平面以及公理1公理2
高一数学知识点总结_点、直线、平面之间的位置关系
高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。
1、数学所说的直线是无限延伸的,没有起点,也没有终点。
2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。
3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
4、过不在同一直线上的三点,有且只有一个平面。
5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。
6、平行于同一条直线的两条直线平行。
7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。
8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。
9、做位置关系的题目,可以借助实物,直观理解。
一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。
高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
平面的基本性质
三、平面的基本性质: 平面的基本性质:
公理1:如果一条直线的两点在一个平面内 那么这条直线上 公理 如果一条直线的两点在一个平面内,那么这条直线上 如果一条直线的两点在一个平面内 的所有点都在这个平面内. 的所有点都在这个平面内 这时我们说直线在平面内或平面经过直线. 注 : ①这时我们说直线在平面内或平面经过直线 ②符号表示:若A∈l, B∈l,A∈α, B∈α, 则 l ⊂ α . 符号表示 若 ∈ ∈ ∈ ∈ 是借用集合的符号,点 不在直线 不在直线l上 直线 直线l不 ③∈, ⊂ 是借用集合的符号 点A不在直线 上,直线 不 内记作什么? 在平面α内记作什么 A∉l l⊄α ∉ ⊄ 作用: 判断直线在平面内的依据 直线在平面内的依据. ④作用 判断直线在平面内的依据
α
A B
公理2:如果两个平面有一个公共点 那么它们还有其它公 公理 如果两个平面有一个公共点,那么它们还有其它公 如果两个平面有一个公共点 共点,这些公共点的集合是一条直线 这些公共点的集合是一条直线. 共点 这些公共点的集合是一条直线 对于不重合的两个平面,只要它们有公共点 只要它们有公共点,它们就是相 注: ①对于不重合的两个平面 只要它们有公共点 它们就是相 交的位置关系,交集是一条直线 且交线有且只有一条.) α 交集是一条直线.(且交线有且只有一条 交的位置关系 交集是一条直线 且交线有且只有一条 符号表示:若 ∈ ②符号表示 若P∈α, P∈ β ,则 α ∩ β =l且P∈l . ∈ 且 ∈ A 作用:判断两个平面相交的依据 找两个平面的交线, 判断两个平面相交的依据,找两个平面的交线 ③作用 判断两个平面相交的依据 找两个平面的交线, 证明点共线或线共点的依据。 证明点共线或线共点的依据。 公理3:经过不在同一条直线上的三点有且只有一个平面 经过不在同一条直线上的三点有且只有一个平面. 公理 经过不在同一条直线上的三点有且只有一个平面 注: ①过一点、两点或一直线上的三点都可以有无数个平面, 过一点、两点或一直线上的三点都可以有无数个平面 过不在同一直线上的四点不一定有平面. 过不在同一直线上的四点不一定有平面 ②“有 是说明图形存在,即存在性 只有一个” 即存在性;“ ②“有”是说明图形存在 即存在性 “只有一个”说明图 形唯一,即唯一性 本定理强调的是存在和唯一两方面. 即唯一性;本定理强调的是存在和唯一两方面 形唯一 即唯一性 本定理强调的是存在和唯一两方面 符合某一条件的图形既然存在且只有一个,说明图形 ③符合某一条件的图形既然存在且只有一个 说明图形 是确定的,因此 有且只有一个” 因此“ 确定”是同义词; 是确定的 因此“有且只有一个”和“确定”是同义词 过不共线三点A、 、 的平面又可记为 平面ABC”; 的平面又可记为“ ④过不共线三点 、B、C的平面又可记为“平面 ” 作用:确定平面的依据 证明两个平面重合的依据. 确定平面的依据.证明两个平面重合的依据 ⑤作用 确定平面的依据 证明两个平面重合的依据
高中数学必修2点、直线、平面之间的位置关系(1)
1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
1.立体几何中基本概念、公理、定理、推论
立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。
高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计
第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
行。
8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
立体几何——两条直线之间的位置关系(一)
立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行. 定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点 A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为.3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是,它们的距离是 .4.长方体中,则所成角的大小为_ ___.5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。
名师辅导 立体几何 第1课 平面的概念与性质(含答案解析)
名师辅导立体几何第1课平面的概念与性质(含答案解析)●考试目标主词填空1.平面(1)平面是理想的、绝对的平且无限延展的.(2)平面是由它内部的所有点组成的点集,其中每个点都是它的元素.2.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且这些公共点的集合是一条过这个公共点的直线.(3)公理3:经过不在同一直线上的三点,有且只有一个平面.推论1 经过一条直线和这条直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.●题型示例点津归纳【例1】在空间内,可以确定一个平面的条件是 ( )A.两两相交的三条直线B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点E. 两条直线【解前点津】 A中的两两相交的三条直线,它们可能相交于同一点,也可能不交于同一点;若交于同一点,则三直线不一定在同一个平面内.∴应排除A.B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,三条直线是不能确定一个平面的.∴应排除B.对于C来说,三个点的位置可能不在同一直线上,也可能在同一直线上,只有前者才能确定一个平面,后者是不能的.∴应排除C.条件E中的两条直线可能共面,也可能不共面.∴应排除E.只有条件D中的三条直线,它们两两相交且不交于同一点,可确定一个平面.【规范解答】 D.【解后归纳】平面的基本性质(三个公理及公理3的三个推论)是研究空间图形性质的理论基础,必须认真理解,熟练地掌握本题主要利用公理3及其推论来解答的.【例2】把下列用文字语言叙述的语句,用集合符号表示,并画直观图表示.(1)点A在平面α内,点B不在平面α内,点A、B都在直线l上;(2)平面α与平面β相交于直线l,直线a在平面α内且平行于直线l.【解前点津】注重数学语言(文字语言、符号语言、图形语言)间的相互转化训练,有利于提高分析问题、解决问题的能力.正确使用⊂、⊄、∈、∉、⋂等符号表示空间基本元素之间的位置关系是解决本题的关键.【规范解答】 (1)A ∈α,B ∉α,A ∈l ,B ∈l ,如图(1);(2)α∩β=l ,a ⊂α,a ∥l ,如图(2).例2题解图【例3】 如图,已知:l 不属于α,A 、B 、C …∈l ,AA 1⊥α,BB 1⊥α,CC 1⊥α.求证:AA 1、BB 1、CC 1…共面.【解前点津】 证明n 条直线共面,首先,选择适当的条件,确定一个平面,然后分别证明直线都在此平面内.【规范解答】 证法一 ∵AA 1⊥α,CC 1⊥α,∴AA 1∥CC 1.∴AA 1与CC 1确定平面β,且β⊥α.∵AC ⊂β,即l ⊂β,而B ∈l,∴B ∈β,又知BB 1⊥α,∴BB 1⊂β.∴AA 1、BB 1、CC 1…共面.证法二 反证法由证法1得β⊥α于A 1C 1,假设BB 1不属于β,在β内作BB ′⊥A 1C 1(如图).∴BB ′⊥α,已知BB 1⊥α,与过一点引面的垂线,有且只有一条矛盾.∴BB 1不属于β是不可能的,∴BB 1⊂β,∴AA 1、BB 1、CC 1…共面.【解后归纳】 证明共面的一般方法有直接法和间接法两种.【例4】 设平行四边形ABCD 的各边和对角线所在的直线与平面α依次相交于A 1,B 1,C 1,D 1,E 1,F 1六点,求证:A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【规范解答】 设平行四边形ABCD 所在平面为α,∵A ∈β,B ∈β,∴AB ⊂β,又A 1∈AB,∴A 1∈β,又A 1∈α∴A 1在平面α与平面β的交线上,设交线为l ,则A 1∈l ,同理可证B 1,C 1,D 1,E 1,F 1都在直线l 上,∴A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【解后归纳】 证明点共线通常证明这些点都在两平面的交线 上,或先由某两点作一条直线再证明其他点也在这条直线上,选此题的意图,就是使学生掌握证点共线的一般方法.●对应训练 分阶提升一、基础夯实1.α、β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面的个数为 ( ).32 C 例3题图例4题图2.下列说法正确的是 ( )A.如果两个平面α、β有一条公共直线a ,就说平面α、β相交,并记作α∩β=aB.两平面α、β有一公共点A ,就说α、β相交于过A 的任意一条直线C.两平面α、β有一个公共点,就说α、β相交于A 点,并记作α∩β=AD.两平面ABC 与DBC 交于线段BC3.下列命题正确的是 ( )A.一点和一条直线确定一个平面B.两条直线确定一个平面C.相交于同一点的三条直线一定在同一平面内D.两两相交的三条直线不一定在同一个平面内4.设α、β是不重合的两个平面,α∩β=a ,下面四个命题:①如果点P ∈α,且P∈β,那么P ∈a ;②如果点A ∈α,点B ∈β,那么AB α;③如果点A ∈α,那么点B ∈β;④如果线段AB α,且AB β,那么AB a .其中正确命题的个数是 ( ).1 C5.空间四点A 、B 、C 、D 共面但不共线,那么这四点中 ( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线6.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长为1的等腰梯形,则这个平面图形的面积是 ( ) A.221+ B. 222+ C.21+ D.22+ 7.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原三角形ABC 的面积为 ( )A.223aB. 243aC. 223a D.26a 8.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的什么条件 ( )A.充分不必要B.必要不充分C.充要D.不充分不必要二、思维激活9.如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有 个.10.不重合的三个平面把空间分成n 个部分,则n 的可能值为 .11.四条线段首尾相连,它们最多确定平面的个数是 .12.与空间不共面四点距离相等的平面为 个.13.四边形ABCD 中,AB =BC =CD =DA =BD =1,则成为空间四面体时,AC 的取值范围是 .三、能力提高14.如图,已知l 1∥l 2∥l 3,l ∩l 1=A,l ∩l 2=B,l ∩l 3=C .求证:l 1、l 2、l 3、l 共面.第14题图15.四个点不共面,证明它们中任何三点都不在同一条直线上.它的逆命题正确吗 已知:A 、B 、C 、D 是不共面四点.求证:它们中任何三点都不共线.16.已知△ABC 的三个顶点都不在平面α上,它的三边AB 、AC 、BC 的延长线交平面α于P 、R 、Q 三点.求证:P 、R 、Q 三点共线.17.已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF .求证:直线EF 、GH 、AC 交于一点.18.已知直线a,b,c ,其中b,c 为异面直线,试就a 与b,c 的不同位置关系,讨论可以确定平面的情况.第1课 平面的概念与性质习题解答C 24C 13+C 23C 13+2=32. 排除法.有三个交点或只有一个交点.②③错在条件不充分.分有三点共线和只有两点共线两类.第17题图根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1.容易求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形.再由“竖取半”知,直腰长为2,∴S=2211++·2=2+2. 按斜二测画法还原.充分性根据公理2进行判断,必要性用反证法得到证明.公共点最多1个,否则直线在平面内,得知直线上所有的点在平面内.,6,7,8.个 可确定C 24-2=4个.个 这四点构成一个四面体,当平面平行于四个面中某一个面时有四个;当平面平行于三对异面直线时有三个.13.(0,3) AC>0,ABCD 为菱形时AC =3.14.由l 1∥l 2,知l 1与l 2确定一个平面α,同理l 2、l 3确定一个平面β,由A ∈l 1,l 1α,知A ∈α,同理B ∈α,又A 、B ∈l ,故l α,同理l β.由上知l ∩l 2=B,且l 、l 2α,l 、l 2β,因两相交直线l 、l 2确定一个平面,故α与β重合,所以l 1、l 2、l 3、l 共面.15.证明:假设其中有三点共线,如A 、B 、C 在同一直线a 上,点D ∉a .∴点D 和a 可确定一平面α,∴A 、B 、C 、D ∈α.与A 、B 、C 、D 不共面矛盾.逆命题是:如果四点中任何三点都不共线,那么这四点不共面.逆命题不正确.16.如图,∵AP ∩AR =A ,∴AP 与AR 确定平面APR又P 、R ∈α,∴α∩平面APR =PR .又B ∈平面APR ,C ∈平面APR ,∴BC 平面APR ,即Q ∈平面APR .又Q ∈α,∴Q ∈α∩平面APR =PR .∴P 、Q 、R 三点共线.点评:欲证三点共线,可以证明某点在经过其余两点的直线上即可.17.∵E 、H 分别是AB 、AD 的中点,∴EH ∥BD ,EH =21BD , ∵F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF , ∴EH ∥FG ,EH ≠FG ,∴四边形EFGH 为梯形,则EF 与GH 必相交,设交点为P .∵EF 平面ABC ,∴P ∈平面ABC .又P ∈平面DAC ,平面BAC ∩平面DAC =AC .故P ∈AC ,即EF 、GH 、AC 交于一点P .18.(1)若a 与b,c 都相交,a 与b ,a 与c 都能确定平面,故可确定两个平面.(2)若a 与b ,c 之一相交,不妨设a 与b 相交.①a ∥c ,a 与b ,a 与c 都可确定平面故可确定两个平面.②a 与c 不平行,只a 与b 确定平面,故可确定一个平面.(3)若a 与b ,c 都不相交. 第16题图解①若a与b,c之一平行,不妨设a与b平行,只a与b可确定平面,故确定一个平面.②若a与b,c都不平行,又因为都不相交,故不能确定平面.点评:此题应用启发、引导、归纳法讲解,这样才能达到使学生建立空间概念,加强严密的逻辑思维,并达到复习,巩固“分类讨论”的思想方法.本资料来源于《七彩教育网》。
高中数学必修知识点总结:第二章_直线与平面的位置关系
第二章直线与平面的位置关系1. 三个公理:<1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理1作用:判断直线是否在平面内<2)公理2:过不在一条直线上的三点,有且只有一个平面。
公理2作用:确定一个平面的依据。
<3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理3作用:判定两个平面是否相交的依据2.空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
3.公理4:平行于同一条直线的两条直线互相平行。
公理4作用:判断空间两条直线平行的依据。
4.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补5.注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;b5E2RGbCAP② 两条异面直线所成的角θ∈(0, >;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
6.直线与平面有三种位置关系:<1)直线在平面内——有无数个公共点<2)直线与平面相交——有且只有一个公共点<3)直线在平面平行——没有公共点7.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
8.两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
9.定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
作用:利用该定理可解决直线间的平行问题。
10.定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
空间图形的基本关系与公理课件
第七章
立体几何
栏目导引
【变式训练】 3.下列四个命题:
①若直线a、b是异面直线,b、c是异面直线,则a、c是异面直线; ②若直线a、b相交,b、c相交,则a、c相交; ③若a∥b,则a、b与c所成的角相等; ④若a⊥b,b⊥c,则a∥c. 其中真命题的个数是( A.4 C.2 ) B.3 D.1
A.1条
C.3条
B.2条
D.4条
解析:
连接AC1,则AC1与棱AB,AD,AA1所成的角都相等;过
点A分别作正方体的另外三条体对角线的平行线,则它们与棱AB,AD, AA1所成的角也都相等.故这样的直线l可以作4条. 答案: D
工具
第七章
立体几何
栏目导引
2.(2009·湖南卷)平行六面体ABCD-A1B1C1D1中,既与AB共面也 与CC1共面的棱的条数为( A.3 C.5 ) B.4 D.6
∴EF∥CD1.
故E、F、D1、C四点共面.
工具
第七章
立体几何
栏目导引
(2)在平面EFD1C内,由于EF≠CD1, 所以CE与D1F必相交.设CE∩D1F=P, ∵D1F在平面A1ADD1内, ∴P在平面A1ADD1内. 同理,P在平面ABCD内, ∴P在平面A1ADD1与平面ABCD的交线DA上,
【阅后报告】
该题难度较小,第(1)问的关键在于“找到角”,
而第(2)问关键在于证明BM⊥平面A1B1M,这些方法是解决立体问题常用
思路.
工具
第七章
立体几何
栏目导引
1.(2010·江西卷)过正方体ABCD-A1B1C1D1的顶点A作直线l,使l 与棱AB,AD,AA1所成的角都相等,这样的直线l 可以作( )
空间点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系基础梳理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:经过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a ,b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.平行公理:平行于同一条直线的两条直线互相平行.6.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、选择题:1.以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.32.已知a,b 是异面直线,直线c∥直线a,则c 与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图,α∩β=l,A 、B∈α,C∈β,且C ∉l,直线AB∩l=M,过A 、B 、C 三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C 但不过点MD.点C 和点M4.已知直线l,若直线m 同时满足以下三个条件:m 与l 是异面直线;m 与l 的夹角为3(定值);m 与l 的距离为π.那么,这样的直线m 的条数为( )A.0B.2C.4D.无穷5.如图,E 、F 是AD 上互异的两点,G 、H 是BC 上互异的两点,由图可知,①AB 与CD 互为异面直线;②FH 分别与DC 、DB 互为异面直线;③EG 与FH 互为异面直线;④EG 与AB 互为异面直线.其中叙述正确的是( )A.①③B.②④C.①④D.①②6.以下命题中:①点A ,B ,C ∈直线a ,A ,B ∈平面α,则C ∈α;②点A ∈直线a ,a ⊄平面α,则A ∈α;③α,β是不同的平面,a ⊂α,b ⊂β,则a ,b 异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A .0B .1C .2D .37.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1B 1、CC 1的中点,则异面直线AE 与BF 所成角的余弦值为( ) 1342 (5555)A B C D 8.正方体ABCDA 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形9.在正方体ABCD -A 1B 1C 1D 1中,E 是棱A 1B 1的中点,则A 1B 与D 1E 所成角的余弦值为( ) A.510 B.1010 C.55 D.10510.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE ,SD 所成的角的余弦值为( )A.13B.23C.33D.23二、填空题:1.在空间四边形ABCD 中,各边边长均为1,若BD=1,则AC 的取值范围是________.2.如图,正方体ABCD —A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成角的大小等于________.3.如图所示,正方体ABCD-A 1B 1C 1D 1中,给出下列五个命题:①直线AC 1在平面CC 1B 1B 内;②设正方形ABCD 与A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C 与平面BB 1D 1D 的交线为OO 1;③由点A 、O 、C 可以确定一个平面;④由A 、C 1、B 1确定的平面是ADC 1B 1;⑤若直线l 是平面AC 内的直线,直线m 是平面D 1C 内的直线;若l 与m 相交,则交点一定在直线CD 上.其中真命题的序号是________.4.如图,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).5.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.三、解答题:1、如图,平面ABEF⊥平面ABCD,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥ 12AD,BE ∥ 12FA,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点是否共面?为什么?2. 正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面;(2)CE 、D 1F 、DA 三线共点.3.如图所示,S 是正三角形ABC 所在平面外一点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,M、N 分别是AB 和SC 的中点,求异面直线SM 和BN 所成角的余弦值.4、空间四边形ABCD 中,AB=CD 且AB 与CD 所成的角为30°,E、F 分别是BC 、AD 的中点,求EF 与AB 所成角的大小.。
空间点、直线、平面之间的位置关系(教案)
空间点、直线、平面之间的位置关系适用学科高中数学适用年级高中一年级适用区域人教版课时时长(分钟)60知识点平行、垂直关系的综合问题教学目标考查空间线面平行、垂直关系的判断考查空间线面平行、垂直关系的判断教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学过程一、复习预习平面的基本性质平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公共直线.(4)公理2的三个推论:的三个推论:推论1:经过一条直线和这条直线外一点有且只有一个平面;:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.:经过两条平行直线有且只有一个平面.二、知识讲解空间中两直线的位置关系空间中两直线的位置关系(1)空间两直线的位置关系空间两直线的位置关系相交相交(2)异面直线所成的角异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:2π. (3)平行公理和等角定理平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.三、例题精析【例题1】【题干】在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________. 【答案】平行平行 【解析】如图.如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE . 【例题2】【题干】如图,直三棱柱ABCA ′B ′C ′,∠BAC =90°,AB =AC =,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.′的中点.(1)证明:MN ∥平面A ′ACC ′;′; (2)求三棱锥A ′MNC 的体积.的体积.(锥体体积公式V =31Sh ,其中S 为底面面积,h 为高) 【答案】证明证明 法一法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,′为直三棱柱,所以M 为AB ′中点.′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,′,因此MN ∥平面A ′ACC ′. 法二法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,′的中点,所以MP ∥AA ′,PN ∥A ′C ′,′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′. (2)解 法一法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,′,所以A ′N ⊥平面NBC .又A ′N =21B ′C ′=1, 故V A ′MNC =V NA ′MC =21V NA ′BC =21V A ′NBC =61. 法二法二 V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC =61. 【解析】(1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC ,体积可求.,体积可求.【例题3】【题干】如图所示,在三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.在,请说明理由.【答案】解 存在点E ,且E 为AB 的中点.的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题4】【题干】如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.的位置;若不存在,请说明理由.的中点.【答案】存在点E,且E为AB的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题5】【题干】如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC. 证明 (1) 【答案】证明图(a) 如图(a),取BD的中点O,连接CO,EO. 由于CB=CD,所以CO⊥BD,(2分) 又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分) 的中点,因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分) (2)法一法一 如图(b),取AB的中点N,连接DM,DN,MN,图(b) 的中点,因为M是AE的中点,所以MN∥BE. 又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分) 为正三角形,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分) 又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分) 法二 如图(c),延长AD,BC交于点F,连接EF. 法二图(c) 因为CB=CD,∠BCD=120°,30°. . 所以∠CBD=30°为正三角形,因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB =21AF .(8分) 又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分) 又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分) 【解析】(1) 取BD 的中点O ,证明BD ⊥EO ;(2)取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE的交线EF ,证明DM ∥EF . 四、课堂运用【基础】1. 下列命题是真命题的是( ).A .空间中不同三点确定一个平面.空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面.空间中两两相交的三条直线确定一个平面C .一条直线和一个点能确定一个平面.一条直线和一个点能确定一个平面D .梯形一定是平面图形.梯形一定是平面图形 【答案】D 【解析】空间中不共线的三点确定一个平面,A 错;空间中两两相交不交于一点的三条直线确定一个平面,B 错;经过直线和直线外一点确定一个平面,C 错;故D 正确.正确.2. 空间两个角α,β的两边分别对应平行,且α=60°,则β为( ).A .60°B .120°C .30°D .60°或120°【答案】D 【解析】由等角定理可知β=60°或120°120°. . 【巩固】1. 如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.对. 【答案】24 【解析】如图所示,与AB 异面的直线有B 1C 1,CC 1,A 1D 1,DD 1四条,因为各棱具有相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线21212××4=24(对).2. 如图所示,在正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:的中点.求证:(1)E 、C 、D 1、F 四点共面;四点共面; (2)CE 、D 1F 、DA 三线共点.三线共点.【答案】(1)如图,连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点,的中点,∴EF ∥A 1B . 又A 1B ∥D 1C ,∴EF ∥CD 1, ∴E 、C 、D 1、F 四点共面.四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD. 同理P∈平面ADD1A1. 又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE、D1F、DA三线共点.三线共点.【解析】(1)由EF∥CD1可得;可得;(2)先证CE与D1F相交于P,再证P∈AD. 【拔高】1.下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是________.①②③【答案】①②③【解析】可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点为M、N可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;四点不共面.④中,可证Q点所在棱与面PRS平行,因此,P、Q、R、S四点不共面.2.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,在这个正四面体中,平行;①GH与EF平行;②BD与MN为异面直线;为异面直线;角;③GH与MN成60°角;垂直.④DE与MN垂直.以上四个命题中,正确命题的序号是________.②③④【答案】②③④【解析】如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.课程小结内容小结一个理解一个理解异面直线概念的理解异面直线概念的理解(1)“不同在任何一个平面内”,指这两条直线不能确定任何一个平面,因此,异面直线既不相交,也不平行.线既不相交,也不平行.(2)不能把异面直线误解为:分别在不同平面内的两条直线为异面直线.不能把异面直线误解为:分别在不同平面内的两条直线为异面直线. 两种判定方法两种判定方法异面直线的判定方法异面直线的判定方法(1)判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两直线异面.从而可得两直线异面. 课后作业【基础】1.下列命题正确的是【】下列命题正确的是【】、若两条直线和同一个平面所成的角相等,则这两条直线平行A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确。
1.2.1平面的基本性质与推论
中国人民大学附属中学
一.平面的基本性质: 平面的基本性质: 1.公理1: .公理 : ①文字语言:如果一条直线上的两点在 文字语言: 一个平面内, 一个平面内,那么这条直线上的所有点 都在这个平面内 ; ②图形语言: 图形语言: ③符号语言:A∈l;B∈l,A∈α,B∈α 符号语言: ∈ ; ∈ , ∈ , ∈
⇒ AB ⊂ α.
练习: 练习:
(2) l ⊂ α, A∈l ⇒ )
A∈α (1) ) ⇒ AB ⊂α 。 B∈α
A∈α
。
公理1的作用有两个:(1)作为判断和证 公理 的作用有两个:( )作为判断和证 的作用有两个:( 明直线是否在平面内的依据, 明直线是否在平面内的依据,即只需要看 的依据 直线上是否有两个点在平面内就可以了; 直线上是否有两个点在平面内就可以了;
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
2.公理2: .公理 : 文字语言:经过不在同一条直线 不在同一条直线上的三 ①文字语言:经过不在同一条直线上的三 有且只有一个平面, 点,有且只有一个平面,也可以说成不共 线的三点确定一个平面。 确定一个平面 线的三点确定一个平面。 ②图形语言: 图形语言: 三点不共线, ③符号语言:A、B、C三点不共线,有且 符号语言: 、 、 三点不共线 只有一个平面α,使得A∈ , ∈ , 只有一个平面 ,使得 ∈α,B∈α, C∈α. ∈
(2)推论 : )推论3: 经过两条平行直线, 文字语言 :经过两条平行直线,有且只有一 经过两条平行直线 个平面. 个平面 图形语言: 图形语言: a,b是两条直线 是两条直线 符号语言: 符号语言: a//b a,b共面于平面 ,且α是惟一的 . , 共面于平面 共面于平面α, 是惟一的
平面(附答案)
平面[学习目标] 1.了解平面的概念及表示方法.2.理解平面的公理1、公理2、公理3.3.会用符号语言准确表述几何对象的位置关系.知识点一平面的概念1.几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍,如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来,如图②.3.平面的表示法图①的平面可表示为平面α,平面ABCD,平面AC或平面BD.思考一个平面能把空间分成几部分?答因为平面是无限延展的,一个平面把空间分成两部分.知识点二点、线、面之间的关系1.直线在平面内的概念:如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.2.一些文字语言与数学符号的对应关系:思考若A∈a,a⊂α,是否可以推出A∈α?答根据直线在平面内定义可知,若A∈a,a⊂α,则A∈α.知识点三平面的基本性质及作用如果一条直线上的两点在一个平面内,那么这AA ⊂过不在一条直线上的三点,有且只有一个平面A共一的平面A如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点P ⇒P思考(1)两个平面的交线可能是一条线段吗?(2)经过空间任意三点能确定一个平面吗?答(1)不可能.由公理3知,两个平面的交线是一条直线.(2)不一定.只有经过空间不共线的三点才能确定一个平面.题型一三种语言间的相互转化例1用符号语言表示下列语句,并画出图形.(1)三个平面α,β,γ相交于一点P,且平面α与平面β相交于P A,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.解(1)符号语言表示:α∩β∩γ=P,α∩β=P A,α∩γ=PB,β∩γ=PC,图形表示如图①.(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC,图形表示如图②.跟踪训练1根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解(1)点A在平面α内,点B不在平面α内,如图①.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.(3)直线l经过平面α外一点P和平面α内一点Q,如图③.题型二共面问题例2证明:空间不共点且两两相交的四条直线在同一平面内.证明(1)如图①,设直线a,b,c相交于点O,直线d和直线a,b,c分别交于点M,N,P,直线d和点O确定平面α.因为O∈a,M∈a,所以a⊂α.同理可证b⊂α,c⊂α.(2)如图②,设直线a,b,c,d两两相交,且任意三条不共点,交点分别是M,N,P,Q,R,G.因为a∩b=M,所以直线a和b确定平面α.因为a∩c=N,b∩c=Q,所以点N,Q都在平面α内,所以c⊂α.同理可证d⊂α,所以直线a,b,c,d共面于α.综合(1)(2),知空间不共点且两两相交的四条直线在同一平面内.跟踪训练2已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面. 证明如图所示.由已知a∥b,所以过a,b有且只有一个平面α.设a∩l=A,b∩l=B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.题型三点共线与线共点问题例3如图,在正方体ABCD-A1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.证明 ∵MN ∩EF =Q , ∴Q ∈直线MN ,Q ∈直线EF , 又∵M ∈直线CD ,N ∈直线AB , CD ⊂平面ABCD ,AB ⊂平面ABCD . ∴M 、N ∈平面ABCD ,∴MN ⊂平面ABCD .∴Q ∈平面ABCD . 同理,可得EF ⊂平面ADD 1A 1. ∴Q ∈平面ADD 1A 1.又∵平面ABCD ∩平面ADD 1A 1=AD , ∴Q ∈直线AD ,即D 、A 、Q 三点共线.跟踪训练3 如图所示,在四面体A -BCD 中,E ,G 分别为BC ,AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =DH ∶HA =2∶3,求证:EF ,GH ,BD 交于一点. 证明 ∵E ,G 分别为BC ,AB 的中点,∴GE ∥AC .又∵DF ∶FC =DH ∶HA =2∶3, ∴FH ∥AC ,从而FH ∥GE . 故E ,F ,H ,G 四点共面. ∵FH ∥AC ,DH ∶DA =2∶5, ∴FH ∶AC =2∶5,即FH =25AC .又∵E ,G 分别为BC ,AB 的中点, ∴GE =12AC ,∴FH ≠GE ,∴四边形EFHG 是一个梯形, GH 和EF 交于一点,设为O .∵O ∈GH ,GH ⊂平面ABD ,O ∈EF ,EF ⊂平面BCD , ∴O 在平面ABD 内,又在平面BCD 内,∴O 在这两个平面的交线上,而这两个平面的交线是BD ,且交线只有这一条, ∴点O 在直线BD 上. 故EF ,GH ,BD 交于一点.分类讨论思想例4三个平面将空间分成几部分?请画出图形.分析平面具有无限延展性,任一平面都将空间分为两部分.可先对两个平面在空间中的位置分类讨论,再让第三个平面以不同的情况介入,分类解决.解(1)当平面α、平面β、平面γ互相平行(即α∥β∥γ)时,将空间分成4部分,如图①所示.(2)当平面α与平面β平行,平面γ与它们相交(即α∥β,γ与其相交)时,将空间分成6部分,如图②所示.(3)当平面α、平面β、平面γ都相交,且三条交线重合时,将空间分成6部分,如图③所示.(4)当平面α、平面β、平面γ都相交,且三条交线共点,但互不重合时,将空间分成8部分,如图④所示.(5)当平面α、平面β、平面γ两两相交,且三条交线平行时,将空间分成7部分,如图⑤所示.1.在下列各种面中,不能被认为是平面的一部分的是()A.黑板面B.乒乓球桌面C.篮球的表面D.平静的水面2.点P在直线l上,而直线l在平面α内,用符号表示为()A.P⊂l⊂αB.P∈l∈αC.P⊂l∈αD.P∈l⊂α3.若一直线a在平面α内,则正确的作图是()4.下列图形表示两个相交平面,其中,画法正确的是()5.(1)空间任意4点,没有任何3点共线,它们最多可以确定________个平面.(2)空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定_______个平面.一、选择题1.下列有关平面的说法正确的是()A.平行四边形是一个平面B.任何一个平面图形都是一个平面C.平静的太平洋面就是一个平面D.圆和平行四边形都可以表示平面2.如图,用符号语言可表示为()A.α∩β=m,n⊂α,m∩n=AB.α∩β=m,n∈a,m∩n=AC.α∩β=m,n⊂α,A⊂m,A⊂nD.α∩β=m,n∈a,A∈m,A∈n3.下列说法正确的是()A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面4.一条直线和直线外的三点所确定的平面有()A.1个或3个B.1个或4个C.1个,3个或4个D.1个,2个或4个5.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合6.空间四点A、B、C、D共面而不共线,那么这四点中()A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线7.如图所示,在正方体ABCDA1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A,M四点共面D.D1,D,O,M四点共面二、填空题8.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M_______l.9.平面α∩平面β=l,点M∈α,N∈α,点P∈β,且P∉l,又MN∩l=R,过M,N,P三点所确定的平面记为γ,则β∩γ=_______.10.若直线l与平面α相交于点O,A、B∈l,C、D∈α,且AC∥BD,则O,C,D三点的位置关系是________.11.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.三、解答题12.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.13.如图,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1相交于点Q,求证:B,Q,D1三点共线.当堂检测答案1.答案 C解析平面的各部分都是“平”的,那么不能作为平面的部分只能是“曲”的,所以黑板面、乒乓球桌面、平静的水面均可作为平面的一部分,而篮球的表面是一个曲面,不能作为平面的一部分.2.答案 D解析点与线之间是元素与集合的关系,用∈表示;线与面之间是集合与集合的关系,用⊂表示.3.答案 A解析B中直线a不应超出平面α;C中直线a不在平面α内;D中直线a与平面α相交.4.答案 D解析A中没有画出平面α与平面β的交线,也没有完全按照实、虚线的画法法则作图,故A不正确;B,C中交线的画法不对,且实、虚线的画法也不对,故B,C都不正确.5.答案(1)4(2)7解析(1)可以想象三棱锥的4个顶点,它们总共确定4个平面.(2)可以想象四棱锥的5个顶点,它们总共确定7个平面.课时精练答案一、选择题1.答案 D解析我们用平行四边形表示平面,但不能说平行四边形就是一个平面,故A项不正确;平面图形和平面是两个概念,平面图形是有大小的,而平面无法度量,故B项不正确;太平洋面是有边界的,不是无限延展的,故C项不正确;在需要时,除用平行四边形表示平面外,还可用三角形、梯形、圆等来表示平面,故D项正确.2.答案 A解析α与β交于m,n在α内,m与n交于A.3.答案 D解析对于A,若三点共线,则错误;对于B项,若两条直线既不平行,也不相交,则错误;对于C项,空间四边形就不止确定一个平面.4.答案 C解析若三点在同一直线上,且与已知直线平行或相交,或该直线在由该三点确定的平面内,则均确定1个平面;若三点有两点连线和已知直线平行时可确定3个平面;若三点不共线,且该直线在由该三点确定的平面外,则可确定4个平面.5.答案 C解析∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.6.答案 B解析如图①②所示,A、C、D均不正确,只有B正确.7.答案 D解析在题图中,连接A1C1,AC,则AC∩BD=O,A1C∩平面C1BD=M.∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,∴选项A,B,C均正确,D不正确.二、填空题8.答案∈解析因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.9.答案直线PR解析如图,MN⊂γ,R∈MN,∴R∈γ.又∵R∈l,∴R∈β.又∵P∈γ,P∈β,∴β∩γ=PR.10.答案共线解析∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.∵l∩α=O,∴O∈α.又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.1111.答案 36解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.三、解答题12.解 很明显,点S 是平面SBD 和平面SAC 的一个公共点,即点S 在交线上.由于AB >CD ,则分别延长AC 和BD 交于点E ,如图所示,∵E ∈AC ,AC ⊂平面SAC ,∴E ∈平面SAC .同理,可证E ∈平面SBD .∴点E 在平面SBD 和平面SAC 的交线上,则连接SE ,直线SE 就是平面SBD 和平面SAC 的交线.13.证明 如图所示,连接A 1B ,CD 1.显然B ∈平面A 1BCD 1,D 1∈平面A 1BCD 1.所以BD 1⊂平面A 1BCD 1.同理BD 1⊂平面ABC 1D 1.所以平面ABC 1D 1∩平面A 1BCD 1=BD 1.因为A 1C ∩平面ABC 1D 1=Q ,所以Q ∈平面ABC 1D 1.又因为A 1C ⊂平面A 1BCD 1,所以Q ∈平面A 1BCD 1.所以Q ∈BD 1,即B ,Q ,D 1三点共线.。
高中数学空间点、直线、平面之间的位置关系解析!
高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。
平面几何的基本概念与公理
平面几何的基本概念与公理平面几何是研究平面上图形、距离、角度等几何概念与性质的数学学科。
在平面几何中,我们需要理解和运用一些基本概念和公理,以建立几何系统,并推导出其他几何结论。
本文将介绍平面几何的基本概念和公理。
一、点、直线和平面在平面几何中,最基本的几何对象是点、直线和平面。
点是没有大小和形状的,可以用字母标记,如A、B、C等。
直线是由无数个点连成的,我们可以用一对字母标记直线上的两个点,如AB表示直线上的点A和点B。
平面是由无数个点和直线组成的,用大写字母表示,如平面α、平面β等。
二、线段和角线段是由两个点确定的线段,我们可以用两个字母标记线段的两个端点,如AB表示由点A和点B确定的线段。
角是由两条射线共享一个端点所形成的,我们可以用这个共享的端点和两条射线上的一点标记角,如∠ABC表示由射线AB和射线BC共享端点B所形成的角。
三、距离和相交在平面几何中,我们还需要用到距离的概念。
距离是点与点之间的间隔,可以用两点之间的线段长度来表示。
如果两条线段的长度相等,我们称它们为相等的线段。
当两条线段或两个角的度数重合时,我们称它们为重合的线段或角。
四、平行和垂直平行是指在同一平面内,永远不会相交的两条直线。
我们可以用符号“||”来表示直线之间的平行关系。
垂直是指两条直线相交时,形成的四个角均为直角。
我们可以用符号“⊥”来表示直线之间的垂直关系。
五、平面几何的公理在平面几何中,我们需要依靠一些基本的公理来建立几何系统,从而进行证明和推导。
以下是平面几何的一些基本公理:公理1:通过两个不同点,可以有且只有一条直线。
公理2:给定两条不重合的直线,可以有且只有一条平行于它们的直线。
公理3:通过一个给定的点,可以有且只有一条垂直于给定直线的直线。
公理4:任意两点之间可以画出一条直线。
公理5:给定一条线段和一个点,可以有且只有一条通过该点并且与该线段的两个端点连成直线的线段。
公理6:所有直角均相等。
六、结论基于平面几何的基本概念和公理,我们可以推导出许多几何结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外矛盾。(反证法)
3、如图△ABC中,若AB,BC在平
面α内,判断AC是否在平面α内?
B α A C
4、当三直线共面时,三直线的位
置关系有几种?
四、提高练习
、将下面用符号语言表 1 改用文字语言予以叙述 语言予以表示。 l , A l , AB , AC 示的关系 ,并且用图形
B A
.
.
点A在平面内,记作A∈α;
点B在平面外,记作B∈α。
二、公理1
1、思考: 如果直线L与平面α有一个公共点
P,直线L是否在平面α内?如果直线L
与平面α有两个公共点呢?
公理1:
如果一条直线的两点在一个平面 内,那么这条直线在此平面内。
. A
l B
.
2、公理1的作用 作用:判断直线是否在平面内。
3、直线与平面的位置关系 (1)直线l在平面α内,记作l α; (2)直线l在平面α外,记作l α。
4、公理1的符号表示
A l Bl l A B
三、公理2
公理2: 过不在一条直线上的三点,有且
只有一个平面。
. A
.C
. B
公理2的作用 作用:是否确定一个平面 不在一条直线上的三个点A、B、 C所确定的平面,可记成“平面ABC”
四、公理3
公理3: 如果两个不重合的平面有共直线。
公理3的作用: 如何寻找两个平面的交线。
例1 课本P47
例1
五、课堂练习
1、书本P43第1、2、3、4
2、如果一条直线经过平面内一点与平
面外一点,那么它和这个平面共有几个公
共点?能否说明理由? 答:只有一个公共点。 假如这条直线和这个平面内有两个公 共点,根据公理1可得,这条直线上所有的 点都在这个平面内,与已知有一点在平面
空间点、直线、平面 之间的位置关系
D A
' '
C
B
'
'
D A B
C
一、平面
1、平面的画法
我们常常把水平的平面画成一个
平行的四边形,用平行四边形表示平 面。
D A
C B
β
D α E F C
A
B
2、平面的表示
D A
C B
(1)平面α,平面β (2)平面ABCD,平面AC,平面BD
3、点与平面的位置关系
B
α C
A
β
2、已知直线m与直线a、直线b分别
交于A、B,且a∥b,求证:过a,b,m 有且只有一个平面。
小结
1、公理1、2、3的定义; 2、公理1、2、3的作用; 3、灵活应用公理1、2、3解决问题。
作业 1、课本P51 习题2.1 A组1、2