2018年新课标2文科数学真题

合集下载

2018文数全国二卷及答案

2018文数全国二卷及答案

高考真题汇编卷 第1页(共8页) 高考真题汇编卷 第2页(共8页)2018年普通高等学校招生全国统一考试(新课标II 卷)文 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i +=( ) A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图象大致为( )4.已知向量a ,b 满足1=a ,1⋅=-a b ,则()2⋅-=a a b ( ) A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6B .0.5C .0.4D .0.36.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为( )A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos25C =,1BC =,5AC =,则AB =( ) A .42 B .30C .29D .258.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入( )A .i i 1=+B .i i 2=+C .i i 3=+D .i i 4=+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( ) A .22B .32C .52D .7210.若()cos sin f x x x =-在[]0,a 是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( ) A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =, 则()()()()12350f f f f ++++=( ) A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018全国高考新课标2卷文科数学试题(解析版)

2018全国高考新课标2卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=( )A .3-2iB .3+2iC .-3-2iD .-3+2i 解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A ∩B=( )A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7} 解析:选C3.函数f(x)= e x-e-xx2的图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e 2-e-24>1,故选B4.已知向量a ,b 满足|a|=1,a ·b=-1,则a ·(2a-b)= ( )A .4B .3C .2D .0解析:选B a ·(2a-b)=2a 2-a ·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.3解析:选D 5人选2人有10种选法,3人选2人有3中选法。

6.双曲线x 2a 2-y2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y=±2xB .y=±3xC .y=±22x D .y=±32x 解析:选A e= 3 c 2=3a 2b=2a7.在ΔABC 中,cos C 2=55,BC=1,AC=5,则AB= ( )A .4 2B .30C .29D .2 5解析:选A cosC=2cos 2C 2 -1= - 35AB 2=AC 2+BC 2-2AB ·BC ·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧的程序框图,则在空白框中应填入( )A .i=i+1B .i=i+2C .i=i+3D .i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A .22B .32C .52D .72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)的图象关系知a 的最大值为3π4。

2018全国高考新课标2卷文科数学试题(解析版)

2018全国高考新课标2卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷与答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。

1.i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2得图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( )A.4B.3C.2D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学与3名女同学中任选2人参加社区服务,则选中得2人都就是女同学得概率为A.0、6B.0、5C.0、4D.0、3解析:选D 5人选2人有10种选法,3人选2人有3中选法。

6.双曲线x2a2-y2b2=1(a>0,b>0)得离心率为3,则其渐近线方程为( )A.y=±2xB.y=±3xC.y=±22x D.y=±32x解析:选A e= 3 c2=3a2 b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2B.30C.29D.2 5解析:选A cosC=2cos2C2 -1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧得程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1得中点,则异面直线AE 与CD 所成角得正切值为( ) A.22B.32C.52D.72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]就是减函数,则a 得最大值就是( ) A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)得图象关系知a 得最大值为3π4。

2018年高考全国新课标2卷文科数学word版及答案

2018年高考全国新课标2卷文科数学word版及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A.B.C.D.2.已知集合,,则A.B.C.D.3.函数的图像大致为4.已知向量,满足,,则A.4 B.3 C.2 D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.6.双曲线的离心率为,则其渐近线方程为A.B.C.D.7.在中,,,,则A.B.C.D.8.为计算,设计了如图的程序框图,则在空白框中应填入开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否.A.B C .D .9.在正方体中,为棱的中点,则异面直线与所成角的正切值为 A .B .C .D .10.若在是减函数,则的最大值是 A .B .C .D . 11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A . B .C .D . 12.已知是定义域为的奇函数,满足.若,则A .B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

13.曲线在点处的切线方程为__________.14.若满足约束条件 则的最大值为__________.15.已知,则__________. 16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案2018年普通高等学校招生全国统一考试二卷文科数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。

第I卷参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)。

如果事件A、B相互独立,那么P(A·B)=P(A)·P (B)。

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率为:Pn(k)=C(n,k)Pk(1-P)^(n-k)。

球的表面积公式:2S=4πR,其中R表示球的半径。

球的体积公式:V=4/3πR^3,其中R表示球的半径。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x<4},N={x|x-2x-3<0},则集合M∩N=A。

{x|x3} C。

{x|-1<x<2} D。

{x|2<x<3}2.函数y=1/x(x≠-5)的反函数是A。

y=-5(x≠0) B。

y=x+5(x∈R) C。

y=5/x(x≠0) D。

y=x-5(x∈R)3.曲线y=x^2-3x+1在点(1,-1)处的切线方程为A。

y=3x-4 B。

y=-3x+2 C。

y=-4x+34.已知圆C与圆(x-1)^2+y^2=1关于直线y=-x对称,则圆C的方程为A。

(x+1)^2+y^2=1 B。

x+y=1 C。

x+(y+1)^2=1 D。

x+(y-1)^2=15.已知函数y=tan(2x+θ)的图象过点(-π/12,),则θ可以是A。

-π/12 B。

π/6 C。

π/12 D。

5π/126.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A。

75° B。

60° C。

45° D。

30°7.函数y=-e^x的图象A。

与y=e^x的图象关于y轴对称 B。

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i2.(5.00分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5.00分)函数f(x)=的图象大致为( )A. B. C.D.4.(5.00分)已知向量,满足||=1,=-1,则•(2)=( )A.4B.3C.2D.05.(5.00分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.36.(5.00分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x7.(5.00分)在△ABC中,cos=,BC=1,AC=5,则AB=( )A.4B.C.D.28.(5.00分)为计算S=1-+-+…+-,设计了如图的程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5.00分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A. B. C. D.10.(5.00分)若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是( )A. B. C. D.π11.(5.00分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为( )A.1-B.2-C.D.-112.(5.00分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )A.-50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考(全国新课标2)真题数学(文)试题及答案解析

2018年高考(全国新课标2)真题数学(文)试题及答案解析

2018年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}- (2)131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --(3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则 A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,学科 网高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32 (C )1 (D (8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7。

2018年高考全国新课标2卷文科数学word版及答案

2018年高考全国新课标2卷文科数学word版及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国新课标2卷文科数学word版及答案

2018年高考全国新课标2卷文科数学word版及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-L ,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018全国高考新课标2卷文科数学试题(解析版)

2018全国高考新课标2卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=( )A.3-2i B.3+2i C.-3-2i D.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2的图像大致为( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( ) A.4 B.3 C.2 D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3解析:选D 5人选2人有10种选法,3人选2人有3中选法。

6.双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( )A.y=±2x B.y=±3x C.y=±2 2xD.y=±3 2x解析:选A e= 3 c2=3a2b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2 B.30 C.29 D.2 5解析:选 A cosC=2cos2C2-1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12+13-14+……+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4解析:选B9.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE 与CD所成角的正切值为( )A.22B.32C.52D.72解析:选C 即AE与AB所成角,设AB=2,则BE=5,故选C 10.若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是( )A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx与f(x)= 2cos(x+π4)的图象关系知a的最大值为3π4。

【真题】2018年全国卷II高考数学(文科)试题含答案解析

【真题】2018年全国卷II高考数学(文科)试题含答案解析

【试题来源】2018 年高考文数真题(全国Ⅱ卷)
三、解答题
17. (2018•卷Ⅱ)记 Sn 为等差数列(an)的前 n 项和,已知 a1=-7,S1=-15. (1)求{an}的通项公式; 【答案】设数列的公差为 d,由题意有:
a1=-7,S3=3a2=-15 a2=-5,d=2 ∴an=a1+(n-1)d=-7+2(n-1)=2n-9
7. (2018•卷Ⅱ)在 ABC 中, cos C 5 , BC 1, AC 5 则 AB ( ) 25
A. 4 2
B. 30
C. 29
D. 2 5
【答案】A cos C 5
【解析】【解答】 2 5 ,
cos C 2 cos2 C 1 2 1 1 3
y' 2 x
y' 2 x1
∴在点(0,0)处的切线方程为:y=2(x-1)=2x-2
故答案为:y=2x-2
【分析】 【题型】填空题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
x 2y 5 0 14. (2018•卷Ⅱ)若 x,y 满足约束条件 x 2 y 3 0 ,则 z x y 的最大值为_______.
∴amax= 3 4
故答案为:C
【分析】 【题型】单选题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
11.
(2018•卷Ⅱ)已知 F1 、 F2 是椭圆 C 的两个焦点,P 是 C 上的一点,若 PF1 PF2 ,且
PF2F1 60 ,则 C 的离心率为( )
A.4

2018年高考全国新课标2卷文科数学word版及答案

2018年高考全国新课标2卷文科数学word版及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A.y = B.y =C.y = D.y x = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-L ,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1B .2C D 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅱ)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)(2018•新课标Ⅱ)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A .y =±xB .y =±xC .y =±xD .y =±x7.(5分)(2018•新课标Ⅱ)在△ABC 中,cos =,BC =1,AC =5,则AB =()A .4B .C .D .28.(5分)(2018•新课标Ⅱ)为计算S =1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A .i =i +1B .i =i +2C .i =i +3D .i =i +49.(5分)(2018•新课标Ⅱ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A .B .C .D .10.(5分)(2018•新课标Ⅱ)若f (x )=cos x ﹣sin x 在[0,a ]是减函数,则a 的最大值是()A .B .C .D .π11.(5分)(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1﹣B .2﹣C .D .﹣112.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5.00分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}3.(5.00分)函数f(x)=的图象大致为()A.B.C.D.4.(5.00分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5.00分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.36.(5.00分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5.00分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5.00分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+49.(5.00分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A. B. C. D.10.(5.00分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A. B.C.D.π11.(5.00分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5.00分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅱ)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)(2018•新课标Ⅱ)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A .y =±xB .y =±xC .y =±xD .y =±x7.(5分)(2018•新课标Ⅱ)在△ABC 中,cos =,BC =1,AC =5,则AB =()A .4B .C .D .28.(5分)(2018•新课标Ⅱ)为计算S =1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A .i =i +1B .i =i +2C .i =i +3D .i =i +49.(5分)(2018•新课标Ⅱ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A .B .C .D .10.(5分)(2018•新课标Ⅱ)若f (x )=cos x ﹣sin x 在[0,a ]是减函数,则a 的最大值是()A .B .C .D .π11.(5分)(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1﹣B .2﹣C .D .﹣112.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅱ)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)(2018•新课标Ⅱ)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A .y =±xB .y =±xC .y =±xD .y =±x7.(5分)(2018•新课标Ⅱ)在△ABC 中,cos =,BC =1,AC =5,则AB =()A .4B .C .D .28.(5分)(2018•新课标Ⅱ)为计算S =1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A .i =i +1B .i =i +2C .i =i +3D .i =i +49.(5分)(2018•新课标Ⅱ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A .B .C .D .10.(5分)(2018•新课标Ⅱ)若f (x )=cos x ﹣sin x 在[0,a ]是减函数,则a 的最大值是()A .B .C .D .π11.(5分)(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1﹣B .2﹣C .D .﹣112.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标ⅱ)+

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅱ)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)(2018•新课标Ⅱ)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A .y =±xB .y =±xC .y =±xD .y =±x7.(5分)(2018•新课标Ⅱ)在△ABC 中,cos =,BC =1,AC =5,则AB =()A .4B .C .D .28.(5分)(2018•新课标Ⅱ)为计算S =1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A .i =i +1B .i =i +2C .i =i +3D .i =i +49.(5分)(2018•新课标Ⅱ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A .B .C .D .10.(5分)(2018•新课标Ⅱ)若f (x )=cos x ﹣sin x 在[0,a ]是减函数,则a 的最大值是()A .B .C .D .π11.(5分)(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1﹣B .2﹣C .D .﹣112.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2019年09月01日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________ 题号 一 二 三总分 得分评卷人 得分一、选择题1.()23i i += ( )A. 32i -B. 32i +C. 32i --D. 32i -+2.已知集合{}{}1,3,5,7,2,3,4,5A B ==,则A B ⋂= () A. {}3B. {}5C. {}3,5D. {}1,2,3,4,5,73.函数2()x xe ef x x --=的图像大致为( )A.B.C. D.4.已知向量,a b 满足||1,1,a a b =⋅=-则(2)a a b ⋅-= ( )A.4B.3C.2D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.36.双曲线22221x y b-=(0,0)a b >>3,则其渐近线方程为( ) A. 2y x = B. 3y x =C. 2y x =D. 3y x = 7.在ABC ∆中, 5cos,1,525C BC AC ===则AB = ( ) A. 2B.30C.29D. 258.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了程序框图,则在空白框中应填入( )A. 1i i =+B. 2i i =+C. 3i i =+D. 4i i =+9.在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.22B.3C.5D. 72 10.若 ()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A.4π B. 2π C. 34π D. π 11.已知12,F F 是椭圆C 的两个焦点, P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A. 31B. 23-C. 312D.3112.已知()f x 是定义为(,)-∞+∞的奇函数,满足()(11)f f x x =+-。

若()1?2f =,则()(2)(3)(50)1f f f f +++⋅⋅⋅+= ( ) A.-50 B.0 C.2 D.50 评卷人得分 二、填空题13.曲线2ln y x =在点()1,0处的切线方程为__________14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则z x y =+的最大值为__________.15.已知 51tan 45απ⎛⎫-= ⎪⎝⎭,则tan α=__________ 16.已知圆锥的顶点为S ,母线,SA SB 互相垂直, SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________. 评卷人得分 三、解答题17.记n S 为等差数列{}n a 的前n 项和,已知137,15.a s =-=1.求{}n a 的通项公式;2.求n S 并求n S 的最小值。

18.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图。

为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型,根据2000年至2016年的数据(时间变量t 的值依次为1,2,.,17⋯⋯)建立模型①: 30.413.5y t =-+;根据2000年至2016年的数据(时间变量t 的值依次为1,2,.,7⋯⋯)建立模型②: y 9917.5t =+.1.分别利用这两个模型,求该地区2018年的环境基础设施投资的预测值;2.你认为用哪个模型得到的预测值更可靠?并说明理由。

19.如图,在三棱锥 P ABC -中, 2,4,AB BC PA PB PC AC O ======为AC 的中点1.证明: PO ⊥平面ABC2.若点 M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离20.设抛物线2:4C y x =的焦点为F ,过F 点且斜率()0k k > 的直线l 与C 交于,A B 两点, 8AB =.1.求l 的直线方程。

2.求过点,A B 且与C 的准线相切的圆的方程.21.已知函数 ()()32113f x x a x x =-++ 1.若 3a =,求()f x 的单调区间2.证明: ()f x 只有一个零点22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数) 1.求C 和l 的直角坐标方程2.若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率23.[选修4-5:不等式选讲] 设函数()52f x x a x =-+--1.当1a =时,求不等式()0f x ≥的解集;2.若()1f x ≤,求a 的取值范围.参考答案一、选择题1.答案:D解析:分析:根据公式21i =-,可直接计算得()2332i i i +=-+详解:()2232332i i i i i +=+=-+,故选D点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略21i =-中的负号导致出错2.答案:C解析:分析:根据集合 {}{}1,3,5,7,2,3,4,5A B ==可直接求解{}3,5A B ⋂=.详解:∵{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5A B ⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算3.答案:B解析:分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:∵()()20,x xe e xf x f x x --≠-==-∴()f x 为奇函数,舍去A, ∵()110f e e -=->∴舍去D;∵()()()()()243222'x x x x x x e e x e e xx e x e f x x x ---+---++==∴2x >,()'0f x >所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复4.答案:B解析:因为22(2)22||(1)213a a b a a b a ⋅-=-⋅=--=+=所以选B.5.答案:D解析:分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为 12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m;第三步,利用公式()m P A n =求出事件A 的概率. 6.答案:A 解析:因为: 3,c e a== 所以: 22222212b c a e a a-==-= 所以: 2b a= 因为渐近线方程为b y x a =±,所以渐近线方程为2y x =±,选A. 7.答案:A解析:因为: 2253cos 2cos 121255c C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215()325c a b ab C =+-=+-⨯⨯⨯-= 所以42c =,选A.8.答案:B 解析:由111111 (23499100)s =-+-++-得程序框先对奇数项累加,偶数项累加,最后再相减,因此在空白框应填入2i i =+.选B. 9.答案:C解析:分析:利用正方体 1111ABCD A B C D -中, //CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在 ABE ∆中进行计算即可.详解:在正方体 1111ABCD A B C D -中, //CD AB ,所以异面直线 AE 与CD 所成角为EAB ∠,设正方体边长为 2a ,则由 E 为棱1CC 的中点,可得CE a =,所以5BE a =则 55tan 22BE a EAB AB a ∠===.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.答案:C解析:分析:先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值详解:因为 ()sin 4f x coosx x x π⎛⎫=-=+ ⎪⎝⎭,所以由 ()0224k k k z π+π≤π+≤π+π,∈得()322,44k x k k z ππ-+π≤≤+π∈因此 []3,,44a a ππ⎡⎤-⊂-⎢⎥⎣⎦∴3,,44a a a a ππ-<-≥-≤,从而a 的最大值为34π,选C. 点睛:函数 ()()sin 0,0y A x B A ωϕω=++>>的性质:(1) max min ,y A B y A B =+=-.(2)周期2T πω=(3)由 ()2x k k Z ωϕπ+=+π∈求对称轴, (4)由()2222k x k k Z ωϕππ-+π≤+≤+π∈求增区间;由 ()2222k x k k Z ωϕπ3π+π≤+≤+π∈求减区间 11.答案:D解析:分析:设 2PF m =,则根据平面几何知识可求121,F F PF ,再结合椭圆定义可求离心率.详解:在 12F PF ∆中, 122190,60F PF PF F ∠=︒∠=︒设 2,PF m =,则12122,c F F m PF ==,又由椭圆定义可知 )1221a PF PF m =+=则离心率212c c e a a ====,故选D点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.12.答案:C解析:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+,所以(1)(1)f x f x +=--所以(3)(1)(1), 4.f x f x f x T +=-+=-=因此(1)(2)(3)...(50)12[(1)(2)(3)(4)](1)(2),f f f f f f f f f f ++++=+++++ 因此(3)(1),(4)(2),f f f f =-=-所以(1)(2)(3)(4)0,f f f f +++=因为: (2)(2)(2)f f f =-=-,所以(2)0f =从而(1)(2)(3)...(50)(1)2,f f f f f ++++==选C.二、填空题13.答案:22y x =-解析:分析:求导 ()2'f x x=,可得斜率()'12k f ==,进而得出切线的点斜式方程详解:由 ()2ln y f x x ==,得()2'f x x =则曲线 2ln y x =在点()1,0处的切线的斜率为()'12k f ==,则所求切线方程为 ()021y x -=-,即22y x =- 点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.14.答案:9解析:做可行域,则直线z x y =+过点(5,4)A 时z 取最大值9.15.答案:分析:利用两角差的正切公式展开,解方程可得 3tan 2α=. 详解: 5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得 3tan 2α= 点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.解析:16.答案:8π解析:如下图所示, 30,90SAO ASB ∠=︒∠=︒又 211822SAB S SA SB SA =⋅==△, 解得 4SA =,所以2212,232SO SA AO SA SO ===-=,所以该圆锥的体积为 2183V OA SO =⋅π⋅⋅=π 三、解答题17.答案:1.设{}n a 的公差为d ,由题意得13315a d +=-由17a =-得2d =,所以{}n a 的通项公式为29n a n =- 2.由1知, 228(4)16n S n n n =-=--得,所以当4n =时, n S 取得最小值,最小值为16-.解析:18.答案:1.利用模型①,该地区2018年的环境基础设施投资额的预测值为30.413.519226.1y =-+⨯= (亿元)利用模型②,该地区年的环境基础设施投资额的预测值为9917.59256.5y =+⨯= (亿元)2.利用模型②得到的预测值更可靠理由如下:方法一:从折线图可以看出, 2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势, 2010年相对2009年的环境基础设施投资额有明显增加, 2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y 9917.5t =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠。

相关文档
最新文档