行程问题经典例题

合集下载

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

行程问题九大题型

行程问题九大题型

行程问题九大题型一、相遇问题1. 基本概念两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇。

2. 公式相遇路程= 速度和×相遇时间,相遇时间= 相遇路程÷速度和,速度和= 相遇路程÷相遇时间。

3. 例题甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时3千米,经过4小时两人相遇。

求A、B两地的距离。

解:根据公式相遇路程= 速度和×相遇时间,速度和为\(5 + 3=8\)(千米/小时),相遇时间是4小时,所以相遇路程(即A、B两地距离)为\(8×4 = 32\)千米。

二、追及问题1. 基本概念两个物体同向运动,慢者在前,快者在后,经过一定时间快者追上慢者。

2. 公式追及路程= 速度差×追及时间,追及时间= 追及路程÷速度差,速度差= 追及路程÷追及时间。

3. 例题甲以每小时6千米的速度先走1小时后,乙以每小时8千米的速度从同一地点出发去追甲。

问乙多长时间能追上甲?解:甲先走1小时的路程就是追及路程,为\(6×1 = 6\)千米,速度差为\(8 - 6 = 2\)千米/小时。

根据追及时间= 追及路程÷速度差,可得追及时间为\(6÷2 = 3\)小时。

三、环形跑道问题1. 同地出发同向而行基本概念:在环形跑道上,两人同地出发同向而行,快者每追上慢者一次,就比慢者多跑一圈。

公式:追及路程= 环形跑道一圈的长度,追及时间= 环形跑道一圈的长度÷速度差。

例题:在周长为400米的环形跑道上,甲的速度是每秒6米,乙的速度是每秒4米。

如果两人同时同地同向出发,经过多长时间甲第一次追上乙?解:追及路程为400米,速度差为\(6 - 4 = 2\)米/秒,根据追及时间= 追及路程÷速度差,可得追及时间为\(400÷2 = 200\)秒。

(完整版)七年级数学应用题专题---行程问题【精】整理版

(完整版)七年级数学应用题专题---行程问题【精】整理版

行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。

3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。

4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。

⑴两人同时同向从同地出发经过多少分钟两人再相遇。

⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。

12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。

六年级数学行程问题

六年级数学行程问题

六年级数学行程问题一、行程问题题目1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地同时出发相向而行,快车每小时行60千米,慢车每小时行30千米。

问几小时后两车相遇?解析:两车相向而行,它们的相对速度就是两车速度之和,即公式千米/小时。

根据时间 = 路程÷速度,总路程是450千米,所以相遇时间为公式小时。

2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?解析:根据路程 = 速度×时间,从甲地到乙地的路程为公式千米。

返回时路程不变,时间为5小时,所以返回速度为公式千米/小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是6米/秒,小红的速度是4米/秒。

如果他们同时同地同向起跑,多少秒后小明第一次追上小红?解析:同向起跑时,小明第一次追上小红时,小明比小红多跑了一圈,即400米。

小明每秒比小红多跑公式米,所以追及时间为公式秒。

4. 两列火车同时从相距720千米的两地相对开出,一列火车每小时行50千米,另一列火车每小时行70千米。

经过几小时两车相遇?解析:两车相对开出,相对速度为公式千米/小时。

根据时间 = 路程÷速度,路程为720千米,所以相遇时间为公式小时。

5. 一辆客车和一辆货车分别从A、B两地同时出发,相向而行,客车的速度是每小时75千米,货车的速度是每小时65千米,经过3小时两车相遇。

A、B两地相距多少千米?解析:两车相向而行,它们的速度和为公式千米/小时,经过3小时相遇。

根据路程 = 速度×时间,所以A、B两地相距公式千米。

6. 甲、乙两人分别从相距24千米的两地同时出发相向而行,甲每小时走4千米,乙每小时走2千米,几小时后两人相遇?解析:两人相向而行,速度和为公式千米/小时。

根据路程÷速度= 时间,总路程24千米,所以相遇时间为公式小时。

7. 一辆汽车以每小时60千米的速度从甲地开往乙地,3小时后到达乙地,然后又以每小时45千米的速度返回甲地,求汽车往返的平均速度。

小学六年级数学思维训练奥数题—行程问题专练

小学六年级数学思维训练奥数题—行程问题专练

小学六年级数学思维训练奥数题—行程问题专练1.小天和爸爸同时分别从天安门和正阳门出发(天安门广场北起天安门,南至正阳门),相向而行。

小天每分钟走50米,爸爸的速度是小天的120%,相遇后,小天继续向前走9.6分钟到达正阳门。

天安门广场南北长多少米?2.一家人靠窗坐在速度为72千米/时的火车里,一列有30节车厢的货运火车迎面驶来,当货车车头经过窗口时开始计时,直到最后一节车厢驶过窗口共用时18秒。

已知货运火车每节车厢长16米,每两节车厢(包括车头)间距1.2米。

如果货运火车车头长24头,货车的速度是多少?3.从火车站坐公交车去泰山风景区,途中与同时从风景区开往火车站的某两出租车相遇,相遇点离火车站5千米。

相遇后两车继续以原速前进。

到达风景区后,我们发现有东西丢在火车站,又立即乘公交车返回。

在途中与返回的那辆出租车第二次相遇,相遇点在离风景区2.5千米处。

火车站与风景区之间相距多少千米呢?4.甲、乙两人沿着同一条路同时从山脚和山顶相向出发,甲上山行完全程要4小时,乙下山行完全程要6小时,两人在距中点150千米处相遇。

泰山山顶到山脚路程长多少米?5.甲船逆水航行600米需要3分钟,返回原地需要2分钟;乙船逆水航行同一段水路,需要4分钟。

(1)水流速度是多少?(2)乙船静水速度是多少?(3)乙船返回原地需要多少分钟?6.火车通过450米的大桥用时32秒,通过2200米的隧道时,火车的速度提高了一倍,所以通过隧道只用了51秒,火车的车长为多少米?7.一列火车长200米,它以每秒10米的速度穿过一座大桥,从车头上桥到车尾离开大桥共需80秒,这座桥长为()米。

8.一辆卡车、一辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在距B地20千米处第二次相遇,A、B两地间的路程是多少千米?9.甲、乙两车分别从A、B两地同时发出相向而行,相遇时距中5,求A、B两地的路程。

五年级行程问题经典例题

五年级行程问题经典例题

行程问题〔一〕专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米"分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64〔千米〕。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8〔千米〕。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用〔56+48〕×8就能得出。

32×2÷〔56-48〕=8〔小时〕〔56+48〕×8=832〔千米〕答:东、西两地相距832千米。

练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120〔千米〕,这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95〔千米〕。

此时,慢车行了95-25-7=63〔千米〕,因此慢车每小时行63÷3=21〔千米〕。

〔40×3-25×2-7〕÷3=21〔千米〕答:慢车每小时行21千米。

练习二1,兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

行程问题例题

行程问题例题

1. 小张骑自行车从A地到B地,全程共20公里。

他先以每小时15公里的速度骑行了2小时,然后以每小时10公里的速度骑行了3小时。

请问小张总共骑行了多少公里?
解:小张前两小时骑行的距离为15公里/小时× 2小时= 30公里,后三小时骑行的距离为10公里/小时× 3小时= 30公里,所以小张总共骑行了30公里+ 30公里= 60公里。

2. 小明和小华一起步行去公园,小明每分钟走80米,小华每分钟走100米。

他们同时出发,走了20分钟后,小明比小华多走了多少米?
解:小明20分钟走了80米/分钟× 20分钟= 1600米,小华20分钟走了100米/分钟× 20分钟= 2000米,所以小明比小华多走了2000米- 1600米= 400米。

3. 一辆汽车从A地到B地,全程共300公里。

已知汽车在高速公路上的限速为120公里/小时,普通公路上的限速为80公里/小时。

如果汽车在高速公路上行驶的时间是普通公路上行驶时间的两倍,那么汽车在两种公路上分别行驶了多少公里?
解:设汽车在高速公路上行驶了x公里,普通公路上行驶了y公里。

根据题意可得以下方程组:
x + y = 300
x = 2y
将第二个方程代入第一个方程得:2y + y = 300,解得y = 100,代入第二个方程得x = 2 × 100 = 200。

所以汽车在高速公路上行驶了200公里,普通公路上行驶了100公里。

行程问题典型例题

行程问题典型例题

行程问题典型例题
行程问题是一个经典的数学问题,它涉及到物体在一定时间内移动的距离和速度。

这类问题可以通过数学模型进行求解,包括公式、代数和几何等。

以下是一些典型的行程问题例题:
相遇问题:两个物体在同一时间从不同的地点出发,沿着同一直线相向而行,求它们相遇的时间和地点。

追及问题:一个物体在另一个物体的后面,在同一时间出发,沿着同一直线同向而行,求追及的时间和地点。

环形跑道问题:两个物体在同一起点沿着同一个圆形跑道相反方向而行,求再次相遇的时间和地点。

行船问题:一个船在水面上航行,水流的速度会影响船的航行速度,求船的航行时间和距离。

火车过桥问题:一列火车通过一座桥,桥的长度和火车的长度相同,求火车完全通过桥的时间。

飞行问题:一个飞机在空中飞行,受到风速的影响,求飞机的航行时间和距离。

这些例题都是行程问题的典型代表,可以通过它们来理解和掌握行程问题的基本概念和解决方法。

行程问题专题

行程问题专题

行程问题(一)相遇问题1.两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程.2.相遇问题公式:根据速度和、距离和相遇时间三者之间的关系,常用下面的公式:路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.例1.在比例尺是1∶4000000的地图上,A、B两地的距离是5厘米,两辆汽车同时从A、B两地相对开出,一辆汽车每小时行35千米,另一辆汽车每小时行45千米,几小时可以相遇?例2.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。

例3.甲乙两车从相距450千米的两地同时出发相向而行,经过3小时相遇。

已知甲车每小时比乙车少行驶10千米,那么乙车每小时行多少千米?例4.甲、乙两车从相距596千米的两地同时出发,相向而行,3小时后两车还相距32千米(未相遇)。

甲车每小时行84千米,乙车每小时行多少千米?例5.客车和货车同时从AB两地相向而行,货车每小时行60千米,货车每小时行48千米。

两车离两地中点30千米相遇,求两地间的距离是多少?例6.甲、乙两城市之间的铁路总长745千米,一列客车以每小时85千米的速度从甲城开往乙城,一列货车在客车出发1小时后,立即以每小时80千米的速度从乙城开往甲城。

货车出发后经过多少小时两车相遇?(二)追及问题【知识点归纳】1.追及问题的概念:追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.2.追及问题公式:根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速﹣慢速例1.甲从A出发,每分钟走50米,甲出发30分钟后,乙也从A出发,去追甲,乙每分钟走80米。

过隧道,过桥问题(行程问题)

过隧道,过桥问题(行程问题)

3.4(10.6)--过隧道,过桥问题(行程问题)
一.【知识要点】
1.火车通过桥:路程=桥的长+火车的车长
二.【经典例题】
1.在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?
2.某列车匀速前进,从它驶上300m的桥到完全通过,一共用了1
3
min, 又知桥上一盏固定的
灯光一直照射列车10s,求这列车的长.
3.如果某铁路桥长500米,现有一列火车从桥上通过,测得火车从开始上桥到过完桥共用了30秒,而整列火车完全在桥上的时间为20秒钟,求火车的长度和火车的速度。

三.【题库】
【A】
1.一列长200米的火车,速度是20m/s,完全通过一座长400米的大桥需要几秒?
【B】
1.一列火车匀速行驶,经过一条长300m的隧道需要20秒的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求火车的长度?
2.一列火车匀速行驶,经过一条长300米的隧道需要25秒,隧道顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,这列火车的长度是______________.
【C】
1.火车用26秒的时间通过了一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又相同的速度以16秒的时间通过了长96米的隧道,求这列火车的长度?
【D】
1.某桥长1500m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了60s,而整个火车在桥上的时间是40s,求火车的长度和速度。

2.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.。

数学--行程问题

数学--行程问题

A、B两地相距700千米,慢车行完全程需要10小时,快车行完全程需要8小时,慢车从A地出发1小时后,快车才从B地开出,快车开出几小时后与慢车相遇?练习一:客货两车同时从A、B两地相对开出,4.5小时相遇,相遇时客车比货车多行了27千米,货车的速度是客车的54,求A、B两地相距多少千米?练习二:甲、乙两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?如果第二次相遇在离A地55米处,A、B两地相距又是多远?练习三:兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?练习四:货车速度是客车的109,两车分别从甲、乙两地同时相向而行,在离两地中点3千米处相遇,相遇后,两车分别用原速继续前进,问当客车到达甲站时,货车还离乙站多远?练习五:甲、乙两车同时从A、B两站相对开出,5小时后甲到达中点,乙车离中点还有60千米,已知乙车速度是甲车的32,求A、B两站的距离。

练习六:客车由甲地到乙地需行10小时,货车从乙地到甲地需15小时,两车同时相向开出,相遇时客车距乙地还有192千米,两地的距离是多少千米?当甲在60 米赛跑中冲过终点线时,比乙领先10 米、比丙领先20 米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?练习一:2.一只兔子奔跑时,每一步都跑0.5 米;一只狗奔跑时,每一步都跑1.5 米. 狗跑一步时,兔子能跑三步.如果让狗和兔子在100 米跑道上赛跑,那么获胜的一定是练习二:骑车人以每分钟300 米的速度,从102 路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100 米时,一辆102 路电车开出了始发站,这辆电车每分钟行500 米,行5 分钟到达一站并停车1 分钟.那么需要多少分钟,电车追上骑车人?练习三:甲、乙两人同时从A 点背向出发沿400 米环行跑道行走,甲每分钟走80 米,乙每分钟走50 米,这二人最少用分钟再在A 点相遇.9.在400 米环形跑道上,A、B 两点相距100 米(如图).甲、乙两人分别从A、B 两点同时出发,按逆时针方向跑步.甲每秒跑5 米,乙每秒跑4 米,每人每跑100 米,都要停10秒钟.那么,甲追上乙需要的时间是多少秒?【题目】比和比例【答案】题目】比例模型【答案】01甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。

(完整版)五年级行程问题经典例题

(完整版)五年级行程问题经典例题

行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。

练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

练习二1,兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。

慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。

(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。

2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。

2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。

(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。

问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。

4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。

小学奥数行程问题专题全解

小学奥数行程问题专题全解

小学奥数行程问题专题全解(一例一练)行程问题变化很多,但是都是围绕速度义时间二路程这一基本公式展开的,做题的时候一定要学会画线段图,然后根据所求的问题去题目中寻找已知条件。

一、相遇问题(速度和义相遇时间=总路程)例1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行18千米,乙每小时行16千米,两人相遇时,距全程中点3千米,全程长多少千米?练习1、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4 千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是多少千米?例2、甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400 米,甲到少年宫后立即返回学校,在距离少年宫300 米处遇到乙,此时他们离开学校已30分钟.甲乙二人的速度各是多少?练习2、甲乙二人从A两地同时出发前往B地,甲的速度是50m/s,乙的速度是40m/s,甲到达B以后立即返回,在距A地120m的地方和乙相遇,求AB 两地之间的距离。

例3、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75 米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?练习3、甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A 地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?例4、甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?练习4、甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?例5、甲乙二人同时从相距200KM的AB两地出发,经过4小时相遇,已知甲的速度是乙的1.5倍,求甲乙二人的速度分别是多少?练习5、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8 千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离是多少千米?例6、甲乙两队学生从相距18千米的两地同时出发,相向而行。

行程问题

行程问题

12个经典的行程问题甲、乙两人分别从相距100 米的A 、B 两地出发,相向而行,其中甲的速度是2 米每秒,乙的速度是3 米每秒。

一只狗从A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。

问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。

不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米。

某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。

不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。

第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。

试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。

这个题目也是经典中的经典了。

把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。

这两个人一定会在途中的某个地点相遇。

这就说明了,这个人在两天的同一时刻都经过了这里。

甲从A 地前往B 地,乙从B 地前往A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。

两人首次在距离A 地700 米处相遇,后来又在距离B 地400 米处相遇。

求A 、B 两地间的距离。

答案:1700 米。

第一次相遇时,甲、乙共同走完一个AB 的距离;第二次相遇时,甲、乙共同走完三个AB 的距离。

可见,从第一次相遇到第二次相遇的过程花了两个从出发到第一次相遇这么多的时间。

既然第一次相遇时甲走了700 米,说明后来甲又走了1400 米,因此甲一共走了2100 米。

从中减去400 米,正好就是A 、B 之间的距离了。

甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。

则甲胜丙多少米?答案是19 米。

“乙胜丙10 米”的意思就是,等乙到了终点处时,丙只到了90 米处。

六年级行程问题经典例题40题

六年级行程问题经典例题40题

六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。

求A、B两地的距离。

解析:根据相遇问题的公式,路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。

2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。

要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。

客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。

客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。

3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。

A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。

二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。

追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。

5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。

(完整版)四年级数学行程问题

(完整版)四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。

7、小欣家离学校1000米,平时他步行25 分钟后准时到校。

有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。

行程问题经典例题

行程问题经典例题

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.行程问题分类例析河北 欧阳庆红行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等。

在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=。

顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程。

解答:设甲车共行使了xh ,则乙车行使了h x )(6025-。

(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4。

因此,甲车共行使了4h 。

说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行4.6h ,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h ,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.行程问题分类例析河北 欧阳庆红行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等。

在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=。

顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程。

解答:设甲车共行使了xh ,则乙车行使了h x )(6025-。

(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4。

因此,甲车共行使了4h 。

说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行4.6h ,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h ,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题。

顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++xx解得:x=1320。

答:这架飞机最远飞出1320km 就应返回。

解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575—25)(4。

6—t), 解得:t=2。

2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回。

说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x,解得x=1322。

5.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x 574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题. 解答:(1)设经过xh 两人首次相遇. 依题意,得(21+14)x=42, 解得:x=1.2.因此,经过1.2小时两人首次相遇. (3) 设经过xh 两人第二次相遇。

依题意,得21x-14x=42×2, 解得:x=12。

因此,经过12h 两人第二次相遇。

说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题。

从同一地点出发,相图1遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长。

有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇。

本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米.当甲第一次追上乙时,甲跑了多少圈?(第二届希望杯试题)分析与解:这是一道环形路上追及问题。

在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间。

追及路程:10+6=16(米)速度差:5-4。

5=0.5(米)追击时间:16÷0。

5=32(秒)甲跑了5×32÷[(10+6)×2]=5(圈)答:甲跑了5圈。

例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离。

解:①甲、乙两地之间的距离是:45×(12—6)+(45+15)×(12—6—2)=45×6+60×4=510(千米)。

②客车行完全程所需的时间是:510÷(45+15)=510÷60=8。

5(小时)。

③客车到甲地时,货车离乙地的距离:510—45×(8.5+2)=510-472.5=37.5(千米).答:客车到甲地时,货车离乙地还有37。

5千米。

例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长?分析与解:首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大(10+15)米,因此,14秒结束时,车头与乘客之间的距离为(10+15)×14=350(米).又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.解:(10+15)×14=350(米)答:乙车的车长为350米。

例5、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和。

列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为(250—210)米时,所用的时间为(25—23)秒.由此可求得列车的车速为(250-210)÷(25-23)=20(米/秒)。

再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250(米),从而可求出错车时间。

解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25—250=500-250=250(米)两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

答:错车时间为10秒。

例6、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。

甲每小时行32千米,乙每小时行48千米。

甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。

问:(1)两人出发后多久可以开始用对讲机联络?(2)他们用对讲机联络后,经过多长时间相遇?(3)他们可用对讲机联络多长时间?(第四届希望杯试题)分析与解:(1)(260—20)÷(32+48)=3(小时)。

(2)20÷(32+48)=0.25(小时)。

(3)从甲、乙相遇到他们第二次相距20千米也用0。

25小时.所以他们一共可用对讲机联络0.25+0。

25=0.5(小时)。

例7、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?分析与解:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。

解:①AB间的距离是64×3-48=192-48=144(千米)。

②两次相遇点的距离为144—48-64=32(千米)。

答:两次相遇点的距离为32千米.※例8赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又回沿原路返回,假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?(第五届希望杯试题)分析与解:赵伯伯上山和下山走的路程相同,上山速度为3千米,下山速度为6千米,上山与下山的平均速度是多少?(这是一个易错题)可以通过“设数”的方法让四年级同学明白。

相关文档
最新文档