中考数学复习专项训练 实数(含答案)
实数混合运算(专题训练)(解析版)--中考数学重难点题型专项训练
题型一计算类型一实数混合运算1.计算:()202212sin 30-︒.【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-+︒=+-⨯=+-=.【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)24--π--+.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式111644=-++7=【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:1(10)20222⎛⎫-⨯- ⎪⎝⎭.【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|--︒+-【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()023.143tan 6012π-+--︒++-.【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.023.143tan 601())2(π---︒+-1114=-+14=.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|(3-+【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=-+.【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a =.7.计算:0112cos 452-+︒--.【答案】2【详解】原式=111222++=2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.01(2022)2--+.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.01(2022)2--+1312=-+52=.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒.【答案】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒=1+4-2×2【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.10.计算:015(3)||7⎛⎫⨯-+- ⎪⎝⎭.【答案】16-【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:015(3)|7⎛⎫⨯-+- ⎪⎝⎭151=-+16=-+【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.11.计算:()223+⨯-.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a =.12.【答案】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:2013sin 30452-︒︒⎛⎫-+ ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=11422-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣2|+(π)0+(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π)0(﹣12)﹣2=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+-- ⎪⎝⎭321=--【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.4sin 302-︒-;【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;【解析】解:原式1422=⨯+=【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)()π--︒+--.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)1)2(6)23-︒-++-+⨯-.【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++--+⨯-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()202114sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式21422=-+-⨯+12=-++1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.计算:262+--.【答案】4.,-6=6,计算出结果.【详解】解:原式2644=+-=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算.21.计算:()0438⨯-+--.【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()0438⨯-+--12831=-+-+6=-;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键.22.计算:0|7|(2-+.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:011(2021)(2cos 452π--+-︒,1222=+-,3=.【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60232-⎛⎫-+︒-+-- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒--+- ⎪⎝⎭π(=2-=221-++-=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1414sin 60π--+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π--+︒=31142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 60202023π-︒⎛⎫+-+-+ ⎪⎝⎭【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式329122=⨯+++-12=-12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:﹣cos60°﹣(﹣2)0.【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】解:原式=13122-=321-=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(2tan 60(π++︒--【答案】【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】原式2221=-+-431=-+=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()22020126032cos -⎛⎫+--+ ⎪⎝⎭o ;6.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】()22020126032cos -⎛⎫+--+ ⎪⎝⎭o143=---6=-;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则.31.计算:120201(1)|12sin 602-︒⎛⎫-+-+- ⎪⎝+⎭.【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】解:原式=)312122++--⨯=121++-=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos45(2020)|2|π︒︒+-+-.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】解:2cos45(2020)|2|π︒︒+-+-=2×22+1+2+1+2=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11(|2|6sin 453-+--︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3262+-⨯32=++-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|1|2sin 45(2020)︒--+-;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式1212-⨯+=0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:101145( 3.14)3π-⎛⎫+-︒+-- ⎪⎝⎭【答案】【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+-︒+-- ⎪⎝⎭3|11|13=++-3113=+-+-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101(2cos 4511)3--+-- 【答案】1【解析】【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】101(2cos 4511)3--+--32211=-+⨯--131=+-1=.【点睛】本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:0112020302-⎛⎫+︒- ⎪⎝⎭.【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯-112=+-0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键.38.计算:12021(π﹣3.14)0﹣(﹣15)-1.【答案】5【解析】【分析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:1012cos 60-(-1)2π-⎛⎫-++ ⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=122212-++⨯-=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0112sin 604⎛⎫--︒+ ⎪⎝⎭【答案】2-.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式321212-+--⨯+=211=-+-2=-.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 6032π-⎛⎫---+︒-+- ⎪⎝⎭【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:()10124sin 6032π-⎛⎫---+︒+- ⎪⎝⎭221=--+3=-【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:)10131454-︒⎛⎫--++ ⎪⎝⎭【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131454-︒⎛⎫---++ ⎪⎝⎭=3114-++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.10113tan 30(3.14)2π-⎛⎫-︒+-+ ⎪⎝⎭【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】原式13123=--⨯++112-=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()203.141π--+【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.。
中考数学专题训练:实数的运算、化简求值(含答案)
中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。
2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。
3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。
4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。
5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。
7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。
【答案】解:原式=4×2+1-6 =-+1+6 =7。
8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。
11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。
13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。
中考数学专题复习《实数的运算》测试卷-附带答案
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
有理数与实数中考专题复习-含答案
有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。
0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。
2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)
知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。
有括号的先算括号,先算小括号,再算中括号,最后算大括号。
2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。
3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。
乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。
③分母有理化。
即()()b a ba ba b a b a ba −=±=± 1。
④二次根式的加减法:()m b a m b m ±=±。
4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。
5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。
初三实数运算练习题及答案
初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。
1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。
2022年中考数学分类复习强化练 -第一讲 实数(含答案)
第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。
中考数学专题训练:实数的运算、化简求值(含答案)
中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。
2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。
3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。
4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。
5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。
7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。
【答案】解:原式=4×2+1-6 =-+1+6 =7。
8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。
11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。
13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。
初三数学中考复习 实数的大小比较和运算 专题练习题 含答案
2019 初三数学中考复习实数的大小比较和运算专题练习题1. 下列四个数中,最大的数是( )A.3 B. 3 C.0 D.π2.|6-3|+|2-6|的值为( )A.5 B.5-2 6 C.1 D.26-13. 下列说法中正确的是( )A.实数-a2是负数 B.a2=|a|C.|-a|一定是正数 D.实数-a的绝对值是a4. 下列实数中最大的数是( )A.3 B.0 C. 2 D.-45. 比较三个数-3,-π,-10的大小,下列结论正确的是( ) A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-π D.-3>-π>-106. 3-11的相反数是___________.7. 估计5-12与0.5的大小关系是:5-12_______0.5.(填“>”“=”或“<”)8. 若|a|=|-5|,则a=____________9. 若|a+1|=5,则a=_______________________10. 实数a在数轴上的位置如图,则|a-3|=__________11. 大于-18而小于13的所有整数的和为____.12. 已知实数a,b在数轴上的对应点的位置如图所示,则a+b____0.(填“>”“<”或“=”)13. 求下列各式中的x:(1)|-x|=5-1; (2)|3-x|= 2.14. 计算:25+3-8-(3)2+2215. 观察例题:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为7-2.请你观察上述规律后解决下面的问题:(1)规定用符号[m]表示实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[10+1]的值为____;(2)如果3的小数部分为a ,5的小数部分为b ,求3·a+5·b-8的值. 参考答案:1---5 DCBAD 6. 11-37. >8. ±5 9. 5-1或-5-1 10. 3-a11. -412. >13. (1) 解:x =5-1或-5+1.(2) 解:x =3+2或3- 2.14. 解:原式=5-2-3+2=2.15. (1) 4(2) 解:∵1<3<4,即1<3<2,∴3的整数部分为1,小数部分为a =3-1.∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为b =5-2,∴3·a+5·b-8=3(3-1)+5(5-2)-8=3-3+5-25-8=-3-2 5.。
中考数学真题《实数与数轴》专项测试卷(附答案)
中考数学真题《实数与数轴》专项测试卷(附答案) 学校:___________班级:___________姓名:___________考号:___________一.选择题(共8小题)1.(2024•顺义区二模)实数a 在数轴上对应点的位置如图所示则,实数a 可以是( )A .2-B .2C .5D .π2.(2024•大兴区二模)如图,A B 两点在数轴上表示的数分别是a b 下列结论中正确的是( )A .0ab >B .0a b +>C .||||b a >D .0b a ->3.(2024•昌平区二模)实数a b 在数轴上的对应点的位置如图所示则,下列结论中正确的是( )A .7b =B .a b <-C .||b a <-D .0a b +>4.(2024•海淀区二模)如图,实数5在数轴上对应的点可能是( )A .点AB .点BC .点CD .点D5.(2024•石景山区二模)实数a b 在数轴上的对应点的位置如图所示 下列结论中正确的是( )A .1a >-B .b a >-C .0a b +<D .0ab >6.(2024•北京二模)在数轴上 点A B 在原点O 的两侧 分别表示数a 3 将点A 向左平移1个单位长度 得到点C 若CO BO =则,a 的值为( )A .4B .2C .2-D .1-7.(2024•东城区二模)若实数x 的取值范围在数轴上的表示如图所示 在下列结论中 正确的是( )A .||x x =B .013x <+C .224x -D .214x <8.(2024•门头沟区二模)数轴上的三点A B C 所表示的数分别为a b c 且满足0a b +< 0b c ⋅<则,原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点)BC .点B 点C 之间(不含点B 点)CD .点C 右侧9.(2024房山二模)实数a b 在数轴上的对应点的位置如图所示 下列结论中正确的是(A )0b a ->> (B )1b a >->(C )1b a <-<- (D )2a b -<<-10.(2024丰台二模)北京二模汇编-(一)实数与数轴参考答案与试题解析一.选择题(共8小题)1.(2024•顺义区二模)实数a 在数轴上对应点的位置如图所示则,实数a 可以是( )A .2-B .2C .5D .π【答案】B【考点】算术平方根 实数与数轴【分析】根据图示 可得12a << 据此判断出实数a 可以是哪个数即可.【解答】解:根据图示 可得12a <<20-<∴选项A 不符合题意122<<∴选项B 符合题意52>∴选项C 不符合题意3π>∴选项D 不符合题意.综上 实数a 可以是2.故选:B .2.(2024•大兴区二模)如图,A B 两点在数轴上表示的数分别是a b下列结论中正确的是( )A .0ab >B .0a b +>C .||||b a >D .0b a ->【答案】B【考点】数轴 绝对值 有理数的加法 有理数的减法 有理数的乘法【分析】根据a b 两点在数轴上的位置判断出其取值范围 再对各选项进行逐一分析即可.【解答】解:a b 两点在数轴上的位置可知:1a > 10b -<< 0ab ∴< 故A 错误0a b ∴+> 故B 正确0b a ∴-< 故D 错误.||1a > ||1b < 故C 错误.故选:B .3.(2024•昌平区二模)实数a b 在数轴上的对应点的位置如图所示则,下列结论中正确的是( )A .7b =B .a b <-C .||b a <-D .0a b +> 【答案】D【考点】实数与数轴 算术平方根【分析】由数轴可知 32a -<<- 3b > 由此逐一判断各选项即可.【解答】解:由数轴可知 32a -<<- 3b >A793<= 7b ∴> 故选项A 不符合题意B32a -<<- 3b > 3b ∴-<- a b ∴>- 故选项B 不符合题意 C 32a -<<- 3b > 23a ∴<-< ||3b > ||b a ∴>- 故选项C 不符合题意 D32a -<<- 3b > 0a b ∴+> 故选项D 符合题意 故选:D .4.(2024•海淀区二模)如图,实数5在数轴上对应的点可能是( )A .点AB .点BC .点CD .点D【答案】C【考点】实数与数轴 【分析】根据题意 先求出253 再根据只有C 的取值范围在2和3之间 即可得出结果.【解答】解:459<<∴<<253由数轴可知只有C的取值范围在2和3之间故选:C.5.(2024•石景山区二模)实数a b在数轴上的对应点的位置如图所示下列结论中正确的是()A.1+<D.0ab>>-C.0a>-B.b aa b【答案】B【考点】实数与数轴【分析】根据图示可得21<<据此逐项判断即可.b-<<-23a【解答】解:根据图示可得21<<ba-<<-23-<<-a21∴选项A不符合题意-<<-21a∴<-<a12又23<<b∴>-b a∴选项B符合题意b-<<-23<<a21∴+>a b∴选项C不符合题意a<0b>∴<ab∴选项D不符合题意.故选:B.6.(2024•北京二模)在数轴上点A B在原点O的两侧分别表示数a 3 将点A向左平移1个单位长度得到点C若CO BO=则,a的值为()A .4B .2C .2-D .1-【答案】C【考点】数轴 【分析】先用含a 的式子表示出点C 根据CO BO =列出方程 求解即可.【解答】解:由题意知:A 点表示的数为a B 点表示的数为3 C 点表示的数为1a -.因为CO BO =所以|1|3a -=解得2a =-或40a <2a ∴=-.故选:C .7.(2024•东城区二模)若实数x 的取值范围在数轴上的表示如图所示 在下列结论中 正确的是( )A .||x x =B .013x <+C .224x -D .214x <【答案】B【考点】绝对值 在数轴上表示不等式的解集【分析】根据不等式的解集在数轴上的表示方法即可.【解答】解:由题意可知 12x -<故013x <+.故选:B .8.(2024•门头沟区二模)数轴上的三点A B C 所表示的数分别为a b c 且满足0a b +< 0b c ⋅<则,原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点)BC.点B点C之间(不含点B点)C D.点C右侧【答案】C【考点】数轴【分析】根据数轴上的点与原点的距离即可求解.【解答】解:0b c⋅<a b+<0∴c异号bc>∴<0b又0a b+<∴<a所以0c>b<0a<0所以数轴原点O的位置应该在点B与点C之间(不含点B点)C.故选:C.9.(2024房山二模)实数a b在数轴上的对应点的位置如图所示下列结论中正确的是(A)0b a>->->>(B)1b a(C)1-<<-a b<-<-(D)2b a【答案】A10.(2024丰台二模)【答案】A。
中考数学专题复习《实数》检测题真题(含答案)
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
初中数学中考复习——实数专题(含答案)
初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。
一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。
一个数的绝对值是它到原点的距离,因此,|-5| 等于______。
如果一个数的平方根是4,则这个数的算术平方根是______。
立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。
例如,3 的立方根是______。
在实数大小比较中,数轴上右边的数总是比左边的数大。
因此,在数轴上,5 大于______。
2022年全国中考数学真题分类汇编专题1:实数(附答案解析)
A.c>d
B.|c|>|d|
C.﹣c<d
D.c+d<0
【解答】解:由题意得:
c<0,d>0 且|c|<|d|,
A、c<d,故 A 不符合题意;
B、|c|<|d|,故 B 不符合题意;
C、﹣c<d,故 C 符合题意;
D、c+d>0,故 D 不符合题意;
故选:C.
8.实数 a,b 在数轴上对应点的位置如图所示,则 a,b 的大小关系为( )
故选 C.
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
第 6 页 共 13 页
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
D.|a|﹣|b|>0
【解答】解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A 选项的结论成立;
∵a<b,
∴﹣a>﹣b,
30.计算:| |
.
【解答】解:| |
=1 .
第 10 页 共 13 页
31.计算:(﹣1)2022﹣2cos30°+|1 |+( )﹣1. 【解答】解:(﹣1)2022﹣2cos30°+|1 |+( )﹣1
=1﹣2
1+3
=1
1+3
=3.
32.计算: 【解答】解:
|﹣2|+( 1)0﹣tan45°. |﹣2|+( 1)0﹣tan45°
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
二.填空题(共 10 小题)
中考数学模拟题汇总《实数》专项练习(带答案解析)
中考数学模拟题汇总《实数》专项练习(带答案解析)一.选择题1、2的相反数是()A.−12B.12C.2D.−22、赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×1033、根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×1094、2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×1055、2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元6、﹣2的绝对值是()A.﹣2 B.1 C.2 D.127、−72的相反数是()A.−72B.−27C.27D.728.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣109.若1x=−4,则x的值是()A.4 B.14C.−14D.﹣410.下列各数中,最小的数是()A.﹣3 B.0 C.1 D.211.数1,0,−23,﹣2中最大的是()A.1 B.0 C.−23D.﹣2 12.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.12 13.|﹣2020|的结果是()A.12020B.2020 C.−12020D.﹣202014.下列等式成立的是()A.√81=±9 B.|√5−2|=−√5+2C.(−12)﹣1=﹣2 D.(tan45°﹣1)0=115.3的绝对值是()A.﹣3 B.3 C.√3D.1316.实数2√10介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间17.在实数﹣1,−√2,0,14中,最小的实数是()A.﹣1 B.14C.0 D.−√218.无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间19.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b 20.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>0 21.数4的算术平方根是()A.2 B.﹣2 C.±2 D.√222.下列各数中,比3大比4小的无理数是( ) A .3.14B .103C .√12D .√17二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 .24.计算:|1−√2|+20= .25.与√14−2最接近的自然数是 .26.计算:(15)﹣1−√4= .27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 个.28.实数8的立方根是 .29.计算:√9−1= .30.9的平方根等于 .31.请写出一个大于1且小于2的无理数 .32.计算:√12−√3的结果是 .33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 .34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 .35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 ℃.36.将数4790000用科学记数法表示为 .37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 .38.用“>”或“<”符号填空:﹣7 > ﹣9.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.36.计算:√9−(−2022)0+2−1.37.计算:(−10)×(−12)−√16+20220.38.计算:(−1)2022+|−2|−(12)0−2tan45°.39.计算:(−2022)0−2tan45°+|−2|+√9.40.计算:(12)0−√16+(−2)2.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x2−1<x−23 ②.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.43.对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N 是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.参考答案与解析一.选择题(共22小题)1、【答案】D【解析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.2、【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.3、【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a |<10,n 是正整数,正确确定a 的值和n 的值是解题的关键.4、【答案】B 【解析】 【分析】科学记数法的表现形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:14600000=1.46×107. 故选:B . 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求. 5、【答案】C 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数. 【详解】解:26.62亿=2662000000=2.662×109. 故选C . 【点睛】本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数,确定a 与n 的值是解题的关键.6、【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案. 【解析】﹣2的绝对值为2. 故选:C .7、【分析】直接利用相反数的定义分析得出答案. 【解析】−72的相反数是:72.故选:D . 8.【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可. 【解析】点A 表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10, 点A 表示的数是﹣3,右移7个单位,得﹣3+7=4. 所以点B 表示的数是4或﹣10. 故选:D . 9.【分析】根据倒数的定义求出即可. 【解析】∵1x =−4, ∴x =−14,故选:C . 10.【分析】根据正数大于0,0大于负数,正数大于负数,可得答案. 【解析】∵﹣3<0<1<2,∴这四个数中最小的数是﹣3. 故选:A . 11.【分析】根据有理数大小比较的方法即可得出答案. 【解析】﹣2<−23<0<1,所以最大的是1. 故选:A . 12.【分析】利用正数与负数的定义判断即可.【解析】﹣1是负数;0既不是正数也不是负数;0.2是正数;12是正数.故选:A . 13.【分析】根据绝对值的性质直接解答即可. 【解析】|﹣2020|=2020; 故选:B . 14.【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得. 【解析】A .√81=9,此选项计算错误; B .|√5−2|=√5−2,此选项错误;C .(−12)﹣1=﹣2,此选项正确; D .(tan45°﹣1)0无意义,此选项错误; 故选:C .15、【分析】根据绝对值的意义,可得答案. 【解析】|3|=3, 故选:B .16.【分析】首先化简2√10=√40,再估算√40,由此即可判定选项. 【解析】∵2√10=√40,且6<√40<7, ∴6<2√10<7. 故选:C . 17.【分析】直接利用实数比较大小的方法得出答案. 【解析】∵|−√2|>|﹣1|, ∴﹣1>−√2,∴实数﹣1,−√2,0,14中,−√2<−1<0<14.故4个实数中最小的实数是:−√2. 故选:D .18.【分析】由√9<√10<√16可以得到答案. 【解析】∵3<√10<4, 故选:B . 19.【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【解析】根据数轴可得:a <0,b >0,且|a |>|b |, 则a <b ,﹣a >b ,a <﹣b ,﹣a >b . 故选:D . 20.【分析】直接利用数轴上a ,b 的位置进而比较得出答案.【解析】如图所示:A 、a <b ,故此选项错误; B 、|a |>|b |,正确;C 、﹣a >b ,故此选项错误;D 、a +b <0,故此选项错误; 故选:B . 21.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解析】∵2的平方为4, ∴4的算术平方根为2. 故选:A . 22.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解. 【解析】3=√9,4=√16,A 、3.14是有理数,故此选项不合题意;B 、103是有理数,故此选项不符合题意;C 、√12是比3大比4小的无理数,故此选项符合题意;D 、√17比4大的无理数,故此选项不合题意; 故选:C .二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 √2 .【分析】根据算术平方根的性质可以把1和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可. 【解析】∵1=√1,3=√9,∴写出一个大于1且小于3的无理数是√2. 故答案为√2(本题答案不唯一).24.计算:|1−√2|+20= √2 .【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值.【解析】原式=√2−1+1 =√2.故答案为:√2.25.与√14−2最接近的自然数是 2 .【分析】根据3.5<√14<4,可求1.5<√14−2<2,依此可得与√14−2最接近的自然数. 【解析】∵3.5<√14<4, ∴1.5<√14−2<2,∴与√14−2最接近的自然数是2. 故答案为:2. 26.计算:(15)﹣1−√4= 3 .【分析】先计算负整数指数幂和算术平方根,再计算加减可得. 【解析】原式=5﹣2=3, 故答案为:3.27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.3这3个,【解析】在所列实数中,无理数有1.212212221…,2﹣π,√4故答案为:3.28.实数8的立方根是 2 .【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解析】实数8的立方根是:3=2.√8故答案为:2.29.计算:√9−1= 2 .【分析】直接利用二次根式的性质化简进而得出答案.【解析】原式=3﹣1=2.故答案为:2.30.9的平方根等于±3 .【分析】直接根据平方根的定义进行解答即可.【解析】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.31.请写出一个大于1且小于2的无理数√3.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【解析】大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.32.计算:√12−√3的结果是√3.【分析】首先化简√12,然后根据实数的运算法则计算.【解析】√12−√3=2√3−√3=√3.故答案为:√3.33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为8.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】数字8500000用科学记数法表示为8.5×106,故答案为:8.5×106.34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 4.26×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】将42600用科学记数法表示为4.26×104,故答案为:4.26×104.35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 5 ℃.【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【解析】4﹣(﹣1)=4+1=5. 故答案为:5.36.将数4790000用科学记数法表示为 4.79×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】4790000=4.79×106,故答案为:4.79×106. 37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 1.18×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】1180000=1.18×106,故答案为:1.18×106.38.用“>”或“<”符号填空:﹣7 > ﹣9. 【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.【解析】∵|﹣7|=7,|﹣9|=9,7<9, ∴﹣7>﹣9, 故答案为:>.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.【答案】2 【解析】 【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可. 【详解】原式=1+12+√2×√22−12=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键. 36.计算:√9−(−2022)0+2−1. 【答案】52【解析】 【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 【详解】解:√9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.计算:(−10)×(−12)−√16+20220.【答案】2【解析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.计算:(−1)2022+|−2|−(12)0−2tan45°. 【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.计算:(−2022)0−2tan45°+|−2|+√9.【答案】4【解析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.计算:(12)0−√16+(−2)2. 【答案】1【解析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】(12)0−√16+(−2)2 =1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x 2−1<x−23 ②. 【答案】(1)1;(2)−1≤x <2【解析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)(12)−1−√9+3tan30°+|√3−2|=2−3+3×√33+2−√3 =−1+√3+2−√3=1.(2){3(x +2)≥2x +5 ①x 2−1<x−23 ②不等式①的解集是x ≥-1;不等式②的解集是x <2;所以原不等式组的解集是-1≤x <2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.【答案】14【解析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解: √12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2=2√3+1−3√3+√3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b=最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)1615−2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,为整数,∵F(A)+G(A)16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12−b,∵a>b>c,∴12−b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12−b代入5a+5c+b=8k得:5(12−b)+b=8k,整理得:b=15−2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12−3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12−5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
中考数学真题知识分类练习试卷:实数(含答案)
实数
一、单选题
1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC 的周长是()
A.12
B.10
C.8
D.6
【答案】B
2.与最接近的整数是()
A.5
B.6
C.7
D.8
【答案】B
【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.
详解:∵36<37<49,
∴<<,即6<<7,
∵37与36最接近,
∴与最接近的是6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数,2,0,-1,其中负数是()
A. B.2C.0D.-1
【答案】D
【解析】分析:根据负数的定义,负数小于0即可得出答案.
详解:根据题意:负数是-1,
故答案为: D.
点睛:此题主要考查了实数,正确把握负数的定义是解题关键.
4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()
A. B.C.D.
【答案】D
【解析】分析:根据实数的大小比较解答即可.
详解:由数轴可得:a<b<c<d,故选D.
第1页共6页。
中考数学专题复习题 实数(含解析)
2017-2018年中考数学专题复习题:实数一、选择题1.下列说法中,其中不正确的有任何数都有算术平方根;一个数的算术平方根一定是正数;的算术平方根是a;算术平方根不可能是负数.A. 0个B. 1个C. 2个D. 3个2.若x、y都是实数,且,则xy的值为A. 0B.C. 2D. 不能确定3.若一个数的平方根与它的立方根完全相同则这个数是A. 1B.C. 0D. ,04.已知,,则约等于A. B. C. D.5.如图,数轴上表示1、的对应点分别为点A、点若点A是BC的中点,则点C所表示的数为A. B. C. D.6.在实数,,,,,,,,相邻两个1中间一次多1个中,无理数有A. 2个B. 3个C. 4个D. 5个7.若,,则A. B. C. 或 D.或8.定义表示不超过实数x的最大整数,如,,函数的图象如图所示,则方程的解为A. 0或B. 0或2C. 1或D. 或9.若的小数部分为a,的小数部分为b,则的值为A. 0B. 1C.D. 210.用计算器计算,,根据你发现的规律,判断与为大于1的整数的值的大小关系为A. B. C. D. 与n的取值有关二、填空题11.若m是的算术平方根,则 ______ .12.已知,则 ______ .13.已知,则的平方根为______ .14.若,,则 ______ .15.已知实数a满足,那么的值是______ .16.在实数,,,,,,0,,中,无理数的个数为______ .17.定义新运算:对于任意实数a,b,都有,等式右边是通常的加法、减法及乘法运算比如:则的值为______.18.比较大小______填“”、“”、“”19.已知:m、n为两个连续的整数,且,则______.20.规定:表示a,b之间的一种运算.现有如下的运算法则:.例如:,,则 ______ .三、计算题21.先化简,再求值:先化简,然后从的范围内选取一个合适的整数作为x的值代入求值.22.计算:.23.已知一个正数的两个平方根分别是和,求这个数的立方根.24.观察:,即,的整数部分为2,小数部分为,请你观察上述式子规律后解决下面问题.规定用符号表示实数m的整数部分,例如:,,填空: ______ ; ______ .如果的小数部分为a,的小数部分为b,求的值.【答案】1. D2. C3. C4. A5. D6. C7. C8. A9. B10. C11. 512.13.14.15. 201616. 317. 518.19. 720.21. 解:原式,且,,,x是整数,,当时,原式.22. 解:原式.23. 解:根据题意得:,解得:,这个正数是100,则这个数的立方根是.24. 5;1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 实数
【课标要求】
【知识梳理】
1.算术平方根:
()()()
⎪⎩
⎪
⎨⎧<-=>==000
02a a a a a a a 2.实数大小的比较:利用法则比较大小;利用数轴比较大小。
3.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】
一、填空题: 1.
53的相反数是__ __,53的倒数是 ,5
3
的绝对值是 ; 2.用科学记数法表示:570000=_____ ;
3.1
21-⎪⎭
⎫
⎝⎛-= ,21-的倒数是 ,|1-2| = ;
4.8-的立方根是 ,2的平方根是 ;
5.近似数1999.9保留三个有效数字,用科学计数法表示为_______________; 6.364
37
1-
的平方根是_______ ; 7.计算:___________45tan 60cos 30sin 45sin 2=︒-︒︒-︒;
8.实数P 在数轴上的位置如图1所示,
化简=-+
-2
2
)2()1(p p ______________;
9.请先观察下列算式,再填空:
181322⨯=-,283522⨯=-.
(1)=-2
2578× ;
(2)2
9-( )2=8×4;
(3)( )2
-92
=8×5;
(4)213-( )2
=8× ;……
10.观察下列等式,21 ×2 = 21 +2,32 ×3 = 32 +3,43 ×4 = 43 +4,54 ×5 = 54
+5
设n 表示正整数,用关于n 的等式表示这个规律为_______ ____;
二、选择题:
11.计算:01-= ( ) (A )1- (B )1 (C )1-或1 (D )0 12.9的平方根是 ( ) (A )3 (B )-3 (C )±3 (D )81 13.用科学记数法表示0.00032,正确的是 ( )
(A )32
104.⨯- (B )32103.⨯- (C )32105⨯- (D )032102
.⨯- 14.在实数π,2,41.3 ,2-,t (A )n45°中,有理数的个数是 ( )
(A )2个 (B ) 3个 (C )4个 (D )5个 15.0.00898用科学记数法表示为 ( )
(A )8.98×10-3 (B )0.898×10-3 (C )8.98×10-4 (D )0.898×10-4 16.观察下列各题的运算:①a a
-=-
1, ②2
2)3(b a ·643182b a b =, ③(sin 225°+sin 265°
-t (A )n 2
25°·o o 25
sin 65sin 22)0
=1, ④
68a a =, ⑤(-7
7
2)2
=14, ⑥|43-7|=7-43其
中算对的有 ( ) (A ) ③⑤
(B )②⑥ (C )③④⑤⑥ (D )⑤⑥
17.下列计算,正确的是 ( ) (A )2828+=+ (B )94)9()4(-⋅-=
-⋅-
(C )
323
21+=- (D )2
12214
= ͼ1
18.下面用科学记数法表示正确的是 ( )
(A )1012120⨯= (B )110505.0-⨯= (C )21034034.0-⨯= (D )2
102.1012.0-⨯=
19.据测算,我国每天因土地沙漠化造成的经济损失平均为150000000元,若不加治理,一年按365天计,我国一年中因土地沙漠化造成的经济损失(用科学记数法表示)为 ( )
(A ) 5.475×107元 (B ) 5.475×109元 (C )5.475×1010元 (D )5.475×1011元
20.在7
22,π、9.0、(C )OS300、3
027.0、0.∙9、2)16(--,0.3030030003……中无
理数的个数有 ( )
(A ) 2个 (B ) 3个 (C ) 4个 (D ) 5个 21.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点
的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( ) (A )2
1
1
(B )1.4 (C )3 (D ) 2
22.在实数-
3
2
,0,3,-3.14,4 中,无理数有 ( ) (A )1个 (B )2个 (C )3个 (D )4个
23.我国某年石油产量约为170000000吨,用科学记数法表示为 ( ) (A )1.7×10
7
-吨 (B )1.7×10
7
吨 (C )1.7×108吨 (D )1.7×109
吨
24.下列二次根式中与3是同类二次根式的是 ( ) (A )18 (B )3.0 (C )30 (D )300
25.下列各式中与327x -- 是同类二次根式的是 ( )
(A )3
27x (B )
273x -
(C )2391x -- (D )3
x
26.下列计算中,正确的是 ( )
(A ) 33=-- (B )7
25)(a a = (C )02.02.022=-b a b a (D )4)4(2-=-
三、计算题:
27.2)52(80182
445-+-++
28. 122
31
310+--+()
29. 1360tan 2)1(30sin 2123
-︒---︒⋅⎪⎭
⎫
⎝⎛-
30.3
112927)3(231
2÷
-÷-+----
31.200)2(60sin 2)23(|31|-+--+- 32.0
22004
1312521)21
()1(⎪⎪⎭
⎫ ⎝⎛-+---+--
33. 02)20042005(60sin 28
1
)2(2
31-+︒+⨯
-++
34.细心观察图形,认真分析各式,然后解答问题:
;2
3,4)3(;22,31)2(;21,21)1(322212=
=+==+==+S S S (1)请用含有n (n 是正整数)的等式表示
上述变化规律; (2)推算出OA 10的长;
(3)求出2
10
232221S S S S ++++ 的值.
□ (
1 1
1
1 1 1
1
(
((
(
(
(
S 1
S 2
S 3
S 4
S 5 S 6
O
答案: 一、填空题 1.53-,35,5
3; 2.5107.5⨯ 3.2-,12--,12-; 4.2-,2±;5.31000.2⨯; 6.2
3
±
; 7.41-; 8.1 9.(1)3;(2)7;(3)11;(4)11,6;
10.)0)(1(1
)1(1≠+++=+⋅+n n n
n n n n ; 二、选择题
11.(D ); 12.(C ); 13.(A ); 14.(B ); 15.(A ); 16.(C ); 17.(C ) 18.(D ); 19.(C ); 20.(C ); 21.(D );22.(A ); 23.(C ); 24.(D ); 25.(B ); 26.(C ); 三、计算
27.24;28.33;29.3-;30.10-;31.2;32.22-;33.132+; 34.(1)2n S n =;(2)OA 10的长是2
10
;(3)4313;。