2012高考文科数学大纲全国卷

合集下载

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12 (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和(B )2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0<x ≤12时,4log x a x <,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考文科数学真题答案全国卷1

2012年高考文科数学真题答案全国卷1

2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动 .用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。

第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。

21012年大纲全国卷文科数学答案

21012年大纲全国卷文科数学答案

2012年大纲全国卷文科数学答案一、选择题(1)B (2)A (3)C (4)A (5)C (6)B(7)C (8)D (9)D (10)C (11)D (12)B二、填空题(13)7 (14)1- (15)65π (16)53 三、解答题(17)解:由C B A 、、成等差数列及0180=++C B A 得060=B ,0120=+C A 由ac b 322=及正弦定理得 C A B sin sin 3sin 32= 故21sin sin =C A 。

(4)分 21cos cos sin sin cos cos )cos(-=-=+C A C A C A C A 即2121cos cos -=-C A C A cos cos =0。

(7)分0cos =A 或0cos =C所以090=A 或030cos =A 。

(10)分18.解 (1)由2234a S =的2214)(3a a a =+,解得3312==a a ; 由3335a S =的33215)(3a a a a =++,解得6)(23213=+=a a a 。

(4)分 (2)由题设知11=a当1>n 时有113132--+-+=-=n n n n n a n a n S S a 整理得111--+=n n a n n a 于是12123121112......24131----+=-====n n n n a n n a a n n a a a a a a 将以上n 个等式两边分别相乘,整理得2)1(+=n n a n 综上可得}{n a 的通项公式2)1(+=n n a n (12)分 (19)(1)以A 为坐标原点,射线AC 为x 轴正半轴,建立如图所示空间直角坐标系 设)0,,2(),0,0,22(b D C ,其中0>b ,则)0,,2(),32,0,324(),2,0,0(b B E P - 于是)32,,32(),2,0,22(b =-=,)32,,32(b -= 从而0=∙DE PC ,0=∙BE PC ,故DE PC BE PC ⊥⊥,又E DE BE = ,所以⊥PC 平面BDE 。

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3、第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。

(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。

在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。

(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。

2012年新课标全国卷文科数学详细解析版

2012年新课标全国卷文科数学详细解析版

2012年新课标全国卷文科数学详解适用地区:河南、河北、黑龙江、吉林、宁夏、山西、内蒙古、新疆、云南第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一个选项是符合题目要求的. 1.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ=【解析】因为{|12}A x x =-<<,{|11}B x x =-<<,所以B A ,故选择B 。

【点评】本题主要考察一元二次不等式的解法,两个集合间的关系,属简单题。

2.复数32iz i-+=+的共轭复数是( ) A .2i +B .2i -C .1i -+D .1i --【解析】因为(3)(2)551(2)(2)5i i iz i i i -+--+===-++-,所以1z i =--,故选择D 。

【点评】本题主要考察复数的运算及共轭复数的概念。

3.在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线112y x =+上,则这组样本 数据的样本相关系数为( ) A .-1B .0C .12D .1【解析】因为112y x =+中,102k =>,所以样本相关系数0r >,又所有样本点(i x ,i y )(i =1,2,…,n )都在直线112y x =+上,所以样本相关系数1r =,故选择D 。

【点评】本题主要考察回归直线,相关系数的知识。

4.设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==, 260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2a F Q c =-,所以32a c c -=,解得34c a =,因此34c e a ==,故选择C 。

2012年普通高等学校招生全国统一考试(大纲全国卷)文科数学及答案

2012年普通高等学校招生全国统一考试(大纲全国卷)文科数学及答案

2012年普通高等学校招生全国统一考试(大纲全国卷)数 学(供文科考生使用)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={|x x 是平行四边形},B ={|x x 矩形},C ={|x x 是正方形},D ={|x x 是菱形},则( )A.A B ⊆B.C B ⊆C.D C ⊆D.A D ⊆ 2.函数(1)y x =≥-的反函数为( )A.()210y x x =-≥B.()211y x x =-≥C.()210y x x =+≥D.()211y x x =+≥3.若函数()[]()sin0,2π3x f x ϕϕ+=∈是偶函数,则ϕ=( ) A.π2 B.2π3C.3π2D.5π3 4.已知α为第二象限角,3sin ,5α=则sin2α=( )A.2425-B.1225-C.1225D.24255.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A.2211612x y +=B.221128x y +=C.22184x y +=D.221124x y += 6.已知数列{}n a 的前n 项和为11,1,2,n n n S a S a +==则n S =( )A.12n -B.13()2n -C. 12()3n -D.112n - 7.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种8.已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为( )A.2D.19.ABC ∆中,AB 边的高为CD .若,,0,||1,||2,CB CA ==⋅===a b a b a b 则AD =( )A. 1133-a bB.2233-a bC.3355-a bD.4455-a b10.已知12,F F 为双曲线22:2C x y -=的左,右焦点,点P 在C 上,12||2||,PF PF =则12cos F PF ∠=( )A.14B.35C.34D.45 11.已知125ln π,log 2,x y z e -===,则( ) A.x y z << B.z x y <<C.z y x <<D.y z x << 12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,1,3AE BF ==动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A.8B.6C.4D.3本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分)13.81()2x x+的展开式中2x 的系数为________14.若,x y 满足约束条件10x 30,x 330x y y y -+≥⎧⎪+-≤⎨⎪+-≥⎩则3z x y =-的最小值为________15.当函数()sin 02πy x x x =≤<取得最大值时,x =________16.已知正方体1111ABCD A B C D -中,,E F 分别为11,BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为________三、解答题(本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤.) 17.(本小题10分)ABC ∆中,内角,,A B C 成等差数列,其对边,,a b c 满足223b ac =,求A .18.(本小题12分)已知数列{}n a 中,11,a =前n 项和23n n n S a +=.(1)求23,a a ;(2)求{}n a 的通项公式.19.(本小题12分)如图,四棱锥P A B C D -中,底面ABCD 为菱形,PA ⊥底面ABCD,2,AC PA E ==是PC 上的一点,2.PE EC =(1)证明:PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.20.(本小题12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲,乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲,乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲,乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.21.(本小题12分)已知函数()3213f x x x ax =++.(1)讨论()f x 的单调性;(2)设()f x 有两个极值点12,x x ,若过两点()()()()1122,,,x f x x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.22.(本小题12分)已知抛物线()2:1C y x =+与圆()2221:(1)()02M x y r r -+-=>有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设,m n 是异于l 且与C 及M 都相切的两条直线,,m n 的交点为D ,求D 到l 的距离.P E DC B ABACAC BCDDC DB 13.7 14.1- 15.5π6 16.3517. 【解析】由A .B .C 成等差数列可得2B A C =+,而A B C π++=,故33B B ππ=⇒=且23C A π=-而由223b ac =与正弦定理可得2222sin 3sin sin 2sin 3sin()sin 33B AC A A ππ=⇒⨯=-所以可得232223(sin cos cos sin )sin sin sin 1433A A A A A A ππ⨯=-⇒+=⇒1cos 2121sin(2)262A A A π-+=⇒-=,由27023666A A ππππ<<⇒-<-<,故 266A ππ-=或5266A ππ-=,于是可得到6A π=或2A π=。

2012年高考真题(全国新课标卷)——文数

2012年高考真题(全国新课标卷)——文数

2012年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18开始A=xB=x x >A否输出A ,B 是 输入N ,a 1,a 2,…,a N结束x <Bk ≥Nk =1,A =a 1,B=a 1k =k+1x =a k是否 否是(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。

45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。

2012年全国大纲高考数学文科试卷带详解

2012年全国大纲高考数学文科试卷带详解

2012年普通高等学校招生全国统一考试文科数学(大纲卷)一.选择题1.已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则 ( )A.A B ⊆B. C B ⊆C.D C ⊆D.A D ⊆【测量目标】集合间的关系.【考查方式】考查了集合的表达式(描述法),集合间的包含关系.【参考答案】D【试题解析】正方形是特殊的菱形,矩形是特殊的平行四边形,正方形是特殊的矩形,可知D 是最小的集合,A 是最大的集合,依次是B 、C ,故选D.2.函数1)y x -…的反函数为 ( )A.21(0)y x x =-…B.21(1)y x x =-…C.21(0)y x x =+…D.21(1)y x x =+…【测量目标】函数的概念与基本初等函数.【考查方式】考查了反函数的求解,利用原函数利用反解x ,再互换,x y 的位置得到.【参考答案】A【试题解析】函数y =则21x y =-,互换,x y 的位置,则21y x =-,(步骤1)又0y =,所以函数y =21,0y x x =-…,故选A. (步骤2)3.若函数[]()sin(0,2π)3x f x ϕϕ+=∈是偶函数,则ϕ= ( ) A.π2 B. 2π3 C.3π2 D.5π3 【测量目标】三角函数的奇偶性.【考查方式】已知三角函数的奇偶性,进过三角变换公式求解.【参考答案】C【试题解析】()sin()3x f x ϕ+=是偶函数,则()()f x f x -=, 即sin()sin()33x x ϕϕ+-+=,整理得ππ,32k k ϕ=+∈Z ,所以3π3π,2k k ϕ=+∈Z , 当0k =时,3π2ϕ=,故选C. 4.已知α为第二象限角,3sin sin 25,αα==则 ( )A. 2425-B. 1225-C. 1225D . 2425 【测量目标】正弦函数与二倍角.【考查方式】考查了同角三角函数的基本关系式的运用,以及二倍角公式运用.【参考答案】A 【试题解析】3sin 5αα=∈且第二象限角,则4cos 5α=-, 所以24sin 22sin cos 25ααα==-,故选A. 5.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( ) A.2211612x y += B.221128x y += C.22184x y += D.221124x y += 【测量目标】椭圆的标准方程.【考查方式】考查了椭圆的方程以及椭圆的几何性质的运用,通过椭圆的准线方程确定焦点的位置,然后借助于焦距和准线求解参数,,a b c 从而得到椭圆的方程.【参考答案】C【试题解析】椭圆的一条准线方程为4x =-,即24a c-=-,所以24a c =,(步骤1) 且椭圆的焦点在x 轴上,又24c =,所以2c a =⇒=所以椭圆的方程为22184x y +=, 故选C. (步骤2)6.已知数列{}n a 的前n 项和为n S ,111,2n n a S a +==,则n S = ( )A.12n -B.132n -⎛⎫ ⎪⎝⎭C. 123n -⎛⎫ ⎪⎝⎭D.112n - 【测量目标】等比数列的前n 项和.【考查方式】已知数列通项求前n 项和.【参考答案】B【试题解析】111,2n n a S a +==,所以12n n S a -=,(步骤1)两式相减,得13,(2)2n n a n a +=…,且,所以21113()222n n n a n -=⎧⎪=⎨⎪⎩…,(步骤2)则11123113()3222()1()212n n n n S a a a a ---=++++=+=- ,故选B. (步骤3) 7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有 ( )A .240种B .360种 C.480种 D.720种【测量目标】排列组合及其应用.【考查方式】考查了排列组合的问题的计算,利用特殊元素优先安排的原则,利用分步计数原理,得到结论.【参考答案】C【试题解析】先把甲安排在其余的4个位置上,有14C 4=种方法,剩余的元素则进行全排列,有55A 120=种方法,共计1545C A 480=种不同的方法,故选C.8.已知正四棱柱ABCD-A 1B 1C 1D 1 中,AB =2,CC 1=E 为CC 1 的中点,则直线AC 1 与平面BED 的距离为 ( )A.2D.1【测量目标】立体几何中的探索性问题.【考查方式】考查了正四棱住形式的运用,以及点到面的距离的求解,体现了转化与化归的数学思想的运用,积极线面平行时的距离转化为点到面的距离.【参考答案】C【试题解析】底面边长为2,高为AC BD 、,得到交点为O ,连接EO ,则//EO AC ,则点1C 到平面B D E 的距离等于点C 到平面B D E 的距离,过点C 作 CG OE ⊥,则OH 即为所求距离,在OCE △中,利用等面积法,可得CH =,故选C.9.△ABC 中, AB 边的高为CD ,若,,0,CB CA === a b a b |a |=1,|b |=2,则AD = ( )A.1133-a b B.2233-a b C.3355-a b D.4455-a b 【测量目标】平面向量的线性运算及基本概念.【考查方式】参考了向量的加减法及向量的几何意义的运用,结合运用了特殊直角三角形求解点D 的位置,从而表示向量AD .【参考答案】D【试题解析】0= a b ,则090ACB ∠=,所以AB CD ==,(步骤1)所以5BD =,5AD =,所以:4:1AD BD =,(步骤2) 则1455CD CA CB =+ , 所以44445555AD CD CA CA CB =-=-+=-+ b a ,故选D. (步骤3) 10.已知12F F 为双曲线22:2C x y +=的左、右焦点,点P 在C 上,122PF PF =,则 12cos F PF ∠= ( )A.14B.35C.34D.45【测量目标】双曲线的简单几何性质,三角函数恒等变换.【考查方式】考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用,首项运用定义得到两个焦半径的值,然后结合三角形中余弦定理求解12cos F PF ∠的值.【参考答案】C【试题解析】2a b c =⇒=,设122,PF x PF x ==,(步骤1)所以12PF PF x -==所以12124PF PF F F ===,(步骤2)利用余弦定理,则123cos 4F PF ∠==.故选C. (步骤3) 11.已知x =ln π,y =log 52 ,z =12e -,则 ( )A.x <y <zB.z <x <yC.z <y <xD.y <z <x【测量目标】基本初等函数性质.【考查方式】考查了基本初等函数的性质,利用对数、指数函数的性质比较大小.【参考答案】D【试题解析】由题意得:ln π1>,且521log 2log 5=,又因为2log 52>,因为12e z -==2<,所以y z x <<,故选D. 12).正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =13,动点p 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p 第一次碰到E 时,p 与正方形的边碰撞的次数为 ( )A.8B. 6C.4D.3【测量目标】点、直线、面位置关系.【考查方式】查了反射的原理与三角形相似及直线的位置关系,通过相似三角形,确定反射后的点落的位置,结合图象分析反射的次数即可.【参考答案】B【试题解析】结合已知中点E 、F 的位置,推理可知,在反射的过程中,直线是位置关系,利用平行关系,可以的返回到E 点时,需要碰撞6次.二、填空题 13. 81()2x x+的展开式中2x 的系数为____________. 【测量目标】二项式定理. 【考查方式】考查了二项式定理中通项公式的运用,借助二项式的通项求解2x 的系数问题.【参考答案】7 【试题解析】二项式81()2x x +展开式的通项为88218811C ()()C 22r r r r r r r T x x x --+==, 令8223r r -=⇒=时,所以332481()C 72T x x ==,所以2x 的系数为7. 14.若x 、y 满足约束条件10,30,330,x y x y x y -+⎧⎪+-⎨⎪+-⎩………则3z x y =-的最小值为_____.【测量目标】二元线性规划求目标函数的最值.【考查方式】考查了线性规划的最优解的求解,属于常规题型,只要认真作图,表示出约束 条件的可行域,然后借助于直线的平移法即可求目标函数的最值问题.【参考答案】1-【试题解析】画出实数,x y 满足约束条件所表示的可行域,当取可行域内点()3,0A 时,目标函数3z x y =-取得最大值,当取可行域内点()0,1B 时,目标函数3z x y =-取得最小值,此时最小值为1-.15.当函数sin (02π)y x x x =<…取得最大值时,x =_____.【测量目标】三角函数值域、最值.【考查方式】考查了三角函数的性质的运用,求解值域问题,首项把三角函数化为单一的正弦型函数,然后利用定义域求解角的范围,从而结合三角函数的图象得到最值点.【参考答案】5π6【试题解析】πsin 2sin()3y x x x ==-,因为[]0,2πx ∈,所以ππ5π[,]333x -∈-,所以当ππ32x -=,即5π6x =时,函数取得最大值,此时最大值为2. 16.一直正方体1111ABCD A BC D -中,E 、F 分别为11,BB CC 的中点,那么一面直线AE 与1D F 所成角的余弦值为____________.【测量目标】异面直线所成角.【考查方式】考查了正方体中异面直线所成角的求解的运用,通过平移转化相交直线所成的角,放置在三角形中,利用解三角形的知识求解. 【参考答案】34【试题解析】根据已知条件,连接DF ,则1DFD ∠,即为异面直线所成的角,设边长为2,则可以求解得到112DF D F DD ===.在1DFD △中,利用余弦定理得13cos 4DFD ∠=,即异面直线所成的角的余弦值为34. 三、解答题17.(本小题满分10分)(注..意:..在试题卷上作答无效)..........在ABC △中,内角,,A B C 成等差数列,其对边,,a b c 满足223b ac =,求A .【测量目标】等差数列性质与三角函数恒等变换【考查方式】考查了通过几三角形中边角的转换,结合了三角形的内角和定理的知识,以及正弦定理与余弦定理,求解三角形中的交的问题.【试题解析】∵,,A B C 成等差数列,∴2A C B +=. (步骤1)∵πA B C ++=,∴π3B =.∴2π3C A =-. ∵223b ac =,∴22sin 3sin sin B A C =,∴2π2π2sin 3sin sin()33A A =-, (步骤2) ∴32π2π3sin (sin cos cos sin )233A A A =-,2cos sin 1A A A +=,1cos 2212A A -+=,112cos 222A A -=,∴π1sin(2)62A -=, ∵2π(0,)3A ∈,∴ππ7π2(,)666A -∈-, (步骤3) ∴ππ266A -=或π5π266A -=,∴π6A =或π2A =. (步骤4)18.(本小题满分12分) (注意...:.在试题卷上.....作答无效).....已知数列{}n a 中,11a =,前n 项和23n n n S a +=.(1)求2a ,3a ;(2)求数列{}n a 的通项公式.【测量目标】数列的概念与等差数列及等比数列【考查方式】考查了数列的通项公式与数列求和的相结合的综合【试题解析】(1)∵11a =,23n n n S a +=, (步骤1)∴2212223S a a a +==+,∴2133a a ==.∴33123323S a a a a +==++,∴31223a a a =+,∴36a =.∴23a =,36a =. (步骤2)(2)当2n …时,1113n n n S a --+=,112133n n n n n n n a S S a a --++=-=-,∴11133n n n n a a --+=,∴ 111n n a n a n -+=-,∴ 12211231n n n n n n n a a a aa a a a a a -----=⨯⨯⨯⋅⋅⋅⨯⨯ (步骤3)2113112312n nn n nn n n +-+=⨯⨯⨯⋅⋅⋅⨯⨯=---,∵ 211112a +==,∴数列{}n a 的通项公式为22n n na +=. (步骤4)19.(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD,AC =,2PA =E 是PC 上的一点,2PE EC =.(1)证明:PC ⊥平面BED ;(2)设二面角A PB C --为90 ,求PD 与平面PBC 所成角的大小.【测量目标】线面垂直的判定及异面直线所成角.【考查方式】考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用,从试题中线面垂直以及特殊的菱形入手得到相应的垂直关系和长度关系,并加以证明和求解.【试题解析】以A 为原点,射线AC 为x 轴的正半轴,建立空间直角坐标系,如图:则(0,0,0),(0,0,2),A P C ,设,0),,0),(,,)B b D b E x y z -,∴(,,2),2)PE x y z PC =-=- ,∵2PE EC =,∴23PE PC =,2(,,2)2)3x y z -=-,∴20,33x y z ===,2(,0,)33E . (步骤1)(1)∵2(,)33BE b =,2(,)33DE b =-,∴22)(,)033PC BE b =-= ,22)(,)033PC DE b =--= ,∴PC BE ⊥PC DE ⊥,BE DE E = ,∴PC ⊥平面BED .(步骤2) (2) 设平面PBC 的法向量为的法向量为(,,)x y z =m ,∵,2)PB b =--,2)PC =- ,则0,0.PB PC ⎧=⎪⎨=⎪⎩m m ,即20,20.by z z --=-=⎪⎩ 取1x =,∴平面PBC的一个法向量为(1,b =-m .同理平面PAB的一个法向量为(b =n .∵二面角A PB C --为90 ,∴0 m n =,b =∴(1,1=-m,2)PD =- (步骤3)设PD 与平面PBC 所成的角θ, ∴1sin cos ,2PD PD PD θ=<>== m m m , ∵π[0,]2θ∈,∴π6θ=, ∴PD 与平面PBC 所成角的大小为π6. (步骤4) 20.(本小题满分12分)(注意:在试题卷上作答无效)乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开球第4次发球时,甲、乙的比分为1比2的概率;(2)求开始第5次发球时,甲得分领先的概率.【测量目标】事件的概率与古典概型及分布列和期望值.【考查方式】考查了关于独立事件的概率的求解,以及分布列和期望值问题.首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论. .【试题解析】记i A 为事件“第i 次发球,甲胜”,1,2,3i =,则123()0.6,()0.6,()0.4P A P A P A ===. (步骤1)(1)事件“开始第4次发球时,甲、乙的比分为1比2为123123123A A A A A A A A A ++,由互斥事件有一个发生的概率加法公式得123123123()P A A A A A A A A A ++0.60.40.60.40.60.60.40.40.4=⨯⨯+⨯⨯+⨯⨯0.352=. (步骤2)即开始第4次发球时,甲、乙的比分为1:2的概率为0.352.(2)五次发球甲领先时的比分有3:1和4:0两种情况,开始第5次发球时比分为3:1的概率为2211222222C 0.6C 0.40.6C 0.60.4C 0.4⨯⨯+⨯⨯ 0.17280.07680.2496=+=,开始第5次发球时比分为4:0的概率为:222222C 0.6C 0.40.0576⨯=,故求开始第5次发球时,甲得分领先的概率为0.24960.05760.3072+=. (步骤3)21.(本小题满分12分)(注意:在试题卷上作答无效)已知函数ax x x x f ++=2331)( (1)讨论()f x 的单调性;(2)设()f x 有两个极值点21,x x ,若过两点))(,(11x f x ,))(,(22x f x 的直线l 与x 轴的交点在曲线)(x f y =上,求a 的值.【测量目标】函数的单调性与极值及导数的应用.【考查方式】考查了导数的符号的实质不变,利用导数的符号,求解单调区间.第二问总,运用极值的问题及直线方程的知识求解交点,得到参数的值.【试题解析】(1)依题意可得2()2f x x x a '=++,当∆440a =-…,即1a …时,220x x a ++…恒成立,∴()0f x '…,∴函数()f x 在R 上单调递增; (步骤1)当1a <时,令()0f x '=,得11x =-21x =-且12x x <,∴1(,)x x ∈-∞或2(,)x x ∈+∞时,()0f x '>,此时()f x 单调递增12(,)x x x ∈时,()0f x '<,此时()f x 单调递增 (步骤2)综上可知当1a …时,()f x 在R 上单调递增;当1a <时,()f x 在(,1x ∈-∞-上单调递增,在(1)x ∈-+∞单调递增,在(11--单调递减, (步骤3)(2)由(1)知,12,x x 为方程()0f x '=的两个根,故有1a <,2112x x a =--,2222x x a =--, ∴3221111111111()(2)33f x x x ax x x a x ax =++=--++ (步骤4) 21111112121(2)(1)333333a x ax x a ax a x =+=--+=--,同理212()(1)33a f x a x =--, ∴直线l 的方程为2(1)33a y a x =--,设l 与x 轴的交点为0(,0)x ,得02(1)a x a =-, 而3201()()()()32(1)2(1)2(1)a a a f x a a a a =++---223(12176)24(1)a a a a =-+-, 由题设知,点0(,0)x 在曲线)(x f y =的上,故0()0f x =,解得0a =或23a =或34a =, ∴所求a 的值为0a =或23a =或34a =. (步骤5) 22.(本小题满分12分)(注意:在试题卷上作答无效)已知抛物线C :2(1)y x =+与圆M :2221(1)()(0)2x y r r -+-=>有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.【测量目标】圆锥曲线与方程及直线、圆与方程.【考查方式】考查了二次曲线的焦点问题,并且要研究两曲线的公共点处的切线,几何和导数的工具性结合在一起.【试题解析】(1)设200(,(1))A x x +,对2(1)y x =+,求导得2(1)y x '=+,∴直线l 的斜率02(1)k x =+,当01x =时,不合题意,∴01x ≠, (步骤1)∵圆心为1(1,)2M ,MA 的斜率20101(1)21x k x +-=-,由l MA ⊥,知11k k =- ,∴20001(1)22(1)11x x x +-+⨯=--, 解得00x =,故(0,1)A , (步骤2)∴r MA ===(2)设2(,(1))a a +为C 上一点,则在该点处的切线方程为 2(1)2(1)()y a a x a -+=+-,即22(1)1y a x a =+-+. (步骤3)若该直线与圆M 相切,则圆心M2=,化简得22(46)0a a a --=,解得0120,22a a a === (步骤4)抛物线C 在点2(,(1))(0,1,2)i i a a i +=处的切线分别为,,l m n ,其方程分别为21y x =+① ,2112(1)1y a x a =+-+② ,2222(1)1y a x a =+-+③,②-③得1222a a x +==, 将2x =代入①得1y =-,故(2,1)D -,∴D 到直线l的距离为d == (步骤5)。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2012年全国统一高考数学试卷(文科)(大纲版)(含解析版)

A.
B.
C.
D.
6.(5 分)已知数列{an}的前 n 项和为 Sn,a1=1,Sn=2an+1,则当 n>1 时,Sn= ( )
A.( )n﹣1
B.2n﹣1
C.( )n﹣1
D. ( ﹣1)
7.(5 分)6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则
不同的演讲次序有( )
A.240 种
第 3 页(共 24 页)
20.(12 分)乒乓球比赛规则规定:一局比赛,对方比分在 10 平前,一方连续 发球 2 次后,对方再连续发球两次,依次轮换.每次发球,胜方得 1 分,负 方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为 0.6,各 次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
在三棱锥 A﹣BDE 中,BD=2 ,BE= ,DE= ,∴S△EBD= ×2 × =2
∴VA﹣BDE= ×S△EBD×h= ×2 ×h= ∴h=1 故选:D.
【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥 的体积计算方法,等体积法求点面距离的技巧,属基础题
9.(5 分)△ABC 中,AB 边的高为 CD,若 = , = , • =0,| |=1,


=
=
故选:D.
【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,
向量的数量积的性质的应用.
10.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C 上, |PF1|=2|PF2|,则 cos∠F1PF2=( )
A.
B.
C.
D.
【考点】KC:双曲线的性质. 菁优网版权所有

2012年普通高等学校招生全国统一考试文科数学(课标全国卷)

2012年普通高等学校招生全国统一考试文科数学(课标全国卷)

12课标全国(文)1.(2012课标全国,文1)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( ). A .A ⫋BB .B ⫋AC .A =BD .A ∩B =⌀ B 由题意可得,A ={x |-1<x <2},而B ={x |-1<x <1},故B ⫋A .2.(2012课标全国,文2)复数z =3i 2i-++的共轭复数是( ).A .2+iB .2-iC .-1+iD .-1-iD z =3i 2i -++=(-3i)(2i)(2i)(2i)+-+-=55i 5-+=-1+i ,故z 的共轭复数为-1-i .3.(2012课标全国,文3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ).A .-1B .0C .12D .1D 样本相关系数越接近1,相关性越强,现在所有的样本点都在直线y =12x +1上,样本的相关系数应为1.4.(2012课标全国,文4)设F 1,F 2是椭圆E :22x a +22y b =1(a >b >0)的左、右焦点,P 为直线x =32a 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ).A .12B .23C .34D .45C 设直线x =32a 与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =32a -c ,故cos 60°=22M F PF =3a c 22c -=12,解得c a =34,故离心率e =34.5.(2012课标全国,文5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( ). A .(12) B .(0,2) C1,2)D .(0,1A 由顶点C 在第一象限且与A ,B 构成正三角形可求得点C 坐标为(12),将目标函数化为斜截式为y =x +z ,结合图形可知当y =x +z 过点C 时z 取到最小值,此时z min =1当y =x +z 过点B 时z 取到最大值,此时z max =2,综合可知z 的取值范围为(12).6.(2012课标全国,文6)如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( ).A .A +B 为a 1,a 2,…,a N 的和B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数,故选C .7.(2012课标全国,文7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ).A .6B .9C .12D .18B 由三视图可推知,几何体的直观图如右图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为13×1632⎛⎫⨯⨯ ⎪⎝⎭×3=9.8.(2012课标全国,文8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α则此球的体积为( ).A B .C .D .B 设球O 的半径为R ,则R 故V 球=43πR 3=.9.(2012课标全国,文9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin (ωx +φ)图像的两条相邻的对称轴,则φ=( ).A .π4B .π3C .π2D .3π4A 由题意可知函数f (x )的周期T =2×5ππ44⎛⎫- ⎪⎝⎭=2π,故ω=1,∴f (x )=sin (x +φ).令x +φ=k π+π2,将x =π4代入可得φ=k π+π4,∵0<φ<π,∴φ=π4.10.(2012课标全国,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=则C 的实轴长为( ).A B .C .4D .8C 设双曲线的方程为22x a -22y a =1,抛物线的准线为x =-4,且|AB |=故可得A (-4,B (-4,-将点A 的坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.11.(2012课标全国,文11)当0<x ≤12时,4x <log a x ,则a 的取值范围是( ).A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .(1D 2)B 由0<x ≤12,且log a x >4x >0,可得0<a <1,由124=log a 12可得a 令f (x )=4x,g (x )=log a x ,若4x <log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如下图所示),此时需a综上可得a 的取值范围是⎫⎪⎪⎝⎭. 12.(2012课标全国,文12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ).A .3 690B .3 660C .1 845D .1 830 D ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=115-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15(10234)2⨯+=1 830.13.(2012课标全国,文13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为 .4x -y -3=0 因为y '=3ln x +4,故y '|x =1=4,所以曲线在点(1,1)处的切线方程为y -1=4(x -1),化为一般式方程为4x -y -3=0.14.(2012课标全国,文14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q = .-2 由S 3=-3S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.15.(2012课标全国,文15)已知向量a ,b 夹角为45°,且|a |=1,|2a -b 则|b |= .∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos 45°b |,|2a -b |2=4-4b |+|b |2=10,∴|b |=16.(2012课标全国,文16)设函数f (x )=22(1)sin 1x x x +++的最大值为M ,最小值为m ,则M +m = .2 f (x )=22(1)sin 1x x x +++=1+22sin 1x x x ++,设g (x )=22sin 1x x x ++,则g (-x )=-g (x ),∴g (x )是奇函数.由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.17.(2012课标全国,文17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c sin C -c cos A . (1)求A ;(2)若a =2,△ABC 求b ,c .解:(1)由c sin C -c cos A 及正弦定理得A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin π6A ⎛⎫- ⎪⎝⎭=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A 故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.18.(2012课标全国,文18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式; (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)当日需求量n ≥17时,利润y =85.当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =1085,17,85,17n n n -<⎧⎨≥⎩(n ∈N ).(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.19.(2012课标全国,文19)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)解:设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=13×122×1×1=12.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.20.(2012课标全国,文20)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.解:(1)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA.由抛物线定义可知A到l的距离d=|FA.因为△ABD的面积为所以12|BD|·d=即12·2p=解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(2)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=12|AB|,所以∠ABD=30°,m当m ,由已知可设n :y +b ,代入x 2=2py 得x 2-2pb =0.由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0.解得b =-6p .因为m 的截距b 1=2p ,1||||b b =3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.(2012课标全国,文21)设函数f (x )=e x -ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f '(x )+x +1>0,求k 的最大值. 解:(1)f (x )的定义域为(-∞,+∞),f '(x )=e x -a .若a ≤0,则f '(x )>0,所以f (x )在(-∞,+∞)单调递增. 若a >0,则当x ∈(-∞,ln a )时,f '(x )<0; 当x ∈(ln a ,+∞)时,f '(x )>0,所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增. (2)由于a =1,所以(x -k )f '(x )+x +1=(x -k )(e x -1)+x +1.故当x >0时,(x -k )f '(x )+x +1>0等价于k <1e 1x x +-+x (x >0).①令g (x )=1e 1x x +-+x ,则g '(x )=2e 1(e 1)x x x ---+1=2e (e x 2)(e 1)x xx ---.由(1)知,函数h (x )=e x -x -2在(0,+∞)单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)存在唯一的零点. 故g '(x )在(0,+∞)存在唯一的零点. 设此零点为α,则α∈(1,2). 当x ∈(0,α)时,g '(x )<0; 当x ∈(α,+∞)时,g '(x )>0.所以g (x )在(0,+∞)的最小值为g (α).又由g '(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2. 22.(2012课标全国,文22)选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .证明:(1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形, 所以CF =BD =AD . 而CF ∥AD ,连结AF ,所以ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC . (2)因为FG ∥BC ,故GB =CF .由(1)可知BD =CF ,所以GB =BD .而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD . 23.(2012课标全国,文23)选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π2,3⎛⎫⎪⎝⎭.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 解:(1)由已知可得A ππ2cos ,2sin 33⎛⎫ ⎪⎝⎭,B ππππ2cos ,2sin 3232⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,C ππ2cos π,2sin π33⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,D π3ππ3π2cos ,2sin 3232⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即A (1B1),C (-1D1). (2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2, 则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52]. 24.(2012课标全国,文24)选修4—5:不等式选讲 已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解:(1)当a =-3时,f (x )=25,2,1,23,25, 3.x x x x x -+≤⎧⎪<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a | ⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].。

2012年普通高等学校招生全国统一考试 数学试卷含答案(文科)

2012年普通高等学校招生全国统一考试  数学试卷含答案(文科)

2012年普通高等学校招生全国统一考试(课标全国卷)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=-的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A. B.4 C.4 D.69.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A.,B.,C.(1,D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=()的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为,.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.=-=-1+i,=-1-i,故选D.2.D z=-=(-)(-)()(-)评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2-,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=()=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-2解析由S 3+3S2=0得4a1+4a2+a3=0,有4+4q+q2=0,解得q=-2.评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin-=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=-,,,(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4所以|BD|·d=4即·2p·p=4解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,||||=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<-+x(x>0).①令g(x)=-+x,则g'(x)=--(-)+1=(--)(-).由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A ,,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=-,, ,,-,.当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C)1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B )0 (C )错误! (D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A)12 (B)23 (C )34 D 。

45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-错误!,2) (B)(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )6π (B)43π (C )4错误!π (D )6错误!π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C )错误! (D)错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,错误!) (B)(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年全国统一高考数学试卷(文科)(新课标)

2012年全国统一高考数学试卷(文科)(新课标)

2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)(2012•新课标)已知向量夹角为45°,且,则=.16.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=a sin C ﹣c cos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.1【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选:D.【点评】本题主要考查样本的相关系数,是简单题.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x =上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选:A.【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选:A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选:B.【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选:D.【点评】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.【点评】本题考查导数的几何意义,考查点斜式求直线的方程,属于基础题.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=﹣2.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】本题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为115.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】本题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=a sin C ﹣c cos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sin A sin C﹣sin C cos A﹣sin C=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=a sin C﹣c cos A,由正弦定理有:sin A sin C﹣sin C cos A﹣sin C=0,即sin C•(sin A﹣cos A﹣1)=0,又,sin C≠0,所以sin A﹣cos A﹣1=0,即2sin(A﹣)=1,所以A=;=bc sin A=,所以bc=4,(2)S△ABCa=2,由余弦定理得:a2=b2+c2﹣2bc cos A,即4=b2+c2﹣bc,即有,解得b=c=2.【点评】本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)【点评】本题考查函数解析式的确定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离=,知=,由△ABD的面积S△ABD,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试
文科数学(必修加选修Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷
注意事项:
1.答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填
写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦
.........。

干净后,再选涂其他答案标号,在试题卷上作答无效
3.第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合
题目要求。

一.选择题
(1)已知集合A={x︱x是平行四边形},B={x︱x是矩形},C={x︱x是正方形},D{x︱x是菱形},

(2)函数y=(x≥-1)的反函数为
(3)若函数是偶函数,则=
(4)已知a为第二象限角,sina=,则
sin2a=
(5)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为
(6)已知数列{a n}的前n项和为Sn, a1=1,Sn=2a n+1,则sn=
(7)(7)6位选手依次演讲,其中选手甲不再第一个也不再最后一个演讲,则不同的演讲次序共有
A 240种
B 360种C480种D720种
(8)已知正四棱柱ABCD-A1B1C1D1 中,AB=2,CC1=,E为CC1 的中点,则直线AC1 与平面BED 的距离为
(9)△ABC中,AB边的高为CD, |a|=1,|b|=2,则
(10)已知F1、F2为双曲线C:X2-Y2=2的左、右焦点,点p在c上,|PF1|=2|PF2|,则cos∠F1PF2 =
(11)已知x=lnπ,y=log52 ,z= ,则
A x<y<z Bz<x<y Cz<y<x Dy<z<x
(12) 正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF= ,动点p从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p第一次碰到E时,p与正方形的边碰撞的次数为
A 8
B 6
C 4
D 3
绝密★启用前
2012年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
第Ⅱ卷
注意事项:
1.答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填
写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦
.........。

干净后,再选涂其他答案标号,在试题卷上作答无效
3.第Ⅰ卷共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合
题目要求。

二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上
(注意:在试题卷上作答无效)..............
(13) 的展开式中的系数为____________.
(14) 若x、y满足约束条件则z = 3x – y 的最小值为_____________.
(15)当函数y=sinx- 取得最大值时,x=_____________.
(16)一直正方体ABCD- 中,E、F分别为的中点,那么一面直线AE与
所成角的余弦值为____________.
三.解答题:本大题共6小题,共70分。

解答应写出文字说明,证明过程或演算步骤
..............(17)(本小题满分10分)(注意:在试题卷上作答无效)△ABC中,内角A、B、C成等差数列,其对边a、b、c满足,求A。

..............(18)(本小题满分12分)(注意:在试题卷上作答无效)已知数列{}中,=1,前n项和。

(Ⅰ)求
(Ⅱ)求的通项公式。

(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=PA=2,E是PC上的一点,
PE=2EC。

(I)证明PC平面BED;
(II)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小
(20)(本小题满分12分)(注意:在试题卷上作答无效)
乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。

设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。

甲、乙的一局比赛中,甲先发球。

(I)求开球第4次发球时,甲、乙的比分为1比2的概率;
(II)求开始第5次发球时,甲得分领先的概率。

(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数
(I)讨论f(x)的单调性;
(II)设f(x)有两个极值点若过两点的直线I与x轴的交点在曲
线上,求α的值。

(22)(本小题满分12分)(注意:在试题卷上作答无效)
已知抛物线C:与圆有一个公共点A,且在A处两曲线的切线与同一直线
(I)求r;
(II)设m、n是异于且与C及M都相切的两条直线,m、n的交点为D,求D到的距离。

相关文档
最新文档