整式的乘法与因式分解 测试题

合集下载

八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)

八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)

八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题一、选择题(每题2分,共10分)1. 计算下列表达式的值:\( (3x - 2)^2 \)。

A. \( 9x^2 - 12x + 4 \)B. \( 9x^2 - 6x + 4 \)C. \( 9x^2 - 6x + 1 \)D. \( 9x^2 + 6x + 4 \)2. 哪个表达式不能通过因式分解简化?A. \( x^2 - 9 \)B. \( x^2 + 4x + 4 \)C. \( x^2 - 4x + 4 \)D. \( x^2 - 4 \)3. 以下哪个表达式是完全平方公式?A. \( a^2 - 2ab + b^2 \)B. \( a^2 + 2ab + b^2 \)C. \( a^2 - 2ab - b^2 \)D. \( a^2 + 3ab + b^2 \)4. 计算 \( (2x + 3)(2x - 3) \) 的结果。

A. \( 4x^2 - 9 \)B. \( 4x^2 + 9 \)C. \( 4x^2 + 6x - 9 \)D. \( 4x^2 - 6x + 9 \)5. 以下哪个表达式是多项式的乘法?A. \( (x - 1)(x + 1) \)B. \( x^2 - 1 \)C. \( x^2 + 2x + 1 \)D. \( x^2 - 2x + 1 \)二、填空题(每题2分,共10分)6. 将 \( (x + a)(x + b) \) 展开,结果为 \( ______ \)。

7. 计算 \( (x - 2)(x + 3) \) 的结果,并进行因式分解,结果为\( ______ \)。

8. 将 \( (x - 1)^2 \) 展开,结果为 \( ______ \)。

9. 利用平方差公式,将 \( x^2 - 49 \) 因式分解,结果为\( ______ \)。

10. 将 \( (3x - 1)^2 \) 展开,结果为 \( ______ \)。

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2021广东深圳中考)下列运算中,正确的是()A.2a2·a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a32.(2021山东泰安中考)下列运算正确的是()A.2x2+3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x23.(2019湖南株洲中考)下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)24.若a+b=3,x+y=1,则a2+2ab+b2-x-y+2 015的值为()A.2 023B.2 021C.2 020D.2 0195.(2021江苏南通如皋期末)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为64,小正方形的面积为9,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=8B.x-y=3C.4xy+9=64D.x2+y2=256.若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-27.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为()A.18B.-18C.-8D.-68.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪开拼成一个长方形(不重叠,无缝隙),则长方形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.(2019四川资阳中考)4张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5bB.2a=3bC.a=3bD.a=2b10.如图,长方形ABCD的周长是10 cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为17 cm2,则长方形ABCD的面积是()A.3 cm2B.4 cm2C.5 cm2D.6 cm2二、填空题(每小题3分,共24分)11.(2021山东临沂中考)分解因式:2a3-8a=.12.(2022四川宜宾期末)化简:(8x3y3-4x2y2)÷2xy2=.13.(2019四川乐山中考)若3m=9n=2,则3m+2n=.14.(2022独家原创)如图,小明制作了一块长方形滑板模具,其长为2a,宽为a,中间开出两个边长为b的正方形孔.当a=15.7,b=4.3时,阴影部分的面积为.15.已知a2-6a+9与|b-1|互为相反数,则a3b3+2a2b2+ab的值是.16.(2022云南昆明三中期末)若(a+b)2=17,(a-b)2=11,则a2+b2=.17.李老师做了个长方形教具,其中一边长为2a+b,其邻边长为a-b,则该长方形的面积为.18.若(x2-2x-3)(x3+5x2-6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=.三、解答题(共46分)19.(2021江苏苏州中学期末)(6分)计算:(1)-2x3y2·(x2y3)2;(2)3x·x5+(-2x3)2-x12÷x6.20.(6分)计算:(1)(3x-2)(2x+3)-(x-1)2;(2)(x+2y)(x-2y)-2y(x-2y)+2xy. 21.(8分)先化简,再求值: (1)(2+x)(2-x)+(x-1)(x+5),其中x=32; (2)(2a-b)2-(4a+b)(a-b)-2b 2,其中a=12,b=-13.22.(2021北京一零一中学期末)(8分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn+2n 2-6n+9=0,求m 和n 的值. 解:∵m 2+2mn+2n 2-6n+9=0, ∴(m 2+2mn+n 2)+(n 2-6n+9)=0, ∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3. 问题:(1)若x 2+2y 2-2xy+6y+9=0,求x 2的值;(2)已知△ABC 的三边长a,b,c 都是正整数,且满足a 2+b 2-6a-4b+13+|3-c|=0,请问△ABC 是什么形状的三角形?23.(2022河南郑州实验学校期末)(8分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.b2+ab=b(a+b)C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2-4y2=12,x+2y=4,求x的值;②计算:(1−122)(1−132)(1−142)·…·(1−12 0202)(1−12 0212).24.(10分) 许多恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到(2m+n)(m+n)=2m2+3mn+n2.(1)如图②,根据图中面积关系写出一个关于m、n的等式:;,则(a+b)2=;(2)利用(1)中的等式求解:若a-b=2,ab=54(3)小明用8个全等的长方形(宽为a,长为b)拼图,拼出了如图甲、乙所示的两种图案,图案甲是一个大的正方形,中间的阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求a,b的值.答案全解全析1.A2a2·a=2a3,原计算正确,(a2)3=a6,原计算错误,a2与a3不是同类项,不能合并,a6÷a2=a4,原计算错误,故选A.2.D A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误;B选项,(-2x)3=-8x3,故该选项计算错误;C选项,(x+y)2=x2+2xy+y2,故该选项计算错误;D选项,(3x+2)(2-3x)=22-(3x)2=4-9x2,故该选项计算正确,故选D.3.D A.x2-1=(x+1)(x-1),故此选项错误;B.a3-2a2+a=a(a2-2a+1)=a(a-1)2,故此选项错误;C.-2y2+4y=-2y(y-2),故此选项错误;D.m2n-2mn+n=n(m2-2m+1)=n(m-1)2,故此选项正确.故选D.4.A a2+2ab+b2-x-y+2 015=(a+b)2-(x+y)+2 015,当a+b=3,x+y=1时,原式=32-1+2 015=8+2 015=2 023.故选A.5.D如图,∵图案的面积为64,小正方形的面积为9,∴大正方形的边长为8,小正方形的边长为3,∴x+y=AQ+DQ=AD=8,因此选项A不符合题意;x-y=HP-EP=HE=3,因此选项B不符合题意;∵一个小长方形的面积为xy,∴4xy+9=64,因此选项C不符合题意;∵x+y=8,x-y=3,∴(x+y)2=64,(x-y)2=9,即x2+2xy+y2=64,x2-2xy+y2=9,∴x2+y2=73,2因此选项D符合题意.故选D.6.A∵3x2-5x+1=0,∴3x2-5x=-1,∴5x(3x-2)-(3x+1)(3x-1)=15x 2-10x-9x 2+1=6x 2-10x+1=2(3x 2-5x)+1=2×(-1)+1=-1.故选A. 7.C (ax+b)(2x 2+2x+3) =2ax 3+2ax 2+3ax+2bx 2+2bx+3b =2ax 3+(2a+2b)x 2+(3a+2b)x+3b,∵乘积展开式中不含x 的一次项,且常数项为9, ∴3a+2b=0且3b=9,∴a=-2,b=3, ∴a b =(-2)3=-8,故选C.8.D 长方形的面积为(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm 2.故选D. 9.D 由题图可知S 1=12b(a+b)×2+12ab×2+(a-b)2=a 2+2b 2,S 2=(a+b)2-S 1=(a+b)2-(a 2+2b 2) =2ab-b 2,∵S 1=2S 2,∴a 2+2b 2=2(2ab-b 2),整理得(a-2b)2=0,∴a-2b=0,∴a=2b.故选D. 10.B 设AB=x cm,AD=y cm,∵正方形ABEF 和正方形ADGH 的面积之和为17 cm 2,∴x 2+y 2=17, ∵长方形ABCD 的周长是10 cm, ∴2(x+y)=10,∴x+y=5,∵(x+y)2=x 2+2xy+y 2,∴25=17+2xy,∴xy=4, ∴长方形ABCD 的面积为4 cm 2,故选B. 11.2a(a+2)(a-2)解析 原式=2a(a 2-4)=2a(a+2)(a-2). 12.4x 2y-2x解析 原式=8x 3y 3÷2xy 2-4x 2y 2÷2xy 2=4x 2y-2x. 13.4解析 ∵3m =9n =2,∴3m+2n =3m ·32n =3m ·(32)n =3m ·9n =2×2=4. 14.456解析 阴影部分的面积=2a·a-2b 2=2(a 2-b 2)=2(a+b)(a-b), 当a=15.7,b=4.3时,阴影部分的面积=2(a+b)(a-b)=2×(15.7+4.3)×(15.7-4.3)=2×20×11.4=456.15.48解析 依题意得a 2-6a+9+|b-1|=0,即(a-3)2+|b-1|=0,则a-3=0,b-1=0,解得a=3,b=1,所以a 3b 3+2a 2b 2+ab=ab(a 2b 2+2ab+1)=ab(ab+1)2=3×(3+1)2=3×16=48. 16.14解析 (a+b)2=a 2+b 2+2ab=17①, (a-b)2=a 2+b 2-2ab=11②,①+②得2(a 2+b 2)=28,∴a 2+b 2=14. 17.2a 2-ab-b 2解析 该长方形的面积为(2a+b)(a-b)=2a 2-2ab+ab-b 2=2a 2-ab-b 2. 18.-28解析 ∵(x 2-2x-3)(x 3+5x 2-6x+7)=x 5+5x 4-6x 3+7x 2-2x 4-10x 3+12x 2-14x-3x 3-15x 2+18x-21=x 5+3x 4-19x 3+4x 2+4x-21=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0, ∴a 0=-21,a 1=4,a 2=4,a 3=-19,a 4=3,a 5=1, ∴a 0+a 1+a 2+a 3+a 4+a 5=-21+4+4-19+3+1=-28. 19.解析 (1)-2x 3y 2·(x 2y 3)2=-2x 3y 2·x 4y 6=-2x 7y 8. (2)3x·x 5+(-2x 3)2-x 12÷x 6=3x 6+4x 6-x 6=6x 6.20.解析 (1)原式=6x 2+9x-4x-6-x 2+2x-1=5x 2+7x-7. (2)原式=x 2-4y 2-2xy+4y 2+2xy=x 2. 21.解析 (1)(2+x)(2-x)+(x-1)(x+5) =4-x 2+x 2+5x-x-5=4x-1, 当x=32时,原式=4×32-1=5. (2)(2a-b)2-(4a+b)(a-b)-2b 2 =4a 2-4ab+b 2-(4a 2-3ab-b 2)-2b 2=-ab, 当a=12,b=-13时,原式=-12×(-13)=16. 22.解析 (1)∵x 2+2y 2-2xy+6y+9=0, ∴x 2-2xy+y 2+y 2+6y+9=0, ∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,解得x=-3,y=-3,∴x 2=9. (2)∵a 2+b 2-6a-4b+13+|3-c|=0, ∴a 2-6a+9+b 2-4b+4+|3-c|=0, ∴(a-3)2+(b-2)2+|3-c|=0, ∴a-3=0,b-2=0,3-c=0, 解得a=3,b=2,c=3,∴a=c≠b, ∴△ABC 是等腰三角形.23.解析 (1)题图1中阴影部分的面积是a 2-b 2, 题图2的面积是(a+b)(a-b), 则a 2-b 2=(a+b)(a-b).故选C.(2)①∵x 2-4y 2=(x+2y)(x-2y)=12,x+2y=4, ∴12=4(x-2y),∴x-2y=3,联立{x +2y =4,x-2y =3,两方程相加得2x=7,解得x=72.②(1−122)(1−132)(1−142) (1)12 0202)(1−12 0212)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)·…·(1−12 020)(1+12 020)(1−12 021)(1+12 021) =12×32×23×43×34×54×…×1 9992 020×2 0212 020×2 0202 021×2 0222 021=12×2 0222 021=1 0112 021. 24.解析 (1)由题图②中大正方形的面积等于各个小长方形和小正方形的面积之和,可得等式(m+n)2=4mn+(m-n)2.(2)由(1)中等式可得(a+b)2=(a-b)2+4ab. ∵a-b=2,ab=54,∴(a+b)2=22+4×54=9.(3)由题意得{b-2a =3,2b =3a +b,整理得{b-2a =3①,b-3a =0②,①-②,得a=3,把a=3代入②,得b-3×3=0,∴b=9,故a=3,b=9.第 11 页共 11。

第14章 整式的乘法与因式分解 单元测试(含答案)

第14章  整式的乘法与因式分解 单元测试(含答案)

第十四章整式的乘法与因式分解(90分钟 100分)一、选择题(每小题3分,共30分)1.(2020·朝阳中考)下列运算正确的是( C )A.a3·a2=a6B.(a3)2=a5C.2a3÷a2=2a D.2x+3x=5x2【解析】A.a3·a2=a5,故不正确;B.(a3)2=a6,故不正确;C.2a3÷a2=2a,正确;D.2x+3x=5x,故不正确.2.(2020·眉山中考)下列计算正确的是( C )A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(-2a2b)3=-8a6b3D.(-x)5÷x2=x3【解析】A.原式=x2+2xy+y2,不符合题意;B.原式不能合并,不符合题意;C.原式=-8a6b3,符合题意;D.原式=-x5÷x2=-x3,不符合题意.3.下列运算正确的是( B )A.a2·a4=a8B.210+(-2)10=211C.(-1-3a)2=1-6a+9a2D.(-3x2y)3=-9x6y3【解析】A.a2·a4=a6,故本选项不符合题意;B.210+(-2)10=210+210=(1+1)×210=2×210=211,故本选项符合题意;C.(-1-3a)2=1+6a+9a2,故本选项不符合题意;D.(-3x2y)3=-27x6y3,故本选项不符合题意.4.下列因式分解正确的是( D )A.x2-y2=(x-y)2B.-x2-y2=-(x+y)(x-y) C.x2-2xy+4y2=(x-2y)2D.-x2-2xy-y2=-(x+y)2【解析】A.x2-y2=(x-y)(x+y),故此选项错误;B.-x2-y2,无法分解因式,故此选项错误;C.x2-2xy+4y2,不是完全平方式,故此选项错误;D.-x2-2xy-y2=-(x+y)2,正确.5.(2021·厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是( C )A.2x2B.4x2C.2x D.4x【解析】∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是2x.6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( A )A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b) D.(a+b)(a-2b)【解析】根据题意得:(a+2b)(a-2b)=a2-4b2.7.为了用乘法公式计算(2x-3y-4z)( 2x-3y+4z),甲乙丙丁四位同学分别对它们进行了变形,其中变形正确的是( B )A.[2x-(3y+4z)][2x-(3y-4z)] B.[(2x-3y)-4z][(2x-3y)+4z] C.[(2x-4z)-3y][(2x+4z)-3y] D.[(2x-4z)+3y][(2x-4z)-3y] 【解析】观察(2x-3y-4z)( 2x-3y+4z),符号相同的是2x,-3y,符号相反的是-4z和4z,把符号相同的放在一起,符号相反的放在一起.8.若x2+(m-1)x+1可以用完全平方公式进行因式分解,则m的值为( D )A.-3 B.1 C.-3,1 D.-1,3【解析】∵x2+(m-1)x+1可以用完全平方公式进行因式分解,∴m-1=±2,解得m=-1或m=3.9.(2021·娄底期末)如果(x-3)(2x+4)=2x2-mx+n,那么m,n的值分别是( C )A.2,12 B.-2,12C.2,-12 D.-2,-12【解析】∵(x-3)(2x+4)=2x2-2x-12=2x2-mx+n,∴-m=-2,n=-12,解得m=2,n=-12.10.(2021·长沙期末)定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12-02,3=22-12,5=32-22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为( A )A.10 000 B.40 000 C.200 D.2 500【解析】介于1到200之间的所有“明德数”之和为:(12-02)+(22-12)+(32-22)+…+(992-982)+(1002-992)=12-02+22-12+32-22+42-32+…+992-982+1002-992=1002=10 000.二、填空题(每小题3分,共24分)11.(2020·丹东中考)因式分解:mn3-4mn=__mn(n+2)(n-2)__.【解析】原式=mn(n2-4)=mn(n+2)(n-2).12.(2020·咸宁中考)因式分解:mx2-2mx+m=__m(x-1)2__.【解析】mx2-2mx+m=m(x2-2x+1)=m(x-1)2.13.计算:(π-3)0+|-2 021|=__2__022__.【解析】原式=1+2 021=2 022.14.(2020·十堰中考)已知x+2y=3,则1+2x+4y=__7__.【解析】∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7.15.如果(m2+n2+1)与(m2+n2-1)的乘积为15,那么m2+n2的值为__4__.【解析】∵(m2+n2+1)与(m2+n2-1)的乘积为15,∴(m2+n2+1)(m2+n2-1)=15,∴(m2+n2)2-1=15,即(m2+n2)2=16,解得m2+n2=4(负数舍去).16.已知a3n=5,b2n=3,则a6n·b4n的值为__225__.【解析】a6n·b4n=a3n×2·b2n×2=(a3n)2·(b2n)2=52·32=225.17.把一根20 cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5 cm2,则这两段铁丝的长分别为__12__cm和8__cm__.【解析】设其中较长的一段的长为x cm(10<x<20),则另一段的长为(20-x)cm.则两个小正方形的边长分别为1x cm和41(20-x)cm.4∵两正方形面积之差为5 cm2,∴(14x)2-[14(20-x)]2=5,解得x=12.则另一段长为20-12=8(cm).∴两段铁丝的长分别为12 cm和8 cm. 18.观察、分析、猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=__[n(n+3)+1]2__.(n为整数)【解析】∵1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292,∴n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2.三、解答题(共46分)19.(6分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.(2)计算:(2x-3y)2-(y+3x)(3x-y).(3)已知x m=3,x n=2,求x3m+2n的值.(4)解方程:4(x-2)(x+5)-(2x-3)(2x+1)=11.【解析】(1)[x(x2y2-xy)-y(x2-x3y)]÷3x2y=(x3y2-x2y-x2y+x3y2) ÷3x2y=(2 x3y2-2x2y) ÷3x2y=2 x3y2÷3x2y-2x2y÷3x2y=23xy-23.(2)(2x-3y) 2-(y+3x)(3x-y)=4x2-12xy+9y2-(9x2-y2)=4x2-12xy+9y2-9x2+y2=-5x2-12xy+10y2.(3)因为x m=3,x n=2,所以x3m+2n=x3m×x2n=(x m)3×(x n)2=33×22=108.(4)4(x2+5x-2x-10)-(4x2+2x-6x-3)=4(x2+3x-10)-(4x2-4x -3)=11,4x2+12x-40-4x2+4x+3=11,移项合并同类项得16x=48,x=3.20.(6分)某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2) (第一步)=a2+2ab-a2-b2(第二步)=2ab-b2 (第三步)(1)该同学解答过程从第____步开始出错,错误的原因是______________;(2)写出此题正确的解答过程.【解析】(1)该同学解答过程从第二步开始出错,错误的原因是去括号时没有变号.答案:二 去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.21(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x +10.(1)求正确的a,b的值.(2)计算这道乘法题的正确结果.【解析】(1)(2x-a)(3x+b)=6x2+2bx-3ax-ab=6x2+(2b-3a)x-ab=6x2+11x-10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2-9x+10.∴{2b-3a=11,2b+a=-9,解得{a=-5,b=-2.(2)这道乘法题的正确结果为:(2x-5)(3x-2)=6x2-4x-15x+10=6x2-19x+10.22.(8分)已知a,b,c分别是△ABC的三边.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解.(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.【解析】(1)ac-bc=c(a-b),-a2+2ab-b2=-(a2-2ab+b2)=-(a -b)2.(2)∵ac-bc=-a2+2ab-b2,∴c(a-b)=-(a-b)2,c(a-b)+(a-b)2=0,(a-b)(c+a-b)=0,∵a,b,c分别是△ABC的三边,满足两边之和大于第三边,即c+a-b>0,∴a-b=0,即a=b,故△ABC的形状是等腰三角形.23.(8分)有一个边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.24.(10分)(2021·潍坊期末)阅读下列材料,并回答问题:若一个正整数x能表示成a2-b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1-32=(3+1)2-32=42-32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1-32+2×3-1=(3+1)2-(32-2×3+1)=(3+1)2-(3-1)2=42-22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2-y2=(x+y)2-y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2 021是“明礼崇德数”吗?说明理由;问题2:2 020是“明礼崇德数”吗?说明理由;问题3:已知N=x2-y2+4x-6y+k(x,y是正整数,k是常数,且x >y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.【解析】问题1:2 021是“明礼崇德数”.理由如下:2 021=2×1 010+1=1 0102+2×1 010+1-1 0102=1 0112-1 0102 ;问题2:2 020是“明礼崇德数”.理由如下:2 020=4×505=(5052+2×505+1)-(5052-2×505+1)=5062-5042;问题3:∵N=x2-y2+4x-6y+k=(x2+4x+4)-(y2+6y+9)+k+5=(x+2)2-(y+3)2+k+5,∴当k+5=0时,N=(x+2)2-(y+3)2为“明礼崇德数”,此时k=-5,故当k=-5时,N为“明礼崇德数”.关闭Word文档返回原板块。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题整式的乘除和因式分解选择题:1.正确的运算是B.(ab)3=a3b3.2.因式分解的变形是B.m3-n3=(m-n)(m2+mn+n2)。

3.完全平方式是C.a2+ab+b2.4.可以用平方差公式分解因式的是A.a2+(-b)2.5.m的值为B.3.填空题:7.(-a5)4·(-a2)3 = a26,可以在实数范围内分解因式a2-6.8.当x=4时,(x-4)=0.9.(-2002)-2 = 1/xxxxxxx。

1.5×2003÷12=125.253x-3y=3(2/3)-3(1/3)=19x^2+mxy+16y^2是完全平方式,当m=12时,可化为(3x+4y)^29xy-6xy+12xy=15xy,公因式为3xyx-9=(x-3)(x+3)x-4x+4=(x-2)^2xy+xy+4=2xy+4正方形的面积为(3x+y)^2,展开后可得9x^2+6xy+y^2,由于正方形的面积为9,故有9x^2+6xy+y^2=9,解得y=-3x+1或y=1-3x13.(8ab-5ab)/4ab=3/414.(x+2y-3)(x-2y+3)=x^2-4y^2-2x+6y-915.[(x-2y)^2+(x-2y)(2y+x)-2x(2x-y)]/2x=(x-2y+y-x)/2=-y/216.2a(x-y)-3b(y-x)=5a(x-y)17.-xy-2xy+35y=33y-3xy18.2xy-8xy+8y=-6xy+8y19.a(x-y)-4b(x-y)=(a-4b)(x-y)20.(x-1)-(x-1)(x+5)=17解得x=-3或x=2,代入可得ab+ab=-4a或4a21.2x-5+3x+1>13(x-10),解得x>23/322.a+2+b^2-2b+1=22,化简得b^2-2b+ab=10-a,再加上ab+ab,得b^2+ab-2b+2ab+11-a=0,由于a和b为实数,故有b^2+ab-2b+2ab+11-a=(b+a-1)^2+10>=10,即ab+ab>=-123.长方形的周长为2(3a+b),面积为(3a+b)(2a+b),由于周长为125.25米,故有2(3a+b)=125.25,解得a=20.75-0.5b,代入面积公式可得(3a+b)(2a+b)=83.5(41.5-b),扩展开后可得-3b^2+81b-1396=0,解得b=28或b=16/3,代入a=20.75-0.5b可得a=7.5或a=10.2524.设x=√(3y+2),则有x^2-3x-2=0,解得x=3或x=-1,代入可得y=1或y=0,故方程的解为(3,1)或(-1,0)25.设a=√(x+2),b=√(y-1),则有a^2-2=x,b^2+1=y,代入不等式可得(a^2-2)(b^2+1)>2,化简得a^2b^2-a^2-2b^2+3>0,即(a^2-2)(b^2-2)>1,代入可得(x-2)(y-1)>1,故不等式的解为{(x,y)|x>2,y>1,xy>1}阴影部分将要进行绿化,并在中间修建一座雕像。

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。

整式乘法与因式分解500题

整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5

整式的乘法与因式分解

整式的乘法与因式分解

整式的乘法与因式分解一、选择题1.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.m3-n3=(m-n)(m2+mn+n2)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z思路解析:A属于整式乘法,C是恒等变形,用的是乘法交换律,D分解不彻底.答案:B2.已知二次三项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为( )A.b=3,c=-1B.b=-6,c=2C.b=-6,c=4D.b=-4,c=-6思路解析:利用分解因式与整式乘法的互逆关系,将2(x-3)(x+1)乘出来即可.答案:D3.下列各式不能继续因式分解的是( )A.1-x2B.x2-y2C.(x+y)2D.a2+2a思路解析:A和B能用平方差公式分解,D能用提公因式法分解.答案:C4.下列多项式中能用平方差公式分解因式的是( )A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9思路解析:-x2+9=9-x2=(3+x)(3-x).答案:D5.把多项式a3+2a2b+ab2-a分解因式的结果是( )A.(a2+ab+a)(a+b-1)B.a(a+b+1)(a+b-1)C.a(a2+2ab+b2-1)D.(a2+ab+a)(a+ab-a)思路解析:先提公因式a,再运用完全平方公式和平方差公式.答案:B6.对于任何整数m,多项式(4m+5)2-9都能( )A.被8整除B.被m整除C.被(m-1)整除D.被(2m-1)整除思路解析:因为(4m+5)2-9=(4m+5+3)(4m+5-3)=(4m+8)(4m+2)=8(m+2)(2m+1),所以(4m+5)2-9都能被8整除.答案:A7.若4x2-12x+m2是一个完全平方式,则m的值为( )A.3B.-3C.3或-3D.9思路解析:由于4x2-12x+m2可写为(2x)2-2×2x×3+m2,要使其成为完全平方式,则必须使m2=32,所以m=±3. 答案:C8.满足m2+n2+2m-6n+10=0的是( )A.m=1,n=3B.m=1,n=-3C.m=-1,n=3D.m=-1,n=-3思路解析:m2+n2+2m-6n+10=(m+1)2+(n-3)2=0,所以m=-1,n=3.答案:C二、填空题9.已知正方形的面积是9x 2+6xy+y 2(x>0,y>0),则该正方形的边长为____________.思路解析:把9x 2+6xy+y 2分解因式可得9x 2+6xy+y 2=(3x+y)2.答案:3x+y10.若x 2+mx+n 是一个完全平方式,则m,n 的关系是_______.思路解析:若x 2+mx+n 是一个完全平方式,则常数项n 等于一次项系数m 的一半的平方.答案:m 2=4n11.已知a-2=b+c,则代数式a(a-b-c)-b(a-b-c)+c(b-a+c)的值是_______.思路解析:因为a-2=b+c,所以a-b-c=2,所以原式=a(a-b-c)-b(a-b-c)-c(a-b-c)=a(a-b-c)-b(a-b-c)-c(a-b-c)=(a-b-c)2=4.答案:4 12.已知x,y 满足x 2+4xy+4y 2-x-2y+41=0,则x+2y 的值为_______. 思路解析:x 2+4xy+4y 2-x-2y+41=(x+2y)2-(x+2y)+41=(x+2y-21)2,由非负数性质可得x+2y=21. 答案:21 13.当x_______取时,多项式x 2+4x+6取得最小值是_______.思路解析:因为x 2+4x+6=(x+2)2+2,且(x+2)2≥0,所以当x=-2时,(x+2)2+2有最小值为2.答案:-2 214.观察下列各式x 2-1=(x-1)(x+1),x 3-1=(x-1)(x 2+x+1),x 4-1=(x-1)(x 3+x 2+x+1),根据前面各式的规律可猜想x n+1-1=_____________.思路解析:观察特点,找出其内在的规律.答案:(x-1)(x n +x n-1+…+x+1)三、解答题15.把下列多项式分解因式:(1)(m+n)3+2m(m+n)2+m 2(m+n);(2)(a 2+b 2)2-4a 2b 2;(3)(m 2-m)2+21(m 2-m)+161. 解:(1)(m+n)3+2m(m+n)2+m 2(m+n)=(m+n)[(m+n)2+2m(m+n)+m 2]=(m+n)(2m+n)2;(2)(a 2+b 2)2-4a 2b 2=(a 2+b 2)2-(2ab)2=(a 2+b 2+2ab)(a 2+b 2-2ab)=(a+b)2(a-b)2;(3)(m 2-m)2+21(m 2-m)+161=(m-21)4 16.利用分解因式求值.(1)已知x+y=1,xy=-21,利用因式分解求x(x+y)(x-y)-x(x+y)2的值; (2)已知a+b=2,ab=2,求21a 3b+a 2b 2+21ab 3的值. 思路分析:对于(1),可将x(x+y)(x-y)-x(x+y)2提取公因式x(x+y);对于(2),先提取公因式21ab,再运用公式法分解.解:(1)x(x+y)(x-y)-x(x+y)2=x(x+y)[(x-y)-(x+y)]=-2xy(x+y)=1;(2)原式=21ab(a+b)2=4. 17.利用分解因式计算. (1)1713-×191713-×15; (2)20022001200119992001220012323-+-⨯-. 思路分析:对于(1),可提取公因式1713-;对于(2),可对分子、分母采取分步分解的方法进行化简计算. 解:(1)1713-×191713-×15=1713-×(19+15)=-26; (2)2002)12001(20011999)22001(20012002200120011999200122001222323-+⨯--⨯=-+-⨯- 20021999)12001(2002)12001(19992002200220011999199920012222=--=-⨯-⨯= 18.n 为整数,试说明(n+5)2-(n-1)2的值一定能被12整除.思路分析:要证明(n+5)2-(n-1)2的值能被12整除,只要将此式分解因式,使12成为其中的一个因式即可. 解:(n+5)2-(n-1)2=[(n+5)+(n-1)][(n+5)-(n-1)]=(2n+4)×6=2(n+2)×6=12(n+2),因为n 为整数,所以n+2也为整数,故12(n+2)能被12整除,即(n+5)2-(n-1)2的值一定能被12整除.19.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x-1)(x-9),而乙同学因看错了常数项而将其分解为2(x-2)(x-4),请你将此二次三项式进行正确的因式分解.思路分析:解答此类问题的基本思路是“将错就错”,找出在错误的答案下,依然正确的条件,运用整式乘法与因式分解的关系进行求解.解:2(x-1)(x-9)=2x 2-20x+18,2(x-2)(x-4)=2x 2-12x+16,因为甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项但没有看错一次项系数,所以原多项式为2x 2-12x+18.分解因式得2x 2-12x+18=2(x 2-6x+9)=2(x-3)2.。

《整式的乘法与因式分解》单元测试(带答案)

《整式的乘法与因式分解》单元测试(带答案)
[解析]
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。

《整式的乘法与因式分解》单元测试题带答案

《整式的乘法与因式分解》单元测试题带答案
8.已知A B2=﹣1,则﹣A B(A2B5﹣A B3﹣B)的值等于()
A.﹣1B. 0C. 1D.无法确定
[答案]C
[解析]
[分析]
原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.
[详解]∵A B2=-1,
∴原式=-(A B2)3+(A B2)2+A B2=1+1-1=1,
故选C.
A.﹣1B. 0C. 1D.无法确定
9.已知 与一个多项式之积是 ,则这个多项式是( )
A. B. C. D.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )
(28x7y3+98x6y5-21x5y5)÷7x5y3=4x2+14xy2-3y2,
故选C.
[点睛]本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
[答案]D
[解析]
[分析]
根据完全平方公式,即可解答.
[详解](m-n)2=38,
m2-2mn+n2=38①,
(m+n)2=4000,
m2+2mn+n2=4000②,
①+②得:2m2+2n2=4038
m2+n2=2019.
故选D.
[点睛]本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。

《整式的乘法与因式分解》单元测试(含答案)

《整式的乘法与因式分解》单元测试(含答案)
12.如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于( )
A. 9B. 27C. 54D. 81
二、填空题:
13.2xy(x﹣y)=______.
14.若3×9m×27m=316,则m=______.
15.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为_______.
∵(a+b)2=72=49,
∴a2-ab+b2=(a+b)2-3ab=49-39=10,
故答案为10.
18.现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y的长方形地面,则需要A种地砖___________块.
【答案】3
【解析】
【分析】
由长与宽的乘积表示出长方形底面面积,即可确定出需要A种地砖的块数.
故选A.
【点睛】考查了单项式乘法,关键是掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
9.若(y+3)(y-2)=y2+my+n,则m、n的值分别为()
A. , B. , C. , D. ,
【答案】B
【解析】
【分析】
先根据多项式乘以多项式的法则计算 ,再根据多项式相等的条件即可求出 、 的值.
A. ①②B. ③④C. ②④D. ④
5.(2011福建龙岩,4,4分) 的计算结果是
A. B. C. D.
6.下列计算正确的是()
A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6

《整式的乘法与因式分解》单元测试题(带答案)

《整式的乘法与因式分解》单元测试题(带答案)
9.下列算式能用平方差公式计算的是
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题初中数学整式的乘除与因式分解一、选择题:1、下列运算中,正确的是()A.某2·某3=某6B.(ab)3=a3b3C.3a+2a=5a2D.(某³)²=某52、下列从左边到右边的变形,是因式分解的是()23322(A)(3某)(3某)9某(B)mn(mn)(mmnn)(C)(y1)(y3)(3y)(y1)2(D)4yz2yzz2y(2zyz)z3、下列各式是完全平方式的是()某2某A、4B、14某2C、a2abb2D、某22某14、下列多项式中能用平方差公式分解因式的是()22(A)a(b)(B)5m220mn22(C)某y(D)某295、如(某+m)与(某+3)的乘积中不含某的一次项,则m的值为()A.–3B.3C.0D.16、一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为(A、6cmB、5cmC、8cmD、7cm1、下列分解因式正确的是()A、2n2nmn2n(nm1)B、ab22ab3bb(ab2a3)C、某(某y)y(某y)(某y)2D、a2a2a(a1)22、下列各式中,能用平方差公式进行因式分解的是()A、某2-某y2B、-1+y2C、2y2+2D、某3-y33、下列各式能用完全平方公式分解因式的是()A、4某2+1B、4某2-4某-1C、某2+某y+y2D、某2-4某+44、若9某2k某y4y2是一个完全平方式,则k的值为()A、6B、±6C、12D、±125、若分解因式某2m某15(某3)(某n)则m的值为()A、-5B、5C、-2D、2二、填空题:a54a237、=_______。

在实数范围内分解因式a268、当某___________时,某4等于__________;220021.520039、3___________210、若3某=2,3y=3,则3某-y等于2211、若9某m某y16y是一个完全平方式,那么m的值是__________。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解一、选择题(每小题3分,共36分.每小题均有A,B,C,D四个选项,其中只有一个选项正确)1.(2024·遵义绥阳县期末)下列计算正确的是(A)A.(-2a)2=4a2B.x3·x3=x9C.(-b)7÷b5=b2D.(m2)3·m4=m92.(2024·黔南州期末)式子(-ab)4·a2化简后的结果是(B)A.a2b4B.a6b4C.a8b4D.a16b43.(2024·黔南州期末)下列等式中,从左到右的变形是因式分解的是(D)A.a(a-3)=a2-3aB.(a+1)2=a2+2a+1) D.a2-9=(a+3)(a-3)C.a+2=a(1+2a4.(2024·遵义红花岗区期中)若(x+4)(x-2)=x2+mx+n,则m,n的值分别是(C)A.2,8B.-2,-8C.2,-8D.-2,85.(2024·遵义播州区期末)已知实数n满足n2-n+1=0,则4n3-5n2+5n+11的值为(A)A.12B.10C.8D.66.(2024·黔南州期末)若x2-nx+36是关于x的完全平方式,则n的值为(C)A.6B.12C.±12D.367.若a+b=-5,ab=3,则a2+b2的值为(B)A.25B.19C.31D.168.(2023·六盘水期中)小明在做作业的时候,不小心把墨水滴到了作业本上,■×3ab=6ab-3ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的是(D)A.(2ab+b2)B.(3ab+2b2)C.(2+2b)D.(2-b2)9.如图,两个正方形边长分别为a,b,已知a+b=7,ab=9,则阴影部分的面积为(B)A.10B.11C.12D.1310.已知a,b,c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是(D)A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形11.(2023·黔西南州期末)在日常生活中取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:对于多项式x4-y4,因式分解的结果是(x+y)(x-y)(x2+y2),若取x=9,y=9,则各个因式的值是x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=20,y=10,用上述方法产生的密码不可能是(C)A.102030B.103020C.305010D.20103012.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”,比如8=32-12,16=52-32,即8,16均为“和谐数”.在不超过2 023的正整数中,所有的“和谐数”之和为(A)A.255 024B.253 008C.257 048D.255 054二、填空题(每小题4分,共16分)13.(2024·遵义绥阳县期末)计算:(2a)3·(-3a2)= -24a5 .14.(2023·沈阳中考)因式分解:a3+2a2+a= a(a+1)2 . .15.(2024·遵义红花岗区期中)若x m=5,x n=10,则x2m-n=5216.如图,点C 是线段BG 上的一点,以BC ,CG 为边向两边作正方形,面积分别是S 1和S 2,两正方形的面积和S 1+S 2=20,已知BG =6,则图中阴影部分面积为 4 .三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算下列各题:(1)-12x 2y ·(13x 3y 2-34x 2y +16);(2)(x +3y -2z )(x -3y +2z );(3)(2x -1)2-(2x +5)(2x -5).【解析】(1)原式=-12x 2y ·13x 3y 2+12x 2y ·34x 2y -12x 2y ·16=-4x 5y 3+9x 4y 2-2x 2y.(2)原式=(x +3y -2z )[x -(3y -2z )]=x 2-(3y -2z )2=x 2-9y 2+12yz -4z 2.(3)原式=4x 2-4x +1-(4x 2-25)=4x 2-4x +1-4x 2+25=-4x +26.18.(10分)分解因式:(1)9a2(x-y)+4b2(y-x);(2)a2-2a(b+c)+(b+c)2.【解析】(1)9a2(x-y)+4b2(y-x)=9a2(x-y)-4b2(x-y)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);(2)a2-2a(b+c)+(b+c)2=[a-(b+c)]2=(a-b-c)2.19.(10分)(2024·遵义红花岗区期中)先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.【解析】3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a,当a=-2时,原式=-20×4-9×2=-98.20.(10分)(2023·毕节七星关区期中)如图所示,某地区有一块长为(2a+3b)米、宽为(2a-b)米的长方形地块,角上有四个边长均为(a-b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含a,b的代数式表示绿化的面积是多少平方米?(2)若a=20,b=10,求出绿化面积.【解析】(1)绿化的面积:(2a-b)(2a+3b)-4(a-b)2=4a2+6ab-2ab-3b2-4(a2-2ab+b2)=4a2+4ab-3b2-4a2+8ab-4b2=(12ab-7b2)平方米.答:绿化的面积是(12ab-7b2)平方米.(2)当a=20,b=10时,原式=12×20×10-7×102=1 700(平方米),答:绿化面积为1 700平方米.21.(10分)(2024·上海期中)已知x-y=-5,xy=3,求下列各式的值:(1)x2+y2;(2)(3x+2)(3y-2);(3)(x+y)2.【解析】(1)∵x-y=-5,xy=3,∴x2+y2=(x-y)2+2xy=(-5)2+2×3=25+6=31;(2)∵x-y=-5,xy=3,∴(3x+2)(3y-2)=9xy-6x+6y-4=9xy-6(x-y)-4=9×3-6×(-5)-4=27+30-4=57-4=53;(3)∵x-y=-5,xy=3,∴(x+y)2=(x-y)2+4xy=(-5)2+4×3=25+12=37.22.(12分)(2024·黔西南州期末)先阅读材料,再解答问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1-2(x-y)+(x-y)2= ;(2)因式分解:9(x-2)2-6(x-2)+1.【解析】(1)将“x-y”看成整体,令x-y=m,则原式=1-2m+m2=(m-1)2.再将x-y=m代入,得原式=(x-y-1)2;答案:(x-y-1)2(2)将“x-2”看成整体,令x-2=t,则原式=9t2-6t+1=(3t-1)2.再将x-2=t代入,得原式=[3(x-2)-1]2=(3x-7)2.23.(12分)甲、乙两人共同计算一道整式乘法题(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10.乙由于漏抄了第二个多项式中x 的系数,得到的结果为2x2-9x+10.(1)求正确的a,b的值;(2)计算出这道整式乘法题的正确结果.【解析】(1)由题意得(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2+11x-10,∴2b-3a=11①,∵乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10,∴(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2-9x+10,∴2b+a=-9②,由①②联立方程组,解得a=-5,b=-2;(2)(2x-5)(3x-2)=6x2-19x+10.24.(12分)(2023·铜仁石阡县期中)阅读下面的材料:材料一:比较322和411的大小.材料二:比较28和82的大小.解:因为411=(22)11=222,且3>2,所以322>222,即322>411.解:因为82=(23)2=26,且8>6,所以28>26,即28>82.小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小.小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小.解决下列问题:(1)比较344,433,522的大小;(2)比较8131,2741,961的大小.【解析】(1)∵344=(34)11=8111, 433=(43)11=6411,522=(52)11=2511,81>64>25,∴344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,124>123>122,∴8131>2741>961.25.(12分)(2023·贵阳南明区期中)八年级课外兴趣小组活动时,老师提出了如下问题:将2a-3ab-4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a-3ab)-(4-6b)=a(2-3b)-2(2-3b)=(2-3b)(a-2);解法二:原式=(2a-4)-(3ab-6b)=2(a-2)-3b(a-2)=(a-2)(2-3b);【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.【类比】(1)请用分组分解法将x2-a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2-2ab-bx+b2因式分解;(3)将a4-2a3b+2a2b2-2ab3+b4因式分解.【解析】(1)原式=(x2-a2)+(x+a)=(x+a)(x-a)+(x+a)=(x+a)(x-a+1);(2)原式=(ax-bx)+(a2-2ab+b2)=x(a-b)+(a-b)2=(a-b)(x+a-b);(3)原式=(a4+2a2b2+b4)-(2ab3+2a3b) =(a2+b2)2-2ab(a2+b2)=(a2+b2)(a2+b2-2ab)=(a2+b2)(a-b)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法与因式分解 测试题(新课标)
(时限:100分钟 总分:120分)
一、选择题:将下列各题正确答案的代号的选项填在下表中。

每小题3分,共15分。

1.下列计算正确的是( )
A. 326a a =a ⋅
B.441b b ÷=
C. 5510
x +x =x D. 78y y=y ⋅
2.化简()4
2
a a ⋅-的结果是 ( )
A. -6a
B. 6a
C. 8a
D. -8
a 3.把多项式ax 2
-ax -2a 分解因式,下列结果正确的是( ).
A .a (x -2)(x +1)
B .a (x +2)(x -1)
C .a (x -1)2
D .(ax -2)(ax +1)
4.计算()3
06
2a a a
⋅⋅等于 ( )
A. 11
a B. 12
a C. 14a D. 36
a 5、下列多项式中能用平方差公式分解因式的是( )
A 22)(b a -+
B mn m 2052-
C 22y x -- D
92
+-x
二、
填空题:本大题共6小题,每小题4分,共24分。

6.(-3x 2y )·(213
xy )=__________. 22
()()33m n m n -+--=__________.
7.已知:()
3
5
m 11a a
a ⋅=,则m 的值为 .
8. 若|a -2|+b 2
-2b +1=0,则a =__________,b =__________.
9.已知:()()2
2
22
x y 1,x y 17,y =+=-=+则x ,x y = .
10..在实数范围内分解因式:x 4-4= . 11.若9x 2+m x y +16y 2是一个完全平方式,则m 的值是 .
三、 解答题一
12.计算题:(每小题5分,共计20分)
⑴. 32a 3b 2c ÷21a 2b ⑵.2332341
x yz xz xy z 233⎛⎫⎛⎫⎛⎫
-⋅-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4))32)(32(++-+y x y x (4)x 2-(x +2)(x -2)-(x +2)2;
13.因式分解:(每小题5分,共计20分)
(1)3x -12x 3; (2)1222-+-b ab a
(3)9a 2(x -y )+4b 2(x -y ); (4)(x +y )2+2(x +y )+1.
14.用简便方法计算:(每小题5分,共计10分)
⑴20042-2005×2003
⑵2992
四,解答题二
15.化简求值:.()()()2
a b a b a b +-++,其中a =3,b =-
1
3
.(7分)
16.已知:x 2+y 2=26,4xy=12,求(x+y)2和(x-y)2的值。

(7分)
17、若a 2+2a +b 2-6b +10=0,求a 2-b 2的值.(8分)
18.一家住房的结构如图所示,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格是a 元/m 2,那么购买所需地砖至少需要多少元?(9分)
4y
2y
y。

相关文档
最新文档