地球及各圈层的物质组成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四.地球及各圈层的物质组成
地球的物质组成
地球是一个特殊的物理化学系统,她有别于太阳系其他行星,不但有生物圈和生命的长期作用,有液态水圈和氮-氧形成的大气圈,还有固体地圈的板块运动。从而决定了地球系统特有的物质运动与元素行为特征。
关于地球的元素丰度,上地壳、水圈、大气圈的成分可以直接观测,而困难的是下地壳、地幔,尤其是下地幔和地核。解决这一问题,法金顿(1911)、克拉克(1921)应用陨石类比法;华盛顿(1925)、马逊(1966)应用地球模型和陨石类比法;我国黎彤(1976)应用地球物理类比法研究地球的化学成分和元素丰度,他们的研究虽然有些差别,但其结果有共同特征,即地球主要元素丰度:Fe>O>Mg>Si>Ni>S>Ca>Al>Co>Na 。地球的化学组成特点是:氧和硫(主要阴离子)原子丰度远小于全部金属阳离子的原子丰度之和,因而地球能有多余的Fe 、Ni 进入地核;并且地球有一些元素表现为亲氧性,成为造岩元素,另一些元素表现为亲硫性,成为金属成矿元素。
目前,许多学者都是借助于宇宙的丰度和已知的观测事实以及地球物理资料来构筑地球模型,主要考虑如下四个方面:①地球作为宇宙天体的一个成员并由宇宙物质演化而来,地球的元素丰度应与宇宙的元素丰度大致相同,因此可以根据宇宙丰度构成地球基本成分的简单模型;②地球基本成分及其分布必须符合深部地震资料所反映的物质密度、比重等物理参数;③地球成分分布必须与地球总的质量和惯性矩相协调;④地球元素分布必须符合地球内部温度、压力分布的状况。
安德森(D.L. Anderson)与Cameron(1982)以宇宙元素丰度为基础建立了简单的地球基本成分模型。在这个模型中,地核的主要成分是Fe 2O 。如果大多数Fe 按Fe 2O 的比例进入地核中,那么地核的质量将占地球总质量的3034%,这与地核是地球质量的33%的情况非常一致。而且如果地核中Fe 2O 占32%,那么根据太阳Fe/Si 比值可以得出地幔FeO 占重量15%,那么它接近于月球和火星地幔成分中FeO 的比例。
除此之外,还有一些学者提出只要加入极少量的S 就可以使地核具有所观测到的密度,并且与铁陨石中相对富集S 相一致。因此提出Fe-FeS 模型。地幔被看成是近于完全氧化的。主要由下列成分组成各种硅酸盐:MgO 、SiO 、Al 2O 3、CaO 、Na 2O 和多种氧化物。地壳是位于固体地球最外部的圈层,包括了自地球表面至莫霍面之间的岩石圈上部。包括地球表面岩石圈的风化部分(土壤 层),但不包括大气圈和水圈。地壳仅占地球质量的0.5%弱,主要是富含SiO 和Al 2O 3,此外还含有CaO 和NaO 。
2.1 地壳元素组合与矿物形成
(1)地壳元素组成和分类
地壳元素丰度的总特征可大致归纳如下:地壳中已发现的化学元素有92种,即元素周期表中1至92号元素;地壳中不同元素的含量差别很大,含量最高的元素氧(47%)与含量最低的氡(10-16
)差1017倍;含量最高的三个元素氧、硅、铝的总量占地壳元素总量的84.6%;若加上含量大于1%的元素铁、钙、钠、钾、镁,总和达98%,剩余的84个元素重量的百分含量之和仅为2%;总体上,元素的原子丰度随元素的原子序数增大而降低,偶数原子序数的元素比相邻的奇数原子序数的元素丰度值高;惰性元素丰度偏低;
按化学计量比计算,地壳中阴离子的总数大大低于阳离子总数,阳离子与阴离子结合能力的大小和倾向性决定了元素的地球化学行为。
元素的地球化学分类方案较多,以下从地壳化学组成的角度出发,结合元素的地球化学
行为将地地壳中元素的地球化学行为与元素的化学和晶体化学性质有关,也与地壳中元素的丰度壳元素分为主量元素、微量元素、硫(硒、碲)和卤族元素、金属成矿元素、亲生物元素和亲气元素、放射性元素。
主量元素:
主量元素有时也称为常量元素,是指那些在岩石中(≠地壳中)含量大于1%(或0.1%)的元素,在地壳中大于1%的8种元素都是主量元素,除氧以外的7种元素在地壳中都以阳离子形式存在,它们与氧结合形成的氧化物(或氧的化合物),是构成三大类岩石的主体,因此又常被称为造岩元素。
地壳中重量百分比最大的10个元素的顺序是:O>Si>Al>Fe>Ca>Na>K>Mg>Ti >H,若按元素的原子克拉克值(原子个数),则原子个数最多的元素是:O>Si>H>Al>Na >Mg>Ca>Fe>K>Ti。Ti、H(P)在地壳中的重量百分比虽不足1%,但在各大类岩石中频繁出现,也常被称为造岩元素。
上述地壳中含量最高的十种元素,在各类岩石化学组成中都占重要地位。虽然不同类型岩石的矿物成分有差异,但主要矿物都是氧化物和含氧盐,尤其是各种类型的硅酸盐,因此可将整个地壳看成一个硅酸盐矿物集合体。
岩浆岩是地壳中分布最广的岩石大类,从酸性岩直到超基性岩,主要矿物都是硅酸盐,不同的是:超基性岩和基性岩主要由镁、铁(钙)的硅酸盐组成,中、酸性岩主要由钾、钠的铝硅酸盐和氧化物组成。大陆地壳中上部中酸性岩石占主导的地位,下部中基性岩为主体;大洋地壳以基性岩石为主,因此地球科学家常称地壳为硅酸盐岩壳。也有的学者将以中酸性岩为主的部分称为硅铝质地壳,将以基性岩为主的部分称为硅镁质地壳。
由此可知:地壳中主量元素的种类(化学成分)决定了地壳中天然化合物(矿物)的类型;主要矿物种类及组合关系决定了其集合体(岩石)的分类;而地壳中主要岩石类型决定了地壳的基本面貌。
微量元素:
在地壳(岩石)中含量低于0.1%的元素,一般来说不易形成自己的独立矿物,多以类质同象的形式存在于其它元素组成的矿物中,这样的元素被称为微量元素。比如:钾、钠的克拉克值都是2.5%,属主要元素,在自然界可形成多种独立矿物。与钾、钠同属第一主族的铷、铯,由于在地壳中的含量低,在各种地质体中的浓度亦低,难以形成自己的独立矿物,主要呈分散状态存在于钾、钠的矿物中。
硫(硒、碲)和卤族元素:
在地壳中,除氧总是以阴离子的形式存在外,硫(硒、碲)和卤族元素在绝大多数情况下都以阴离子形式存在。虽然硫在特定情况下可形成单质矿物(自然硫S2),硫仍是地壳中除氧以外最重要的呈阴离子的元素。硫在热液成矿阶段能与多种金属元素(如贵金属Ag、Au,贱金属Pb、Zn、Mo、Cu、Hg等)结合生成硫盐和硫化物矿物,这些矿物是金属矿床的物质基础。若矿物结晶时硫含量不充分,硒可以进入矿物中占据硫在晶格中的位置,硫、硒以类质同象的方式在同种矿物中存在。碲与硫的晶体化学性质差别比硒大,故碲通常不进入硫化物矿物,当硫不足时,它可以结晶成碲化物。
氯、氟等卤族元素,通过获得一个电子就形成稳定的惰性气体型(8电子外层)的电层结构,它们形成阴离子的能力甚至比氧、硫更强,只是因为卤族元素的地壳丰度较氧、硫低得多,限制了它们形成独立矿物的能力。卤族元素与阳离子结合形成典型的离子键化合物。离子键化合物易溶于水,但气化温度较高,在干旱条件下,卤化物还是比较稳定的。当卤族元