解直角三角形基本模型

合集下载

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。

将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。

在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。

为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。

模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。

【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。

中考数学一轮复习课件微专题六 解直角三角形实际应用四大模型

中考数学一轮复习课件微专题六 解直角三角形实际应用四大模型
的北偏西53°方向上.求A,B两点间的距离.
参考数据:
sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.
解:∵CE∥AD,
∴∠A=∠ECA=37°,
∴∠CBD=∠A+∠ADB=37°+53°=90°,
∴∠ABD=90°.

在 Rt△BCD 中,∠BDC=90°-53°=37°,CD=90 米,cos∠BDC=
答:最大水深约为 2.6 m.
模型二
“母抱子”型
图形
模型特点
一个直角三角形包含在另一个直角三角形中,两直角三角形有公共直角和一条
公共直角边,其中,这条公共直角边是沟通两直角三角形关系的媒介
4.(2022 重庆)湖中小岛上码头 C 处一名游客突发疾病,需要救援.位于湖面 B 点处的快艇和湖岸 A 处的


在 Rt△MOD 中,tan∠MOD= ,∴tan 76°= ,∴MD≈4OD.
设 OD=x m,则 MD≈4x m.



2
2
2
在 Rt△MOD 中,OM=OA= AB≈3.4 m,∴x +(4x) ≈3.4 .

∵x>0,∴x≈0.82,∴OD≈0.82 m,
∴DH=OH-OD=OA-OD≈3.4-0.82=2.58≈2.6(m).
解:(1)如图所示,过点 A 作 AD⊥CB,交 CB 的延长线于点 D.
根据题意,可知
∠NAC=∠CAB=30°,BC=900 米,BC∥AN,
∴∠C=∠NAC=30°=∠BAD,
∴AB=BC=900 米.
∵∠BAD=30°,
∴BD=450 米,
∴AD= BD=450 米,

初中数学经典几何模型10-母抱子模型解直角三角形(含答案)

初中数学经典几何模型10-母抱子模型解直角三角形(含答案)

初中数学经典几何模型专题10 母抱子模型解直角三角形【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线E D,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)3、如图,为了测得电视塔AB的高度,在D处用高为1 m的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100 m到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔AB的高度(单位:m)为(C)A.50 3 B.51 C.503+1 D.1014、如图,小明在热气球A上看到横跨河流两岸的大桥BC,测得B,C两点的俯角分别为60°和45°,已知热气球离地面的高度为120 m,且大桥与地面在同一水平面上,求大桥BC的长度.(结果保留整数,3≈1.73)5、某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为m.(精确到0.1m.参考数据:≈1.414,≈1.732)7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:s i n37°≈0.60,c o s37°≈0.80,tan37°≈0.75)9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)专题10 母抱子模型解直角三角形答案【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在R t△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),又∵DH=1.5,∴CD=2+1.5,在R t△CDE中,∵∠CED=60°,s i n∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线E D,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)解析:(1)由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∴∠CAB=∠ACB,∴CB=AB=40×1.5=60(海里),∴B处到小岛C的距离为60海里;(2)过点C作CE⊥AD,垂足为点E,∵CE=CB×s i n∠CBE=60×s i n60°=30≈51.96海里,∴CE>50,∴轮船从B处继续向正东方向航行,没有触礁危险.2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)解析:过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3.CM=ED,在R t△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=x,在R t△FCD中,CD=3,∠CFD=30°,∴DF=3,在R t△AMC中,∠ACM=45°,∴∠MAC=∠ACM=45°,∴MA=MC,∵ED=CM,∴AM=ED,∵AM=AE﹣ME,ED=EF+DF,∴x﹣3=x+3,∴x=6+3,∴AE=(6+3)=6+9,∴AB=AE﹣BE=9+6﹣1≈18.4米.答:旗杆AB的高度约为18.4米.3、如图,为了测得电视塔AB 的高度,在D 处用高为1 m 的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100 m 到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔AB 的高度(单位:m )为( C )A .50 3B .51C .503+1D .1014、(2019·山东菏泽定陶三模)如图,小明在热气球A 上看到横跨河流两岸的大桥BC ,测得B ,C 两点的俯角分别为60°和45°,已知热气球离地面的高度为120 m ,且大桥与地面在同一水平面上,求大桥BC 的长度.(结果保留整数,3≈1.73)解析:如图,作AD ⊥CB 交CB 所在直线于点D .由题意知,∠ACD =45°,∠ABD =60°.在R t △ACD 中,∠ACD =45°,∴CD =AD =120 m . 在R t △ABD 中,∠ABD =60°,∴tan 60°=AD BD ,∴BD =33AD =40 3 m ,∴BC =CD -BD =120-403≈51(m ). 答:大桥BC 的长度约为51 m .5、某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)解析:根据题意可知:∠ABC=90°,CD=10,在R t△ABC中,∠ACB=45°,∴AB=CB,在R t△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为m.(精确到0.1m.参考数据:≈1.414,≈1.732)解析:在R t△ADB中,∠DAB=60°,AB=5,∵tan∠DAB=,∴BD=5•tan60°=5,在R t△BAC中,∵∠CAB=45°,∴AB=BC=5,∴CD=BD﹣BC=(5﹣5)m≈3.7(m).故答案为:3.7.7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)解析:如图,根据题意可知:DE⊥BE,AB⊥BE,过点D作DC⊥AB于点C,所以四边形DEBC是矩形,∴BC=ED=1.70,DC=EB=15,在R t△ACD中,∠ADC=30°,∴tan30°=,即=,解得AC=5,∴AB=AC+CB=5+1.70≈10.4(米).答:无人机距离地面的高度约为10.4米.8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:s i n37°≈0.60,c o s37°≈0.80,tan37°≈0.75)解析:如图,过点C作CE⊥BD于点E,即四边形ACEB是矩形∴BE=AC=150,CE=AB,根据题意可知:∠DAB=45°,∴DB=AB=CE,∴DE=DB﹣BE=DB﹣150,在R t△CDE中,∠DCE=37°,∴DE=CE•tan37°,即DB﹣150≈0.75DB,解得DB≈600(米).答:广州塔BD的高约为600米.9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)解析:作DH⊥AE于点H,作DG⊥BC于点G,如图,则四边形DGCH为矩形,在R t△ADH中,∵,∴AH=2DH,∵AH2+DH2=AD2,∴.∴DH=CG=3m,∴AH=2DH=6m,设BC=xm,则BG=(x﹣3)m,在R t△BAC中,∠BAC=45°,∴AC=BC=xm,∴CH=DG=(x+6)m,在R t△BDG中,∠BDG=30°∵tan30°=,∴,解得,x=≈15.3.答:大树BC的高度约为15.3米.。

初中数学重点模型09 背靠背模型解直角三角形(基础)

初中数学重点模型09 背靠背模型解直角三角形(基础)

专题09 背靠背模型解直角三角形【模型展示】【中考真题】1、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)解: 过点A 作AE⊥MN 于E ,过点C 作CF⊥MN 于F ……………………1分 则EF=5.17.1CD AB -=-=0.2 ……………2分 在Rt⊥AEM 中,⊥⊥MAE=45°,⊥AE=ME …………………………………3分 设AE=ME=x(不设参数也可)⊥MF=x +0.2,CF=28x - …………………………………………………………………4分 在Rt⊥MFC 中,⊥MFC=90°,⊥MCF=30°⊥MF=CF·tan⊥MCF ……………………………………………………………………5分 ⊥)28(332.0x x -=+ …………………………………………………………………… 6分 ⊥≈x 10.0 …………………………………………………………………………………7分 ⊥MN ≈12 ……………………………………………………………………………………8分 答:旗杆高约为12米. 【精典例题】1、由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛B 位于它的北偏东30°方向,且与航母相距80海里,再航行一段时间后到达C 处,测得小岛B 位于它的西北方向,求此时航母与小岛的距离BC 的长.解:过点B 作BD ⊥AC 于点D ,由题意得∠BAD =60°,∠BCD =45°,AB =80. 在Rt △ADB 中,∠BAD =60°, ∴BD =AB·sin60°=40 3. 在Rt △BCD 中,∠BCD =45°, ∴BC =BDsin45°=40 6.答:BC 的长为406海里.2、如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__33+9__m(结果保留根号).3、放置在水平桌面上的台灯的平面示意图如图所示,灯臂AO 长为40 cm ,与水平面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平面所形成的夹角∠OCA ,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC .(不考虑其他因素,结果精确到0.1cm.温馨提示:sin 75°≈0.97,cos 75°≈0.26,3≈1.73)解:在Rt △ACO 中,sin 75°=OC OA =OC40≈0.97, 解得OC ≈38.8 cm.在Rt △BCO 中,tan 30°=OC BC ≈38.8BC ≈1.733,解得BC ≈67.3 cm.答:该台灯照亮水平面的宽度BC 大约是67.3 cm.4、如图,A ,B 两市相距150km ,国家级风景区中心C 位于A 市北偏东60°方向上,位于B 市北偏西45°方向上.已知风景区是以点C 为圆心、50km 为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A ,B 两市的高速公路,高速公路AB 是否穿过风景区?通过计算加以说明.(参考数据:≈1.73)解:高速公路AB 不穿过风景区.过点C 作CH ⊥A B 于点H ,如图所示. 根据题意,得:⊥CAB =30°,⊥CBA =45°,在Rt⊥CHB 中,⊥tan⊥CBH ==1,⊥CH =BH .设BH =tkm ,则CH =tkm ,在Rt⊥CAH 中,⊥tan⊥CAH ==,⊥AH =tkm .⊥AB =150km ,⊥t +t =150,⊥t =75﹣75≈75×1.73﹣75=54.75.⊥54.75>50,⊥高速公路AB 不穿过风景区.5、在一次海上救援中,两艘专业救助船A ,B 同时收到某事故渔船的求救讯息,已知此时救助船B 在A 的正北方向,事故渔船P 在救助船A 的北偏西30°方向上,在救助船B 的西南方向上,且事故渔船P 与救助船A 相距120海里.(1)求收到求救讯息时事故渔船P 与救助船B 之间的距离;(2)若救助船A ,B 分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P 处搜救,试通过计算判断哪艘船先到达.解:(1)过点P 作PC ⊥AB 于点C ,则∠PCA =∠PCB =90°. 由题意,得PA =120海里,∠A =30°,∠B =45°, ∴PC =12PA =60海里,PB =PC sinB=602海里.答:收到求救讯息时事故渔船P 与救助船B 之间的距离为602海里. (2)救助船A 所用的时间为12040=3(小时),救助船B 所用的时间为60230=22(小时),⊥3>22,⊥救助船B 先到达.6、如图,要在江苏省某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程工程需尽快完成.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.求甲、乙两工程队单独完成此项工程所需的天数.解:(1)NM不穿过原始森林保护区.理由如下:作CD⊥AB于D,设CD=x米,⊥⊥CAD=45°,⊥AD=CD=x米,⊥⊥DCB=60°,⊥BD=CD•tan⊥DCB=x,⊥AD+BD=AB,⊥x+x=600,解得,x=300(﹣1)≈219.6>200.⊥MN不会穿过森林保护区.(2)设甲工程队单独完成此项工程需要y天,则乙工程队单独完成此项工程需要(y+10)天.根据题意得:+=,解得:y=20.经检验知:y=20是原方程的根.则y+10=30.答:甲、乙两工程队单独完成此项工程所需的天数分别是20天、30天.7、如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路AC的长(结果保留整数).参考数据:sin67°≈0.92;cos67°≈0.38;≈1.732.解:如图,过点B作BD⊥AC于点D,根据题意,得⊥ABD=67°,AB=520,⊥CBD=30°,在Rt⊥ABD中,AD=AB•sin67°,BD=AB•cos67°,在Rt⊥CBD中,CD=BD•tan30°,⊥AC=AD+CD=AB•sin67°+AB•cos67°•tan30°≈520×0.92+520×0.38×≈592(km).答:A地到C地之间高铁线路AC的长592km.8、如图,一架无人机在距离地面高度为21.4米的点B处,测得地面点A的俯角为47°,接着,这架无人机从点B沿仰角为37°的方向继续飞行20米到达点C,此时测得点C恰好在地面点D的正上方,且A,D两点在同一水平线上,求A,D两点之间的距离.(结果精确到1米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,≈2.45)解:如图,过点B作BE⊥CD于点E,过点A作AF⊥BE于点F,由题意可知:CD⊥AD,⊥四边形AFED是矩形,⊥AD=EF,在Rt⊥BCE中,BC=20,⊥CBE=37°,⊥BE=BC•cos37°=20×0.80≈39.2,在Rt⊥ABF中,AF=21.4,⊥ABF=47°,⊥BF==≈20,⊥EF=BE﹣BF≈39.2﹣20≈19,⊥AD=EF≈19(米).答:A,D两点之间的距离约为19米.9、如图,某海监船向正西方向航行,在A处望见一艘正在作业的渔船D在南偏西45°方向,海监船航行到B处时,望见渔船D在南偏东45°方向,又航行半小时到达C处望见渔船D在南偏东62°方向,若海监船的速度为40海里/小时,求A、B之间的距离.(精确到0.1海里,参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)解:过点D作DE⊥AB于点E,⊥⊥ADE=⊥BDE=45°,⊥AE=BE=DE,设BE=x,则DE=x,⊥BC=,⊥CE=x+20,在Rt⊥CDE中,⊥CDE=62°,,⊥,⊥,⊥AB=2x=2×22.72≈45.4,答:A、B之间的距离为45.4海里.10、科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)解:过B作BD⊥AC于点D.在Rt⊥ABD中,BD=AB•sin⊥BAD=8×=4(千米),⊥⊥BCD中,⊥CBD=45°,⊥⊥BCD是等腰直角三角形,⊥CD=BD=4(千米),⊥BC=BD=4(千米).答:B,C两地的距离是4千米.。

解直角三角形问题的两个数学模型

解直角三角形问题的两个数学模型

解直角三角形问题的两个数学模型
【模型1】此类问题的特征是:具有公共直角的两个直角三角形,并且它们均位于直角边的同侧. 【例】如图1,在Rt△ABC中,∠C=90°,∠ADC=60°,∠B=45°,BD=10,求AC的长.
【推广1】如图2,小山上有一电视塔CD,由地面上一点A,测得塔顶C的仰角为30°,由A向小山前进100米到B点,又测得塔顶C的仰角为60°,已知CD=20米,求小山高度DE.
【推广2】如图3,有长为100m的大坝斜坡AB,坡角α=45°,现要改造成坡角β=30°,求伸长的坡度DB的长.
【推广3】如图4,船自西向东航行,在A处测得小岛S在船北偏东60°,船航行10海里到B处,又测得小岛S在船北偏东45°,在小岛S的周围有半径为12海里的暗礁区,如果船不改变航向,继续前进时有无危险,为什么?
【模型2】此类问题的特点是:通过作三角形一条边上的高,可将原来的斜三角形化成两个直角三角形来求解.
【例】如图5,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.
【推广1】如图6,在平地上有二幢楼AB及CD相距60米,在A处测得CD底部的俯角为30°,又测得CD顶部的仰角为45°,求CD的高.
【推广2】如图7,厂房屋架为等腰三角形,倾角为30°,跨度AB为15米,求中柱CD和屋面AC 的长.
【推广3】如图8,在山坡上种树,要求株距(相邻两树间的水平距离)是7米,测得斜坡坡度为1:3.5,求斜坡上相邻两树间的坡面距离.。

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

(中考精题)解直角三角形-备战中考数学一遍过

(中考精题)解直角三角形-备战中考数学一遍过

考点24 解直角三角形一、锐角三角函数的定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,正弦:sin A=∠的对边=斜边A ac;余弦:cos A=∠的邻边=斜边A bc;正切:tan A=∠的对边=邻边A ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.二、特殊角的三角函数值三、解直角三角形1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:(1)三边关系:a2+b2=c2;(2)两锐角关系:∠A+∠B=90°;(3)边与角关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab;(4)sin2A+cos2A=1.3.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.四、解直角三角形的应用1.仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.2.坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=hl.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解. 5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题; (3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.考向一 求三角函数的值(1)分清直角三角形中的斜边与直角边.(2)正确地表示出直角三角形的三边长,常设某条直角边长为k (有时也可设为1),在求三角函数值的过程中约去k .(3)正确应用勾股定理求第三边长.(4)应用锐角三角函数定义,求出三角函数值.典例1 的值为 ABCD .1【答案】C 【解析】把代入原式得:原式.故选C . 2sin 451.如图,在△ABC 中,∠C =90°.若AB =3,BC =2,则sin A 的值为A .BCD考向二利用特殊角的三角函数值求值锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.典例2 已知∠A 为锐角,且sin A,那么∠A等于 A .15° B .30° C .45° D .60°2.已知α是锐角,sin α=cos60°,则α等于 A .30° B .45°C .60°D .不能确定考向三 解直角三角形的应用解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.23典例3 某山的山顶B 处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC 为30°,山高BC 为100米,点E 距山脚D 处150米,在点E 处测得观光塔顶端A 的仰角为60°,则观光塔AB 的高度是A .50米B .100米C .125米D .150米【答案】A【解析】如图,作EF ⊥AC 于F ,EG ⊥DC 于G ,在Rt △DEG 中,EG =12DE =75, ∴BF =BC -CF =BC -CE =100-75=25,EF,∵∠AEF =60°, ∴∠A =30°,∴AF,∴AB =AF -BF =50(米),故观光塔AB 的高度为50米, 故选A .3.如图,某湖心岛上有一亭子A ,在亭子A 的正东方向上的湖边有一棵树B ,在这个湖心岛的湖边C 处测得亭子A 在北偏西45︒方向上,测得树B 在北偏东36︒方向上,又测得B 、C 之间的距离等于200米,求A 、B 之间的距离(结果精确到1米).1.414≈,sin360.588︒≈,cos360.809︒≈,tan360.727︒≈,cot36 1.376︒≈)1.如图,在△ABC 中,若∠C =90°,则A .sin A =B .sin A =C .cos A =D .cos A =2的值为 A.B .C.D .3.在中,,,若,则的长为 A .B .C .D .4.在Rt △ABC 中,∠C =90°,,则cos A 等于 a c b c abba1sin45cos602︒-︒(112+(1121434Rt ABC △90C ∠=︒53B ∠=︒BC m =AB cos53m︒cos53m ⋅︒sin 53m ⋅︒tan 53m ⋅︒13AC AB =AB .C .D5.菱形ABCD 的对角线AC =10cm ,BD =6cm ,那么tan为 A .B .C D6.如图是边长为1的小正方形组成的网格图,其中点A ,B,C 均为格点,则sin ∠BAC 为A B CD7.在Rt △ABC 中,∠C =90°,若AB =10,sin A =,则斜边上的高等于 A .5B.4.8C .4.6D .48.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan∠ABC 的值为A .B .C D .19.如图,某水库堤坝横截面迎水坡的坡度是,堤坝高为,则迎水坡面的是A .10.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2海里的点A 处.如果海轮沿正南方向航行到灯塔的正东位置B 处,海轮航行的距离AB 长是132B 5354353534AB 40m 80m B .C 40m .D .A .2海里B .海里C .海里D .海里11.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB 的坡度为1∶2.4,AB 长为3.9米,钓竿AC 与水平线的夹角是60°,其长为4.5米,若钓竿AC 与钓鱼线CD 的夹角也是60°,则浮漂D 与河堤下端B≈1.732)A.1.732米B .1.754米C .1.766米D .1.823米12.如图,在Rt △ABC 中,∠C =90°,BC =12,tan A =,则sinB =___________.13.在△ABC 中,AB ,AC ,tan ∠B =,则BC 的长度为__________. 14.已知相邻的两根电线杆与高度相同,且相距.小王为测量电线杆的高度,在两根电线杆之间某一处架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为、,已知测角仪高,则电线杆的高度约为________.(精确到,参考数据:,,)2sin55︒2cos55︒2tan55︒12512AB CD 50m BC =E 45︒23︒EF 1.5m m 0.1m sin230.39︒≈cos230.92︒≈tan230.43︒≈15.已知:如图,在菱形ABCD 中,AE ⊥BC ,垂足为E ,对角线BD =8,tan ∠CBD =.(1)求边AB 的长;(2)求cos ∠BAE 的值.16.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD )靠墙摆放,高AD =80cm ,宽AB =48cm ,小强的身高为166cm ,其中下半身FG =100cm ,洗漱时下半身与地面成80°角(∠FGK =80°),身体前倾成125°角(∠EFG =125°),脚与洗漱台的距离GC =15cm(点D ,C ,G ,K 在同一直线上). (1)此时小强的头部点E 与地面DK 的距离是多少?(2)小强希望他的头部E 恰好在洗漱盆AB 的中点O 的正上方,他应向前或后退多少? (sin80°≈0.98,cos80°≈0.17≈1.41,结果精确到0.1cm)121.(2019•天津)的值等于 A .1 B. C .D .22.(2019•怀化)已知∠α为锐角,且sin α=,则∠α= A .30° B .45° C.60°D .90°3.(2019·宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为A .B .C .D .A .75 mB .50 mC .30 mD .12 m5.(2019•苏州)如图,小亮为了测量校园里教学楼的高度,将测角仪竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为,测得教学楼的顶部处的仰角为,则教学楼的高度是60sin 2231243343545AB CD 1.5m A 30oA .B .C .D.6.(2019•广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)A .3.2米B .3.9米C .4.7米D .5.4米7.(2019·杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB =a ,AD =b ,∠BCO =x ,则点A 到OC 的距离等于A .a sin x +b sin xB .a cos x +b cos xC .a sin x +b cos xD .a cos x +b sin x55.5m 54m 19.5m 18m计算这座灯塔的高度CD (结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.11.(2019•深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 长.(sin53°≈,cos53°≈,tan53°≈).45354314.(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B–A–O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO=__________.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC 的大小.(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)15.(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)16.(2019•贵阳)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP 为下水管道口直径,OB 为可绕转轴O 自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB =OP =100cm ,OA 为检修时阀门开启的位置,且OA =OB .(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB 的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB 位置时,在点A 处测得俯角∠CAB =67.5°,若此时点B 恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位) =1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)3.【解析】如图,过点C 作CH AB ⊥,垂足为点H ,由题意,得45ACH ∠=︒,36BCH ∠=︒,200BC =, 在Rt △BHC 中,sin BH BCH BC ∠=,∴sin36200BH︒=, ∵sin360.588︒≈,∴117.6BH ≈, 又cos HC BCH BC ∠=,∴cos36200HC︒=, ∵cos360.809︒≈,∴161.8HC ≈, 在Rt △AHC 中,tan AHACH HC∠=, ∵45ACH ∠=︒,∴AH HC =,∴161.8AH ≈, 又AB AH BH =+,∴279.4AB ≈,∴279AB ≈(米). 答:A 、B 之间的距离为279米.2.【答案】D【解析】原式=1–=,故选D . 3.【答案】A 【解析】如图,∵cos53°=, ∴AB =,故选A . 4.【答案】B【解析】如图所示:∵,∴cos A =.故选B .5.【答案】A1122⨯1434BC AB cos53m︒13AC AB =1133ABAC AB AB ==【解析】如图,由题意得,AO ⊥BO ,AO =AC =5cm ,BO =BD =3cm , 则tan=tan ∠OBA .故选A.6.【答案】D【解析】如图所示:连接BD ,交AC于点E ,由正方形的性质可得:BD ⊥AC ,故BD ,AB则sin ∠BAC =D . 7.【答案】B【解析】如图所示,CD ⊥AB ,CD 即为斜边上的高,在Rt △ABC 中,∠C =90°,AB =10,sin A =, ∴sin A ==,即BC =6, 12122B 53AO BO ==EB AB ==3510BC BC AB =35根据勾股定理得:AC=8,∵S △ABC =AC •BC =CD •AB , ∴CD ==4.8, 故选B .8.【答案】B【解析】∠ABC所在的直角三角形的对边是3,邻边是4, 所以,tan ∠ABC =. 故选B .9.【答案】A【解析】∵堤坝横断面迎水坡AB 的坡比是1 ∵BC =40m ,∴AC m ,∴AB ,故选A .10.【答案】C【解析】记灯塔P 的正北方向为射线PC 的方向.根据题意可知∠APC =55°,PC ∥AB ,AP =2海里. ∵PC ∥AB ,∠APC =55°,∴∠PAB =55°. ∵在Rt △ABP 中,AP =2海里,∠PAB =55°, ∴AB =AP ·cos ∠PAB =2cos55°(海里). 故选C. 11.【答案】C【解析】如图,延长CA 交DB 延长线与点E ,过点A 作AF ⊥BE 于点F ,12126810AC BC AB ⋅⨯=34BC AC =则∠CED =60°, ∵AB 的坡比为1∶2.4,∴,则设AF =5x ,BF =12x , ∵AB =3.9米,∴在直角△ABF 中,由勾股定理知,3.92=25x 2+144x2.解得x =.∴AF =5x =,BF =12x =,∴EF =, ∵∠C =∠CED =60°, ∴△CDE 是等边三角形, ∵AC =4.5米,∴DE =CE =AC +AE则BD =DE ﹣EF ﹣BF≈1.766(米), 答:浮漂D 与河堤下端B 之间的距离为1.766米. 故选C . 12.【答案】【解析】在Rt △ABC 中,∠C =90°,BC =12,tan A =,得,即, ∴AC =5.由勾股定理,得AB .所以sin B =,故答案为:.13.【答案】5152.412AF BF ==31032185tan 60sin 60AF AFAE =====︒︒185513125125BC AC =12125AC =513AC AB =513【解析】如图,过点A 作AD ⊥BC 交于D .∵, 设AD =x ,则BD =2x , ∵AB,∴在△ABD 中,由勾股定理得(2=x2+(2x)2, 解得,x 1=2,x 2=﹣2(不符合,舍去),∴BD =4,同理,在△ACD 中,由勾股定理得,,∴BC =DC +BD =4+1=5, 故答案为:5. 14.【答案】【解析】过点F 作AB 、CD 的垂线,垂足为点G 、H ,如图所示:设AG =x m ,则有DH =x m , ∵,∴tan23°=,解得x ≈15.0,∴AB =x +1.5=16.5.电线杆的高度约为16.5 m .故答案是:16.5. 15.【解析】(1)连接AC ,AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =BD =4, 1tan 2AD B BD ∠==1DC ===16.5tan45tan23AG AG BC +=︒︒50xx-12∵Rt △BOC 中,tan ∠CBD ==,∴OC =2, ∴AB =BC(2)∵AE ⊥BC ,∴S 菱形ABCD =BC ·AE =BD·AC , ∵AC =2OC =4,∴=×8×4,∴AE ,∴BE∴cos ∠ABE =.16.【解析】(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166,FG =100,∴EF =66, ∵∠FGK =80°,∴FN =100sin80°≈98,∵∠EFG =125°,∴∠EFM =180°–125°–10°=45°, ∴FM =66cos45°=≈46.53,∴MN =FN +FM ≈144.5, ∴此时小强头部E 点与地面DK 相距约为144.5 cm .(2)如图,过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H . ∵AB =48,O 为AB 中点,∴AO =BO =24,∵EM =66sin45°≈46.53, ∴PH ≈46.53,∵GN =100cos80°≈17,CG =15,∴OH =24+15+17=56,OP =OH –PH =56–46.53=9.47≈9.5, ∴他应向前9.5cm .OC OB 121212BE AB 351.【答案】B【解析】锐角三角函数计算,=2×=,故选A . 2.【答案】A【解析】∵∠α为锐角,且sin α=,∴∠α=30°.故选A . 3.【答案】D【解析】如图,过C 作CD ⊥AB 于D ,则∠ADC =90°,∴AC .∴sin ∠BAC ==.故选D .5.【答案】C【解析】过作交于,中,, ,,故选C .6.【答案】C【解析】如图,过点O 作OE ⊥AC 于点E ,延长BD 交OE 于点F ,︒60sin 223312CD AC 45D DE AB ⊥AB E DE BC ==Rt ADE △tan 30AEDE=o18(m)AE ∴==18 1.519.5(m)AB ∴=+=C7.【答案】D【解析】如图,过点A作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选D.答:炎帝塑像DE的高度约为51m.13.【解析】如图,连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.14.【解析】(1)①过点A作AG∥BC,如图1,则∠BAG=∠ABC=70°,∵BC∥OE,∴AG∥OE,∴∠GAO=∠AOE=90°,∴∠BAO=90°+70°=160°,故答案为:160;②过点A作AF⊥BC于点F,如图2,16.【解析】(1)阀门被下水道的水冲开与被河水关闭过程中∠POB 的取值范围为:90°≤∠POB ≤0°;(2)如图,∵∠CAB =67.5°,∴∠BAO =22.5°, ∵OA =OB ,∴∠BAO =∠ABO =22.5°,∴∠BOP =45°, ∵OB =100,∴OE OB , ∴PE =OP –OE ≈29.5cm , 答:此时下水道内水的深度约为29.5cm .。

解直角三角形ppt课件

解直角三角形ppt课件
经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。

【小初高学习】九年级数学下册第一章直角三角形的边角关系专题训练(二)解直角三角形应用中的六种基本模型

【小初高学习】九年级数学下册第一章直角三角形的边角关系专题训练(二)解直角三角形应用中的六种基本模型

专题训练(二) 解直角三角形应用中的六种基本模型►模型一“独立”型1.如图2-ZT-1,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好遇见渔船,那么救援船航行的速度为( )图2-ZT-1A.10 3海里/时B.30海里/时C.20 3海里/时D.30 3海里/时2.2017·台州如图2-ZT-2是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)图2-ZT-2►模型二“背靠背”型3.如图2-ZT-3,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为( )图2-ZT-3A.160 3 m B.120 3 mC.300 m D.160 2 m4.如图2-ZT-4,湖中的小岛上有一标志性建筑物,其底部有一点A,某人在岸边的点B处测得点A在点B的北偏东30°的方向上,然后沿岸边直行4千米到达点C处,再次测得点A在点C的北偏西45°的方向上(其中点A,B,C在同一平面上).求这个标志性建筑物底部上的点A到岸边BC的最短距离.图2-ZT-4►模型三“母抱子”型5.如图2-ZT-5,某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在点C 处仰望建筑物顶端A处,测得仰角为48°,再往建筑物的方向前进6米到达点D处,测得建筑物顶端A的仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin48°≈710,tan48°≈1110,sin64°≈910,tan64°≈2)图2-ZT-56.2017·内江如图2-ZT-6,某人为了测量小山顶上的塔ED的高,他在山下的点A 处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)图2-ZT-6►模型四“拥抱”型7.如图2-ZT-7,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1 m(即BD=1 m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图2-ZT-7►模型五梯形类8.如图2-ZT-8,梯形ABCD是拦水坝的横断面示意图,图中i=1∶3是指坡面的铅直高度DE与水平宽度CE的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果精确到0.1.参考数据:3≈►模型六“斜截”型9.“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚点B处先乘坐缆车到达与BC平行的观景平台DE处观景,然后再沿着坡角为29°的斜坡由点E步行到达“蘑菇石”点A处,“蘑菇石”点A到水平面BC的垂直距离为1790 m.如图2-ZT-9,DE∥BC,BD=1700 m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1 m,参考数据:sin80°≈0.9848,sin29°≈0.4848)详解详析1.[解析] D 由“B 在海岛A 的南偏东20°方向”和“海岛C 在海岛A 的南偏西10°方向”得∠BAC =30°,同理得∠ABC =60°,∴∠ACB =90°.∵AB =20海里,∴BC =10海里,AC =10 3海里,再由“救援船由海岛A 开往海岛C 用时20分钟”可求得救援船航行的速度为30 3海里/时.故选D.2.解:车门不会碰到墙.理由如下:如图,过点A 作AC ⊥OB ,垂足为C .在Rt △ACO 中,∵∠AOC =40°,AO ∴AC =AO ·sin∠AOC ≈1.2×0.64=0.768(米).∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,0.8>0.768, ∴车门不会碰到墙.3.[解析] A 过点A 作AD ⊥BC 于点D , 则∠BAD =30°,∠CAD =60°,AD =120 m. 在Rt △ABD 中,BD =AD ·tan30°=120×33=40 3(m). 在Rt △ACD 中,CD =AD ·tan60°=120×3=120 3(m), ∴BC =BD +CD =40 3+120 3=160 3(m).4.解:过点A 作AD ⊥BC 于点D ,则AD 的长度就是点A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD =45°,设AD =x 千米,则CD =AD =x 千米. 在Rt △ABD 中,∠ABD =60°, 因为tan ∠ABD =AD BD ,即tan60°=x BD,所以BD =x tan60°=33x 千米.又因为BC =4千米, 所以BD +CD =4千米,即33x +x =4, 解得x =6-2 3,所以这个标志性建筑物底部上的点A 到岸边BC 的最短距离为(6-2 3)千米. 5.解:根据题意,得∠ADB =64°,∠ACB =48°. 在Rt △ADB 中,tan64°=AB BD ,则BD =AB tan64°≈12AB ,在Rt △ACB 中,tan48°=AB CB,则CB =ABtan48°≈1011AB ,∴CD =CB -BD ,即6=1011AB -12AB ,解得AB =1329≈14.7(米),∴建筑物的高度约为14.7米.6.[解析] 先求出∠DBE =30°,∠BDE =30°,得出BE =DE ,设EC =x ,则BE =2x ,DE =2x ,DC =3x ,BC =3x ,再根据∠DAC =45°,可得AC =DC ,列出方程求出x 的值,即可求出塔DE 的高度.解:由题意知,∠DBC =60°,∠EBC =30°, ∴∠DBE =∠DBC -∠EBC =60°-30°=30°. 又∵∠BCD =90°,∴∠BDC =90°-∠DBC =90°-60°=30°, ∴∠DBE =∠BDE ,∴BE =DE .设EC =x m ,则DE =BE =2EC =2x m ,DC =EC +DE =3x m , BC =BE 2-EC 2=3x m.由题意可知,∠DAC =45°,∠DCA =90°,AB =60 m , ∴△ACD 为等腰直角三角形,∴AC =DC , ∴3x +60=3x . 解得x =30+10 3.答:塔ED 的高度为(30+10 3)m. 7.解:设梯子的长为x m.在Rt △ABO 中,cos ∠ABO =OBAB,∴OB =AB ·cos∠ABO =x ·cos60°=12x m.在Rt △CDO 中,cos ∠CDO =OD CD, ∴OD =CD ·cos∠CDO =x ·cos51°18′≈0.625x m. ∵BD =OD -OB ,∴0.625x -12x =1,解得x =8.答:梯子的长约为8 m.8.解:过点A 作AF ⊥BC ,垂足为F . 在Rt △ABF 中,∠B =60°,AB =6, ∴AF =AB sin B =6sin60°=3 3, BF =AB cos B =6cos60°=3. ∵AD ∥BC ,AF ⊥BC ,DE ⊥BC , ∴四边形AFED 是矩形,∴DE =AF =3 3,FE =AD =4.在Rt △CDE 中,i =DE CE =13,∴CE =3DE =3×3 3=9,∴BC =BF +FE +CE =3+4+9=16, ∴S 梯形ABCD =12(AD +BC )·DE=12×(4+16)×3 3 ≈52.0.答:拦水坝的横断面ABCD 的面积约为52.0.9.解:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,由题意,得EM ⊥AC , ∴四边形DMCF 为矩形, ∴DF =MC .在Rt △DFB 中,sin80°=DF BD ,则DF =BD ·sin80°=1700×sin80°(m), ∴AM =AC -MC =AC -DF =(1790-1700×sin80°)m. 在Rt △AME 中,sin29°=AM AE, 则AE =AMsin29°=1790-1700×sin80°sin29°≈238.9(m).答:斜坡AE 的长度约为238.9 m.。

解直角三角形的基本类型及其解法公式(总结)

解直角三角形的基本类型及其解法公式(总结)

解直角三角形的基本类型及其解法公式(总结)1、解直角三角形的类型与解法.2、测量物体的高度的常见模型1)利用水平距离测量物体高度..2)测量底部可以到达的物体的高度.1 ..3)测量底部不可到达的物体的高度(1).测量底部不可到达的物体的高度(2)...第三部分真题分类汇编详解2007-2012(2007)19.(本小题满分6分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离.小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)(2008)19.(本小题满分6分)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计A BC北东..图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)0.34=,sin 64.50.90=,tan 64.5 2.1=).(2009)19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈).(2010)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,) 解:B37° 48°DCA 第19题图.(2011)19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由 原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长?(结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)(2012)20.(8分)40ºDBC.附历年真题标准答案:(2007)19.(本小题满分6分)解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,.∴CD =( 60+x ) ·tan21.3°. ∴x ·tan63.5°=(60+x)·tan21.3°,即()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ (2008)19.(本小题满分6分)解:设CD 为x ,在Rt △BCD 中, 6.18==∠αBDC ,∵CDBC BDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=.2′在Rt △ACD 中, 5.64==∠βADC , ∵CDAC ADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=.∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为1.14米. (2009)19.(本小题满分6分) 解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CECFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米)..答:古塔的高度约是39米. 6分(2010)19.(本小题满分6分)解:设CD = x .在Rt △ACD 中,tan37AD CD︒=,则34AD x=,∴34AD x =.在Rt △BCD 中,tan48° = BDCD, 则1110BD x=,∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分(2011)19.(本小题满分6分)(2012)20.(8分).教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

【万能解题模型】13 解直角三角形的实际应用中的基本模型(课件)中考数学

【万能解题模型】13 解直角三角形的实际应用中的基本模型(课件)中考数学

解:过点 B 作 BE⊥AD 于点 D,BF⊥CD 于点 F. ∵CD⊥AD, ∴四边形 BEDF 是矩形. ∴FD=BE,FB=DE. 在 Rt△ABE 中,BE∶AE=1∶2.4=5∶12, 设 BE=5x,AE=12x, 根据勾股定理,得 AB=13x, ∴13x=52.
解得 x=4. ∴BE=FD=5x=20,AE=12x=48. ∴DE=FB=AD-AE=72-48=24. ∴在 Rt△CBF 中, CF=FB·tan ∠CBF≈24×43=32. ∴CD=FD+CF=20+32=52. 答:大楼的高度 CD 约为 52 米.
图形演变 2:
3.如图所示,某办公大楼正前方有一根高度是 15 米的旗杆 ED,从办公楼顶 端 A 测得旗杆顶端 E 的俯角α是 45°,旗杆底端 D 到大楼前梯坎底边的距离 DC 是 20 米,梯坎坡长 BC 是 12 米,梯坎坡度 i=1∶ 3,则大楼 AB 的高度约为(精确到 0.1 米,参考数据: 2≈1.41, 3≈1.73, 6≈2.45)( D )
又∵BC=221,即 CD+BD=221, ∴0.85x+0.53x=221, 解得 x≈160. 答:AB 的长约为 160 m.
模型 2 母子型(在三角形外部作高)
模型分析: 通过在三角形外作高,构造出两个直角三角形求解,其中公共边 是解题的关键.
等量关系: 在 Rt△ABC 和 Rt△DBC 中,BC 为公共边,AD+DC=AC. 图形演变 1:
2.如图,A,B 两点被池塘隔开,在 AB 外选一点 C,连接 AC, BC.测得 BC=221 m,∠ACB=45°,∠ABC=58°.根据测得的数据, 求 AB 的长.(结果取整数,参考数据:sin 58°≈0.85,cos 58°≈0.53, tan 58°≈1.60)

28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型

28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型

(2)“母子”型 模型 已知三角形中的两角(∠1 和∠2)及其中一边, 模型分 在三角形外边作高 BC,构造两个直角三角形求 析 解,以高 BC 为桥梁是解题的关键
3.(成都中考)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极 落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面 的高度.如图,已知测倾器的高度为 1.6 米,在测点 A 处安置测倾器,测得点 M 的 仰角∠MBC=33°,在与点 A 相距 3.5 米的测点 D 处安置测倾器,测得点 M 的仰角 ∠MEC=45°(点 A,D 与 N 在一条直线上),求电池板离地面的高度 MN 的长.(结 果精确到 1 米,参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65)
ME x+25 5 公楼 AB 的高度约为 20 米
(2)一般梯形模型 模型
模型 过较短的底 AD 作梯形的两条高 AE 和 DF,构造一个长方 分析 形和两个直角三角形,分别解两个直角三角形再加减求解
7.某轮滑特色学校准备建立一个如图①的轮滑技巧设施,从侧面看如图②,横 截面为梯形,高 1 米,AD 长为 2 米,坡道 AB 的坡度为 1∶1.5,DC 的坡度为 1∶2.
+40 3 .∴小山 BC 的高度为(10+40 3 )米
模型二:四边形模型 (1)直角梯形模型
模型
模型 过较短的底 AB 作直角梯形的高 BE,构造一个矩形和一
分析
个直角三角形,先解直角三角形再加减求解
6.如图,某办公楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22°时, 办公楼在建筑物的墙上留下高 2 米的影子 CE,而当光线与地面夹角是 45°时,办公 楼顶 A 在地面上的影子 F 与墙角 C 有 25 米的距离(点 B,F,C 在一条直线上).求办 公楼 AB 的高度.(参考数据:sin 22°≈25 ,cos 22°≈1156 ,tan 22°≈25 )

4.4解直角三角形的应用课件九年级数学上册

4.4解直角三角形的应用课件九年级数学上册

感悟新知
水平方向飞行 200m 到达点 Q,测得奇楼底端 B 的俯 角为 45° ,求奇楼 AB 的高度.(结果精确到 1m,参 考数据: sin 1 5 ° ≈ 0 . 26,cos 15 ° ≈ 0 . 97, tan15° ≈ 0.27) 解:如图,延长BA交PQ的 延长线于点C,则∠ACQ=90°. 由题意得,BC=225 m,PQ=200 m,
课堂新授
2. 解决实Βιβλιοθήκη 问题时,常见的基本图形及相应的关系式如下 表所示:
图形
关系式
图形
关系式
AC=BC·tanα, AG=AC+BE
BC=DC-BD= AD·(tanα -tanβ )
课堂新授
续表
图形
关系式
AB=DE= AE·tanβ, CD=CE+DE =AE·(tanα+
tanβ)
图形
关系式
感悟新知
(1) 求登山缆车上升的高度 DE; (2)若步行速度为 30m/min,登山缆车的速度为60m/min,
求 从山底 A 处到达山顶 D 处大约需要多少分钟 .(结果 精确到 0.1min,参考数据: sin53° ≈ 0.80, cos53° ≈ 0.60,tan53° ≈ 1.33)
感悟新知
课堂新授
例2
课堂新授
解题秘方:在建立的非直角三角形模型中,用 “化斜为直法”解含公共直角边的 直角三角形.
课堂新授
课堂新授
计算结果必须根据 题目要求进行保留.
课堂新授
方法点拨 解直角三角形的实际应用问题的求解方法: 1. 根据题目中的已知条件,将实际问题抽象为解直角三角
形的数学问题, 画出平面几何图形,弄清已知条件中 各量之间的关系; 2. 若条件中有直角三角形,则直接选择合适的三角函数关 系求解即可;若条件中没有直角三角形,一般需添加辅 助线构造直角三角形,再选用合适的三角函数关系求解.

解直角三角形的应用模型初中数学模型

解直角三角形的应用模型初中数学模型
夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在
地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶
部C的仰角为30°,测得AE=3 m,EF=8 m(点A,E,F在同一条直线上).根据
以上数据,解答下列问题:
(1)求灯管支架底部距地面高度AD的长;(结果保留根号)
∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,
∴∠ABF=∠EFB=∠BHE=90°,
∴四边形BFEH为矩形,


∴EH=BF=3m,在Rt△AHE中,tanα= ,∴AH=
,



当∠α=65°时,AH=
≈ ≈1.40(m).
° .

当∠α=45°时,AH=
=3,
°
答:遮阳宽度CD约为3.6m.
模型4
6
7
微专题8 解直角三角形的应用模型
返回类型清单
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果
精确到0.1 m).
(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14, ≈1.41)
解:如图,过点E作EH⊥AB于点H, ∴∠BHE=90°.
返回类型清单
对应练习
5.(2022·铜仁一模)如图,某商家想在商场大楼上悬挂一块广告牌,广告牌高AB=2 m.根据商
场规定广告牌最高点不得高于地面20 m.经测量,测角仪支架高GH=CE=DF=1 m,在F处测得
广告牌底部点B的仰角为30°,在E处测得广告牌顶部点A的仰角为45°,EF=12 m.请计算说
如下结论:①AB≈18.8m;②CD≈8.4m;③若直

解直角三角形的常见模型及思路

解直角三角形的常见模型及思路

解直角三角形的常见模型及思路
1、直角三角形常见模型
直角三角形是最常见的几何图形,用于在特定的情况下进行计算,并且能够求出三角形内部和外部特征,如长度、面积等。

一、正弦定理
正弦定理是解决直角三角形的一种常见模型,用于求解三角形的面积,即有:
S=1/2×a×b×sinC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度。

二、勾股定理
勾股定理是一种经典的角三角形解模型,可以根据三条边的长度求出其它两边的长度,即:
a2+b2=c2
其中a和b分别表示直角三角形的两条直角边,而c表示其斜边的长度。

三、余弦定理
余弦定理是解直角三角形的一种常用方法,可以根据三角形已知的两边长度,求出其它一边的长度,即:
c2=a2+b2-2ab×cosC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度,c表示其斜边的长度。

2、解直角三角形的思路
解决直角三角形的一般思路为:
(1) 根据题目给出的信息,判断已知的三条边的长度;
(2) 根据已知的信息,选择合适的解法,运用正弦定理、勾股定理或余弦定理等,求出未知边及其他相关参数;
(3) 根据求出的参数,进一步判断直角三角形的形状及其它参数;
(4) 如果题目要求,调用各种函数,求出需要的参数,如面积、周长、外接圆半径等。

模型构建专题:解直角三角形应用中的基本模型之六大类型(解析版)

模型构建专题:解直角三角形应用中的基本模型之六大类型(解析版)

模型构建专题:解直角三角形应用中的基本模型之六大类型【考点导航】目录【典型例题】【类型一含特殊角(“30°,45°,60°”)的非直角三角形】【类型二不含特殊角的非直角三角形】【类型三“独立”型】【类型四“背靠背”型】【类型五“叠合”型】【类型六“斜截”型】【典型例题】【类型一含特殊角(“30°,45°,60°”)的非直角三角形】1(2023·辽宁葫芦岛·统考二模)如图,小明在游玩时想利用手中的无人机测量一山崖CD(垂直于地面)的高度,小明从A点看向无人机B的仰角为45°.从无人机B处测得看山崖顶端C的仰角为30°,测得看山崖底部D处的俯角为60°,无人机B与山崖的水平距离BE为50米.(图中各点均在同一平面内).(1)求山崖的高度(结果保留根号);(2)若点A距离地面2米,求小明到山崖的水平距离(结果取整数).(参考数据:2≈1.414,3=1.732)【答案】(1)20033米(2)135米【分析】(1)利用锐角三角函数求得CE和ED,根据CD=CE+ED,即可得到答案;(2)过点A作AF⊥AD于点F,过点B作BG⊥AF于点G,得矩形BEFG,进而求得BG,利用锐角三角函数求得AG,即可得到答案.【详解】(1)解:由题意可知:∠CBE=30°,∠DBE=60°,BE=50,在Rt△BEC中,tan∠CBE=CE BE,∴CE=tan30°⋅BE=33×50=5033,在Rt△BED中,tan∠DBE=ED BE,∴ED=tan60°⋅BE=3×50=503,∴CD=CE+ED=5033+503=20033米答:山崖的高度约为20033米;(2)解:如图,过点A作AF⊥AD于点F,过点B作BG⊥AF于点G,得矩形BEFG,则FD=2,GF=BE=50,∴BG=EF=ED-FD=503-2,在Rt△ABG中,∠BAG=45°,∴∠ABG=∠GAB=45°,∴AG=BG=503-2,∴AF=AG+GF=503-2+50=503+48≈135米,答:小明到山崖的距离约为135米.【点睛】本题考查了解直角三角形的应用-仰俯角问题,根据题目的已知条件并结合图形添加适当辅助线是解题的关键.【变式训练】1(2023秋·黑龙江哈尔滨·九年级哈尔滨德强学校校考阶段练习)为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度,如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔Р的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔Р的最近距离是多少海里?(2)在这段时间内,海监船航行了多少海里?(结果保留根号)【答案】(1)在这段时间内,海监船与灯塔P的最近距离是502海里.(2)轮船航行的距离AB为502+506海里.【分析】(1)过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.解等腰直角三角形APC,即可求出PC的长度.(2)海监船航行的路程即为AB的长度.先解Rt△PCB,求出BC的长,再由(1)得出AC=PC,再利用线段的和差可得答案.【详解】(1)解:过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.由题意,得∠APC=90°-45°=45°,∠BPD=30°,DE∥AB,∴∠B=30°,AP=100海里.在Rt△APC中,∵∠ACP=90°,∠APC=45°,AP=502(海里).∴PC=AC=22答:在这段时间内,海监船与灯塔P的最近距离是502海里.(2)在Rt△PCB中,∵∠BCP=90°,∠B=30°,PC=502海里,∴BC=PC=3PC=506(海里).tan30°∴AB=AC+BC=502+506(海里).答:轮船航行的距离AB为502+506海里.【点睛】本题考查的是解直角三角形的实际应用,掌握方向角的含义,锐角三角函数的定义是解本题的关键.2(2023·海南·统考中考真题)如图,一艘轮船在A处测得灯塔M位于A的北偏东30°方向上,轮船沿着正北方向航行20海里到达B处,测得灯塔M位于B的北偏东60°方向上,测得港口C位于B的北偏东45°方向上.已知港口C在灯塔M的正北方向上.(1)填空:∠AMB=度,∠BCM=度;(2)求灯塔M到轮船航线AB的距离(结果保留根号);(3)求港口C与灯塔M的距离(结果保留根号).【答案】(1)30,45(2)灯塔M到轮船航线AB的距离为103海里(3)港口C与灯塔M的距离为103-1海里【分析】(1)作CD⊥AB交AB于D,作ME⊥AB交AB于E,由三角形外角的定义与性质可得∠AMB= 30°,再由平行线的性质可得∠BCM=45°,即可得解;(2)作CD⊥AB交AB于D,作ME⊥AB交AB于E,由(1)可得:∠A=∠BMA=30°,从而得到BM= AB=20海里,再由EM=BM⋅sin∠EBM进行计算即可;(3)作CD⊥AB交AB于D,作ME⊥AB交AB于E,证明四边形CDEM是矩形,得到CD=EM=103海里,DE=CM,由BE=BM⋅cos∠EBM计算出BE的长度,证明△CDB是等腰直角三角形,得到CD= BD=103海里,即可得到答案.【详解】(1)解:如图,作CD⊥AB交AB于D,作ME⊥AB交AB于E,∵∠DBM=∠A+∠AMB=30°+∠AMB=60°,∴∠AMB=30°,∵AB、CM都是正北方向,∴AB∥CM,∵∠DBC=45°,∴∠BCM=45°,故答案为:30,45;(2)解:如图,作CD⊥AB交AB于D,作ME⊥AB交AB于E,∴BM=AB=20海里,在Rt△BEM中,∠EBM=60°,BM=20海里,=103海里;∴EM=BM⋅sin∠EBM=20×sin60°=20×32∴灯塔M到轮船航线AB的距离为103海里;(3)解:如图,作CD⊥AB交AB于D,作ME⊥AB交AB于E,∵CD⊥AB,ME⊥AB,AB、CM都是正北方向,∴四边形CDEM是矩形,∴CD=EM=103海里,DE=CM,在Rt△BEM中,∠EBM=60°,BM=20海里,=10海里,2∵在Rt△CDB中,∠DBC=45°,∴△CDB是等腰直角三角形,∴CD=BD=103海里,∴CM=DE=BD-BE=103-10=103-1海里,∴港口C与灯塔M的距离为103-1海里.【点睛】本题主要考查了解直角三角形,矩形的性质、等腰三角形的判定与性质、三角形外角的定义与性质,熟练掌握以上知识点,添加适当的辅助线,构造直角三角形是解题的关键.3(2023春·内蒙古巴彦淖尔·九年级校考期中)无人机在实际生活中应用广泛.如图所示,某人利用无人机测量大楼的高度,无人机在空中C处测得楼DH楼顶D处的俯角为45°,测得楼EF楼顶E处的俯角为60°.已知楼EF和楼DH之间的距离HF为90米,楼EF的高度为12米,从楼EF的E处测得楼DH的D处的仰角为30°,AB∥HF.(点A、B、C、D、E、F、H在同一平面内).(参考数据:3≈1.73)(1)求楼DH的高度;(2)求此时无人机距离地面HF的高度.【答案】(1)303+12米(2)57米【分析】(1)过点E作EG⊥DH于点G,则四边形EFHG是矩形,由题意可得EG=FH=90米,HG=EF=12米,在Rt△GED中,利用tan∠DEG=DGEG求出DG,结合DH=DG+GH可得出答案.(2)作CN⊥FH于点N,交EG于点M,先证明CE=DE,在Rt△GED中求出CE的长,在Rt△CEM中求出CM的长,再根据CN=CM+MN可得出答案.【详解】(1)如图,过点E作EG⊥DH于点G,则四边形EFHG是矩形,则EG=FH=90米,HG=EF=12米.在Rt△GED中,∠DGE=90°,∠DEG=30°,∴tan∠DEG=DGEG∴DG =EG ⋅tan ∠DEG=EG ⋅tan30°=90×33=303.∴DH =DG +GH =303+12答:楼CD 高度为303+12 米;(2)如图,作CN ⊥FH 于点N ,交EG 于点M ,则MN =EF =12米.∵∠ACD =45°,∠BCE =60°,∴∠DCE =75°,∵AB ∥EG ,∴∠GEC =∠BCE =60°,∵∠DEG =30°,∴∠CED =30°,∴∠CDE =180°-75°-30°=75°,∴∠CDE =∠DCE ,∴CE =DE ,在Rt △GED 中,∠EGD =90°,∠DEG =30°,∴DE =2DG =603,∴CE =603,在Rt △CEM 中,∠CME =90°,∠CEM =60°,∴sin ∠CEM =CM CE,∴CM =CE ⋅sin ∠CEM =303×sin60°=45,∴CN =CM +MN =45+12=57.∴无人机距离地面BC 的高度为57米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键.4(2023秋·海南海口·九年级校考期末)脱贫攻坚工作让老百姓过上了幸福的生活,如图是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,为了测量房屋的高度,在地面上C 点测得尾顶A 的仰角为35°,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走6m 到达点D 时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF =12m ,EF ∥CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,3≈1.7)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).【答案】(1)4.2m(2)11.3m【分析】(1)依题意AG ⊥EF ,EG =12EF =6,∠AEG =∠ACB =35°,解Rt △AGE ,即可求解;(2)过E 作EH ⊥CB 于H ,设EH =x ,根据tan ∠EDH =EH DH 得出DH =x tan60°,在Rt △ECH 中,得到CH=xtan35°,根据CH-DH=CD=6m列出方程,解方程得出x≈7.14,进而根据AB=AG+BG,即可求解.【详解】(1)解:∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,EF=12m,∴AG⊥EF,EG=12EF=6m,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=AGEG,EG=6,∴AG≈6×0.7=4.2(m);答:屋顶到横梁的距离AG约为5.6m;(2)解:过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=EHDH,∴DH=xtan60°;在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=EHCH,∴CH=xtan35°∵CH-DH=CD=6m,∴x tan35°-xtan60°=6,解得:x≈7.14,∴AB=AG+BG=7.14+4.2=11.34≈11.3(m),答:房屋的高AB约为11.3m.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中的边角关系是解题的关键.5(2023·辽宁葫芦岛·统考二模)无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为1003米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内,参考数据:3≈1.732,2≈1.414).(1)填空:∠ADP=度;(2)求楼CD的高度;(3)求此时无人机距离地面BC的高度(结果精确到1米).【答案】(1)75(2)110米(3)183米【分析】(1)由平角的性质可得∠APD,过点A作AE⊥CD于点E,则∠DAE=30°,根据三角形内角和定理可得∠ADC;(2)由题意可得AE=BC=100米,EC=AB=10米,在Rt△AED中,tan30°=DEAE =DE100=33,解得DE=10033,结合CD=DE+EC可得出答案;(3)过点P作PG⊥BC于点G,交AE于点F,证明△APF≌△DAE,可得PF=AE=100米,再根据PG=PF+FG可得出答案;【详解】(1)解:∵∠MPA=60°,∠NPD=45°,∴∠APD=180°-∠MPA-∠NPD=75°,过点A作AE⊥CD于点E,则∠DAE=30°,∴∠ADC=180°-90°-30°=60°.∵MN∥AE,∴∠PAE=60°,∴∠PAD=30°,∠ADP=180°-∠APD-∠PAD=75°,故答案为:75(2)解:过点A作AE⊥CD于点E,则AE=BC=1003米,EC=AB=10米,在Rt△AED中,∠DAE=30°,∵tan30°=DEAE∴DE=AE×tan30°=1003×33=100∴CD=DE+EC=100+10=110米.答:楼CD的高度为110米.(3)解:过点P作PG⊥BC于点G,交AE于点F,∵∠DAE=30°∵AD=2DE=200∵∠APD=180°-60-°45°=75°,∠ADP=75°∴AP=AD=200在Rt△APF中,∠PAF=∠MPA=60°∵sin60°=PFPA∴PF=PA sin60°=1003∵FG=AB=10∴PG=PF+FG=1003+10≈183(米)答:此时无人机距离地面BC的高度约为183米.【点睛】本题考查解直角三角形的应用一仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键【类型二不含特殊角的非直角三角形】1(2023秋·全国·九年级专题练习)如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则tan∠1=.【答案】1【分析】由勾股定理的逆定理可得∠CED =90°,可得∠EDC =∠ECD =45°,由平行线的性质和锐角三角函数可求解.【详解】解:如图,取格点E ,连接CE ,DE ,则CE ∥AB ,∵CE =5,DE =5,CD =10,∴DE =CE ,CE 2+DE 2=10=CD 2,∴∠CED =90°,∴∠EDC =∠ECD =45°,∵CE ∥AB ,∴∠1=∠DCE =45°,∴tan ∠1=1,故答案为:1.【点睛】本题考查了锐角三角函数,勾股定理的逆定理,添加恰当辅助线构造直角三角形是本题的关键.【变式训练】1(2023·江苏宿迁·统考中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 、C 三点都在格点上,则sin ∠ABC =.【答案】22【分析】取AB 的中点D ,连接AC ,CD ,先根据勾股定理可得AC =BC =10,CD =5,再根据等腰三角形的三线合一可得CD ⊥AB ,然后根据正弦的定义即可得.【详解】解:如图,取AB 的中点D ,连接AC ,CD ,∵AC =12+32=10,BC =12+32=10,CD =12+22=5,∴AC =BC ,又∵点D 是AB 的中点,∴CD ⊥AB ,∴sin ∠ABC =CD BC =510=22,故答案为:22.【点睛】本题考查了勾股定理与网格问题、等腰三角形的三线合一、正弦,熟练掌握正弦的求解方法是解题关键.2(2023·全国·九年级专题练习)如图,△ABC 的三个顶点都在边长是1的小正方形的顶点上,则tan ∠BAC =.【答案】43【分析】过C 作CE ⊥AB 于E ,则∠AEC =90°,求出AE 和CE 的长,再解直角三角形求出tan ∠BAC 即可.【详解】解:如图,过C 作CE ⊥AB 于E ,∴∠AEC =90°,∵小正方形的边长为1,∴AE =3,CE =4,∴tan ∠BAC =CE AE =43.故答案为:43.【点睛】本题考查了解直角三角形.理解和掌握锐角三角函数的定义是解题的关键.3(2023春·浙江杭州·九年级专题练习)在△ABC 中,AC =42,BC =6,∠C 为锐角且tan C =1.(1)求△ABC 的面积;(2)求AB 的值;(3)求cos ∠ABC 的值.【答案】(1)12(2)25(3)55【分析】(1)过点A 作AD ⊥BC ,根据∠C 的正切值确定∠C 的度数,再利用直角三角形的边角间关系求出AD 、CD ,最后利用三角形的面积公式算出△ABC 的面积;(2)先利用线段的和差关系求出BD ,然后在Rt △ABD 中利用勾股定理求出AB ;(3)在Rt △ABD 中利用直角三角形的边角间关系求出∠B 的余弦值.【详解】(1)解:过点A 作AD ⊥BC ,垂足为D ,∴∠ADC =∠ADB =90°,∵∠C 为锐角且tan C =1,∴∠C =45°,∴∠DAC =90°-∠C =45°,∴∠DAC =∠C =45°,∴AD =DC ,在Rt △ACD ,∵sin C =AD AC,AC =42,∴DC =AD =AC ∙sin C =42×22=4,∵BC =6,∴S △ABC =12BC ∙AD =12×6×4=12.∴△ABC 的面积为12.(2)∵DC =AD =4,BC =6,∴BD =BC -DC =6-4=2,在Rt △ABD 中,AB =AD 2+BD 2=42+22=25.∴AB 的值为25.(3)在Rt △ABD 中,AB =25,BD =2,∴cos ∠ABC =BD AB =225=55.∴cos ∠ABC 的值为55.【点睛】本题主要考查解直角三角形,掌握直角三角形的边角间关系、特殊角的三角函数值、三角形的面积公式及勾股定理是解题的关键.4(2023秋·重庆·九年级重庆实验外国语学校校考开学考试)如图,在Rt △ABC 中,∠ABC =90°,点D 为BC 的中点,DE ⊥AC 于点E ,连接BE .已知DE =2.(1)若tan C =12,求AB 的长度;(2)若∠C =30°,求sin ∠BEA .【答案】(1)25(2)277【分析】(1)根据tan C =12,得到△CDE 中各边长的比值关系,计算出CD 的长度,根据中点的性质得到BC 的长度,最后再用tan C =12计算出AB 即可.(2)过点B 作BH ⊥AC 于点H ,根据∠C =30°,DE =2,算出CD 的长度,根据中点的性质得到BC 的长度,就可以算出BH 和CH 的长度,得到HE 的长度,勾股定理算出BE ,即可得到结论.【详解】(1)∵DE ⊥AC ,∴∠DEC =90°,∵tan C =12,DE =2,∴DE CE=12,∴CE =2DE =4,∴CD =25,∵点D 为BC 的中点,∴BC =2CD =45.在Rt △ABC 中,tan C =12,∴AB BC=12,∴AB =25.(2)过点B 作BH ⊥AC 于点H ,∵∠C =30°,DE =2,∴CD =4,CE =23,∵点D 为BC 的中点,∴BC =2CD =8,在Rt △BHC ,∠C =30°,∴BH =4,CH =43,∴EH =CH -CE =23.由勾股定理得:BE =27,∴sin ∠BEA =BH BE =427=277,【点睛】本题考查了解直角三角形,主要利用锐角三角函数值,勾股定理进行长度计算,理解锐角三角函数的含义,并能运用到题目中是解题关键.5(2023·宁夏吴忠·校考二模)问题呈现:如图1,在边长为1的正方形网格中,连接格点D 、N 和E 、C ,DN 和EC 相交于点P ,求cos ∠CPN 的值.方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解获此类问题,比如连接格点M 、N ,可得MN ∥EC ,则∠DNM =∠CPN ,连接DM ,那么∠CPN 就变换到Rt △DMN 中,问题解决:(1)求出图1中cos ∠CPN 的值;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求tan ∠CPN 的值.【答案】(1)cos ∠CPN =55(2)tan ∠CPN =1【分析】(1)结合已知可得cos ∠CPN =cos ∠DNM =MNDN,求出结果即可;(2)取格点D ,连接CD ,DM .由∠DCM =∠D =45°得,tan ∠CPN =tan ∠DCM =1.【详解】(1)解:∵EC ∥MN ,∴∠CPN =∠DNM ,∴cos ∠CPN =cos ∠DNM ,∵∠DMN =90°,MN =12+12=2,DN =32+12=10,∴cos ∠CPN =cos ∠DNM =MN DN =210=55;(2)解:如图2中,取格点D ,连接CD ,DM ,如图所示:∵CD ∥AN ,∴∠CPN =∠DCM ,∵CM =12+22=5,DM =12+22=5,CD =12+32=10,∴CM =DM ,∵CM 2+DM 2=5+5=10=CD 2,∴△DCM 是等腰直角三角形,∴∠DCM =∠CDM =45°,∴tan ∠CPN =tan ∠DCM =tan45°=1.【点睛】本题考查三角形综合题、平行线的性质、勾股定理及勾股定理逆定理,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题.6(2023秋·全国·九年级专题练习)在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt △ABC 中,∠ACB =90°,AB =1,∠A =α,求sin2α(用含sin α,cos α的式子表示).聪明的小雯同学是这样考虑的:如图2,取AB 的中点O ,连接OC ,过点C 作CD ⊥AB 于点D ,则∠COB =2α,然后利用锐角三角函数在Rt △ABC 中表示出AC ,BC ,在Rt △ACD 中表示出CD ,则可以求出sin2α=CD OC=sin α⋅AC 12=sin α⋅cos α12=2sin α⋅cos α.阅读以上内容,回答下列问题:在Rt △ABC 中,∠C =90°,AB =1.(1)如图3,∠ACB =90°,AB =1,若BC =12,则sin α=,sin2α=;(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sin α,cos α的式子表示).【答案】(1)12,32(2)tan2α=2sin α⋅cos α1-2sin 2α【分析】(1)根据勾股定理求得AC ,再根据三角函数的定义即可求得sin α和cos α,再根据sin2α=2sin α⋅cos α求解即可;(2)取AB 的中点O ,连接OC ,过点C 作CD ⊥AB 于点D ,则∠COB =2α,OC =12AB =12,在Rt △ACD 中表示出CD ,勾股定理求得OD ,即可求解.【详解】(1)解:由勾股定理可得:AC =AB 2-BC 2=32,由三角函数的定义可得sin α=BC AB =121=12,cos α=AC AB =321=32,由材料可得:sin2α=2sin α⋅cos α=2×12×32=32,故答案为:12,32(2)解:取AB 的中点O ,连接OC ,过点C 作CD ⊥AB 于点D ,如下图:则∠COB =2α,OC =OB =12AB =12,2α<90°,α<45°,∴在Rt △ABC 中,AC =cos α,BC =sin α,∴CD =AC ×BCAB=sin α⋅cos α,∵∠DCB =∠A ,∴在Rt △BCD 中,sin ∠BCD =sin α=BD BC=BDsin α,∴BD =sin 2α,∴OD =12-sin 2α,∴tan2α=CD OD =sin α⋅cos α12-sin 2α=2sin α⋅cos α1-2sin 2α.【点睛】此题考查了三角函数定义的应用,解题的关键是是熟练掌握三角函数的定义,作辅助线构造直角三角形.【类型三“独立”型】1(2023春·吉林长春·九年级校考阶段练习)如图,某校无人机兴趣小组借助无人机测量教学楼的高度AB ,无人机在离教学楼底部B 处16米的C 处垂直上升31米至D 处,测得教学楼顶A 处的俯角为39°,则教学楼的高度AB 约为米.(结果精确到0.1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】【答案】18.0【分析】过A 作AF ⊥CD 于点F ,可得DE ∥AF ,根据题意可知CD =31米,BC =16米,由作图知AB =CF ,AF =BC =16米,在Rt △ADF 中利用三角函数可求出DF 的长,即可求得AB 的长.【详解】过A 作AF ⊥CD 于点F ,∴DE ∥AF ,CD =31米,BC =16米,AB =CF ,AF =BC =16米,在Rt △ADF 中,∠AFD =90°,tan ∠DAF =DFAF,∴DF=AF⋅tan∠DAF=16×0.81=12.96(米),∴AB=CF=DC-DF=31-12.96=18.04≈18.0(米),答:教学楼的高度AB约为18.0米.【点睛】本题考查了解直角三角形的应用,借助仰角构造出直角三角形,然后利用三角函数进行求解是关键.【变式训练】1(2023春·山东日照·九年级日照市新营中学校考阶段练习)如图,AB是垂直于水平面的建筑物,沿建筑物底端B沿水平方向向左走8米到达点C,沿坡度i=1:2(坡度i=坡面铅直高度与水平宽度的比)斜坡走到点D,再继续沿水平方向向左走40米到达点E(A、B、C、D、E在同一平面内),在E处测得建筑物顶端A的仰角为34°,已知建筑物底端B与水平面DE的距离为2米,则建筑物AB的高度约是(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)()A.27.1米B.30.8米C.32.8米D.49.2米【答案】C【分析】延长AB交ED的延长线于F,作CG⊥EF于G,首先根据坡度求出DG,再根据锐角三角函数构建方程即可解决问题.【详解】解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=8米,DE=40米,BF=CG=2米,在Rt△CDG中,i=1:2,∴DG=4米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=52米,∠E=43°,∴AF=FE⋅tan34°≈52×0.67=34.84(米),∴AB=AF-BF=34.84-2≈32.8(米);即建筑物AB的高度约为32.8米.故选:C.【点睛】本题考查的是解直角三角形的应用-仰角俯角、坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2(2023春·安徽淮南·九年级校联考阶段练习)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为米;【答案】36-103【分析】在Rt△ADB中,由BD=AD⋅tan∠BAD可求BD,再由CD=BC-BD,即可求解.【详解】解:如图,由题意得:AD=30米,BC=36米,∠BAD=30°,在Rt△ADB中,BD=AD⋅tan∠BAD,=30×3=103,3∴CD=BC-BD=36-103,∴甲楼的高为(36-103)米;故答案:36-103.【点睛】本题主要考查了解直角三角形的应用,掌握解法是解题的关键.3如图,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5m,风筝飞到C处时的线长BC为30m,这时测得∠CBD=53°,求此时风筝离地面的高度.(精确到0.1m,sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】此时风筝离地面的高度为25.5m【分析】根据矩形的判定和性质,直角三角形的性质,三角函数的计算方法即可求解.【详解】解:如图所示,AB=1.5m,BC=30m,由图可知,人垂直于地面,即BA 垂直于地面,点C 到地面的高度为CE ,即CE 垂直于地面,且BD ⊥CE ,∴四边形ABDE 是矩形,∴AB =DE =1.5m ,在Rt △BCD 中,∠BDC =90°,∠CBD =53°,∴sin ∠CBD =CDBC,∴CD =BC ∙sin ∠CBD =30×sin53°=30×0.8=24m ,∴CE =CD +DE =24+1.5=25.5m ,∴此时风筝离地面的高度为25.5m .【点睛】本题主要考查直角三角形的性质,矩形的判定和性质,三角函数的计算方法,掌握以上知识的运用是解题的关键.【类型四“背靠背”型】1(2023春·山东青岛·九年级统考开学考试)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西67°方向行驶4千米至B 地,再沿北偏东23°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离(结果保留整数)(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,sin23°≈513,tan23°≈512).【答案】B ,C 两地的距离约是10千米.【分析】根据平行线的性质可知∠DBA =∠BAC =67°,推出∠ABC =90°,再根据正切的定义求出BC 的长.【详解】解:如图:∵BD∥AC,∴∠DBA=∠BAC=67°,∴∠ABC=180°-23°-67°=90°,≈10(千米).∴BC=BA⋅tan67°≈4×125答:B,C两地的距离约是10千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.【变式训练】1(2023春·江苏南通·九年级校考阶段练习)如图,一艘船由A港沿北偏东65°方向航行302km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为km.【答案】30+103【分析】根据题意得,∠CAB=65°-20°=45°,∠ACB=40°+20°=60°,AB=302km,过B作BE⏊AC 于E,解直角三角形即可得到结论.【详解】解:根据题意得,∠CAB=65°-20°=45°,∠ACB=40°+20°=60°,AB=302km,过B作BE⏊AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠CAB=45°,AB=302km,AB=30km,∴AE=BE=22在Rt△CBE中,∵∠ACB=60°,∴∠CBE=30°,×30=103km,tan×BE=3∴CE=∠CEB3∴AC=AE+CE=30+103km,∴A,C两港之间的距离为30+103km,故答案为:30+103.【点睛】本题考查了解直角三角形的应用-方向角问题,正确作出辅助线构造直角三角形是解答本题的关键.2(2023春·海南省直辖县级单位·九年级统考期中)某校举办以“测量”为主题的数学实践活动,该校数学兴趣小组准备借助无人机来测量小区内的一座大楼高度.如图所示,无人机从地面点A处沿着与地面垂直的方向上升,至点B处时,测得大楼底部C的俯角为30°,E测得大楼顶部D的仰角为45°.无人机保持航向不变继续上升50米到达点E处,此时测得大楼顶部D的俯角为60°.已知A、C两点在同一水平线上.(1)填空:∠DBE=度,∠BED=度;(2)求A、C两点间的距离:(结果保留根号)(3)求这座大楼CD的高度.(结果保留根号)【答案】(1)45;30(2)253-25米(3)5033米【分析】(1)根据俯角和仰角的定义求解即可;(2)设AB=x,在Rt△ABC中可得AC=BG=EF=3x,在Rt△BGD中可得DG=BG=3x,在Rt△EFD中可得DF=3EF=3x,最后由FG=DF+DG=50=3x+3x列方程求解即可;(3)由CD=CG+GD=x+3x求解即可.【详解】(1)如图,由题意可得,∠CBG=30°,∠DBG=45°,∠FED=60°,BE=GF=50,AC=BG=EF,AB=CG,∴∠DBE=45°,∠BED=30°,故答案为:45;30;(2)设AB=x,则AB=CG=x,在Rt△ABC中可得AC=BG=EF=3x,在Rt△BGD中可得DG=BG=3x,在Rt△EFD中可得DF=3EF=3x,∴FG=DF+DG=50=3x+3x解得:x=2533-13,∴AC=3x=253-25;(3)由(2)可得,x=2533-13,CD=CG+GD=x+3x∴CD=CG+GD=3+12533-13=5033【点睛】本题考查解直角三角形-仰角俯角问题,解题的关键是作辅助线,构造直角三角形解决问题.3(2023·黑龙江大庆·统考一模)如图,某无人机兴趣小组在操场上展开活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得教学楼BC顶端点C处的俯角为45°,又经过人工测量测得操控者A和教学楼BC之间的距离为57米.(点A,B,C,D都在同一平面上,结果保留根号)(1)填空:∠ADC=度,∠BCD=度;(2)求此时无人机与教学楼BC之间的水平距离BE的距离;(3)求教学楼BC的高度.【答案】(1)105,135(2)无人机与教学楼BC之间的水平距离BE的距离为57-303米(3)教学楼BC的高度为303-27米【分析】(1)延长BC交DH于点G,根据题意可得∠HDC=45°,∠MDA=30°,∠BGD=90°,则∠ADC= 180°-∠MDA-∠HDC=105°,再根据三角形的外角定理求出∠BCD=∠HDC+∠BGD即可;(2)过点A作AF⏊DH,垂足为F.根据题意可得DG=BE,FG=AB=57米,AF=BG=DE=30米,则DF =AF30°tan ,再根据DG =FG -DF 即可求解;(3)在Rt △DGC 中,CG =DG ⋅45°tan ,则BC =BG -CG ,即可求解.【详解】(1)解:如图:延长BC 交DH 于点G ,由题意得:∠HDC =45°,∠MDA =30°,∠BGD =90°,∴∠ADC =180°-∠MDA -∠HDC =105°,∵∠BCD 是△CGD 的一个外角,∴∠BCD =∠HDC +∠BGD =135°,故答案为:105,135;(2)解:过点A 作AF ⏊DH ,垂足为F .由题意得:DG =BE ,FG =AB =57米,AF =BG =DE =30米,在Rt △ADF 中,∠ADF =30°,DF =AF 30°tan =3033=303(米),∴DG =FG -DF =57-303 米,∴BE =DG =57-303 米,∴此时无人机与教学楼BC 之间的水平距离BE 的距离为57-303 米;(3)解:在Rt △DGC 中,∠GDC =45°,DG =57-303 米,∴CG =DG ⋅45°tan =57-303 米,∴BC =BG -CG =30-57-303 =303-27 米,∴教学楼BC 的高度为303-27 米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.【类型五“叠合”型】1(2023春·河南驻马店·九年级统考阶段练习)文峰塔位于河南省安阳市古城内西北隅,因塔建于天宁寺内,又名天宁寺塔;文峰塔建于五代后周广顺二年,已有一千余年历史,风格独特,具有上大下小的特点.由下往上一层大于一层,逐渐宽敞,是伞状形式,这种平台、莲座、辽式塔身、藏式塔刹的形制世所罕见.活动课上,数学社团的学生计划测量文峰塔的高度.如图所示,先在点C处用高1.6m的测角仪测得塔尖A的仰角为37°,向塔的方向前进12m到达F处,在F处测得塔尖A的仰角为45°,请你相关数据求出文峰塔的高度.(结果精确到1m,参考数据:,,,.)【答案】文峰塔的高度约为38米【分析】延长交于点G,设米,在中,求出的长,进而得出的长,中,利用,进行求解即可.【详解】解:延长交于点G.由题意得:米,米,.设米.在中,,∴(米).∴米.在中,,∴,解得.经检验:是原方程的根.∴(米).答:文峰塔的高度约为38米.【点睛】本题考查解直角三角形的应用,解题的关键是构造直角三角形,熟记锐角三角函数的定义.【变式训练】1(2023秋·山东聊城·九年级聊城市实验中学校考阶段练习)如图,小明为了测量小河对岸大树BC 的高度,他在点A 测得大树顶端B 的仰角为45°,沿斜坡走352米到达斜坡上点D ,在此处测得树顶端点B的仰角为31°,且斜坡AF 的坡比为1:2,E ,A ,C 在同一水平线上.(1)求小明从点A 到点D 的过程中,他上升的高度.(2)大树BC 的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】(1)小明从点A 到点D 的过程中,他上升的高度为32米(2)大树BC 的高度约为334米【分析】(1)作DH ⊥AE 于H ,在Rt △ADH 中,DH AH=12,则AH =2DH .由勾股定理得AH 2+DH 2=AD 2,即可求出答案;(2)延长BD 交AE 于点G .设BC =x 米.求出GA =GH +AH =2.5+3=5.5(米).在Rt △BGC 中,tan ∠DGH =BC GC ,则CG =BC tan ∠DGH≈x 0.60=53x 米.在Rt △BAC 中,∠BAC =45°,则AC =BC =x米.由GC -AC =AG 得到53x -x =5.5,即可求得答案.【详解】(1)作DH ⊥AE 于H ,如图所示,在Rt △ADH 中,∵DH AH=12,∴AH =2DH .∵AH 2+DH 2=AD 2,∴(2DH )2+DH 2=325 2,∴DH =32米.答:小明从点A 到点D 的过程中,他上升的高度为32米.(2)如图,延长BD 交AE 于点G .设BC =x 米.由题意,得∠DGH =31°,∴GH =DH tan ∠DGH≈52=2.5米.∵AH =2DH =3米,∴GA =GH +AH =2.5+3=5.5(米).在Rt △BGC 中,tan ∠DGH =BCGC,∴CG =BC tan ∠DGH≈x 0.60=53x 米.在Rt △BAC 中,∵∠BAC =45°,∴AC =BC =x 米.∵GC -AC =AG ,∴53x -x =5.5,解得x =334.答:大树BC 的高度约为334米.【点睛】此题考查了解直角三角形的应用,熟练掌握坡角、仰角、三角函数的概念等知识是解题的关键.2(2023·江苏苏州·校考二模)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树的高度,他们在这棵古树的正前方一平房顶点处测得古树顶端的仰角为,在这棵古树的正前方处,测得古树顶端的仰角为,在点处测得点的俯角为,已知为米,且、、三点在同一条直线上.(1)求平房的高度;(2)请求出古树的高度.(根据以上条件求解时测角器的高度忽略不计)【答案】(1)(2)【分析】()在中,已知,,利用角的正切可得出结果()在中,由正切函数的定义求出的长,最后解,即可求出的长,即古树的高度.【详解】(1)由题意知,,,(2),,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串“典型图形”B
旋转
D
C
A
叠合式
B
背靠式
45o 60o
D
C
AAAA
B
翻 转
B
B 45Do 45Bo 6C0B45ooC45oCCCCC45oo45o 5
45o
B BB
B
旋转
A
E
6406506o600606060 45o 60o
平移
BDDDDDD
A
C
A
o o o o o o o
D
45o
A
30o
45o
D
北 E
60゜ A
B
北 F 30゜
C
D
知识回顾 Knowledge Review
祝您成功!
B
B
B
45

45o 60o
A
D
C
C
45° 60°
AD
C
2. 若2号救生员从A 跑到D再跳入海中游到B点救助,请问谁先 到达B?
2、如图,为了求河的宽度,在河对岸岸边 任意取一点A,再在河这边沿河边取两点B、C, 使得∠ABC=60°,∠ACB=45°,量得BC长为 100米,求河的宽度(即求BC边上的高).
CB
30o
B
45
o
C
D
60o
A 60o C D
串“典型图形”
1、某海滨浴场的沿岸可以看作直线,如图所示,1号救生员
在岸边的A点看到海中的B点有人求救,便立即向前跑300米到离B
点最近的地点C再跳入海中游到B点救助;若每位救生员在岸上
跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒。
1. 请问1号救生员的做法是否合理?
o o o o o o o
平移
BDDDDDD
D
A
45o
C
A
问题1楼房AB的高度是多少?
问题2楼房CD的高度是多少?
A 60º
M
30º
E
C
B
50m
D
5、为打捞一失事飞机上的黑匣子,潜水员在A处以每小 时8海里的速度向正东方向划行,在A处测得黑匣子B在 北偏东60度的方向,半小时后到达C处,测得B在北偏 东30度的方向,问潜水员继续向东划行时,距B的最近距 离是多少?(精确到0.1m)
A
A
45o 60o
B
D
C

AAAAA

B
B
45o
D
45Bo 60CB45ooC45oCCCCC45oo45o 5
45o
B BB
B
60°
45°
B
DD
C
பைடு நூலகம்100米
3、外国船只,除特许外,不得进入我国海洋100海里以内的 区域。如图,设A、B是我们的观察站,A和B之间的距离为 160海里,海岸线是过A、B的一条直线。一外国船只在P点, 在A点测得∠BAP=450,同时在B点测得∠ABP=600,问此时 是否要向外国船只发出警告,令其退出我国海域.
P
45° A
┓ 60° B C
4、如图,已知铁塔塔基距楼房基水平距离BD为50米,由楼 顶A望塔顶的仰角为45 º,由楼顶望塔底的俯角为30º,塔高 DC为 ( )米
C
A
60o
DC
45o
B
旋转
A
E
60o
B
45
o
C
D
A B
E
D
B
旋转
D
C
A
45o 60o
B
D
C
6406506o600606060 45o 60o
相关文档
最新文档