高中数学选修22全套知识点及练习答案解析
高中数学选修2-2(人教A版)第二章推理与证明2.2知识点总结含同步练习及答案
4. 当 q ≠ 1 时, S n =
−a1 n a q + 1 = aq n + b ,这里 a + b = 0 ,且 a ≠ 0, b ≠ 0 ,这是等比数 1−q 1−q 列前 n 项和公式的一个特征,据此很容易根据 S n ,判断数列 {an } 是否为等比数列.如若 {an } 是
等比数列,且 S n = 3 n + r ,则 r =
)
C.2 D.3
B.1
2. 从任何一个正整数 n 出发,若 n 是偶数就除以 2 ,若 n 是奇数就乘 3 再加 1 ,如此继续下去
⋯ ⋯,现在你从正整数 3 出发,按以上的操作,你最终得到的数不可能是 (
A.1
答案: C 解析: 按照题中给出的规则:
)
B.2
C.3
D.4
10 = 5 ;得到的第三个数是 2 16 8 5 × 3 + 1 = 16 ;得到的第四个数是 = 8 ;得到的第五个数为 = 4 ; 2 2 4 2 得到的第六个数为 = 2 ;得到第七个数为 = 1 ;得到第八个数为 1 × 3 + 1 = 4. 2 2 所以后面的数是以 4、2、1 为一个周期的数.
高中数学选修2-2(人教A版)知识点总结含同步练习题及答案
第二章 推理与证明 2.1 合情推理与演绎推理
一、学习任务 1. 能用归纳和类比等进行简单的推理,体会并了解合情推理在数学发现中的作用. 2. 理解演绎推理的基本方法,并能运用它们进行一些简单推理. 3. 了解合情推据已知中的点
E, F 的位置,如图,可知入射角的正切值为 2 ,第一次碰撞点为 F ,在反射 的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点 G 在 DA 上 ,且 1 1 DG = , 第三次碰撞点 H 在 DC 上,且 DH = ,第四次碰撞点 M 在 CB 上,且 6 3 1 1 1 CM = ,第五次碰撞点为 N ,在 DA 上,且 AN = ,第六次回到 E 点, AE = . 3 6 3
数学选修22课后习题答案
数学选修22课后习题答案数学选修22课后习题答案在学习数学选修22这门课程时,我们经常会遇到各种各样的习题。
这些习题是我们巩固知识、理解概念和培养解决问题能力的重要工具。
然而,有时候我们会遇到一些难题,不知道如何下手。
在这篇文章中,我将为大家提供数学选修22课后习题的答案,希望能够帮助大家更好地学习和理解数学知识。
第一章:函数的概念与性质1. 1. 函数的定义:函数是一个或多个自变量和一个因变量之间的关系,通常用符号f(x)表示。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 2. 函数的性质:函数可以是奇函数或偶函数。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
函数的图像可以是对称的。
3. 3. 函数的图像:函数的图像可以通过绘制函数的曲线来表示。
在坐标系中,自变量表示横轴,因变量表示纵轴。
4. 4. 函数的极值:函数在某个区间内取得最大值或最小值的点称为极值点。
极大值点对应函数的最大值,极小值点对应函数的最小值。
第二章:函数的运算与初等函数1. 1. 函数的四则运算:函数可以进行加法、减法、乘法和除法运算。
两个函数相加得到的函数称为它们的和函数,两个函数相减得到的函数称为它们的差函数,两个函数相乘得到的函数称为它们的积函数,两个函数相除得到的函数称为它们的商函数。
2. 2. 初等函数:常见的初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
这些函数在数学中具有重要的地位,广泛应用于各个领域。
3. 3. 函数的复合:复合函数是指将一个函数的输出作为另一个函数的输入。
复合函数可以通过将函数的表达式代入另一个函数来求得。
4. 4. 函数的逆运算:函数的逆运算是指将函数的自变量和因变量互换。
如果一个函数存在逆函数,那么它们的复合函数等于自变量。
第三章:导数与微分1. 1. 导数的定义:函数在某个点的导数表示函数在该点的变化率。
导数可以通过求函数的极限来定义。
高二选修2-2数学知识点
高二选修2-2数学知识点高二数学选修2-2是一门重要的课程,它涵盖了许多关键的数学知识点。
本文将重点介绍高二选修2-2数学课程的五个重要知识点。
这些知识点包括函数、导数、不等式、排列组合和概率。
通过深入学习这些知识点,学生将能够更好地理解和运用数学。
一、函数函数是高二选修2-2课程的核心概念之一。
函数是一种特殊的关系,它将一个自变量映射到一个因变量。
函数可以用图表、方程或文字形式表示。
在学习函数时,学生需要了解函数的定义域、值域、增减性、最值等概念。
学生还需要学会绘制函数图像和解决与函数有关的各种实际问题。
二、导数导数是高二选修2-2课程中的另一个重要概念。
导数描述了函数在某一点的变化率。
学生需要学习导数的定义、性质和运算法则,掌握导数的计算方法,并能够应用导数解决各种相关问题,如求函数的极值、判断函数的增减性等。
导数在微积分和物理等领域有广泛的应用。
三、不等式不等式是高二选修2-2课程中的一个重要主题。
不等式表示不同数值之间的关系,包括大于、小于、大于等于、小于等于等。
学生需要学习不等式的基本性质,如加减乘除不等式、绝对值不等式等。
通过解不等式,学生可以找到满足一定条件的数值范围,解决实际问题。
四、排列组合排列组合是高二选修2-2课程中的一个重要内容。
它研究的是个体之间的选择和排列方式。
学生需要学习排列和组合的定义、计算方法和应用,包括阶乘、排列数、组合数等概念。
排列组合在概率论、统计学等领域有广泛的应用。
五、概率概率是高二选修2-2课程中的最后一个重要知识点。
概率是研究随机事件发生可能性的数学分支。
学生需要学习概率的基本概念、概率计算、事件之间的关系等内容。
通过学习概率,学生可以理解和计算随机事件的可能性,并能够应用概率解决实际问题,如赌博、抽奖等。
高二选修2-2数学知识点的学习对于学生的数学能力和解决实际问题的能力有着重要的影响。
通过深入理解和掌握这些知识点,学生将能够在数学领域更上一层楼。
人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_变化率与导数_基础
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习变化率与导数【学习目标】(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】要点一、平均变化率问题1.变化率事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;2.平均变化率一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --要点诠释:① 本质:如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势.即递增或递减幅度的大小。
对于不同的实际问题,平均变化率富于不同的实际意义。
如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。
高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。
3.如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=- ②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-。
要点诠释:1. x ∆是1x 的一个“增量”,可用1x x +∆代替2x ,同样21()()y f x f x ∆=-。
2. x 是一个整体符号,而不是与x 相乘。
3. 求函数平均变化率时注意,x y ,两者都可正、可负,但x 的值不能为零,y 的值可以为零。
高中数学选修2-2,2-3知识点、考点、典型例题
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
高中数学选修2-2最全知识点汇总
1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:在某个区间 内
(1)如果 ,那么函数 在这个区间单调递增;(2)如果 ,那么函数 在这个区间单调递减.
2.函数的极值与导数
极值反映的是函数在某一点附近的大小情况.
求函数 的极值的方法是:(1)如果在 附近的左侧 ,右侧 ,那么 是极大值(2)如果在 附近的左侧 ,右侧 ,那么 是极小值;
3.导函数:当x变化时, 便是x的一个函数,我们称它为 的导函数. 的导函数有时也记作 ,即
二.导数的计算
基本初等函数的导数公式:
1若 (c为常数),则 ;2若 ,则 ;
3若 ,则 4若 ,则 ;
5若 ,则 6若 ,则
7若 ,则 8若 ,则
导数的运算法则
1. 2.
3.
复合函数求导 和 ,称则 可以表示成为 的函数,即 为一个复合函数
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
类比推理的一般步骤:
(1)找出两类事物的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.
2,几个重要的结论
(1) (2) (3)若 为虚数,则
3.单位i的一些固定结论:
(1) (2) (3) (2)
(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.
考点二演绎推理(俗称三段论)
()新课程人教版高中数学选修22课后习题解答(全)
第一章导数及其应用3.1变化率与导数练习〔P6〕在第3h和5h时,原油温度的瞬时变化率分别为1和3.它说明在第3h附近,原油温度大约以1℃/h的速度下降;在第5h时,原油温度大约以3℃/h的速率上升.练习〔P8〕函数h(t)在t t3附近单调递增,在t t4附近单调递增.并且,函数h(t)在t4附近比在t3附近增加得慢.说明:体会“以直代曲〞的思想.练习〔P9〕函数r(V)33V(0V5)的图象为4根据图象,估算出r(0.6),r(1.2).说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数.习题A组〔P10〕1、在t0处,虽然W1(t0)W2(t0),然而W1(t0)W1(t0t)W2(t0)W2(t0t).t t所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.h h(1t)h(1)t,所以,h(1).2、tt这说明运发动在t1s附近以m/s的速度下降.3、物体在第5s的瞬时速度就是函数s(t)在t5时的导数.s s(5t)s(5)t10,所以,s(5)10.t t因此,物体在由题意可知,当t时, 2.所以k25,于是25t2. 88新课程标准数学选修2—2第一章课后习题解答〔第1页共25页〕车轮转动开始后第s 时的瞬时角速度就是函数 (t)在t 时的导数.t) (3.2)25(3.2) 20.ttt20,所以8因此,车轮在开始转动后第s 时的瞬时角速度为20s 1.说明:第2,3,4题是对了解导数定义及熟悉其符号表示的稳固.5、由图可知,函数f(x)在x 5处切线的斜率大于零,所以函数在x 5附近单调递增.同理可得,函数f(x)在x 4, 2,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲〞思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f(x)的图象如图〔1〕所示;第二个函数的导数f(x)恒大于零,并且随着x 的增加,f (x)的值也在增加;对于第三个函数,当x 小于零时,f(x)小于零,当x 大于零时,f(x)大于零,并且随着x 的增加,f (x)的值也在增加.以下给出了满足上述条件的导函数图象中的一种.说明:此题意在让学生将导数与曲线的切线斜率相联系 . 习题3.1 B 组〔P11〕1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是 速度变化的快慢,根据物理知识,这个量就是加速度 .2、说明:由给出的 v(t)的信息获得s(t)的相关信息,并据此画出 s(t)的图象的大致形状 .这个 过程基于对导数内涵的了解,以及数与形之间的相互转换 . 3、由〔1〕的题意可知,函数 f(x)的图象在点(1,5)处的切线斜率为 1,所以此点附近曲线呈下降趋势.首先画出切线的图象,然后再画出此点附近函数的图象 .同理可得〔2〕〔3〕某 点处函数图象的大致形状 .下面是一种参考答案 .新课程标准数学选修 2—2第一章课后习题解答〔第2页共25页〕说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟.此题的答案不唯一.1.2导数的计算练习〔P18〕1、f(x)2x7,所以,f(2)3,f(6) 5.2、〔1〕y1;〔2〕y2e x;xln2〔3〕y10x46x;〔4〕y3sinx4cosx;〔5〕y1sin x;〔6〕y211.33x习题A组〔P18〕S S(r r)S(r)r r,所以,S(r)lim(2r r)2r.1、2r r r02、h(t).3、r(V)1332. 34V4、〔1〕y3x21;〔2〕y nx n1e x x n e x;xln2〔3〕y3x2sinx x3cosx cosx;〔4〕y99(x1)98;sin2x〔5〕y2e x;〔6〕y2sin(2x5)4xcos(2x5).5、f(x)822x.由f(x0)4有4822x0,解得x032.6、〔1〕y lnx1;〔2〕yx1.7、y x1.8、〔1〕氨气的散发速度A(t)500ln t.〔2〕A(7),它表示氨气在第7天左右时,以克/天的速率减少.新课程标准数学选修2—2第一章课后习题解答习题1.2 B组〔P19〕1、〔1〕〔2〕当h越来越小时,y sin(xh)sinx就越来越逼近函数ycosx. h〔3〕y sinx的导数为y cosx.2、当y0时,x0.所以函数图象与x轴交于点P(0,0).yx,所以y x0. e1所以,曲线在点P处的切线的方程为y x.2、d(t)4sint.所以,上午6:00时潮水的速度为m/h;上午9:00时潮水的速度为m/h;中午12:00时潮水的速度为m/h;下午6:00时潮水的速度为m/h. 1.3导数在研究函数中的应用练习〔P26〕1、〔1〕因为f(x)x22x4,所以f(x)2x 2.当f(x)0,即x1时,函数f(x)x22x4单调递增;当f(x)0,即x1时,函数f(x)x22x4单调递减.〔2〕因为f(x)e x x,所以f(x)e x 1.当f(x)0,即x0时,函数f(x)e x x单调递增;当f(x)0,即x0时,函数f(x)e x x单调递减.〔3〕因为f(x)3x x3,所以f(x)33x2.当f(x)0,即1x1时,函数f(x)3x x3单调递增;当f(x)0,即x1或x1时,函数f(x)3x x3单调递减.〔4〕因为f(x)x3x2x,所以f(x)3x22x 1.当f(x)0,即x 1或x1时,函数f(x)x3x2x单调递增;3新课程标准数学选修2—2第一章课后习题解答当f(x)0,即1 x1时,函数f(x) x 3 x2 x 单调递减.32、注:图象形状不唯一.3、因为f(x) ax 2bx c(a0),所以f(x)2axb.〔1〕当a0时,f(x)0,即xb 时,函数f(x)ax 2 bx c(a 0)单调递增;2af(x) 0,即xb时,函数f(x)ax 2 bx c(a0)单调递减.〔2〕当a0时,2af(x)0,即xb 时,函数f(x)ax 2 bx c(a0)单调递增;2af(x)0,即xb时,函数f(x)ax 2 bx c(a 0)单调递减.2a4、证明:因为f(x)2x 3 6x 2 7,所以f (x) 6x 2 12x.当x(0,2)时,f(x) 6x 2 12x 0,因此函数f(x)2x 36x 2 7在(0,2)内是减函数.练习〔P29〕1、x 2,x 4是函数y f(x)的极值点,其中xx 2是函数yf(x)的极大值点,xx 4是函数y f(x)的极小值点.2、〔1〕因为f(x) 6x 2x2,所以f(x)12x 1.令f(x)12x10,得x1.12当x1时,f (x)0,f(x)单调递增;当x1 时,f(x)0,f(x)单调递减.12 112 11)2149. 所以,当x时,f(x)有极小值,并且极小值为f( )6 ( 212 12121224〔2〕因为f(x)x 3 27x ,所以f (x)3x 227.令f(x)3x 2270,得x3.下面分两种情况讨论:①当f(x)0,即x3或x3时;②当f (x) 0,即3x3时.当x 变化时,f (x),f(x)变化情况如下表:x(,3)3(3,3)3(3,)f(x)+0-0+f(x)单调递增54单调递减54单调递增因此,当x3时,f(x)有极大值,并且极大值为54;当x3时,f(x)有极小值,并且极小值为54.〔3〕因为f(x)612xx3,所以f(x)123x2.令f(x)123x20,得x2.下面分两种情况讨论:①当f(x)0,即2x2时;②当f(x)0,即x2或x2时.当x变化时,f(x),f(x)变化情况如下表:x(,2)2(2,2)2(2,)f(x)-0+0-f(x)单调递减10单调递增22单调递减因此,当x2时,f(x)有极小值,并且极小值为10;当x2时,f(x)有极大值,并且极大值为22〔4〕因为f(x)3x x3,所以f(x)33x2.令f(x)33x20,得x1.下面分两种情况讨论:①当f(x)0,即1x1时;②当f(x)0,即x1或x1时.当x变化时,f(x),f(x)变化情况如下表:x(,1)1(1,1)1(1,)f(x)-0+0-f(x)单调递减2单调递增2单调递减因此,当x1时,f(x)有极小值,并且极小值为2;当x1时,f(x)有极大值,并且极大值为2练习〔P31〕〔1〕在[0,2]上,当x 1时,f(x)6x2x2有极小值,并且极小值为f(1)49. 121224又由于f(0)2,f(2)20.因此,函数f(x)6x2x2在[0,2]上的最大值是20、最小值是49.24〔2〕在[4,4]上,当x3时,f(x)x327x有极大值,并且极大值为f(3)54;当x3时,f(x)x327x有极小值,并且极小值为f(3)54;又由于f(4)44,f(4)44.因此,函数f(x)x327x在[4,4]上的最大值是54、最小值是54.〔3〕在[1,3]上,当x2时,f(x)612x x3有极大值,并且极大值为f(2)22.31)55又由于f(,f(3)15.327因此,函数f(x)612x x3在[1,3]上的最大值是22、最小值是55. 327〔4〕在[2,3]上,函数f(x)3x x3无极值.因为f(2)2,f(3)18.因此,函数f(x)3x x3在[2,3]上的最大值是2、最小值是18.习题A组〔P31〕1、〔1〕因为f(x)2x1,所以f(x)20.因此,函数f(x)2x1是单调递减函数.〔2〕因为f(x)xcosx,x(0,2),所以f(x)1sinx0,x(0,).2因此,函数f(x)x cosx在(0,)上是单调递增函数.2〔3〕因为f(x)2x4,所以f(x)20.因此,函数f(x)2x4是单调递减函数.〔4〕因为f(x)2x34x,所以f(x)6x240.因此,函数f(x)2x34x是单调递增函数.2、〔1〕因为f(x)x 2 2x4,所以f(x)2x 2.当f(x) 0,即x 1时,函数f(x) x 2 2x4单调递增.当f(x)0 ,即x1 时,函数f(x) x2 2x 4 单调递减.〔2〕因为f(x)2x 2 3x 3,所以f(x) 4x 3.当f(x)0 ,即x3时,函数f(x)2x 2 3x 3 单调递增.4当f(x)0 ,即x3时,函数f(x)2x 2 3x 3 单调递减.4〔3〕因为f(x)3x x 3,所以f(x)33x 2 0.因此,函数 f(x)3x x 3是单调递增函数.〔4〕因为f(x)x 3 x 2 x ,所以f(x) 3x 2 2x 1.当f(x)0,即x 1或x 1时,函数f(x) x 3 x 2 x 单调递增.3 当f(x)0 ,即 1 x1时,函数f(x)x 3 x 2x 单调递减.33、〔1〕图略.〔2〕加速度等于0.4、〔1〕在x x 2处,导函数yf (x)有极大值;〔2〕在xx 1和x x 4处,导函数yf(x)有极小值;3〕在xx 3处,函数yf(x)有极大值;4〕在xx 5处,函数yf(x)有极小值.5、〔1〕因为f(x) 6x 2 x 2 ,所以f(x)12x1.令f(x)12x10,得x1.1时,f12当x (x) 0 ,f(x)单调递增;12当x 1时,f (x) 0 ,f(x)单调递减.12所以,x1 时,f(x)有极小值,并且极小值为f( 1)6(1)2 1 2 49.121212 1224〔2〕因为f(x) x 312x ,所以f(x)3x 212.令f(x)3x 2 12 0,得x2.下面分两种情况讨论:新课程标准数学选修 2—2第一章课后习题解答①当f(x)0,即x2或x2时;②当f(x)0,即2x2时.当x变化时,f(x),f(x)变化情况如下表:x(,2)2(2,2)2(2,)f(x)+0-0+f(x)单调递增16单调递减16单调递增因此,当x2时,f(x)有极大值,并且极大值为16;当x2时,f(x)有极小值,并且极小值为16.〔3〕因为f(x)612xx3,所以f(x)123x2.令f(x)123x20,得x2.下面分两种情况讨论:①当f(x)0,即x2或x2时;②当f(x)0,即2x2时.当x变化时,f(x),f(x)变化情况如下表:x(,2)2(2,2)2(2,)f(x)+0-0+f(x)单调递增22单调递减10单调递增因此,当x2时,f(x)有极大值,并且极大值为22;当x2时,f(x)有极小值,并且极小值为10.〔4〕因为f(x)48x x3,所以f(x)483x2.令f(x)483x20,得x4.下面分两种情况讨论:①当f(x)0,即x2或x2时;②当f(x)0,即2x2时.当x变化时,f(x),f(x)变化情况如下表:x(,4)4(4,4)4(4,)f(x)-0+0-f(x)单调递减 128 单调递增 128 单调递减因此,当x4时,f(x)有极小值,并且极小值为 128;当x4时,f(x)有极大值,并且极大值为128.6、〔1〕在[1,1] 上,当x1 时,函数f(x)6x2 x2 有极小值,并且极小值为 47.1224由于f( 1) 7 ,f(1)9,所以,函数f(x)6x2x 2在[ 1,1]上的最大值和最小值分别为9,47.24〔2〕在[3,3] 上,当x2时,函数f(x)x 312x 有极大值,并且极大值为16;当x2时,函数f(x) x 3 12x 有极小值,并且极小值为16.由于f(3) 9 ,f(3)9 ,所以,函数f(x)x 3 12x 在[ 3,3]上的最大值和最小值分别为16,16 .〔3〕在[1,1]上,函数f(x)612xx 3在[1,1]上无极值.31)269,f(1)3由于f(5,3 27所以,函数f(x)612xx 3在[1,1]上的最大值和最小值分别为269,5.327〔4〕当x4时,f(x)有极大值,并且极大值为128..由于f( 3) 117,f(5) 115,所以,函数f(x)48xx 3在[ 3,5] 上的最大值和最小值分别为128,117.习题B 组〔P32〕1、〔1〕证明:设f(x) sinx x ,x(0, ).因为f (x) cosx 1 0,x (0,)所以f(x) sinx x 在(0, )内单调递减因此f(x)sinx xf(0)0 ,x(0,),即sinxx ,x(0,). 图略〔2〕证明:设f(x) x x 2,x (0,1) .因为f (x) 1 2x ,x (0,1)新课程标准数学选修 2—2第一章课后习题解答〔第10页共25页〕所以,当x(0, 1 )时,f (x) 1 2x 0 ,f(x)单调递增,2f(x)x x 2 f(0)0;当x (1,1)时,f (x) 1 2x 0,f(x)单调递减,2f(x) x x 2 f(1)0 ;又f(1)1 0.因此,x x 2 0 ,x(0,1).图略24〔3〕证明:设f(x)e x 1 x ,x0.因为f(x) e x 1,x所以,当x0时,f(x)e x 1 0,f(x)单调递增,f(x)e x 1 xf(0)0;当x 0 时,f(x)e x 1 0,f(x)单调递减,f(x)e x 1 xf(0) 0;综上,e x1 x ,x0.图略〔4〕证明:设f(x)lnx x ,x 0 .因为f(x)1 1,xx所以,当0x 1时,f (x)1 10,f(x)单调递增,xf(x) lnx x f(1)1 0;当x 1 时,f(x)1 1 0,f(x)单调递减,xf(x) lnx x f(1) 1 0;当x 1 时,显然ln1 1 . 因此,lnxx .由〔3〕可知, e x x 1 x ,x0..综上,lnxx e x ,x图略2、〔1〕函数f(x)ax 3 bx 2 cx d 的图象大致是个“双峰〞图象,类似“〞或“〞的形状. 假设有极值,那么在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.〔2〕因为f(x)ax 3bx 2 cx d ,所以f (x) 3ax 22bxc.新课程标准数学选修 2—2第一章课后习题解答〔第11页共25页〕下面分类讨论:当a0时,分a 0 和a 0两种情形:①当a 0,且b 23ac 0 时,设方程f(x) 3ax 2 2bx c0的两根分别为x 1,x 2,且x 1x 2,当f (x) 3ax 2 2bx c 0 ,即x x 1或x x 2时,函数f(x) ax 3 bx 2cx d 单调递增;当f (x)3ax 2 2bx c 0,即x 1 xx 2时,函数f(x) ax 3 bx 2 cx d 单调递减.当a 0,且b 2 3ac 0 时,此时 f(x)3ax 22b xc 0,函数f(x)ax 3 bx 2 cx d 单调递增.②当a 0,且b 2 3ac 0时,设方程f(x) 3ax 2 2bx c0的两根分别为x 1,x 2,且x 1x 2,当f (x) 3ax 2 2bx c 0 ,即x 1 xx 2时,函数f(x) ax 3 bx 2 cx d 单调递增;当f (x)3ax 2 2bx c 0 ,即x x 1或x x 2时,函数f(x)ax 3bx 2 cx d 单调递减.当a 0,且b 2 3ac 0 时,此时f(x)3ax 22bxc 0,函数f(x)ax 3 bx 2 cx d 单调递减1.4生活中的优化问题举例习题 A 组〔P37〕1、设两段铁丝的长度分别为 x ,lx ,那么这两个正方形的边长分别为x ,l 4 x,两个正方4形的面积和为 Sf(x)(x )2(lx )21 (2x 22lxl 2),0xl .4416令f(x) 0,即4x2l0,x l .当x(0,l)时,f2(l,l)时,f(x)(x) 0;当x 0.22因此,xl是函数f(x)的极小值点,也是最小值点.2所以,当两段铁丝的长度分别是l 时,两个正方形的面积和最小.22、如下列图,由于在边长为a 的正方形铁片的四角截去四个边长为x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为a2x ,高为x.x〔1〕无盖方盒的容积V(x)(a2x)2x ,0x a .2 〔2〕因为V(x)4x 34ax 2 a 2x ,新课程标准数学选修2—2 第一章课后习题解答〔第12页共25 页〕a〔第2题〕所以V(x) 12x 2 8ax a 2.令V(x) 0,得x a 〔舍去〕,或x a . 26当x (0,a)时,V(x)0;当x(a ,a)时,V(x) 0.6 62因此,xa是函数V(x)的极大值点,也是最大值点.6a时,无盖方盒的容积最大.所以,当x6h ,底半径为R ,3、如图,设圆柱的高为 那么外表积S2 Rh 2 R 2R由VR 2h ,得hV 2.R因此,S(R)2RV 2 R 2 2V 2 R 2,R 0 . hR 2 R2VR 0,解得 RV .令S(R)43R2当R(0,3V)时,S(R)0;2当R(3V,)时,S(R)0.〔第3题〕2因此,R3V是函数S(R) 的极小值点,也是最小值点 .此时,hV 23 V2R.2R 22所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于f(x)1 n2,所以f(x)2 n (x a i ).(x a i ) n in i11令f(x)0,得x 1 n a i ,n i1可以得到,x1na i 是函数f(x)的极小值点,也是最小值点.n i 1这个结果说明,用n 个数据的平均值1na i 表示这个物体的长度是合理的,n i1这就是最小二乘法的根本原理.5、设矩形的底宽为xm ,那么半圆的半径为xm ,半圆的面积为x 2 m 2 ,28新课程标准数学选修 2—2第一章课后习题解答〔第13页共25页〕矩形的面积为ax 2m 2,矩形的另一边长为(ax)m8x8因此铁丝的长为l(x)x x 2a x (1 )x 2a ,0 x8a2x 4 4x令l(x)142a 0,得x8a 〔负值舍去〕.x 24当x(0,8a )时,l(x) 0;当x( 8a ,8a)时,l(x)0.44因此, x8a 是函数l(x)的极小值点,也是最小值点.4所以,当底宽为 8a m 时,所用材料最省.46、利润L 等于收入R 减去本钱C ,而收入R 等于产量乘单价.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入Rq p q(251q) 25q 1q 2,8 8利润LR C (25q 1q 2) (1004q) 1q 2 21q100,0 q 200.18 8求导得L q 2141令L 0,即 q210,q84. 4当q(0,84)时,L0;当q (84,200)时,L 0;因此,q 84是函数L 的极大值点,也是最大值点.所以,产量为84 时,利润L 最大,习题 B 组〔P37〕1、设每个房间每天的定价为 x 元,那么宾馆利润L(x)(50x180)(x20)1 x 270x1360,180x680.1010令L(x)1x 70 0,解得x 350.5当x (180,350) 时,L(x) 0;当x(350,680) 时,L(x)0.因此,x350是函数L(x)的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大.2、设销售价为 x 元/件时,新课程标准数学选修 2—2第一章课后习题解答〔第14页共25页〕利润L(x) (x令L(x)8cb当x(a,4a8 4a5bb x a)(c cb4ac 5bc xb 5b)时,L(x)4)c(xa)(5 4 x),ax 5b .b4 0,解得x4a 5b .80;当x (4a 5b ,5b)时,L(x)0. 8 4当x8是函数L(x)的极大值点,也是最大值点.所以,销售价为4a5b元/件时,可获得最大利润.81.5定积分的概念练习〔P42〕8.3.说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲〞和“逼近〞的思想 练习〔P45〕1、s i s iv(i) t[ (i )2 2]1(i )212,i1,2,L,n.nn n nnnnnnv(i)t 于是ss is ii 1i 1i 1nn(i )212][i1n n n(1)21 L(n1)21(n )212n nnn nn122n 3 [1 2 L n ] 21 n(n 1)(2n1) 2n 361 112(1 )(1)3n2n取极值,得ns limni1[1v(i)]n[1(11)(11)2] 5limnnni13n2n 3说明:进一步体会“以不变代变〞和“逼近〞的思想.2、22km.3 说明:进一步体会“以不变代变〞和“逼近〞的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习〔P48〕2说明:进一步熟悉定积分的定义和几何意义.x 3dx4.从几何上看,表示由曲线yx 3与直线x 0,x2,y0所围成的曲边梯形的面积S4.新课程标准数学选修 2—2第一章课后习题解答〔第15页共25页〕习题A组〔P50〕1、〔1〕(x1)dx100i1)1]1;21i11001002500i1)1〔2〕1)dx[(11](x;1i150050021000i 1)1]1〔3〕(x1)dx[(1.1i110001000说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的缺乏近似值为:18112171310140〔m〕;距离的过剩近似值为:271181121713167〔m〕.3、证明:令f(x) 1.用分点a x0x1L x i1x i L xn b将区间[a,b]等分成n个小区间,在每个小区间[x i1,x i]上任取一点i(i1,2,L,n)n n作和式f(i)xi 1i 1b ab a,nbn从而1dx lima ni1banb a,说明:进一步熟悉定积分的概念.12表示由直线x0,x1y0y1x2、根据定积分的几何意义,1xdx,以及曲线401x2dx.所围成的曲边梯形的面积,即四分之一单位圆的面积,因此1041.5、〔1〕x3dx14由于在区间[1,0]上x300,x1,y0和曲线,所以定积分x3dx表示由直线x1x3所围成的曲边梯形的面积的相反数.〔2〕根据定积分的性质,得13dx01110. xx3dx x3dx11044由于在区间[1,0]上x30,在区间[0,1]上x30,所以定积分1x3dx等于位于x轴上方的1曲边梯形面积减去位于x轴下方的曲边梯形面积.〔3〕根据定积分的性质,得23dx021415 x x3dx x3dx11044由于在区间[1,0]上x30,在区间[0,2]上x30,所以定积分2x3dx等于位于x轴上方的1曲边梯形面积减去位于x轴下方的曲边梯形面积.说明:在〔3〕中,由于x3在区间[1,0]上是非正的,在区间[0,2]上是非负的,如果直接利新课程标准数学选修2—2第一章课后习题解答〔第16页共25页〕用定把区[1,2]分成n 等份来求个定分,那么和式中既有正又有,而且无法抵一些,求和会非常麻.利用性3可以将定分223dx ,,x3x 3dx 化x 3dxx1 1在区[1,0]和区[0,2]上的符号都是不的,再利用定分的定,容易求出x 3dx ,12 2x 3dx ,而得到定分x 3dx 的.由此可,利用定分的性可以化运算.1在〔2〕〔3〕中,被函数在分区上的函数有正有,通一步体会定分的几何意.1.5 B 〔P50〕1、物体在t 0到t 6〔位:s 〕之走的路程大 145m.明:根据定分的几何意,通估算曲梯形内包含位正方形的个数来估物体走的路程.2、〔1〕v.8i 11 8 9〔m 〕;〔2〕剩近似:222i 148i 1 1187 〔m 〕缺乏近似:i 12 2424;4〔m 〕.〔3〕 0 03、〔1〕分割在区[0,l]上等隔地插入n1个分点,将它分成n 个小区:[0, l ],[l, 2l ],⋯⋯,[(n2)l ,l],nn nn第i 个区[(i1)l ,il]〔i 1,2,L n 〕,其度n nil (i 1)l l .xn nn把棒在小段[0,l ],[l, 2l ],⋯⋯,[(n2)l ,l]上量分作:n n nnm 1, m 2,L,m n ,n棒的量mi1m i .〔2〕近似代替当n 很大,即x 很小,在小区[(i1)l ,il]上,可以密度(x)x 2的n n[(i1)l ,il化很小,近似地等于一个常数,不妨它近似地等于任意一点i]的函数n n (i )i2.于是,棒在小段[(i1)l ,il]上量m i(i )xi 2 l〔i 1,2,Ln 〕.n nn新课程标准数学选修 2—2第一章课后习题解答〔第17页共25页〕()新课程人教版高中数学选修22课后习题解答(全)21 / 2121〔3〕求和nn n2l . 得细棒的质量 mm i(i )xii1i1i1n〔4〕取极限nl,所以ml细棒的质量mlimi 2x 2dx..nni1新课程标准数学选修 2—2第一章课后习题解答〔第18页共25页〕。
高中数学选修2_2知识点总结(最全版)
高中数学选修2_2知识点总结(最全版)
一、三角函数基本知识
1. 弧度制和角度制的相互转换
2. 正弦函数、余弦函数、正切函数和余切函数的定义与性质
3. 周期、对称性及图像变换
4. 函数值、解析式和定义域、值域
5. 三角函数间的基本关系
6. 弦割定理和余弦正弦定理
二、三角函数的图像及其相关式子
1. 函数y=sin(x)
三、三角函数的诱导公式
1. 诱导公式的基本概念
2. 诱导公式的归纳证明
3. 应用:求三角函数值
1. 三角函数和差化积公式
3. 正弦和余弦的二倍角公式
6. 万能公式:将任意一个三角函数表达为tan(x/2)的形式
1. 三角函数在一定区间内的值域和零点
2. 基本方程的分类及其解法
3. 一次三角方程及其解法
3. 三角函数的附加恒等式
4. 三角函数的化简或证明
1. 直角三角形的三角函数关系及其应用
2. 等边三角形、等腰三角形、直角三角形的周长和面积的计算
4. 海伦公式及其应用
五、导数与微分的基本概念
1. 函数的概念及其分类
2. 极限的概念及其基本性质
4. 可导函数的判定方法
5. 常用函数的导数公式
6. 导数与函数图象的关系
六、函数的单调性、最值和曲线的几何特征
1. 函数的单调性和最值
2. 曲线的拐点和点的分类
3. 曲线的凸凹性及其判定方法
4. 图象和函数的简图
七、导数的应用
3. 曲线的渐近线
4. 物理学中的应用:单位变化法
八、反三角函数
3. 反三角函数的图像及其性质。
数学选修22知识点总结
数学选修22知识点总结第一章:排列与组合排列与组合是数学中一个非常重要的概念,它涉及到了数学中的置换和组合问题。
在排列中,元素的顺序很重要,而在组合中,元素的顺序并不重要。
在本章中,我们将学习如何进行排列和组合的计算,以及它们的性质和应用。
1.1 排列的概念与性质排列是指从一组元素中任取出若干元素,按照一定的顺序排成一列的不同方式。
如果从n 个不同元素中取出r个元素进行排列,那么其排列数为P(n,r)=n!/(n-r)!,其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)* (1)在排列中,我们还可以分为有重复元素的排列和无重复元素的排列。
在有重复元素的排列中,我们需要考虑重复元素导致的排列重复情况,并进行适当的调整。
1.2 组合的概念与性质组合是指从一组元素中任取出若干元素,不考虑元素的顺序所构成的组合方式。
如果从n 个不同元素中取出r个元素进行组合,那么其组合数为C(n,r)=n!/(r!*(n-r)!),组合数也被称为二项式系数。
在组合中,我们还可以使用传统的复合计数或卡特兰数来进行计算,通过这些方法我们可以更加简便地求解组合问题。
1.3 排列与组合的应用排列与组合在现实生活中有着广泛的应用,比如在概率统计、图论、密码学等领域。
排列与组合问题也是数学竞赛中的常见题目之一,我们可以通过解这些问题加深对排列与组合的理解并提高自己的计算能力。
第二章:数列与数学归纳法数列是数学中一个非常重要的概念,它是指按照一定的规则排列的一列数。
数列的概念和性质将在本章中进行介绍,并且我们将学习如何使用数学归纳法来证明数列的性质。
2.1 数列的概念与性质数列是由按一定规律排列的一列数所构成的序列,在数列中我们可以分为等差数列、等比数列和等差-等比数列。
不同的数列具有不同的性质和特点,在应用中也有着不同的表现形式。
在等差数列中,相邻两项之间的差为一个常数d,我们可以通过等差数列的通项公式来描述其一般形式。
而在等比数列中,相邻两项之间的比为一个常数q,我们可以通过等比数列的通项公式来描述其一般形式。
高中数学选修2-2知识点总结(最全版)53582教学内容
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:.用导数求函数单调区间的步骤: ①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。
(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
高中数学选修2-2知识点总结(最全版)精品
高中数学选修2-2知识点总结(最全版)精品课时一:常见函数的性质1、关于指数函数:(1)其指数运算正比关系:若a>b,则ea>eb ;若a<b,则ea<eb。
(2)其图像倾斜向上,且随x的增加而迅速增大;(3)其函数值总是大于零,并且在定义域上无上下限;(4)其图像关于y轴对称;(5)其反函数为对数函数。
3、关于三角函数:(1)其图像周期性质:端点处的六个三角函数的值均为1或-1;(2)特殊点处的三角函数的值有所不同:对于正弦函数,正半周期处值为1,负半周期处值为-1;对于余弦函数,正半周期处值为1,负半周期处值为-1;对于正切函数,而非角度值特殊点处值始终为无穷大。
(3)其图像过曲线处点:正弦函数图像过Π/2处的点;正切函数图像过Π/4、3Π/4处的点;余弦函数图像过0、Π,2Π处点。
课时二:指数与对数之间的转换1、关于转换公式:指数函数和对数函数之间的转换公式∶ea=y⇒y=loga2、关于应用:(1)利用指数函数求解:解决问题的过程中,可运用ea=y,将对数指数函数转化为指数函数,从而进行有关指数的运算、计算和求解;(2)利用对数函数求解:解决问题的过程中,可运用loga=y,将指数函数转化为对数函数,从而进行有关对数的运算、计算和求解。
课时三:指数函数与对数函数的性质1、关于指数函数的性质:(1)其导数为其本身:即,ea的导数为ea;(2)其函数系数正比关系:a的函数系数正比于a的函数值;(3)其函数增长性质:an是an-1的函数值的n倍;(4)其函数在无穷点是存在极小值;(5)其函数反函数是多项式函数;(6)其函数在有穷间隔上,对称轴是y轴。
(word完整版)高中数学选修2-2知识点、考点、典型例题,推荐文档
高中数学选修2–2知识点第一章 导数及其应用一.导数概念1.导数的定义:函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆。
导数的物理意义:瞬时速率。
2.导数的几何意义:通过图像可以看出当点n P 无限趋近于P 时,割线n PP 趋近于稳定的位置直线PT ,我们说直线PT 与曲线相切。
割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,称它为()f x 的导函数. ()y f x =的导函数记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆二.导数的计算1)基本初等函数的导数公式:1.若()f x c =(c 为常数),则()0f x '=; 2. 若()f x x α=,则1()f x xαα-'=;3. 若()sin f x x =, 则()cos f x x '= 4 . 若()cos f x x =,则()sin f x x '=-;5. 若()xf x a =, 则()ln x f x a a '= 6. 若()x f x e =,则()x f x e '=7. 若()log a f x x =, 则1()ln f x x a'= 8. 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'=3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=•三.导数在研究函数中的应用 1.函数的单调性与导数:(1).函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减.(2).已知函数的单调性求参数的取值范围:“若函数单调递增,则()0f x '≥;若函数单调递减,则()0f x '≤”.注意公式中的等号不能省略,否则漏解. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)确定函数的定义域;(2)求导数()f x ' ; (3)求方程()f x '=0的根;(4)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;3.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.4.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用. 2.导数在单调性中的应用3、导数在极值、最值中的应用.4、导数在恒成立问题中的应用5.定积分(1) 定积分的定义:分割—近似代替—求和—取极限nbi i an i=1f (x)dx=lim f ()x ξ→∞∆∑⎰(2)定积分几何意义:①baf (x)dx (f (x)0)≥⎰表示y=f(x)与x 轴,x=a,x=b 所围成曲边梯形的面积.②baf (x)dx (f (x)0)≤⎰表示y=f(x)与x 轴,x=a,x=b 所围成曲边梯形的面积的相反数.(3)定积分的基本性质: ①bbaakf (x)dx=k f (x)dx ⎰⎰②b b b1212aaa[f (x)f (x)]dx=f (x)dx f (x)dx ±±⎰⎰⎰③b c baacf (x)dx=f (x)dx+f (x)dx ⎰⎰⎰(4)求定积分的方法:①定义法:分割—近似代替—求和—取极限②利用定积分几何意义③微积分基本公式ab f(x)F(b)-F(a),F x f x =⎰’其中()=()第二章推理与证明1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
高中数学选修2-2全套知识点和练习答案解析
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学选修2-2全套知识点和练习答案解析修选修 2-2 知识点及习题答案解析导数及其应用一一. 导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数 ( ) y f x 在0x x 处的瞬时变化率是0 00( ) ( )limxf x x f xx ,我们称它为函数 ( ) y f x 在0x x 处的导数,记作0( ) f x 或0| x x y,即0( ) f x =0 00( ) ( )limxf x x f xx 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点nP 趋近于 P 时,直线 PT 与曲线相切。
容易知道,割线nPP 的斜率是 00( ) ( )nnnf x f xkx x,当点nP 趋近于 P 时,函数 ( ) y f x 在0x x 处的导数就是切线 PT 的斜率k,即0000( ) ( )lim ( )nxnf x f xk f xx x3. 导函数:当 x 变化时, ( ) f x 便是 x 的一个函数,我们称它为 ( ) f x 的导函数. ( ) y f x 的导函数有时也记作y ,即 0( ) ( )( ) limxf x x f xf xx 二二. 导数的计算基本初等函数的导数公式: 1 若 ( ) f x c (c 为常数),则 ( ) 0 f x ; 2 若 ( ) f x x ,则1( ) f x x ; 3 若 ( ) sin f x x ,则 ( ) cos f x x1/ 34 若 ( ) cos f x x ,则 ( ) sin f x x ;5 若 ( )xf x a ,则 ( ) lnxf x a a6 若 ( )xf x e ,则 ( )xf x e7 若 ( ) log xaf x ,则1( )lnf xx a8 若 ( ) ln f x x ,则1( ) f xx导数的运算法则 1. [ ( ) ( )] ( ) ( ) f x g x f x g x2. [ ( ) ( )] ( ) ( ) ( ) ( ) f x g x f x g x f x g x3. 2( ) ( ) ( ) ( ) ( )[ ]( ) [ ( )]f x f x g x f x g xg x g x复合函数求导 ( ) y f u 和 ( ) u g x ,称则 y 可以表示成为 x 的函数,即 ( ( )) y f g x 为一个复合函数( ( )) ( ) y f g x g x 三三. 导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系:在某个区间 ( , )a b 内 (1)如果( ) 0 f x ,那么函数( ) y f x 在这个区间单调递增;(2)如果 ( ) 0 f x ,那么函数( ) y f x 在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数( ) y f x 的极值的方法是:(1)如果在0x 附近的左侧 ( ) 0 f x ,右侧( ) 0 f x ,那么0( ) f x是极大值(2)如果在0x 附近的左侧 ( ) 0 f x ,右侧 ( ) 0 f x ,那么0( ) f x 是极小值; 4.函数的最大(小)值与导数求函数( ) y f x 在 [ , ]a b 上的最大值与最小值的步骤:---------------------------------------------------------------最新资料推荐------------------------------------------------------ (1)求函数 ( ) y f x 在 ( , )a b 内的...3/ 3。
人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_函数的极值与最值_基础
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习导数的应用二------函数的极值与最值【学习目标】 1. 理解极值的概念和极值点的意义。
2. 会用导数求函数的极大值、极小值。
3. 会求闭区间上函数的最大值、最小值。
4. 掌握函数极值与最值的简单应用。
【要点梳理】 知识点一:函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点诠释:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数)(x f 在点0x 取得极值的必要非充分条件.例如函数y=x 3,在x=0处,'(0)0f =,但x=0不是函数的极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。
(完整word版)高中数学选修22全套知识点及练习答案解析
选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙ 三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
(word版)高中数学选修22知识点总结(精华版),文档
数学选修2-2知识点总结一、导数y f f(x2)f(x1)f(x1x)f(x1) 1.函数的平均变化率为x x2x1xx注1:其中x是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数yf(x)在xx0处的瞬时变化率是ylim f(x0x)f(x0),那么称函数y f(x)在点x0处可导,并把这个极限叫limxx0x x0做y f(x)在x0处的导数,记作f'(x0)或y'|xx,即f'(x0)=lim y lim f(x0x)f(x0).x0x x0x3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景〔1〕切线的斜率;〔2〕瞬时速度;5、常见的函数导数函数导函数y c y'0yx n nN*y'nx n1y a x a0,a1y'a x lnay e x y'e xy log a x a0,a1,x0y'1 xlnay lnx y'1 xy sinx y'cosxy cosx y'sin x第1页共6页6、常见的导数和定积分运算公式:假设f x ,gx 均可导〔可积〕,那么有:和差的导数运算f(x) g(x)''(x)g '(x)f f(x)'f '(x)g(x)f(x)g '(x)g(x)积的导数运算特别地: Cf x ' Cf'xf (x)g(x)''(x)g(x)f(x)g '(x)f2(g(x)0)g(x)商的导数运算特别地:1g'(x)g 'g 2 xx复合函数的导数y xy u u xbxdxf 微积分根本定理a〔其中F' xfx 〕bb b[f 1(x) f 2(x)]dxaf 1(x)dxf 2(x)dx和差的积分运算aabb特别地:kf(x)dxkf(x)dx(k 为常数)aabc dxb 积分的区间可加性f(x)dxf(x) f(x)dx(其中acb)aac用导数求函数单调区间的步骤 : ①求函数f(x)的导数f'(x)②令f'(x)>0,解不等式,得 x 的范围就是递增区间.③令f'(x)<0,解不等式,得 x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。
数学选修22习题答案
数学选修22习题答案数学选修22习题答案数学选修22是高中数学课程中的一门选修课程,主要内容包括数列、概率与统计以及解析几何等。
本文将为读者提供一些数学选修22习题的答案,帮助读者更好地掌握这门课程的知识。
一、数列1. 已知数列{an}的通项公式为an = 3n + 2,求该数列的前5项。
解:将n分别代入1、2、3、4、5,得到数列的前5项为5、8、11、14、17。
2. 求等差数列{an}的通项公式,已知该数列的首项为3,公差为2。
解:设等差数列的通项公式为an = a1 + (n-1)d,代入已知条件得到an = 3 +(n-1)2,化简得到通项公式an = 2n + 1。
二、概率与统计1. 在一次抽奖活动中,有5个一等奖,10个二等奖和15个三等奖。
如果从中随机抽取3个奖品,求至少抽到一等奖的概率。
解:总共有30个奖品,从中抽取3个奖品的组合数为C(30,3) = 4060。
抽到至少一等奖的情况有两种:抽到一等奖的组合数为C(5,1) = 5,其余两个奖品可以从剩下的25个奖品中抽取,组合数为C(25,2) = 300;抽到两个一等奖的组合数为C(5,2) = 10,剩下一个奖品可以从剩下的25个奖品中抽取,组合数为C(25,1) = 25。
因此,至少抽到一等奖的概率为(5*300 + 10*25)/4060 ≈ 0.368。
2. 某班级有40个学生,其中男生25人,女生15人。
从中随机抽取3个学生,求抽到至少一个男生的概率。
解:总共有40个学生,从中抽取3个学生的组合数为C(40,3) = 9880。
抽到至少一个男生的情况有三种:抽到一个男生的组合数为C(25,1) = 25,剩下两个学生可以从剩下的39个学生中抽取,组合数为C(39,2) = 741;抽到两个男生的组合数为C(25,2) = 300,剩下一个学生可以从剩下的39个学生中抽取,组合数为C(39,1) = 39;抽到三个男生的组合数为C(25,3) = 2300。
数学选修22习题答案
数学选修22习题答案数学选修22的习题答案可能涵盖多个不同的数学领域,例如概率论、统计学、线性代数、微积分等。
由于没有具体的习题内容,我将提供一些可能的习题类型和解答方法的概述。
1. 概率论习题:- 事件的独立性:计算两个独立事件同时发生的概率。
- 条件概率:给定一个事件发生,计算另一个事件的概率。
- 全概率公式:利用全概率公式计算复杂事件的概率。
2. 统计学习题:- 描述性统计:计算平均数、中位数、众数、方差、标准差等。
- 假设检验:使用t检验或卡方检验来检验假设是否成立。
- 回归分析:确定变量之间的线性关系,并计算回归方程。
3. 线性代数习题:- 矩阵运算:进行矩阵的加法、乘法、求逆等运算。
- 向量空间:确定向量是否线性无关,计算向量空间的基。
- 特征值和特征向量:计算矩阵的特征值和相应的特征向量。
4. 微积分习题:- 极限:计算函数在某一点的极限。
- 导数:求函数的导数,解决最优化问题。
- 积分:计算定积分和不定积分,解决面积和体积问题。
5. 组合数学习题:- 排列组合:计算不同排列和组合的数量。
- 二项式系数:计算二项式展开的系数。
6. 数论习题:- 素数:确定一个数是否为素数。
- 最大公约数和最小公倍数:计算两个数的最大公约数和最小公倍数。
请注意,以上内容仅为可能涉及的习题类型和解答方法的简要介绍。
如果你有具体的习题或需要解决特定的数学问题,可以提供详细的题目,我将提供更具体的解答。
在结束之前,我想提醒,数学学习不仅仅是为了找到答案,更重要的是理解背后的原理和逻辑,以及如何将这些知识应用到实际问题中。
希望这些内容对你有所帮助。
如果你需要进一步的帮助,随时可以提出具体问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙ 三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
考点三 证明1. 反证法: 2、分析法: 3、综合法:数系的扩充和复数的概念 复数的概念(1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数;0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数.(3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴除去原点的部分叫做虚轴。
(6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
复数的运算1.复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 (1)12()()z z a c b d i ±=±+± (2)12()()z z ac bd ad bc i ∙=-++ (3)12222()()(0)z ac bd ad bc i z z c d-++=≠+ 2,几个重要的结论(1) 2222121212||||2(||||)z z z z z z ++-=+ (2) 22||||z z z z ∙== (3)若z 为虚数,则22||z z ≠3.运算律 (1)m n m n z z z +∙=;(2) ()m n mn z z =;(3)1212()(,)n n n z z z z m n R ∙=∙∈4.关于虚数单位i 的一些固定结论:(1)21i=- (2)3i i =- (3)41i = (2)2340n n n n i i i i ++++++=练习一组一、选择题1.在平均变化率的定义中,自变量x 在x 0处的增量Δx ( ) A .大于零 B .小于零 C .等于零D .不等于零[答案] D[解析] Δx 可正,可负,但不为0,故应选D.2.设函数y =f (x ),当自变量x 由x 0变化到x 0+Δx 时,函数的改变量Δy 为( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)[答案] D[解析] 由定义,函数值的改变量Δy =f (x 0+Δx )-f (x 0),故应选D. 3.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( ) A .3 B .0.29 C .2.09D .2.9[答案] D[解析] f (-1)=-(-1)2+(-1)=-2. f (-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f (-0.9)-f (-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.4.已知函数f (x )=x 2+4上两点A ,B ,x A =1,x B =1.3,则直线AB 的斜率为( ) A .2 B .2.3 C .2.09D .2.1[答案] B[解析] f (1)=5,f (1.3)=5.69.∴k AB =f (1.3)-f (1)1.3-1=5.69-50.3=2.3,故应选B.5.已知函数f (x )=-x 2+2x ,函数f (x )从2到2+Δx 的平均变化率为( ) A .2-Δx B .-2-Δx C .2+ΔxD .(Δx )2-2·Δx[答案] B[解析] ∵f (2)=-22+2×2=0, ∴f (2+Δx )=-(2+Δx )2+2(2+Δx ) =-2Δx -(Δx )2, ∴f (2+Δx )-f (2)2+Δx -2=-2-Δx ,故应选B.6.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx 等于( )A .2B .2xC .2+ΔxD .2+(Δx )2[答案] C [解析]Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+1]-2Δx=2+Δx .故应选C.7.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( ) A .6.3 B .36.3 C .3.3D .9.3[答案] A[解析] S (3)=12,S (3.3)=13.89,∴平均速度v =S (3.3)-S (3)3.3-3=1.890.3=6.3,故应选A.8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x 中,平均变化率最大的是( )A .④B .③C .②D .①[答案] B[解析] Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x 在x =1附近的平均变化率k 4=-11+Δx=-1013.∴k 3>k 2>k 1>k 4,故应选B.9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0B.Δts (t 0+Δt )-s (t 0) C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t[答案] C[解析] 由平均变化率的概念知C 正确,故应选C.10.已知曲线y =14x 2和这条曲线上的一点P ⎝⎛⎭⎫1,14,Q 是曲线上点P 附近的一点,则点Q 的坐标为( )A.⎝⎛⎭⎫1+Δx ,14(Δx )2 B.⎝⎛⎭⎫Δx ,14(Δx )2 C.⎝⎛⎭⎫1+Δx ,14(Δx +1)2D.⎝⎛⎭⎫Δx ,14(1+Δx )2 [答案] C[解析] 点Q 的横坐标应为1+Δx ,所以其纵坐标为f (1+Δx )=14(Δx +1)2,故应选C.二、填空题11.已知函数y =x 3-2,当x =2时,ΔyΔx =________.[答案] (Δx )2+6Δx +12[解析] Δy Δx =(2+Δx )3-2-(23-2)Δx=(Δx )3+6(Δx )2+12ΔxΔx=(Δx )2+6Δx +12.12.在x =2附近,Δx =14时,函数y =1x 的平均变化率为________.[答案] -29[解析] Δy Δx =12+Δx -12Δx =-14+2Δx=-29.13.函数y =x 在x =1附近,当Δx =12时的平均变化率为________.[答案] 6-2[解析]Δy Δx =1+Δx -1Δx =11+Δx +1=6-2. 14.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.[答案] 5 4.1[解析] 当Δx =1时,割线AB 的斜率k 1=Δy Δx =(2+Δx )2-1-22+1Δx =(2+1)2-221=5.当Δx =0.1时,割线AB 的斜率k 2=Δy Δx =(2+0.1)2-1-22+10.1=4.1.三、解答题15.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1],[0,5]上函数f (x )及g (x )的平均变化率.[解析] 函数f (x )在[-3,-1]上的平均变化率为 f (-1)-f (-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2.函数f (x )在[0,5]上的平均变化率为 f (5)-f (0)5-0=2. 函数g (x )在[-3,-1]上的平均变化率为 g (-1)-g (-3)-1-(-3)=-2.函数g (x )在[0,5]上的平均变化率为 g (5)-g (0)5-0=-2.16.过曲线f (x )=2x 2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx=14时割线的斜率. [解析] 割线AB 的斜率k =(2+Δy )-2(1+Δx )-1=ΔyΔx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 17.求函数y =x 2在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大? [解析] 在x =2附近的平均变化率为 k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx =6+Δx .对任意Δx 有,k 1<k 2<k 3, ∴在x =3附近的平均变化率最大.18.路灯距地面8m ,一个身高为1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯的第一个10s 内身影的平均变化率.[解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BE CD, 即y y +x =1.68,所以y =f (x )=14x .(2)84m/min =1.4m/s ,在[0,10]内自变量的增量为x 2-x 1=1.4×10-1.4×0=14, f (x 2)-f (x 1)=14×14-14×0=72.所以f (x 2)-f (x 1)x 2-x 1=7214=14.即人离开路灯的第一个10s 内身影的平均变化率为14.练习二组一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率 [答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,ΔyΔx 无限趋近的常数,故应选C.2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( ) A .6 B .18 C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32 =18Δt +3(Δt )2∴ΔsΔt =18+3Δt .当Δt →0时,ΔsΔt →18,故应选B.3.y =x 2在x =1处的导数为( ) A .2x B .2 C .2+ΔxD .1[答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2 ∴ΔyΔx=2+Δx 当Δx →0时,ΔyΔx →2∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt=40+4Δt ,∴s ′(5)=li m Δt →ΔsΔt =li m Δt →0(40+4Δt )=40.故应选D. 5.已知函数y =f (x ),那么下列说法错误的是( ) A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量B.Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数在x 0到x 0+Δx 之间的平均变化率 C .f (x )在x 0处的导数记为y ′ D .f (x )在x 0处的导数记为f ′(x 0) [答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( ) A .f ′(x 0)=f (x 0+Δx )-f (x 0) B .f ′(x 0)=li m Δx →[f (x 0+Δx )-f (x 0)] C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( ) A .4a B .2a +b C .bD .4a +b[答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -cΔx=4a +b +a Δx , ∴y ′|x =2=li m Δx →ΔyΔx =li m Δx →0(4a +b +a ·Δx )=4a +b .故应选D. 8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A .圆 B .抛物线 C .椭圆D .直线[答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( )A .0B .3C .-2D .3-2t[答案] B [解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a等于( ) A .-1aB.2a C .-1a 2 D.1a 2 [答案] C[解析] li m x →a f (x )-f (a )x -a=li m x →a 1x -1a x -a =li m x →a a -x (x -a )·xa=-li m x →a 1ax =-1a 2. 二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则li m Δx →0f (x 0-Δx )-f (x 0)Δx =________; li m x →x 0 f (x )-f (x 0)2(x 0-x )=________. [答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx=-f ′(x 0)=-11; li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx =-12f ′(x 0)=-112. 12.函数y =x +1x在x =1处的导数是________. [答案] 0[解析] ∵Δy =⎝⎛⎭⎫1+Δx +11+Δx -⎝⎛⎭⎫1+11=Δx -1+1Δx +1=(Δx )2Δx +1, ∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______.[答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx=a , ∴f ′(1)=li m Δx →0 Δy Δx=a .∴a =2. 14.已知f ′(x 0)=li m x →x 0f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →3 2x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3. 由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3=2-3×(-2)=8. 三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).[解析] 由导数定义有f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0Δx (2x 0+Δx )Δx =2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度. [解析] 位移公式为s =12at 2 ∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2 ∴Δs Δt =at 0+12a Δt ,∴li m Δt →0 Δs Δt =li m Δt →0 ⎝⎛⎭⎫at 0+12a Δt =at 0, 已知a =5.0×105m/s 2,t 0=1.6×10-3s ,∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ), 求(1)Δy Δx(2)f ′(1).[解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx=2+Δx . (2)f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx =lim Δx →0 (2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧x +x 2 (x ≥0)-x -x 2 (x <0) Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0) ∴lim x →0+ Δy Δx =lim Δx →0+ (1+Δx )=1, lim Δx →0-Δy Δx =lim Δx →0- (-1-Δx )=-1, ∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)练习三组1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 [答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B. 2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处切线的倾斜角为( ) A .1B.π4C.54π D .-π4 [答案] B[解析] ∵y ′=li m Δx →0[12(x +Δx )2-2]-(12x 2-2)Δx =li m Δx →0(x +12Δx )=x ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 3.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0)B .(2,4) C.⎝⎛⎭⎫14,116D.⎝⎛⎭⎫12,14 [答案] D[解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,则2x 0=1,∴x 0=12,∴P ⎝⎛⎭⎫12,14.4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5 [答案] B[解析] y ′=3x 2-6x ,∴y ′|x =1=-3.由点斜式有y +1=-3(x -1).即y =-3x +2.5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 [答案] B[解析] lim x →0 f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1)-2x=-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1,故选B.6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交 [答案] B[解析] 由导数的几何意义知B 正确,故应选B.7.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)及f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1 [答案] B[解析] 由题意易得:f (5)=-5+8=3,f ′(5)=-1,故应选B.8.曲线f (x )=x 3+x -2在P 点处的切线平行于直线y =4x -1,则P 点的坐标为( )A .(1,0)或(-1,-4)B .(0,1)C .(-1,0)D .(1,4) [答案] A[解析] ∵f (x )=x 3+x -2,设x P =x 0,∴Δy =3x 20·Δx +3x 0·(Δx )2+(Δx )3+Δx , ∴Δy Δx=3x 20+1+3x 0(Δx )+(Δx )2, ∴f ′(x 0)=3x 20+1,又k =4,∴3x 20+1=4,x 20=1.∴x 0=±1, 故P (1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,πB.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫56π,πC.⎣⎡⎭⎫23π,π D.⎝⎛⎦⎤π2,56π[答案] A [解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0(x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx =3x 2-3,∴切线的斜率k =3x 20-3,∴tan α=3x 20-3≥- 3.∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π.故应选A. 10.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( ) A .[-1,-12] B .[-1,0] C .[0,1]D .[12,1] [答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4], ∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1,∴-1≤x ≤-12. 11.已知函数f (x )=x 2+3,则f (x )在(2,f (2))处的切线方程为________.[答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx =4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4. 又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2)即4x -y -1=0.12.若函数f (x )=x -1x,则它与x 轴交点处的切线的方程为________. [答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0).∵f ′(x )=li m Δx →0(x +Δx )-1x +Δx -x +1x Δx =li m Δx →0 ⎣⎡⎦⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2. ∴切线的方程为y =2(x -1)或y =2(x +1).13.曲线C 在点P (x 0,y 0)处有切线l ,则直线l 与曲线C 的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________.[答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),则过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值.设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题15.求曲线y =1x -x 上一点P ⎝⎛⎭⎫4,-74处的切线方程. [解析] ∴y ′=lim Δx →0 ⎝⎛⎭⎫1x +Δx -1x -(x +Δx -x )Δx=lim Δx →0-Δx x (x +Δx )-Δx x +Δx +x Δx =lim Δx →0 ⎝ ⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . ∴y ′|x =4=-116-14=-516, ∴曲线在点P ⎝⎛⎭⎫4,-74处的切线方程为: y +74=-516(x -4). 即5x +16y +8=0.16.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ).[解析] (1)y ′=li m Δx →0(x +Δx )3-3(x +Δx )-3x 3+3x Δx =3x 2-3. 则过点P 且以P (1,-2)为切点的直线的斜率k 1=f ′(1)=0,∴所求直线方程为y =-2.(2)设切点坐标为(x 0,x 30-3x 0),则直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0)又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0),∴x 30-3x 0+2=(3x 20-3)(x 0-1),解得x 0=1(舍去)或x 0=-12. 故所求直线斜率k =3x 20-3=-94, 于是:y -(-2)=-94(x -1),即y =-94x +14. 17.求证:函数y =x +1x图象上的各点处的切线斜率小于1. [解析] y ′=li m Δx →0 f (x +Δx )-f (x )Δx=li m Δx →0 ⎝⎛⎭⎫x +Δx +1x +Δx -⎝⎛⎭⎫x +1x Δx=li m Δx →0 x ·Δx (x +Δx )-Δx (x +Δx )·x ·Δx=li m Δx →0(x +Δx )x -1(x +Δx )x =x 2-1x 2=1-1x 2<1, ∴y =x +1x图象上的各点处的切线斜率小于1. 18.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.[解析] (1)y ′|x =1=li m Δx →0(1+Δx )2+(1+Δx )-2-(12+1-2)Δx =3, 所以l 1的方程为:y =3(x -1),即y =3x -3.设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),y ′|x =b =li m Δx →0(b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx =2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229. (2)由⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52,即l 1与l 2的交点坐标为⎝⎛⎭⎫16,-52. 又l 1,l 2与x 轴交点坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形面积S =12×⎪⎪⎪⎪-52×⎪⎪⎪⎪1+223=12512.练习三组1.下列结论不正确的是( )A .若y =0,则y ′=0B .若y =5x ,则y ′=5C .若y =x -1,则y ′=-x -2[答案] D2.曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的倾斜角为( )A .30°B .45°C .135°D .60°[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°.3.函数y =(x +1)2(x -1)在x =1处的导数等于( )A .1B .2C .3D .4[答案] D[解析] y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)·(x -1)+(x +1)2=3x 2+2x -1,∴y ′|x =1=4.4.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为R 上增函数的充要条件是() A .b 2-4ac >0 B .b >0,c >0C .b =0,c >0D .b 2-3ac <0[答案] D[解析] ∵a >0,f (x )为增函数,∴f ′(x )=3ax 2+2bx +c >0恒成立,∴Δ=(2b )2-4×3a ×c =4b 2-12ac <0,∴b 2-3ac <0.5.已知函数f (x )在点x 0处连续,下列命题中,正确的是( )A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.6.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )() A .等于0 B .大于0C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数∴f ′(x )=0,故应选A.7.内接于半径为R 的球且体积最大的圆锥的高为( )A .RB .2RC.43RD.34R[答案] C[解析] 设圆锥高为h ,底面半径为r ,则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3V ′=43πRh -πh 2.令V ′=0得h =43R .当0<h <43R 时,V ′>0;当4R 3<h <2R 时,V ′<0.因此当h =43R 时,圆锥体积最大.故应选C.8..和式 i =15 (y i +1)可表示为( )A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1)…(y 5+1)[解析] ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5,故选C.9.设f (x )是[a ,b ]上的连续函数,则f (x )d x -f (t )d t 的值( )A .小于零B .等于零C .大于零D .不能确定 [答案] B[解析] f (x )d x 和f (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.10..设f (x )=⎩⎪⎨⎪⎧x 2 (0≤x <1)2-x (1≤x ≤2),则f (x )d x 等于( ) A.34B.45C.56 D .不存在[答案] C[解析] f (x )d x =x 2d x +(2-x )d x取F 1(x )=13x 3,F 2(x )=2x -12x 2, 则F ′1(x )=x 2,F ′2(x )=2-x∴f (x )d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=13-0+2×2-12×22-⎝⎛⎭⎫2×1-12×12=56.故应选C. 11..如图所示,阴影部分的面积为( )A.f (x )d xB.g (x )d xC.[f (x )-g (x )]d xD.[g (x )-f (x )]d x [答案] C[解析] 由题图易知,当x ∈[a ,b ]时,f (x )>g (x ),所以阴影部分的面积为[f (x )-g (x )]d x .12已知f (x )=x 3的切线的斜率等于1,则其切线方程有( )A .1个C .多于两个D .不能确定[答案] B[解析] ∵f (x )=x 3,∴f ′(x )=3x 2,令3x 2=1,得x =±33, 即切点坐标为⎝⎛⎭⎫33,39或⎝⎛⎭⎫-33,-39. 由点斜式可得切线方程为y -39=x -33或y +39=x +33,即y =x -239或y =x +239.故应选B.13.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1,将(0,b )代入切线方程得b =1.14.关于归纳推理,下列说法正确的是( )A .归纳推理是一般到一般的推理B .归纳推理是一般到个别的推理C .归纳推理的结论一定是正确的D .归纳推理的结论是或然性的[答案] D[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.15.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误[答案] B[解析] 由合情推理得出的结论不一定正确,A 不正确;B 正确;合情推理的结论本身就是一个猜想,C 不正确;合情推理结论可以通过证明来判定正误,D 也不正确,故应选B.16.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形[答案] B[解析] 由大前提、小前提、结论三者的关系,知大前提是:矩形是对角线相等的四边形.故应选B.17.证明命题“f (x )=e x +1e x 在(0,+∞)上是增函数”,一个同学给出的证法如下: ∵f (x )=e x +1e x ,∴f ′(x )=e x -1e x . ∵x >0,∴e x >1,0<1e x <1 ∴e x -1e x >0,即f ′(x )>0, ∴f (x )在(0,+∞)上是增函数,他使用的证明方法是( )A .综合法B .分析法C .反证法D .以上都不是[答案] A[解析] 该证明方法符合综合法的定义,应为综合法.故应选A.18.否定结论“至多有两个解”的说法中,正确的是( )A .有一个解B .有两个解C .至少有三个解D .至少有两个解[答案] C[解析] 在逻辑中“至多有n 个”的否定是“至少有n +1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.19.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13,故选B.20.命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos2θ”的过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .以上都不是[答案] B[解析] 所用方法符合综合法的定义,故应选B.21..锐角三角形的面积等于底乘高的一半;直角三角形的面积等于底乘高的一半;钝角三角形的面积等于底乘高的一半;所以,凡是三角形的面积都等于底乘高的一半.以上推理运用的推理规则是( )A .三段论推理B .假言推理C .关系推理D .完全归纳推理[答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.22.i 是虚数单位,计算i +i 2+i 3=( )A .-1B .1C .-iD .i[答案] A[解析] i +i 2+i 3=i -1-i =-1.23..如果复数a +b i(a ,b ∈R )在复平面内的对应点在第二象限,则( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >0[答案] D[解析] 复数z =a +b i 在复平面内的对应点坐标为(a ,b ),该点在第二象限,需a <0且b >0,故应选D.24.i 是虚数单位,i 3+3i =( ) A.14-312i B.14+312i C.12+36i D.12-36i [答案] B[解析]i 3+3i =i(3-3i)(3+3i)(3-3i) =3+3i 12=14+312i ,故选B. 25.复数z 是实数的充分而不必要条件为( )A .|z |=zB .z =zC .z 2是实数D .z +z 是实数[答案] A[解析] 由|z |=z 可知z 必为实数,但由z 为实数不一定得出|z |=z ,如z =-2,此时|z |≠z ,故|z |=z 是z 为实数的充分不必要条件,故选A.26..复数i 3(1+i)2=( )A .2B .-2C .2iD .-2i[答案] A[解析] 考查复数代数形式的运算.i 3(1+i)2=-i·(2i)=2.27.复数⎝ ⎛⎭⎪⎫3-i 1+i 2=( ) A .-3-4i B .-3+4iC .3-4iD .3+4i[答案] A[解析] ⎝ ⎛⎭⎪⎫3-i 1+i 2=8-6i 2i =-3-4i.。