不确定性推理方法
确定性与不确定性推理主要方法-人工智能导论
确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论 H 为真的可信度,则 CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
2不确定性推理1基本概念2不确定性推理中的基本问题不确定
2 不确定性推理中的基本问题
1. 不确定性的表示与度量
不确定性推理中的“ 不确定性推理中的“不确定性” 不确定性”一般分为两类: 一般分为两类:一是知 识的不确定性, ,一是证据的不确定性。 识的不确定性 一是证据的不确定性。 知识不确定性的表示: 知识不确定性的表示:目前在专家系统中知识的不确定 性一般是由领域专家给出的, 性一般是由领域专家给出的,通常用一个数值表示, 通常用一个数值表示,它 表示相应知识的不确定性程度, 表示相应知识的不确定性程度,称为知识的静态强度。 称为知识的静态强度。 证据不确定性的表示: 证据不确定性的表示:证据不确定性的表示方法与知识 不确定性的表示方法一致, 不确定性的表示方法一致,通常也用一个数值表示, 通常也用一个数值表示,代 表相应证据的不确定性程度, 表相应证据的不确定性程度,称之为动态强度。 称之为动态强度。
第四章2
基本概念 概率方法 可信度方法
不确定性推理
1 基本概念
什么是不确定性推理 不确定性推理是建立在非经典逻辑基础 上的一种推理, 上的一种推理,它是对不确定性知识的 运用与处理。 运用与处理。 具体地说, 具体地说,所谓不确定性推理就是从不 确定性的初始证据( 确定性的初始证据(即事实) 即事实)出发, 出发,通 过运用不确定性的知识, 过运用不确定性的知识,最终推出具有 一定程度不确定性的结论。 一定程度不确定性的结论。
8
7
概率推理方法 概率推理方法
经典概率方法要求给出条件概率P(H/E),在实际 中通常比较困难。 中通常比较困难。例如E代表咳嗽, 代表咳嗽,H代表支气管 炎,则P(H/E)表示在咳嗽的人群中患支气管炎的 概率, 概率,这个比较困难, 这个比较困难,因为样本空间太大。 因为样本空间太大。而逆 概率P(E/H)表示在得支气管炎的人群中咳嗽的概 率,这个就比较容易获得。 这个就比较容易获得。 我们可以根据Bayes定理从P(E/H)推出P(H/E)
不确定性推理方法
P( H i
︳ E
1
E2 Em ) =
P ( E1 ︳ H i ) P( E 2 ︳ H i ) P( E m ︳ H i ) P( H i )
∑ P( E1 ︳H j ) P( E 2 ︳H j ) P( Em ︳H j ) P( H j )
1 j=
n
i 1,2,, n
普通关系:两个集合中的元素之间是否有关联,
4.4.4 模糊关系与模糊关系的合成
1.模糊关系
模糊关系的定义 : A、B:模糊集合,模糊关系用叉积表示:
R : A B 0,1
叉积常用最小算子运算:
AB (a, b) min A (a), B (b)
A、B:离散模糊集,其隶属函数分别为:
身高与体重的模糊关系表
从X到Y的一个模糊关系R, 用模糊矩阵表示:
1 0.8 R 0.2 0.1 0 0.8 1 0.8 0.2 0.1 0.2 0.8 1 0.8 0.2 0.1 0 0.2 0.1 0.8 0.2 1 0.8 0.8 1
22
25
4.4.4 模糊关系与模糊关系的合成
2.模糊关系的合成
例8 设模糊集合 X {x1, x2 x3 , x4}, Y { y1 , y2 , y3}, Z {z1, z2}
Q X Y , R Y Z , S X Z , 求S。
0.5 0.7 Q 0 1 0.6 0.3 0.4 1 0.8 0 0.2 0.9
7
教学内容设计
可信度方法
1975 年肖特里菲等人在确定性理论的基础上, 结合概率论等提出的一种不确定性推理方法。 优点:直观、简单,且效果好。
第4章 不确定性推理方法(导论)
条件与结论的联系强度 。
IF 头痛 AND 流涕 THEN 感冒 (0.7)
13
4.2 可信度方法
1. 知识不确定性的表示
▪ CF(H,E)的取值范围: [-1,1]。 ▪ 若由于相应证据的出现增加结论 H 为真的可信度, 则 CF(H,E)> 0,证据的出现越是支持 H 为真, 就使CF(H,E) 的值越大。 ▪ 反之,CF(H,E)< 0,证据的出现越是支持 H 为 假,CF(H,E)的值就越小。 ▪ 若证据的出现与否与 H 无关,则 CF(H,E)= 0。
0.28 0.48 0.280.48 0.63
CF1,2,3
(H
)
1
CF1,2 (H ) min{| CF1,2 (
CF3 (H ) H ) |,| CF3 (H
)
|}
0.63 0.27 1 min{0.63,0.27}
Байду номын сангаас
0.36 0.73
0.49
综合可信度:CF(H) 0.49
求:CF(H )
21
4.2 可信度方法
解:
第一步:对每一条规则求出CF(H)。
r: 4
CF (E1 ) 0.7 max{ 0, CF[E4 AND (E5 OR
E6 )]}
0.7 max{ 0, min{ CF (E4 ), CF (E5 OR E6 )}} 0.7 max{ 0, min{CF (E4 ), max{ CF (E5 ), CF (E6 )}}}
人工智能原理及应用第4章 不确定性推理方法
4.2 概率推理
4.2.1 概率的基本性质和计算公式
4.2.1.2 事件间的关系 两个事件A与B可能有以下几种特殊关系: 并事件:对两个事件A与B,如果事件表达的是“事件A与事件B至 少有一个发生”,则称该事件为A与B的并事件,记为AUB。可见, 并事件是由A与B的所有样本点共同构成的事件。 交事件:如果事件表达的是“事件A与事件B同时发生”,则称该 事件为A与B的交事件,记为A∩B。可见,交事件是由既属于A又属 于B的所有样本点构成的事件。 互斥关系:若A与 B不能同时发生,则称A与B互斥,记作AB= Ø 对立关系:若A与B互斥,且必有一个发生,则称A与B对立,又称 A为B的余事件,或B为A的余事件。
并:记C=“A与B中至少有一个发生”,称为事件A与B的并,记
作 C { ห้องสมุดไป่ตู้ A 或 B} 。
差:记C=“A发生而B不发生”,称为事件A与B的差。
求余: ~ A \ A
4.2 概率推理
4.2.1 概率的基本性质和计算公式
4.1.2.3 事件的概率 定义4.5 设Ω为一个随机实验的样本空间,对Ω上的任意事件A,规定 一个实数与之对应且满足以下三条基本性质,记为P(A),称为事件A 发生的概率:
知识
图4-1 不确定性推理
4.1 不确定推理概述
4.1.1 不确定推理的概念
采用不确定性推理是客观问题的需求,其原因包括以下几个方面: (1)所需知识不完备,不精确 (2)所需知识描述模糊 (3)多种原因导致同一结论 (4)解决方案不唯一
4.1 不确定推理概述
4.1.2不确定性推理的基本问题和方法分类
机缘控制
启发式搜索
图4-2 不确定性推理分类
概率方法 主观Bayes方法 可信度方法 证据理论
人工智能及其应用-不确定性推理方法-证据理论
Bel({红,黄}) M ({红}) M ({黄}) M ({红,黄})
0.3 0.2 0.5
Pl({蓝}) 1 Bel({蓝}) 1 Bel({红,黄})=系
因为
Bel( A) +Bel(¬A) =∑M (B) +∑M (C)
则: K 1 M1(x)M 2 ( y) x y 1 [M1({黑})M 2 ({白}) M1({白})M 2 ({黑})]
1 [0.3 0.3 0.5 0.6] 0.61
M ({黑}) K 1 M1(x)M 2 ( y)
0.161x[My{1黑({}黑})M 2 ({黑}) M1 ({黑})M 2 ({黑,白})
Pl(A) :对A为非假的信任程度。
8 A(Bel(A), Pl(A)) :对A信任程度的下限与上限。
8
概率分配函数的正交和(证据的组合)
定义4.4 设 M1和 M 2 是两个概率分配函数;则其正交 和 M =M1⊕M2 : M (Φ) 0
M ( A) K 1
M1(x)M2( y)
x yA
B⊆A
C⊆¬A
≤∑M (E) =1
B⊆D
所以 Pl( A) Bel( A) 1 Bel(A) Bel( A)
1 (Bel(A) Bel( A)) 0
∴所以 Pl( A) ≥Bel( A)
A(0,0);A(0,1)
Bel(A) :对A为真的信任程度。
A(1,1);A(0.25,1) A(0,0.85);A(0.25,0.85)
1981年巴纳特(J. A. Barnett)把该理论引入专家系 统中,同年卡威(J. Garvey)等人用它实现了不确定 性推理。
(完整版)不确定性推理推理方法
CF(H,E):是该条知识的可信度,称为可信度因子或 规则强度,静态强度。
CH(H,E) 在[-1,1]上取值,它指出当前提条件 E 所 对应的证据为真时,它对结论为真的支持程度。
例如: if 头痛 and 流涕 then 感冒(0.7)
表示当病人确有“头痛”及“流涕”症状时,则有7 成的把握认为 他患了感冒。
MD:称为不信任增长度,它表示因与前提条件E匹 配的证据的出现,使结论H为真的不信任增长度。
在 C-F 模型中,把CF(H,E)定义为:
CF(H,E)=MB(H,E) – MD(H,E)
MB:称为信任增长度,它表示因与前提条件 E 匹 配的证据的出现,使结论H为真的信任增长度。
MB定义为:
MB(H,E)=
1 Max{P(H/E), P(H)} – P(H)
1 – P(H)
若P(H)=1 否则
性。
3. 可信度方法
(1) 可信度 根据经验对一个事物或现象为真的相信程度。
(2) C-F模型 C-F 模型是基于可信度表示的不确定性推理的基本方法。
Ⅰ. 知识不确定性的表示
在C-F模型中,知识是用产生式规则表示的,其一般 形式是:
if E then H (CF(H, E)) 其中,
E:是知识的前提条件,它既可以是一个单个条件, 也可以是用 and 及 or 连接起来的复合条件;
* 证据的不确定性表示方法应与知识的不确定性表 示方法保持一致,以便于推理过程中对不确定性进行统 一处理。
• 不确定性的量度
对于不同的知识和不同的证据,其不确定性的程度 一般是不相同的,需要用不同的数据表示其不确定性的 程度,同时还要事先规定它的取值范围。
第四章不确定性推理
– 数值方法 • 按其所依据的理论又可分为:基于概率的方 法和基于模糊理论的模糊推理。 – 非数值方法
19
若A1,A2,…,An是彼此独立的事件, P( Ai ) P( B | Ai ) P( Ai | B) n , i 1, 2,..., n P( Aj ) P( B | Aj )
j 1
其中,P(Ai)是事件Ai的先验概率;P(B|Ai)是在事件Ai发生条 件下事件B的条件概率。 如果用产生式规则 IF E THEN Hi 中的前提条件E代替Bayes公式中的B,用Hi代替公式中的Ai , 就可得到 P( H i ) P( E | H i ) P( H i | E ) n , i 1, 2,..., n 20 P( H j ) P( E | H j )
• P(¬ A)=1-P(A) • P(A∪B)=P(A)+P(B)-P(AB) • 如果 A B ,则P(A-B)=P(A)-P(B)
13
• 如果在事件B发生的条件下考虑事件A发生的概率, 就称它为事件A的条件概率,记为P(A|B)。 • 定义4.3 设A,B是两个事件,P(B)>0,则称
P( A | B) P( A B) P( B)
j 1
P ( H i | E1 E2 Em ) P ( H i ) P ( E1 | H i ) P ( E2 | H i ) P ( Em | H i )
P( H
j 1
n
第4讲 不确定性推理
第4章 不确定性推理4.1 不确定性及其类型 4.2 主观Bayes方法 4.3 可信度理论 4.4 证据理论4.1 不确定性及其类型推理的分类: 精确推理 不精确推理(即不确定推理)4.1 不确定性及其类型一、 不确定性的原因:A 证据的不确定性 歧义性: 不完全性: 不精确性: 模糊性: 可信性: 随机性:其它因素引起的不确定性。
4.1 不确定性及其类型B 规则的不确定性前提条件的不确定性:例如“如发高烧则可能感冒”, 发高烧是个模糊的概念。
观察证据的不确定性:如人的体温早晚是不同的。
组合证据的不确定性。
规则自身的不确定性。
在规则的使用过程中含有两种典型的不确定性4.1 不确定性及其类型C 推理的不确定性 推理的不确定性反映了知识不确定性的 动态积累和转播过程。
二、 不确定推理网络中的三种基本模式证据逻辑组合模式已知证据E1、E2、……、En的不确定测度分别为MU1、 MU2、 …… 、MUn,则证据组合后的不确定测度为MU(1) 证据的合取:MU(E1^E2^……^En)=f(MU1,MU2,……,MUn)f是一个函数的名称。
(2) 证据的析取:MU(E1 V E2 V …… V En)=g(MU1,MU2,……,MUn)g是一个函数的名称。
(3) 证据的否定: MU(~Ei)=h(MUi) h是一个函数的名称。
2. 证据的并行规则模式已知每一单条规则 if Ei then h with Mui(i=1,2,……,n),则所有规则都满足 时,h的不确定测度 MU=p(MU1,MU2, … ,MUn) p是一个函数的名称。
3. 证据的顺序规则模式已知规则 if E’ then E with MU0 if E then h with MU1则规则 if E’ then h with MU 中的MU的计算 MU=s(MU0,MU1) s是一个函数的名称4.2 主观Bayes方法1. 主观Bayes公式:a. p(E):证据E的不确定性,为E发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不确定性推理是一种在不确定情况下进行推理的方法,是人工智能领域中的一个重要分支。
它是基于对不确定性的建模,使用数学方法对不确定的信息进行推理的过程。
不确定性推理的应用非常广泛,在计算机科学、统计学、人工智能等领域都有广泛的应用。
它可以用于解决各种类型的推理问题,例如:
决策支持:通过不确定性推理,可以对决策过程中的不确定信息进行推理,为决策者提供支持。
建模和预测:不确定性推理可以用于对复杂的系统进行建模,并预测未来的发展趋势。
诊断和故障排除:不确定性推理可以用于诊断系统故障,并提供
解决矛盾问题:不确定性推理可以用于解决矛盾问题,例如两个相互矛盾的命题的真假性判定。
自然语言理解:不确定性推理可以用于自然语言理解,例如解决句子的歧义问题。
模式识别:不确定性推理可以用于模式识别,例如识别图像中的物体。
不确定性推理方法有许多种,其中包括贝叶斯网络、规则基系统、不确定性推理语言、随机游走模型等。
贝叶斯网络是一种用于不确定性推理的图形模型,它基于贝叶斯定理,通过对条件概率进行建模,可以对不确定的信息进行推理。
规则基系统是一种基于规则的不确定性推理方法,它使用规则来描述系统的知识,并使用规则来对不确定的信息进行推理。
不确定性推理语言是一种用于表示不确定信息的语言,常见的不确定性推理语言有PROLOG 和Fuzzy Logic。
随机游走模型是一种基于随机游走的不确定性推理方法,它通过模拟随机游走的过程,对不确定的信息进行推理。
在实际应用中,不确定性推理方法通常需要与其他方法结合使用,才能得到最优的结果。
例如,在人工智能系统中,不确定性推理方法常常与机器学习方法结合使用,以获得更好的结果。