

高中高一数学知识点对数

高中高一数学知识点对数

高中高一数学知识点对数高中高一数学知识点:对数对数作为数学中的重要概念,是高中数学中必学的内容之一。

掌握对数的基本概念和相关的运算性质对于进一步学习数学以及应用数学都具有重要的意义。

本文将介绍对数的定义、性质和一些常见的运用。

一、对数的定义对数是指数运算的逆运算。

在给定一个底数和一个真数的情况下,对数可以表示为幂的指数。

用符号记作log_a x,其中 a 表示底数,x 表示真数。

对数的定义可以表示为以下等式:x = a^p 等价于 p = log_a x其中,x 为正数,a 为正数且不等于 1 ,p 为实数。

二、常见的对数在实际应用中,以 10 和自然对数(底数为 e)为底的对数比较常见。

分别记作 log x 和 ln x。

1. 以 10 为底的对数,常用符号为 log x。

底数为 10 的对数运算就是在数的左上角加上 log,例如 log 100 = 2,表示底数为 10,真数为 100 时的对数等于 2。

2. 自然对数,常用符号为 ln x,其中底数为e ≈ 2.718。

自然对数与以 10 为底的对数之间可以互相转换,常用的换底公式为:log x = ln x / ln 10 或者 ln x = log x / log e三、对数的性质对数具有一些重要的性质,通过这些性质我们可以进行对数的运算。

下面是对数的一些基本性质:1. 对数的乘法性质:log_a (x * y) = log_a x + log_a y这个性质表明,对数运算中的真数相乘,等价于对数运算中的底数相加。

2. 对数的除法性质:log_a (x / y) = log_a x - log_a y对数运算中的真数相除,等价于对数运算中的底数相减。

3. 对数的幂运算性质:log_a (x^m) = m * log_a x这个性质指出,对数运算中的真数进行幂运算,等价于对数运算中的指数与底数相乘。

4. 对数的换底公式:log_b x = log_a x / log_a b这个公式可以用于不同底数的对数之间的转换,方便进行计算。

高一数学对数函数知识点

高一数学对数函数知识点

高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。

在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。

对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。

二、对数的运算法则对数的运算法则是解决对数问题的基础。

以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。

掌握这些运算法则对于解决复杂的对数问题至关重要。

三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。

1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。

自然对数在数学、物理和工程等领域有着广泛的应用。

2. 常用对数:以10为底的对数称为常用对数,记作log x。

常用对数在科学计数法中经常被使用。

四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。

对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。

2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。

3. 当x>0时,函数有定义;当x<=0时,函数无定义。

4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。

五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。

2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。

3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。

对数函数的概念PPT课件(高一数学人教A版必修一册)

对数函数的概念PPT课件(高一数学人教A版必修一册)

(D) ③④
判断函数是否为对数函数的依据是什么?
高中数学
新知特征
y log a x.
判断一个函数是否是对数函数,要以下关注三点:
1. 对数符号前面的系数为1;
2. 对数的底数是不等于1的正常数;
3. 对数的真数仅有自变量x.
高中数学
学以致用
例1
给出下列函数:
① y log 2 (3x 2);
5730

( ∈ 0, +∞ )
= log 5730 1
2
y
任意 y 0,1
1
唯一 x 0,
0
高中数学
x
新知形成
=
1
2
1
5730

( ∈ 0, +∞ )
= log 5730 1
2
任意 y 0,1
y
1
0 , 0
0
0
高中数学
唯一 x 0,
= log 5730 1
= log
= log
2
2
对数函数
新知特征
对数函数的概念:
一般地,函数 y log a x (a 0, 且 a 1) 叫做对数函数,
其中 x 是自变量,定义域是 0, .
注意:1.对数函数的定义是形式定义,注意函数特征;
的数据增长应选取合适的函数模型来刻画其变化规律.
高中数学
A
布置作业
1. 教科书 第131页练习第2题;
2. 课后练习.
高中数学
② y 2 log 0.3 x;
③ y log x1 x;
④ y lg x;

数学高一上对数函数知识点

数学高一上对数函数知识点

数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。

下面我们就来系统地了解一下高一上对数函数的知识点。

1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。

常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。

对数函数的性质有:- 定义域:对数函数的定义域是正实数集。

- 值域:对数函数的值域是实数集。

- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。

也就是说,对数函数是递增函数。

- 零点:对数函数的零点是x = 1,因为log101 = 0。

- 对称性:对数函数关于直线y = x对称。

- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。

- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。

2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。

对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。

当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。

对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。

当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。

3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。

对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。

- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。

高一数学教案范文:对数函数教案6篇

高一数学教案范文:对数函数教案6篇

高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。

教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。

教学难点:对数函数的应用和解决实际问题。

教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。

Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。

Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。

Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。

Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。

Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。

Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。

评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。

教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。

教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。

高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hale Waihona Puke 谢文东之风云再起 [单选,A2型题,A1/A2型题]“医乃仁术”是指()。A.道德是医学活动中的一般现象B.道德是医学的本质特征C.道德是医学的个别性质D.道德是个别医务人员的追求E.道德是医学的非本质要求 [问答题,案例分析题]病例摘要:杜某,女,59岁,已婚,退休,于2013年3月21日就诊。患者于2年前与家人争吵后出现间断性头痛,伴头晕,无肢体活动障碍及语言不利,当时测血压高于正常值,患者经休息症状好转。此后上述症状间断出现,最高血压195/110mmHg,多次测量血压均高于正常值 [单选]职业培训课程的评价主要采用()A、背景评价B、输入评价C、过程评价D、成果评价 [单选]过烧缺陷的金相特征主要表现为()。A、晶粒粗化B、性能降低C、晶界氧化和熔化D、氧化脱碳 [单选]采用富氧再生技术后,再生催化剂的烧焦强度()。A、降低B、提高C、不变D、无法确定 [单选]光面爆破时,应尽可能减少周边眼间的起爆时差,相邻光面炮眼的起爆间隔时问不应大于()。A.200msB.150msC.100ms [名词解释](水泥的)抗压强度 [单选]车道称重系统故障无法提供称重数据时,应提前在车道显著部位告知过往车辆。已进入车道的车辆,应驶至正常工作的计重车道实施收费;确实无法驶离的,如何计费操作。()A.按合法装载的10吨车收费标准收费B.按合法装载的5吨车收费标准收费C.先驶离车道,以U型方式从其他称重正 [单选,A2型题,A1/A2型题]软组织急性损伤物理治疗中,下列哪项不适合()A.脉冲磁B.超短波(无热量)C.旋磁D.静磁E.蜡疗 [单选]黑木耳营养丰富,含有多种维生素和矿物质。其矿物质中以()的含量最为丰富。A、镁B、铜C、硒D、铁 [判断题]浮选过程中,应对细泥含量大及难浮选煤采用较小充气量,对易浮选煤采用较大充气量。A.正确B.错误 [填空题]根据新城疫病毒感染鸡后的表现,可将病毒分为()五型。 [单选]违反海上航行通告的当事人对处罚决定不服的,可以自接到处罚决定通知之日起()天内向中华人民共和国海事部门申请复议。A.一周B.10C.15D.30 [单选]按照完好机泵标准,离心泵应达到铭牌能力的()A.A.70%B.B.80%C.C.90% [单选]二次仪表按结构和功能特点可分类为就地显示仪表、单元组合仪表、()、智能化仪表。A、机械化仪表B、指示仪表C、微机化仪表D、虚拟化仪表 [单选]下列因素中,提示类风湿关节炎预后较差的是()。A.病程长B.HLA-DR3阳性C.抗核抗体阳性D.类风湿因子持续低滴度阳性E.多发类风湿结节 [单选]氧气输送管道、储罐、以及附件选材全部执行(),以减少氧气腐蚀,保证安全。A、国际标准B、国家标准C、行业标准D、公司标准 [单选,A2型题,A1/A2型题]下列描述为2型糖尿病的特征的是()A.胰岛素释放试验为低水平B.空腹胰岛素可正常、稍低或稍高,服糖后呈延迟释放C.空腹血糖降低,血浆胰岛素/血糖比值大于0.4D.每天胰岛素分泌总量40~50UE.当血糖升高时胰岛素分泌量增加 [单选]金属箱门与金属箱体做接地连接须采用()的方式。A.绝缘导线B.五芯电缆线C.保护零线D.编织软铜线 [单选]无线列调系统中,以站-车通信为的系统称()系统ABC [单选]从事救助遇难船舶作业时应于开始工作时24h以内向海事局()。A.申请办理《许可证》B.提出口头申请C.申请免办《许可证》D.提出工作报告 [问答题,简答题]多啦A梦的作者是谁? [单选,A2型题,A1/A2型题]病原体不断侵入血流并在血中繁殖产生毒素,表现出严重中毒症状时,应诊断为()A.毒血症B.败血症C.菌血症D.脓毒血症E.变应性亚败血症 [填空题]浆果类果树有:()、()、()、()等 [名词解释]固有免疫应答(innateimmuneresponse) [单选]根据产品质量法的有关规定,某食品厂生产奶粉(袋装),该厂在奶粉的包装袋上应当标明()A.奶粉的生产日期B.奶粉的保质期,如1年C.奶粉的生产日期、保质期和失效日期,必须同时具备,缺一不可D.奶粉的生产日期和保质期或者失效日期 [单选]在低压供电系统中,用来整定保护装置灵敏度的电量为()。A.系统最小运行方式下单相短路电流B.系统最大运行方式下单相短路电流C.系统最大运行方式下两相短路电流D.系统最小运行方式下两相短路电流 [判断题]防火门应为向疏散方向开启的平开门,并在关闭后应能从任何一侧手动开启。()A.正确B.错误 [单选,A型题]调查人群对白喉有无免疫力可进行()A.锡克试验B.EleK平板试验C.狄克试验D.外斐试验E.Ascoli试验 [多选]U1930web中可以配置的有:()A.预定会议B.一号通C.无条件呼叫前转D.license加载 [多选]起用了STP的二层交换网络中,交换机的端口可能会经历下面哪些状态()A.DisabledBlockingC.ListeningD.LearningE.Forwarding [单选]铁路平面无线调车A型号调车长台,调车长连续按压两次绿键,信令显示一个绿灯,其显示意义是()。A.起动B.推进C.减速D.五车 [单选]用以计算某项经济活动中所费与所得的比例,反映投入与产出关系的比率是()。A.绝对数比较分析B.构成比率C.相关比率D.效率比率 [填空题]FTP(FileTransferProtocol)就是(),是最基本的网络服务 [单选]典型肺炎球菌肺炎的临床特征是()A.寒战、高热、胸痛、咳嗽、咳铁锈色痰B.寒战、高热、咳嗽、脓痰、呼吸困难C.寒战、高热、咳嗽、脓痰、胸膜摩擦音D.胸痛、咳嗽、脓痰、呼吸困难E.发热、咳嗽、咳痰、双肺干、湿性啰音 [单选,A2型题]在某社区的一项高血压健康教育项目中,社区居民的生理指标的变化是属于哪种类型的评价()A.形成评价B.效应评价C.结局评价D.总结评价E.过程评价 [单选,A1型题]关于产后出血预防正确的是()A.宫口开全时肌注缩宫素10UB.应在宫缩较强时娩出胎头C.双胎妊娠,在第一胎肩部娩出后肌注催产素D.胎儿娩出后,应用手按摩子宫帮助胎盘娩出E.产后在产房密切观察宫缩及阴道流血情况2小时 [单选,A1型题]患者男,32岁。右小腿持续剧烈疼痛,不能行走,到医院就诊,检查:右小腿皮肤苍白,肌萎缩,足背动脉搏动消失,诊断为血栓闭塞性脉管炎,目前患者最主要的护理诊断是()A.组织灌注量改变B.潜在皮肤完整性受损C.有外伤出血的危险D.疼痛E.知识缺乏 [单选]在实际打球过程中,球员要根据实际情况合理选择()才能打出好的球。A.球B.球杆C.手套D.球鞋 [单选]在拖挂率计算公式中用到的指标有挂车周转量和()。A.汽车周转量B.挂车运量C.汽车运量D.营运里程
相关文档
最新文档