行程问题例题
小学数学行程问题专项练习
典型例题1早晨,张老师从家骑自行车以每小时15千米的速度去上班,用0。
4小时到达学校。
中午下班,因逆风,张老师骑自行车以每小时12千米的速度沿原路回家,需多少小时到家?举一反三11、小明从家去学校,每分钟走80米,用了12分钟;中午放学沿原路回家,每分钟走100米,多少分钟到家?2、汽车从甲地到乙地平均每小时行50千米,6小时到达;原路返回时每小时比去时快10千米,返回时用了几个小时?3、货车从A城到B城,去时每小时行50千米,4小时到达;沿原路返回时比去时多用了1小时,返回时每小时比去时慢多少千米?典型例题2一辆汽车以每小时40千米的速度从甲地到乙地,出发1。
5小时后,超过中点8千米。
照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?举一反三21、一辆汽车以每小时50千米的速度从A地到B地,出发1。
2小时后,超过中点6千米.照这样的速度,这辆汽车还要行驶多长时间才能达到B地?2、一辆摩托车从甲地开往乙地,出发1。
8小时,行了72千米,距离中点还有8千米。
照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?3、一辆汽车以每小时40千米的速度从东站开往西站,1。
5小时后,剩下的路程比全程的一半少6千米。
照这样的速度,这辆汽车从东站到西站共需多长时间?典型例题3小明上学时坐车,回家时步行,在路上共用了1.25小时.如果往返都坐车,全部行程只需30分钟。
如果往返都步行,全部行程需要多少小时?举一反三31、小红上学时坐车,回家步行,在路上一共用了36分钟。
如果往返都坐车,全部行程只需10分钟,如果往返都步行,需要多少分钟?2、张师傅上班坐车,下班步行,在路上共用了1.5小时。
如果往返都步行,在路上一共需要2。
5小时。
问张师傅往返都坐车,在路上需要多少分钟?3、李师傅上班骑车,下班步行,在路上共用2小时,已知他骑车的速度是步行的4倍。
问李师傅往返骑车只需多少时间?典型例题4小明每天早晨6:50从家出发,7:20到校,老师要求他明天提前6分钟到校,如果明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家距学校多远?举一反三41、解放军某部开往边境,原计划需行军18天,实际平均每天比原计划多行12千米,结果提前3天到达。
小学数学行程问题例题50解
小学数学行程问题例题50解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是1 2-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
奥数行程问题典型例题三十道
奥数行程问题典型例题三十道奥数的学习需要多练习,奥数中行程问题是郑州小升初的常考问题。
下面是30道典型行程题目,供同学们练习。
(前20题是基本题,后10题比较难)1.飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.2.甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。
甲每小时行32千米,乙每小时行48千米。
甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。
问:(1)两人出发后多久可以开始用对讲机联络?(2)他们用对讲机联络后,经过多长时间相遇?(3)他们可用对讲机联络多长时间?3.甲、乙两辆汽车从、两地同时相向开出,出发后小时,两车相距千米;出发后小时,两车相遇.、两地相距多少千米?4.小王、小李共同整理报纸,小王每分钟整理份,小李每分钟整理份,小王迟到了分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?5.甲、乙两辆汽车同时从地出发去地,甲车每小时行千米,乙车每小时行千米.途中甲车出故障停车修理了小时,结果甲车比乙车迟到小时到达地.、两地间的路程是多少?6.如下图,某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?7.甲、乙两车分别同时从、两地相对开出,第一次在离地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地25千米处相遇.求、两地间的距离.8.如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.8.甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.9.快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?10.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?11.甲、乙二人沿着同一条米的跑道赛跑,甲由起跑线上起跑,乙在甲后米处起跑,当甲离终点还有米时,乙追上甲,那么当乙跑到终点时,甲离终点还有多少米?12.甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。
小学四-五年级行程问题练习及答案(全集)
1、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远分析:由题意可知:客车先行1小时,货车才开出,先求出剩下的路程,再根据路程÷速度和=相遇时间,求出相遇时间再加上1小时即可,然后用总路程减去客车4小时行驶的路程问题即可得到解决.解答:解:相遇时间:(360-60)÷(60+40)+1,=300÷100+1,=3+1,=4(小时),360-60×4,=360-240,=120(千米),答:客车开出后4小时与货车相遇,相遇地点距B地120千米.2、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)3、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多分析:这道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的奇数)就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(秒),正好相遇.4、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
行程问题
行程问题(一)姓名例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人速度各是多少?例3、王欣和陆良两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆良每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆良后,立即回头向王欣跑去,遇到王欣再向陆良跑去。
这样不断来回,直到王欣和陆良相遇为止,狗共行了多少米?例4、甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?例5、甲、乙两人骑车同时从东西两地相向而行,8小时相遇。
如果甲每小时少行1千米,乙每小时多行3千米,这样过7小时就可以相遇。
东西两地相距多少千米?例6、甲乙两车同时从东西两地相对开出,6小时相遇。
如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。
东西两地相距多少千米?例7、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A地40千米处相遇。
A、B两地相距多少千米?1、甲乙两艘轮船分别从A、B两港同时出发而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇。
两地间的水路长多少千米?2、甲乙两车分别从相距480千米的AB两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从城到A城需12小时,两车出发后多少小时相遇?3、甲乙两队学生从相隔18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?4、小东和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同地相背而行,小刚跑6分钟后两人第一次相遇,小东跑一周要8分钟,小刚跑一周要几分钟?5、小明和小军分别从甲乙两地同时出发,相向而行。
行程问题
金牌例题
• 1.小红骑自行车需要在规定的时间内把信件 送到某地,每小时走15千米可以早到0.4小 时,如果每小时12千米就要迟到0.25小时, 他去某地的路程有多远?
金牌例题
• 2.快慢两车同时从甲地到乙地,快车每小时 54千米,慢车每小时行驶48千米,途中快 车因故障停留3小时,结果两车同时到达乙 地,求甲乙Байду номын сангаас地间的距离。
行程问题二
• 有些较复杂的应用题,运用算术法解答有 一定困难,列方程解答就比较简单。
• 列方程解答行程问题的优点是:可以使未 知的数直接参与运算,列方程时能充分利 用我们熟悉的数量关系。因此,对于一些 复杂的行程问题,我们可以用题中已知的 条件和所设的未知数,根据自己最熟悉的 等量关系列出方程,方便解题。
金牌例题
• 3.两地相距460千米,甲列车开出两小时后, 乙列车和甲列车相向开出,经过4小时与甲 列车相遇。已知甲列车每小时比乙列车多 行10千米,甲列车每小时行多少千米?
金牌例题
• 4.甲船从东港到西港要行6小时,乙船从西 港到东港要行4小时,现在两船同时从东西 两港出发,相向而行,结果在离中点18千 米的地方相遇,相遇时甲船行了多少千米?
行程问题
行程问题是专门讲物体匀速运动 的路程,时间,速度三者之间的关系 的应用题。有的涉及一个物体的运动, 有的涉及两个物体的运动。
行程问题
• 两个物体运动的形式有相向(相遇),同 向(追及),背向(相离)三种情况。 • 路程=速度×时间 • 相向而行:相遇时间=距离÷速度和 • 相背而行:向背距离=速度和×时间 • 同向而行:追及时间=追及距离÷速度差
行程问题金牌例题
• 1、甲乙两车同时从相距299千米的两地相 向而行,甲车每小时行驶52千米,乙车每 小时行驶40千米,几小时后,两车第一次 相距69千米,再经过几小时两车第二次相 距69千米?
行程问题例题
1. 小张骑自行车从A地到B地,全程共20公里。
他先以每小时15公里的速度骑行了2小时,然后以每小时10公里的速度骑行了3小时。
请问小张总共骑行了多少公里?
解:小张前两小时骑行的距离为15公里/小时× 2小时= 30公里,后三小时骑行的距离为10公里/小时× 3小时= 30公里,所以小张总共骑行了30公里+ 30公里= 60公里。
2. 小明和小华一起步行去公园,小明每分钟走80米,小华每分钟走100米。
他们同时出发,走了20分钟后,小明比小华多走了多少米?
解:小明20分钟走了80米/分钟× 20分钟= 1600米,小华20分钟走了100米/分钟× 20分钟= 2000米,所以小明比小华多走了2000米- 1600米= 400米。
3. 一辆汽车从A地到B地,全程共300公里。
已知汽车在高速公路上的限速为120公里/小时,普通公路上的限速为80公里/小时。
如果汽车在高速公路上行驶的时间是普通公路上行驶时间的两倍,那么汽车在两种公路上分别行驶了多少公里?
解:设汽车在高速公路上行驶了x公里,普通公路上行驶了y公里。
根据题意可得以下方程组:
x + y = 300
x = 2y
将第二个方程代入第一个方程得:2y + y = 300,解得y = 100,代入第二个方程得x = 2 × 100 = 200。
所以汽车在高速公路上行驶了200公里,普通公路上行驶了100公里。
行程问题典型例题
行程问题典型例题
行程问题是一个经典的数学问题,它涉及到物体在一定时间内移动的距离和速度。
这类问题可以通过数学模型进行求解,包括公式、代数和几何等。
以下是一些典型的行程问题例题:
相遇问题:两个物体在同一时间从不同的地点出发,沿着同一直线相向而行,求它们相遇的时间和地点。
追及问题:一个物体在另一个物体的后面,在同一时间出发,沿着同一直线同向而行,求追及的时间和地点。
环形跑道问题:两个物体在同一起点沿着同一个圆形跑道相反方向而行,求再次相遇的时间和地点。
行船问题:一个船在水面上航行,水流的速度会影响船的航行速度,求船的航行时间和距离。
火车过桥问题:一列火车通过一座桥,桥的长度和火车的长度相同,求火车完全通过桥的时间。
飞行问题:一个飞机在空中飞行,受到风速的影响,求飞机的航行时间和距离。
这些例题都是行程问题的典型代表,可以通过它们来理解和掌握行程问题的基本概念和解决方法。
行程问题经典例题
8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】注意观察图形,当甲、乙第一次相遇时,甲乙共走完1 2圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.行程问题分类例析河北欧阳庆红行程问题有相遇问题,追与问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动与曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追与问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追与,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.解答:设甲车共行使了xh ,则乙车行使了hx )(6025-.(如图1)依题意,有72x+48)(6025-x =360+100,解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回?分析:列方程求解行程问题中的顺风逆风问题.图1顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++x x 解得:x=1320.答:这架飞机最远飞出1320km 就应返回.解法二: 设飞机顺风飞行时间为th.依题意,有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回.说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇?分析:这是环形跑道的行程问题.解答:(1)设经过xh 两人首次相遇.依题意,得(21+14)x=42,解得:x=1.2.因此,经过1.2小时两人首次相遇.(3)设经过xh两人第二次相遇.依题意,得21x-14x=42×2,解得:x=12.因此,经过12h两人第二次相遇.说明:在封闭的环形跑道上同向运动属追与问题,反向运动属相遇问题.从同一地点出发,相遇时,追与路程或相隔路程就是环形道的周长,第二次相遇,追与路程为两圈的周长.有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
行程问题专项练习(例题+解析)免费
例1、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。
已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。
A. 30B. 40C. 50D. 60答案C解析:方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60[y+(x-30)]+40(x-30), y=50方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50例2、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。
如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。
又知甲的速度比乙的速度快,乙原来的速度为()A.3千米/时 B.4千米/时 C.5千米/时 D.6千米/时答案B解析:原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。
注意:在解决这种问题的时候一定要先判断谁的速度快。
方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。
例3、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A.120B.100C.90D.80答案A。
解析:方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
方法2、乙第二次相遇所走路程是第一次的二倍,则有54×2-42+54=120。
例4、一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。
小学四年级行程问题练习及答案
相遇问题1、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇相遇地点距B地多远分析:由题意可知:客车先行1小时,货车才开出,先求出剩下的路程,再根据路程÷速度和=相遇时间,求出相遇时间再加上1小时即可,然后用总路程减去客车4小时行驶的路程问题即可得到解决.解答:解:相遇时间:360-60÷60+40+1,=300÷100+1,=3+1,=4小时,360-60×4,=360-240,=120千米,答:客车开出后4小时与货车相遇,相遇地点距B地120千米.2、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少解答:分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB 全程.AB间的距离是64×3-48=144千米3、一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒…连续的奇数,就调头爬行.那么,它们相遇时已爬行的时间是多少秒分析:这道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢非常简单,由于半圆周长为:÷2=米=63厘米,所以可列式为:÷2÷+=7秒;我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…连续的奇数就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7秒,正好相遇.4、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A 城44千米处相遇;两城市相距千米选择D;解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为104+96÷2=100千米;知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇;一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍;5、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A 地42千米处相遇;请问A、B两地相距多少千米选择A;解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120; 6、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇;两城市相距千米选择D;解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为104+96÷2=100千米;7、8、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少解答:分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144千米9、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米10、解答:丙遇到乙后此时与甲相距50+70×2=240米,也是甲乙的路程差,所以240÷60-50=24分,即乙丙相遇用了24分钟,A、B相距70+60×24=3120米.10、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米分析:甲队每小时行5千米,乙对每小时行4千米,两地相距18千米,根据路程÷速度和=相遇时间可知,两人相遇时共行了18÷4+5=2小时,在这两小时中,这名骑自行车的学生始终在运动,所以两队相遇时,骑自行车的学生共行:15×2=30千米.解答:解:18÷4+5×15=18÷9×15,=30千米.答:两队相遇时,骑自行车的学生共行30千米.点评:明确两队相遇时,骑自行车的学生始终在运动,然后根据时间×速度=所行路程求出骑自行车的学生行的路程是完成本题的关键.11、12、甲乙二人分别从A、B两地同时出发,并在两地间往返行走;第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米答案:1第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.2甲、乙从出发到第二次相遇共行3个全程;从第一次相遇后时到第二次相遇他们共行2个全程;在这2个全程中甲行400+100=500米;说明甲在每个全程中行500/2=250米;3因此在第一次相遇时一个全程250+400=650米答:两地相距650米;火车过桥火车过桥问题是行程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题;基本数量关系是火车速度×时间=车长+桥长例题解析例1一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间分析列车过桥,就是从车头上桥到车尾离桥止;车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速;解:800+150÷19=50秒答:全车通过长800米的大桥,需要50秒;边学边练一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒例2一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒;这条隧道长多少米分析先求出车长与隧道长的和,然后求出隧道长;火车从车头进洞到车尾离洞,共走车长+隧道长;这段路程是以每秒8米的速度行了40秒;解:1火车40秒所行路程:8×40=320米2隧道长度:320-200=120米答:这条隧道长120米;边学边练一支队伍1200米长,以每分钟80米的速度行进;队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令;问联络员每分钟行多少米例3一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过分析本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间;依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和;解:1火车与小华的速度和:15+2=17米/秒2相距距离就是一个火车车长:119米3经过时间:119÷17=7秒答:经过7秒钟后火车从小华身边通过;一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是每秒多少米例4一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米分析与解火车40秒行驶的路程=桥长+车长;火车30秒行驶的路程=山洞长+车长;比较上面两种情况,由于车长与车速都不变,所以可以得出火车40-30=10秒能行驶530-380=150米,由此可以求出火车的速度,车长也好求了;解:1火车速度:530-380÷40-30=150÷10=15米/秒2火车长度:15×40-530=70米答:这列火车的速度是每秒15米,车长70米;边学边练一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少例5某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为千米.求步行人每小时行多少千米分析一列客车从身后开来,在身旁通过的时间是15秒钟,实际上就是指车尾用15秒钟追上了原来与某人105米的差距即车长,因为车长是105米,追及时间为15秒,由此可以求出车与人速度差,进而求再求人的速度;解:1车与人的速度差:105÷15=7米/秒=千米/小时2步行人的速度:千米/小时答:步行人每小时行千米;1.少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟2.3.解答:解:队伍长:4.5.1×346÷2-1,6.7.=1×173-1,8.9.=172米;10.11.过桥的时间:12.13.702+172÷23,14.15.=874÷23,16.17.=38分钟.18.19. 答:整个队伍从上桥到离桥共需要38分钟.考点:列车过桥问题;植树问题.1、一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;轨道是笔直的声速是每秒钟340米,求火车的速度得数保留整数2、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为千米.求步行人每小时行多少千米3、一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.4、一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示单位:千米.两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟火车过桥答案1、火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了1360÷340=4秒.可见火车行1360米用了57+4=61秒,将距离除以时间可求出火车的速度;1360÷57+1360÷340=1360÷61≈22米2、火车=×1000÷3600=8米/秒,人步行15秒的距离=车行15秒的距离-车身长;8×15-105÷15=1米/秒,1×60×60=3600米/小时=千米/小时;答:人步行每小时千米.3、人8秒走的距离=车身长-车8秒走的距离;144-60÷60×8÷8=17米/秒答:列车速度是每秒17米;4、两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短;从图中可知,AE的距离是:225+25+15+230=495千米,两车相遇所用的时间是:495÷60+50=小时,相遇处距A站的距离是:60×=270千米,而A,D两站的距离为:225+25+15=265千米由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5千米,那么,先到达D站的火车至少需要等待也就是11分钟,此题还有别的解法,同学们自己去想一想;一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度解答:可以看成一个相遇问题,总路程就是车身长度,所以火车与人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟解答:如图:从车头相遇到车尾离开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾离开所用时间为280÷20+15=8秒.某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度;解答:分析此题是火车的追及问题;火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒;填空题1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要_______时间.2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为千米,求步行人每小时走______千米3.一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是______米/秒.4.马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过_____秒后,甲、乙两人相遇.5.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要_____分钟.6.一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行_____米.7.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是______米/秒,全长是_____米.8.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是_____秒.9.一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是_______米.10.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行______千米.答案1.火车过隧道,就是从车头进隧道到车尾离开隧道止.如图所示,火车通过隧道时所行的总距离为:隧道长+车长.200+200÷10=40秒答:从车头进入隧道到车尾离开共需40秒.2.根据题意,火车和人在同向前进,这是一个火车追人的"追及问题".由图示可知:人步行15秒钟走的距离=车15秒钟走的距离-车身长.所以,步行人速度×15=×1000÷60×60×15-105步行人速度=×1000÷60×60-105÷5=1米/秒=千米/小时答:步行人每小时行千米.3.客车与人是相向行程问题,可以把人看作是有速度而无长度的火车,利用火车相遇问题:两车身长÷两车速之和=时间,可知,两车速之和=两车身长÷时间=144+0÷8=18.人的速度=60米/分=1米/秒.车的速度=18-1=17米/秒.答:客车速度是每秒17米.4.1先把车速换算成每秒钟行多少米18×1000÷3600=5米.2求甲的速度.汽车与甲同向而行,是追及问题.甲行6秒钟的距离=车行6秒钟的距离-车身长. 所以,甲速×6=5×6-15,甲速=5×6-15÷6=米/每秒.3求乙的速度.汽车与乙相向而行,是相向行程问题.乙行2秒的距离=车身长-车行2秒钟的距离. 乙速×2=15-5×2,乙速=15-5×2÷2=米/每秒.4汽车从离开甲到离开乙之间的时间是多少×60+2=32秒.5汽车离开乙时,甲、乙两人之间的距离是多少××60+2=80米.6甲、乙两人相遇时间是多少80÷+=16秒.答:再过16秒钟以后,甲、乙两人相遇.5.从车头上桥到车尾离桥要4分钟.6.队伍6分钟向前进80×6=480米,队伍长1200米,6分钟前进了480米,所以联络员6分钟走的路程是:1200-480=720米720÷6=120米/分答:联络员每分钟行120米.7.火车的速度是每秒15米,车长70米.÷20-18=517秒9.火车速度是:1200÷60=20米/秒火车全长是:20×15=300米×51-1÷2×60÷1000=60千米/小时解答题1.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;轨道是笔直的声速是每秒钟340米,求火车的速度得数保留整数2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为千米.求步行人每小时行多少千米3.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.4.一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示单位:千米.两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟答案1.火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了1360÷340=4秒.可见火车行1360米用了57+4=61秒,将距离除以时间可求出火车的速度.1360÷57+1360÷340=1360÷61≈22米2.火车=×1000÷3600=8米/秒人步行15秒的距离=车行15秒的距离-车身长.8×15-105÷15=1米/秒1×60×60=3600米/小时=千米/小时答:人步行每小时千米.3.人8秒走的距离=车身长-车8秒走的距离144-60÷60×8÷8=17米/秒答:列车速度是每秒17米.4.两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE的距离是:225+25+15+230=495千米两车相遇所用的时间是:495÷60+50=小时相遇处距A站的距离是:60×=270千米而A,D两站的距离为:225+25+15=265千米由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5千米,那么,先到达D站的火车至少需要等待:小时小时=11分钟此题还有别的解法,同学们自己去想一想.1.某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行千米的火车错车时需要秒;解:火车过桥问题公式:车长+桥长/火车车速=火车过桥时间速度为每小时行千米的火车,每秒的速度为18米/秒,某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,则该火车车速为:250-210/25-23=20米/秒路程差除以时间差等于火车车速.该火车车长为:2025-250=250米或2023-210=250米所以该列车与另一列长320米,速度为每小时行千米的火车错车时需要的时间为320+250/18+20=15秒2.一列火车长160m,匀速行驶,首先用26s的时间通过甲隧道即从车头进入口到车尾离开口为止,行驶了100km后又用16s的时间通过乙隧道,到达了某车站,总行程;求甲、乙隧道的长解:设甲隧道的长度为xm那么乙隧道的长度是单位是千米1000-x=352-x那么x+160/26=352-x+160/16解出x=256那么乙隧道的长度是352-256=96火车过桥问题的基本公式火车的长度+桥的长度/时间=速度3.甲、乙两人分别沿铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是千米/小时,这列火车有多长分析:从题意得知,甲与火车是一个相遇问题,两者行驶路程的和是火车的长.乙与火车是一个追及问题,两者行驶路程的差是火车的长,因此,先设这列火车的速度为χ米/秒,两人的步行速度千米/小时=1米/秒,所以根据甲与火车相遇计算火车的长为15χ+1×15米,根据乙与火车追及计算火车的长为17χ-1×17米,两种运算结果火车的长不变,列得方程为15χ+1×15=17χ-1×17解得:χ=16故火车的长为17×16-1×17=255米流水行船1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.假定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇2.解答:解:120÷25-5+25+5,3.=120÷50,4.=小时.5. 答:两艘客轮在出发后小时相遇.甲、乙两个港口之间的水路长300千米,一只船从甲港到乙港,顺水5小时到达,从乙港返回甲港,逆水6小时到达;求船在静水中的速度和水流速度解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是60+50÷2=55千米/小时,水流速度是60-50÷2=5千米/小时;四年级奥数流水行船行程问题:流水中相遇和追及在流水中的相遇和追及,水速不影响相遇和追及时间例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度分析V甲顺=V甲船+V水V乙顺=V乙船+V水V乙逆=V乙船-V水相遇速度和=V甲顺+V乙逆=V甲船+V水+V乙船-V水=V甲船+V乙船速度和=路程和÷相遇时间=90÷3=30Km/h追及速度差=V甲顺-V乙顺=V甲船+V水-V乙船+V水=V甲船+V水-V乙船-V水=V甲船-V乙船速度差=路程差÷追及时间=90÷9=10Km/hV甲船+V乙船=30V甲船-V乙船=10得到V甲船=20Km/hV乙船=10Km/h答:甲船的速度为20千米每小时,乙船的速度为10千米每小时;追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间行路方面的相遇问题,基本特征是两个运动的物体同时或不同时由两地出发相向而行,在途中相遇;基本关系如下:相遇时间=总路程÷甲速+乙速总路程=甲速+乙速×相遇时间甲、乙速度的和-已知速度=另一个速度相遇问题的题材可以是行路方面的,也可以是共同工作方面的;由于已知条件的不同,有些题目是求相遇需要的时间,有些题目是求两地之间的路程,还有些题目是求另一速度的;相应地,共同工作的问题,有的求完成任务需要的时间,有的求工作总量,还有的求另一个工作效率的;追及问题主要研究同向追及问题;同向追及问题的特征是两131个运动物体同时不同地或同地不同时出发作同向运动;在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体;在日常生活中,落在后面的想追赶前面的情况,是经常遇到的;基本关系如下:追及所需时间=前后相隔路程÷快速-慢速有关同向追及问题,在行路方面有这种情况,相应地,在生产上也有这种情况;例1:甲、乙两地相距710千米,货车和客车同时从两地相对开出,已知客车每小时行55千米,6小时后两车仍然相距20千米;求货车的速度分析:货车和客车同时从两地相对开出,6小时后两车仍然相距20千米,从710千米中减去20千米,就是两车6小时所行的路;又已知客车每小时行55千米,货车的速度即可求得;计算:710-20÷6-55=690÷6-55=115-55=60千米答:货车时速为60千米;例2:铁道工程队计划挖通全长200米的山洞,甲队从山的一侧平均每天掘进米,乙队从山的另一侧平均每天掘进米,两队同时开挖,需要多少天挖通这个山洞计算:200÷+=200÷=80天答:需要80天挖通这个山洞;例3:甲、乙两个学生从学校到少年活动中心去,甲每分钟走60米,乙每分钟走50米;乙走了4分钟后,甲才开始走;甲要走多少分钟才能追上乙分析:“乙走了4分钟后,甲才开始走”,说明甲动身的时候,乙已经距学校50×4=200米了;甲每分钟比乙多走60-50=10米;这样,即可求出甲追上乙所需时间;计算:50×4÷60-50=200÷10=20分钟答:甲要走20分钟才能追上乙;练习题1、A、B两地相距900千米,甲走完两地需15天,乙走完两地需12天,如果甲先走2天,乙再去追甲,问要走多少千米才能追上2、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明;小强骑自行车的速度是多少3、甲乙两人分别从相距420千米的两地乘车出发,相向而行,5小时后相遇;如果甲乙两人乘原来的车分别从两地同时同向出发,慢车在前,快车在后,15小时后甲乙两人相遇,求快慢车的速度分别是多少4、甲轮船以每小时16千米的速度由一码头出发,经过3小时,乙轮船也由同一码头按照相同方向出发,再经过12小时追上甲轮船,求乙轮船的速度;5、甲乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米,两人相遇时距全程中点3千米,问全程长度多少千米。
(完整版)五年级行程问题经典例题
行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
(含答案解析)一次函数应用题“行程问题”典型例题20题
(2)求线段BC所表示的y与x之间的函数关系式;
(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.求第二列快车出发多长时间,与慢车相距200km.
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.
7.快、慢两车分别从相距360km的佳市、哈市两地出发,匀速行驶,先相向而行,慢车在快车出发1h后出发,到达佳市后停止行驶,快车到达哈市后,立即按原路原速返回佳市(快车调头的时间忽略不计),快、慢两车距哈市的路程y1(单位:km),y2(单位:km)与快车出发时间x(单位:h)之间的函数图象如图所示,请结合图象信息解答下列问题:
3.在一条笔直的公 路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为米/分,点M的坐标为;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】
解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
(1)乙车的速度为千米/时, , .
(2)求甲、乙两车相遇后 与 之间的函数关系式.
(3)当甲车到达距 地70千米处时,求甲、乙两车之间的路程.
行程问题
12个经典的行程问题甲、乙两人分别从相距100 米的A 、B 两地出发,相向而行,其中甲的速度是2 米每秒,乙的速度是3 米每秒。
一只狗从A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。
不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米。
某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。
不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。
第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。
试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。
这个题目也是经典中的经典了。
把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。
这两个人一定会在途中的某个地点相遇。
这就说明了,这个人在两天的同一时刻都经过了这里。
甲从A 地前往B 地,乙从B 地前往A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。
两人首次在距离A 地700 米处相遇,后来又在距离B 地400 米处相遇。
求A 、B 两地间的距离。
答案:1700 米。
第一次相遇时,甲、乙共同走完一个AB 的距离;第二次相遇时,甲、乙共同走完三个AB 的距离。
可见,从第一次相遇到第二次相遇的过程花了两个从出发到第一次相遇这么多的时间。
既然第一次相遇时甲走了700 米,说明后来甲又走了1400 米,因此甲一共走了2100 米。
从中减去400 米,正好就是A 、B 之间的距离了。
甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。
则甲胜丙多少米?答案是19 米。
“乙胜丙10 米”的意思就是,等乙到了终点处时,丙只到了90 米处。
行程问题
行程问题例题精讲例1甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东西两地相距多少千米?例2甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,距西村15千米处遇到乙。
求东、西两村相距多少千米?例3一辆汽车从甲地开往乙地,平均每小时行20千米,到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。
求甲乙两地的路程。
例4快慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。
途中快车因故停留3小时。
结果两车同时到达B地,求甲乙两地间的路程。
例5 A、B两地相距1200千米,甲车从A地开往B地,每小时行60千米,乙车同时从B地开往A地每小时行40千米。
几小时后两车相遇?例6一列火车通过一个长500米的隧道用了25秒钟,以同样的速度通过一条长800米的隧道用了35秒钟。
求这列火车的速度和车身的长度?例7 从甲地到乙地快车要6小时,慢车要8小时,如果两车同时从甲、乙两地相对开出,可在距中点20千米处相遇。
甲、乙两地的距离为多少千米?例8甲、乙两船航行于A、B两地之间,由A到B航速为每小时35千米,由B到A航速为每小时25千米。
今甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在相遇时距B地距离为A、B两地距离的三分之一,求两地的距离和相遇时甲船航行的时间。
例9 甲乙丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米。
甲乙两人从东镇,丙从西镇同时出发,丙遇到乙后2分钟又遇到甲。
问两镇距离的四分之一是多少米?例10 甲乙两地相距1200米,有两人分别从甲乙两城同时相向出发,10分钟后相遇。
如果两人各自提速60%,仍从甲乙两地同时相向出发,则出发后多少秒相遇?例11 甲、乙两货车同时从相距300千米的A、B两地相对开出,甲车以每小时60千米的速度开往B地,乙车以每小时40千米的速度开往A地。
小学数学专题 行程问题 例题+练习
小学数学专题行程问题例题讲解:例题1:两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答:48×(165÷24)-48=282(分钟)=4.7(小时)练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?解答:420×2÷(42+28)=12小时2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?解答: 900÷15×【15-900÷(900÷15+900÷10)】=540千米3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
到10点钟时两车相距112.5千米。
继续行进到下午1时,两车相距还是112.5千米。
A、B两地间的距离是多少千米?解答:甲、乙两车的速度和:112.5×2÷(13-10)=75千米A、 B两地的距离:75×(10-8)+112.5=262.5千米例题2:两辆汽车同时从东、西两站相向开出。
第一次在离东站60千米的地方相遇。
之后,两车继续以原来的速度前进。
各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。
两站相距多少千米?解答:从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。
两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。
这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。
找到这个关系,东、西两这站之间的距离也就可以求出来了。
行程问题例题
行程问题 - 例题答案模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进, 甲到达 B 地和乙到达A 地后都立即沿原路返回,二人第二次相遇的地点距第一次相遇的地点 30 千米,那么 A 、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比, 即两个人相遇时所走过的路程比为 4 : 3 .第一次相遇时甲走了全程的 4/7;第二次相遇时甲、乙两个人共走了 3 个全程,三个全程中甲走了43 1 5 个全程,与第一次相遇地点的距离为775 (1 4) 2 个全程.所以A 、B 两地相距77 7302105 (千米 ).7【例 2】B 地在 A ,C 两地之间.甲从 B 地到 A 地去送信,甲出发 10 分后,乙从 B 地出发到 C 地去送另一封信,乙出发后 10 分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.甲、乙的速度相等,丙的速度是甲、乙速度的 3 倍,丙从出发到把信调过来后返回 B 地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:A 10 分钟10 分钟B C10 分钟因为丙的速度是甲、乙的 3 倍,分步讨论如下:(1〕假设丙先去追及乙,因时间相同丙的速度是乙的 3 倍,比乙多走两倍乙走需要 10 分钟,所以丙用时间为: 10÷〔3-1〕=5〔分钟〕此时拿上乙拿错的信A 10 分钟10 分钟B C5分钟10 分钟5分钟当丙再回到 B 点用 5 分钟,此时甲已经距B 地有 10+10+5+5=30〔分钟〕,同理丙追及时间为30÷〔3-1〕=15〔分钟〕,此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B 地: 10+ 5+5+15+15=50〔分钟〕,此时追及乙需要: 50÷〔3-1〕=25〔分钟〕,返回 B 地需要 25 分钟所以共需要时间为5+5+15+15+25+ 25=90〔分钟〕〔2〕 同理先追及甲需要时间为120 分钟【例 3】( “圆明杯〞数学邀请赛 ) 甲、乙两人同时从 A 、 B 两点出发,甲每分钟行80 米,乙每分钟行 60 米,出发一段时间后, 两人在距中点的 C 处相遇;如果甲出发后在途中某地停留了 7 分钟,两人将在距中点的 D 处相遇,且中点距 C 、 D 距离相等,问 A 、 B 两点相距多少米?【分析】甲、乙两人速度比为 80:60 4:3 ,相遇的时候时 间相等,路程比等于速度之比, 相遇时甲走了全程的 4 ,乙走了全程的 3 .第二次甲停77留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的 4,甲7行了全程的 3 .由于甲、乙速度比为 4 : 3 ,根7据时间一定, 路程比等于速度之比, 所以甲行走期间乙走了 37 34 ,所以甲停留期间乙行了 4 3 3 1 ,所以 A 、 B 两点的距离为7 7 4 4607=1680 (米).41【例 4】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5 :4,相遇后甲的速度减少20% ,乙的速度增加 20% .这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A、B 两地相距多少千米?【解析】两车相遇时甲走了全程的5 ,乙走了全程的94,之后甲的速度减少 20% ,乙的速度增9加20% ,此时甲、乙的速度比为5 (1 20%) : 4 (1 20%) 5: 6,所以甲到达 B 地时,乙又走了 46 8,距离 A 地 581 ,所以9 5 15 9 15 451450 (千米 ).A 、B 两地的距离为1045【例 5】早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午2 点时两人之间的距离是l5 千米.下午 3点时,两人之间的距离还是l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3点时小王超过小张15 千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张 3 小时走了 15 30 45 千米,故小张的速度是45 ÷3 =15 千米 /时,小王的速度是 15 +30 =45 千米 /时.全程是 45 ×3=135 千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题例题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】注意观察图形,当甲、乙第一次相遇时,甲乙共走完1 2圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.行程问题分类例析河北欧阳庆红行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快SSS+=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km,甲车从A地出发开往B地,每小时行72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行使48km,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.解答:设甲车共行使了xh,则乙车行使了hx)(6025-.(如图1)依题意,有72x+48)(6025-x=360+100,解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会.图例2:一架战斗机的贮油量最多够它在空中飞行,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++xx解得:x=1320.答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25), 解得:t=.(575+25)t=600×=1320.答:这架飞机最远飞出1320km 就应返回.说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x,解得x=.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x 574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇(2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇分析:这是环形跑道的行程问题.解答:(1)设经过xh两人首次相遇.依题意,得(21+14)x=42,解得:x=.因此,经过小时两人首次相遇.(3)设经过xh两人第二次相遇.依题意,得21x-14x=42×2,解得:x=12.因此,经过12h两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
当甲第一次追上乙时,甲跑了多少圈(第二届希望杯试题)分析与解:这是一道环形路上追及问题。
在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间。
追及路程:10+6=16(米)速度差:5-=(米)追击时间:16÷=32(秒)甲跑了5×32÷[(10+6)×2]=5(圈)答:甲跑了5圈。
例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.解:①甲、乙两地之间的距离是:45×(12—6)+(45+15)×(12—6—2)=45×6+60×4=510(千米).②客车行完全程所需的时间是:510÷(45+15)=510÷60=(小时).③客车到甲地时,货车离乙地的距离:510—45×(+2)=510-=(千米).答:客车到甲地时,货车离乙地还有37.5千米.例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长分析与解:首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大(10+15)米,因此,14秒结束时,车头与乘客之间的距离为(10+15)×14=350(米).又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.解:(10+15)×14=350(米)答:乙车的车长为350米.例5、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和。
列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为(250—210)米时,所用的时间为(25—23)秒.由此可求得列车的车速为(250—210)÷(25—23)=20(米/秒).再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250(米),从而可求出错车时间。
解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米)两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).答:错车时间为10秒.例6、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。
甲每小时行32千米,乙每小时行48千米。
甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。
问:(1)两人出发后多久可以开始用对讲机联络(2)他们用对讲机联络后,经过多长时间相遇(3)他们可用对讲机联络多长时间(第四届希望杯试题)分析与解:(1)(260-20)÷(32+48)=3(小时)。
(2)20÷(32+48)=(小时)。
(3)从甲、乙相遇到他们第二次相距20千米也用小时.所以他们一共可用对讲机联络+=(小时)。
例7、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米分析与解:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.解:①AB间的距离是64×3-48=192-48=144(千米).②两次相遇点的距离为144—48-64=32(千米).答:两次相遇点的距离为32千米.※例8赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又回沿原路返回,假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米(第五届希望杯试题)分析与解:赵伯伯上山和下山走的路程相同,上山速度为3千米,下山速度为6千米,上山与下山的平均速度是多少(这是一个易错题)可以通过“设数”的方法让四年级同学明白。
设上山路程为6千米,(想一想为什么设6千米还可以设几千米)上山时间为:6÷3=2(时)下山时间为:6÷6=1(时)上下山的平均速度为:(6+6)÷(2+1)=4千米又因为平路的速度也为4千米/小时,所以赵伯伯每天锻炼走的路程为:4×3=12千米。