讲解数列通项公式的求法-15种类型
数列通项公式方法大全很经典
解:当n = 2k (k N+)时,
当 ,
综合得:
例:{an}为首项为a1,公差为d的等差数列,求
解:
∵
∴
(7)分类讨论
(8)归纳—猜想—证明
此方法是针对数列{ }的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求.
此种方法是针对无法求出通项或无法根据通项求出各项之和的数列,先用不完全归纳法猜出 的表达式,然后用数学归纳法证明之.
特征根法:
(1) 时, = · + ·
(2) 时, =( + ·n)·
例5.数列{ }中, =2, =3,且2 = + (n∈N+,n≥2),求 .
[解] =2 -
∴ ∴
∴ =( + ·n)· = + ·n
∴ ∴
∴
6.“已知 ,求 ”型
方法: = - (注意 是否符合)
例6.设 为{ }的前n项和, = ( -1),求 (n∈N+)
所以数列 的通项公式为
评注:本题解题的关键是把递推关系 转化为 ,进而求出 ,即得数列 的通项公式。
变式:已知数列 满足 ,求 的通项公式。
(4)待定系数法
例4已知数列 满足 ,求数列 的通项公式。
解:设 ④
将 代入④式,得 ,等式两边消去 ,得 ,两边除以 ,得 代入④式得 ⑤
由 及⑤式得 ,则 ,则数列 是以 为首项,以2为公比的等比数列,则 ,故 。
设
将⑩式代入 式,得 ,两边消去 并整理,得 ,则
,故
代入 式,得
由 及 式,
得 ,
则 ,
所以数列 是以 为首项,以5为公比的等比数列,则 ,因此
数列求通项公式归纳总结
数列求通项公式归纳总结数列是数学中常见的概念,在各个领域都有着广泛的应用。
通过观察数列的规律并找出通项公式,可以使我们更好地理解数列的性质,进而解决更复杂的问题。
本文将对数列求通项公式的方法进行归纳总结。
一、等差数列求通项公式等差数列是指数列中相邻两项之间的差值都相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式可以表示为:an = a1 + (n - 1)d其中,n为正整数。
二、等比数列求通项公式等比数列是指数列中相邻两项之间的比值都相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式可以表示为:an = a1 * r^(n-1)其中,n为正整数。
三、斐波那契数列求通项公式斐波那契数列是指数列中第一项为1,第二项为1,之后每一项都等于前两项之和的数列。
设斐波那契数列的第n项为Fn,则斐波那契数列的通项公式可以表示为:Fn = ( (1 + sqrt(5))^n - (1 - sqrt(5))^n ) / (2^n * sqrt(5))其中,sqrt(5)表示5的开平方。
四、完全平方数列求通项公式完全平方数列是指数列中每一项都是一个完全平方数的数列。
设完全平方数列的第n项为an,则完全平方数列的通项公式可以表示为:an = n^2其中,n为正整数。
五、特殊数列求通项公式除了常见的等差数列、等比数列、斐波那契数列和完全平方数列,还有许多特殊的数列。
对于这些特殊的数列,求通项公式的方法也不尽相同,需要根据具体的规律进行归纳总结。
总结:数列求通项公式是数学中的一个重要内容,有着广泛的应用价值。
通过观察数列的规律并应用相应的方法,可以找到数列的通项公式,从而解决更加复杂的问题。
本文对等差数列、等比数列、斐波那契数列、完全平方数列以及特殊数列的求通项公式进行了归纳总结。
希望读者能够通过本文的介绍,掌握数列求通项公式的方法,并能够运用于实际问题的解决中。
数列通项公式
数列通向公式的求解1、公式法:2、累加法:3、累乘法:4、a n与S n的关系:5、构造法:(1)、待定系数法:(2)、同除+待定系数:(3)、取倒数+待定系数:(4)、取对数+待定系数:(5)、连续三项:6、无穷递推关系式:(减去前n-1项剩下最后一项)7、连续两项:8、不动点法:→不动点:方程f(x)=x的根称为函数f(x)的不动点。
数列通项公式典例分析:1、已知数列{a n}满足_________________2、已知数列{a n}满足_________________3、已知数列{a n}满足___________;___________4、已知数列{a n}满足__________________5、已知数列{a n}满足_________________6、已知数列{a n}满足_____________7、已知数列{a n}满足________________8、已知数列{a n}满足______________9、已知数列{a n}满足_________________10、已知数列{a n}满足__________11、已知数列{a n}满足__________________12、已知数列{a n}满足_________________13、已知数列{a n}满足__________________14、已知数列{a n}满足__________________15、已知数列{a n}满足_____________________16、已知数列满足,,则=________17、设是首项为1的正项数列,且(=1,2,3,…),则=________18、在数列中,,,.则=______________19、数列中,,(n≥2),则=______________20、已知数列的首项,,则=__________________21、设数列{an}满足,则=_______________22、已知数列满足且,则=___________23、设数列满足,则=______________。
求数列通项公式的十种办法
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列求通项公式方法总结
数列求通项公式方法总结数列是数学中的一种常见概念,它在很多应用领域中发挥着重要作用。
数列的通项公式是指能够通过一个公式来表示数列的每一项的方法。
在数学中,求解数列的通项公式是一种重要的技巧和思维训练。
本文将总结一些常见的数列求通项公式的方法。
方法一:递推法递推法是数列求解的一种常见方法。
它基于数列中每一项与前一项之间的关系,通过逐项递推来找到通项公式。
例如,考虑一个等差数列 2,5,8,11,14......,我们可以observe 最终一项与前一项之间的关系,即 +3。
因此,我们可以推断出该数列的通项公式为 2+3(n-1),其中 n 为项数。
通过递推法,我们可以求解出许多常见的数列。
方法二:代数法代数法是一种通过代数方程来表示数列通项的方法。
对于一些特殊的数列,我们可以通过数学运算和等式推导来找到通项公式。
例如,考虑一个等比数列 2,4,8,16,32......,我们可以发现每一项与前一项之间的关系都是乘以2。
因此,我们可以写出等式an = a(n-1) * 2,其中 a(n-1) 表示前一项。
通过解这个等式,我们可以得到通项公式 an = 2^(n-1)。
方法三:配方法配方法是一种通过把数列分解成两个已知数列的和或差的方法,从而找到通项公式的方法。
这种方法常用于一些复杂的数列。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以发现每一项都是前两项之和。
通过设定两个已知数列 a(n) 和b(n),满足 a(1) = a(2) = 1,b(1) = 2,b(2) = 3,并通过递推求解出 a(n) = a(n-1) + a(n-2) 和 b(n) = b(n-1) + b(n-2)。
因此,我们可以得到数列通项公式 F(n) = a(n) + b(n)。
方法四:生成函数法生成函数法是一种利用生成函数来表示数列的方法。
生成函数是一个形式化的工具,用于处理数列和序列的问题。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以将该数列转变为一个生成函数来表示。
数列通项公式方法大全很经典
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
数列通项公式常见求法
数列通项公式常见求法数列通项公式是数列的通项公式,用来表示数列中的一般项。
求数列通项公式是数列的重要性质之一,能够帮助我们了解数列的规律以及计算数列中的任意项。
在数学中,存在许多常见的方法来求解数列的通项公式,下面将介绍几种常见的方法。
1. 直接法:数列如果具有明显的规律性,我们可以直接观察并找出数列的通项公式。
例如,对于等差数列an=a1+(n-1)d,其中a1为第一项,d为公差,n为项数,我们可以通过观察数列的前几项发现,每一项与前一项之间的差值都相等,因此可以得到等差数列的通项公式。
2. 递推法:数列的递推法是一种常见的求解通项公式的方法。
该方法通过观察数列中相邻项之间的关系,构造递推公式从而求得通项公式。
例如,对于斐波那契数列an=an-1+an-2,其中a0=0,a1=1,通过观察数列可以发现每一项都是前两项之和,因此可以通过递推公式求得斐波那契数列的通项公式。
3. 换元法:有时候我们可以通过引入一个新的变量来求解数列的通项公式。
例如,对于幂次数列an=2^n,我们可以通过引入变量k=log2(n)来将问题转化为求解k与n之间的关系,从而得到数列的通项公式。
4. 差分法:差分法是一种常用的求解递推数列通项公式的方法。
该方法通过将数列中相邻项之间的差值构造成新的数列,然后再对新的数列进行求解。
例如,对于等差数列an,可以构造新的数列bn=an-an-1,然后再对数列bn进行观察和求解,最终得到等差数列an的通项公式。
5.等比数列的通项公式:对于等比数列an=a1*r^(n-1),其中a1为第一项,r为公比,n为项数。
求解等比数列的通项公式可以采用多种方法,如利用等比数列的性质进行观察,或采用对数换元法等。
6. 转化法:有时候我们可以将原始数列通过一些变换转化为已知的数列,然后再利用已知数列的通项公式求解原始数列的通项公式。
例如,对于等差数列an,我们可以通过将数列an进行平移或缩放变换,转化为已知的等差数列或等比数列,然后再求解通项公式。
史上最全的数列通项公式的求法13种
最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。
本文给出了求数列通项公式的常用方法。
一、直接法依据数列的特点,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。
③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。
也能够猜想出规律,而后正面证明。
四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。
例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。
求数列通项公式的13种方法
求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
数列通项公式的求法(较全)-精选.
常见数列通项公式的求法公式:1、定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,L()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++L1n a a ∴=+()()()()1+221f n f n f f --+++L(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子:()()()()23412311,2,3,,1.n n a a a af f f f n a a a a -====-L 利用公式()23411231,0,n n n n a a a aa a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈L 可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-L例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式. 4、 奇偶分析法(1)对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式. 练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式.例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式.练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式. (2)对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项. 例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式. 例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式.练习2:数列{}n a 满足111,2n n n a a a +=⋅=,求{}n a 的通项公式. 5、待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有: (1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列. (2)()11111,n pn n nn n n n a a a pa tp t p t p p+++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列 例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a .练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a . 练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式.练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式.练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式.练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式.练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。
数列通项公式—常见9种求法
数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。
找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。
在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。
1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。
例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。
2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。
3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。
等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。
4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。
幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。
5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。
组合数列通项公式可以通过求解组合数来获得。
6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。
可以利用多项式的相关性质和求解方法获得数列通项公式。
7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。
8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。
9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。
以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。
2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。
二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。
2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。
三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。
2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。
四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。
五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。
六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。
2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。
数列通项公式的十种求法
数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。
例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。
方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。
方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。
例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。
方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。
首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。
方法五:求和法有些数列的通项公式可以通过求和公式得到。
例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。
方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。
线性递推法是通过设定通项公式的形式,然后求解出相应的系数。
例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。
方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。
例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。
方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。
方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。
例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。
数列通项公式方法大全很经典
得113222n n n na a++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,得31(1)22n n a n =+-,所以数列{}na 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n aa+=+´转化为113222n n n naa ++-=,说明数列{}2n n a1123221122()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++´++´++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2na n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232n n n a a +=+´,12a =,求数列{}n a 的通项公式。
的通项公式。
解:1232n n n aa +=+´两边除以12n +,以23为公差的为公差的等差数列等差数列,由等差数列的通项公式,是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}na 的通项公式。
的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n na a n a +=++=,,求数列{}n a 的通项公式。
的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则+,即得数列{}n a 的通项公式。
史上最全的数列通项公式的求法15种
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b nn n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。
数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。
下面将介绍15种常见的数列通项公式的求法。
1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。
3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。
7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。
8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。
9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。
10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。
11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。
12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。
求数列通项公式常用的七种方法
第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。
I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。
七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。
数列通项公式方法大全很经典
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。
做题时要不断总结经验,多加琢磨。
总结方法比做题更重要!方法产生于具体数学内容的学习过程中.1.直接法2.公式法3.归纳猜想法4.累加(乘)法5.取倒(对)数法6.迭代法7.待定系数法8.特征根法9.不动点法10.换元法11.双数列12.周期型13.分解因式法14.循环法15.开方法◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211 (3) ,52,21,32,1(4) ,54,43,32,21--◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.(注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
变式:设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式◆四、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
例5. 在数列{}n a 中,11=a ,n nn a a 21=+(*N n ∈),求通项n a 。
◆五、取倒(对)数法a 、rn n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解 b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得c 、)()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a例7 、 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求通项a n .2、若数列的递推公式为11113,2()n na n a a +==-∈ ,求通项a n .3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项a n .4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求通项a n .5、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n .◆六、迭代法迭代法就是根据递推式,采用循环代入计算.例8、设a 0为常数,且a n =3 n -1-2 a n -1(n 为正整数)证明对任意n≥1 ,a n = [ 3 n +(-1)n -1· 2 n ]+(-1)n · 2 na 0◆七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。
通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。
1、通过分解常数,可转化为特殊数列{a n +k}的形式求解。
一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k=q ,即k=1-p q,从而得等比数列{a n +k}。
例9、数列{a n }满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
练习、数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .2、递推式为11+++=n n n qpa a (p 、q 为常数)时,可同除1+n q,得111+⋅=++n n n n q a q p q a ,令nnn qa b =从而化归为q pa a n n +=+1(p 、q 为常数)型.、例10.已知数列{}n a 满足11=a ,123-+=n nn a a )2(≥n ,求n a .3、形如b an pa a n n ++=+1)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。
例11:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .变式:已知数列{na }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3…(Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=- (Ⅱ)求数列{}的通项;n a4、形如21n n a pa an bn c +=+++)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,与已知递推式比较,解出y x ,,z.从而转化为{}2na xn yn c +++是公比为p 的等比数列。
例12:设数列{}n a :2114,321,(2)n n a a a n n -==+-≥,求n a .5. 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+q st pt s例13:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
变式: 1.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式; (III )若数列{}n b 满足12111*44...4(1)(),nnb b b b n a n N ---=+∈证明{}n b 是等差数列2.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a3.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,⑴设数列),2,1(21 =-=+n a a b n n n,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。
◆八:特征根法。
1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
作出一个方程,d cx x +=则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +=≠=时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.2.对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n nBx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。
例14:(1)已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。