八年级上数学第一次月考习题D
河北省邯郸市人和中学2023-2024学年八年级上学期第一次月考数学试题
河北省邯郸市人和中学2023-2024学年八年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四组图形中,不是..全等形的是()A .B .C .D .2.在Rt ABC △中,40A ∠=︒,则锐角B ∠=()A .40︒B .50︒C .60︒D .70︒3.如图,在ABC 中,边AB 上的高是()A .AFB .BEC .CED .BD4.若正多边形的一个外角为30︒,则该正多边形为()A .正六边形B .正八边形C .正十边形D .正十二边形5.如图,ABC DEF ≅△△,40B ∠=︒,75D ∠=︒,则ACF ∠=()A .105°B .115°C .120°D .125°6.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是()A .1根B .2根C .3根D .4根7.如图,点C 在点A 的正东方向上,点B 在点A 的北偏东62︒方向上,点B 在点C 的北偏东34︒方向上,则B ∠=()A .28︒B .30︒C .34︒D .38︒8.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形的形状的改变而变化,当ABC 为等腰三角形时,对角线AC 的长为()A .1B .1.5C .2D .2.59.如图,将ABC 折叠,使边AC 落在边AB 上,展开后得到折痕1,若50B ∠=︒,70C ∠=︒,则1∠=()A .50°B .60°C .70°D .80°10.如图,五边形ABCDE 的内角都相等,FD CD ⊥,垂足为D ,则DFE ∠=()A .30︒11.如图,AD CE ,是A .1B .12.下面是一道习题,需要填写符号处的内容,下列填写正确的是(已知:ABC .求证:A ∠证明:如图,过点C 作DE ∵DE AB ∥(已知),∴B ∠=∠★,A ∠=∠■(①)∵12180ACB ∠+∠+∠=︒(②)∴180A B ACB ∠+∠+∠=︒A .★处填2C .①内错角相等,两直线平行13.下图是用边长相等的正三角形和正边形的内角和为()A .1800︒14.问题“如图,BDC ∠方法,下列说法正确的是(方法Ⅰ①如图,延长CD 交AB ②计算C A ∠+∠得CEB ∠③计算BDC CEB ∠-∠A .只有Ⅰ对.只有Ⅱ对C .Ⅰ,Ⅱ都对15.如图,ABC ∠AB 交于点D ,BG 与AC ≅BCE GCE △△,关于甲、乙、丙的说法正确的是(甲:DBE ECD ∠=∠50G =︒;丙:CF =A .只有甲B .甲和乙16.将图中的四边形剪掉一个角后得到嘉认为:540α=︒,360β=︒.淇淇说:列说法正确的是()A .嘉嘉说的完全对B .淇淇说的对,α其他的值一定是360°C .淇淇说的对,α其他的值为360°或180°D .淇淇说的不对二、填空题(1)若2AB =,BD x =,写出一个符合条件的(2)若80BAC ∠=︒,DAC ∠19.如图,在ABC 中,∠的平分线交干点1A ,EBA ∠分线相交于点n A .(1)1A ∠的度数为;(2)若得到点n A 后,再依此规律作角平分线,三、解答题20.如图,ABF CDE ≅△△,A ∠与C ∠为对应角,AF 与EC 为对应边.(1)写出其他对应边及对应角;(2)若10BD =,5EF =,求BE 的长.21.如图,在ABC 中,AD 是中线,14AB AC +=,ABD △的周长比ACD 的周长大4.(1)求AB ,AC 的长;(2)求ABC 周长的取值范围.22.如图,在ABC 中,BE 为角平分线,D 为边AB 上一点(不与点A ,B 重合),连接CD 交BE 于点O .(1)若62ABC ∠=︒,CD 为高,求BOC ∠的度数;(2)若78BAC ∠=︒,CD 为角平分线,求BOC ∠的度数.23.阅读小明和小红的对话,解决下列问题.(1)通过列方程说明“多边形的内角和不可能是1470︒”的理由;(2)求该多边形的内角和;(3)若这是个正多边形,求该正多边形的一个内角比一个外角大多少?24.在ABC 中,点M ,N 分别在AC BC ,上,连接MN ,将MNC 沿MN 折叠得到MNC '△.(1)如图1,当点C 落在边BC 上,且50A ∠=︒,65B ∠=︒,求CMC '∠的度数;(2)如图2,当点C 落在ABC 的内部时.①若63C ∠=︒,则C MN C NM ''∠+∠的度数为______;②求证:122C ∠+∠=∠.25.如图,在四边形ABCD 中,50B C ∠=∠=︒, 2.5AB =,6BC =,动点E ,F 分别在线段BC ,DC 上,连接AE ,EF ,AF .(1)若70BAE ∠=︒,60AEF ∠=︒,求EFC ∠的度数;(2)若≌ABE AFE ,100BAF ∠=︒,求AEB ∠的度数;(3)若ABE 与ECF △全等,点B 与点C 为对应点,求BE 的长.26.【发现】(1)如图1,在ABC 中,30B ∠=︒,70ACB ∠=︒,AD 是角平分线,AM 是高,求BAD ∠及DAM ∠的度数;【探究】(2)如图2,在ABC 中,ACB B α∠-∠=,AD 是角平分线,动点F 在线段AD 上(不与点A ,D 重合),FG BC ⊥,垂足为G .求DFG ∠的度数;(用含α的式子表示)【拓展】(3)将【探究】中“动点F 的线段AD 上”改为“动点F 在射线AD 上”.其余条件不变,分别作DP 平分ADC ∠,GQ 平分FGC ∠,且DP 所在的直线与射线GQ 交于点N ,直接..写出DNG ∠的度数.(用含α的式子表示)。
八年级上学期数学第一次月考试卷(含答案)
八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
八年级上学期数学第一次月考试题及答案
八年级上学期数学第一次月考试题及答案一、选择题(3分×8=24分)1.以下五家银行行标中,轴对称图形的有………… ()A.1个B.2个C.3个D.4个2.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的……()A B C D3. 关于等边三角形的说法:(1)等边三角形有三条对称轴;(2)有一个角等于60°的等腰三角形是等边三角形;(3)有两个角等于60°的三角形是等边三角形;(4)等边三角形两边中线上的交点到三边的距离相等.其中正确的说法有………… ()A.1个B.2个C.3个D.4个4.如图,∠BAC=1000,MN、EF分别垂直平分AB、AC,则∠MAE的大小为()A. 800 B. 200C. 500D. 1005. 在梯形ABCD中,AD∥BC.现给出条件:①∠A=∠B;②∠A+∠C=180°;③∠A=∠D.其中能用来说明这个梯形是等腰梯形的是:…………… … ()A.①或②或③ B.①或② C.①或③ D.②或③6..已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是( )A.直角三角形B.钝角三角形C,等腰三角形D.等边三角形7. 以下列数组为三角形的边长,其中能构成直角三角形的是…………………()A.1,1,2 B.,, C.0.2,0.3,0.5 D.1.5,2,2.58. 如图的方格纸中,每一个小方格都是边长为1的正方形,找出格点C,使△ABC的等腰三角形,这样的格点C的个数有……………… ………… ()A. 8个B. 9个C. 10个D. 11个二、填空题(每空2分,共22分)9.(1)若等腰三角形的周长为10,底边长为4,则腰长为;(2)若等腰三角形的两边长为6和4,则等腰三角形的周长为.10.(1)若等腰三角形的一个角为100°,则底角为°.(2)若△ABC为等腰三角形,∠A=40°,∠B= ______ °.11. 如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE= °.12 如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.13.(1)一个三角形三边为3,4,5,此三角形的面积为____________.(2)一个直角三角形的两条直角边长为5cm、12cm,则斜边上的中线为;14.如图,△ABC中,DE∥AB,,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是_。
人教版八年级上册数学《第一次月考》考试题(附答案)
人教版八年级上册数学《第一次月考》考试题(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为()A.-6 B.6 C.16-D.162.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)6.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.若613x,小数部分为y,则(213)x y的值是________.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.因式分解:a3﹣2a2b+ab2=________.4.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.5.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF (1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、C6、C7、A8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、-2 -33、a(a﹣b)2.4、40°5、56、24三、解答题(本大题共6小题,共72分)1、2x=2、-3.3、(1)12,32-;(2)略.4、(1)8;(2)6;(3),40cm,80cm2.5、6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
2023-2024学年河北省石家庄市部分学校八年级(上)第一次月考数学试卷(含解析)
2023-2024学年河北省石家庄市部分学校八年级(上)第一次月考数学试卷一、选择题(本大题共16小题,共38.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列方程中,是分式方程的是( )A. 15+x 4=3 B. x−4y =7 C. 2x =3(x−5) D. 4x−2=12.分式1x 2y 和2xy 2的最简公分母是( )A. xyB. xy 2C. x 2y 2D. x 3y 33.下列命题的逆命题是真命题的是( )A. 两直线平行,内错角相等B. 如果a =b ,那么a 2=b 2C. 钝角三角形中有两个锐角D. 对顶角相等4.下面是马小虎的答卷,他的得分应是( ) 姓名马小虎得分?判断题(每小题20分,共100分)(1)代数式6x,m +n m−n 是分式.(√)(2)当x =−1时,分式x x +1无意义.(×)(3)a 2+b 2a +b不是最简分式.(×)(4)若分式|x |−2x +2的值为0,则x 的值为±2.(√)(5)分式y 2x +y 中x ,y 的值均扩大为原来的2倍,分式的值保持不变.(×)A. 40分 B. 60分 C. 80分 D. 100分5.下列各式从左到右的变形正确的是( )A. a 2ab=a b B. a b =a 2ab C. a +b b=a D. a 2−9a 2−6a +9=a−3a +36.若∗x +y ⋅x 2−y 2x运算的结果为整式,则“∗”中的式子可能是( )A. 2xB. y+xC. y−xD. 2x7.如图,点A,E,C在同一直线上,△ABC≌△DEC,BC=5,CD=8,则AE的长为( )A. 2B. 3C. 4D. 58.解分式方程xx−1=32x−2−3时,去分母正确的是( )A. 2x=3−3x+3B. 2x=3−6x−6C. 2x=3−6x+6D. 2x=3−6x+29.下面是某同学化简分式x2−4x2−4x+4÷x2+4x+42x−x2的部分计算过程,则在化简过程中的横线上依次填入的序号为( )x2−4x2−4x+4÷x2+4x+42x−x2=x2−4x2−4x+4⋅2x−x2 x2+4x+4=(x+2)(x−2)−−−⋅−x(−−−) (x+2)2=−x−−−.①(x+2)②(x−2)③(x+2)2④(x−2)2A. ③②①B. ③①②C. ④②①D. ④①②10.化简(mn −nm)÷(1m−1n)的结果是( )A. m−nB. n−mC. 1D. −m−n11.如图,点B在CD上,△ABO≌△CDO,当AO//CD,∠BOD=30°时,∠A的度数为( )A. 20°B. 30°C. 40°D. 35°12.在计算(x−1x +1+1)÷x x +1时,甲、乙两位同学使用方法不同,但计算结果相同,则( )甲同学:(x−1x +1+1)÷x x +1=(x−1x +1+x +1x +1)×x +1x =2x x +1×x +1x =2.乙同学:(x−1x +1+1)÷x x +1=(x−1x +1+1)×x +1x =x−1x +1×x +1x +1×x +1x =x−1x +x +1x =2x x=2.A. 甲同学正确 B. 乙同学正确 C. 两人都正确 D. 两人都不正确13.某校举办以“晋魂”为主题的综合实践活动,组织八年级学生去距离学校20km 的山西博物院参观.其中一名老师带学生乘坐大巴车先走,过了10min ,另一名老师乘坐小轿车出发,结果他们同时到达.已知小轿车的速度是大巴车速度的1.5倍,求大巴车的速度.若设大巴车的速度为x km /ℎ,则可列方程为( )A. 201.5x −20x =10B. 20x −201.5x =10C. 20x −201.5x =16D. 201.5x −20x =1614.如图,“丰收1号”小麦的试验田是边长为m (m >1)米的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(m−1)米的正方形,两块试验田的小麦都收获了n 千克,那么“丰收1号”小麦和“丰收2号”小麦的单位面积产量相比,( )A. “丰收1号”高B. “丰收2号”高C. 一样高D. 无法确定哪个高15.若a−1a =3,则(a +1a )2的值是( )A. 5B. 6C. 12D. 1316.已知关于x 的分式方程x−2x +2−mx x 2−4=1无解,求m 的值.甲同学的结果:m =0,乙同学的结果:m =−8.关于甲、乙两位同学计算的结果,下列说法正确的是( )A. 甲同学的结果正确B. 乙同学的结果正确C. 甲、乙同学的结果合在一起正确D. 甲、乙同学的结果合在一起也不正确二、填空题(本大题共3小题,共10.0分)17.化简:10a2b5ab=______ .18.如图,点C,A,D在同一条直线上,∠C=∠D=90°,△ABC≌△EAD,AC=4,BC=3,AE=5.△ABC的周长为______ ,阴影部分的面积为______ .19.已知关于x的分式方程xx−3+m3−x=3.(1)若此方程的解为2,则m=______ .(2)若此方程的解为正数,则m的取值范围为______ .三、解答题(本大题共7小题,共72.0分。
人教版八年级上册数学第一次月考数学试卷及答案
人教版八年级上册数学第一次月考数学试卷及答案人教版数学八年级上册第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A。
3cm,4cm,5cmB。
4cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm2.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A。
22B。
17C。
17或22D。
263.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A。
6B。
8C。
10D。
124.在如图中,正确画出AC边上高的是()A。
B。
C。
D。
5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A。
三角形的角平分线B。
三角形的中线C。
三角形的高D。
以上都不对6.适合条件∠A=∠B=∠C的三角形是()A。
锐角三角形B。
等边三角形C。
钝角三角形D。
直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A。
8B。
9C。
10D。
118.若一个多边形的内角和等于1080°,则这个多边形的边数是()A。
9B。
8C。
7D。
69.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A。
5B。
6C。
7D。
810.三角形的一个外角是锐角,则此三角形的形状是()A。
锐角三角形B。
钝角三角形C。
直角三角形D。
无法确定二、填空题(共10小题,每小题3分,共30分)13.如图,共有10个三角形。
14.如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 100°。
15.如图,∠1,∠2,∠3是△XXX的不同的三个外角,则∠1+∠2+∠3= 360°。
16.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条。
17.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是11边形。
人教版八年级数学上册第一次月考测试题(含答案)
八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。
人教版八年级(上)第一次月考数学试卷及答案
人教版八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C 都可以4.下面四个图形中,线段BE 是△ABC 的高的图是()A.B.C.D.5.适合条件∠A= ∠B= ∠C 的△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2 倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8° C.9° D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67° B.46° C.23° D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BFC.∠A=∠DD.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是15.三角形的三边长分别为5,1+2x,8,则x的取值范围是16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=.cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.17题19题18题20题三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.人教版八年级(上)第一次月考数学试卷答案一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3 条高,其中2 条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC 中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC 中,AD 平分∠BAC 交BC 于D,AE⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=()【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE 的度数,再根据角平分线的定义可求得∠BAD 的度数,从而不难求解.【解答】解:∵AE⊥BC 于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD 平分∠BAC 交BC 于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=(A.67° B.46° C.23° D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC 证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF(此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5cm,∠C= 40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.,∴△ADF≌△【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.。
八年级数学上册第一次月考试卷【含答案】
八年级数学上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。
()2. 0是最小的自然数。
()3. 1是最大的质数。
()4. 两条对角线相等的四边形一定是矩形。
()5. 任何两个奇数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 一个数的平方是9,这个数是______。
2. 两个质数相乘的积是35,这两个质数是______和______。
3. 如果一个等腰三角形的底边长是8,腰长是10,那么这个三角形的周长是______。
4. 下列各数中,最大的合数是______。
5. 下列各数中,最小的负整数是______。
四、简答题(每题2分,共10分)1. 请写出2的所有因数。
2. 请写出3的所有倍数,不超过20。
3. 请写出5的所有质因数。
4. 请解释什么是等腰三角形。
5. 请解释什么是因数分解。
五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,请计算这个长方形的面积。
2. 一个正方形的边长是6,请计算这个正方形的周长。
3. 如果一个数的平方是16,请计算这个数的立方。
4. 请计算下列各数的和:2 + 3 + 4 + 5 + 6。
5. 请计算下列各数的差:10 3 2 1。
六、分析题(每题5分,共10分)1. 请分析下列各数中,哪些是偶数,哪些是奇数:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。
2. 请分析下列各数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。
2022-2023学年沪科版八年级数学上册第一次月考测试题(附答案)
2022-2023学年八年级数学上册第一次月考测试题(附答案)一、选择题(本大题共10小题,满分40分)1.函数中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≤22.下列函数中是一次函数的是()A.y=B.C.y=x2 D.y=kx+b(k,b为常数)3.若正比例函数y=kx(k≠0)的图象经过(﹣1,3),则k的值为()A.﹣1B.﹣3C.1D.34.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.将一次函数y=﹣3x图象沿y轴向下平移4个单位长度后,所得图象函数表达式为()A.y=﹣3(x﹣4)B.y=﹣3x+4C.y=﹣3(x+4)D.y=﹣3x﹣4 6.若直线l的函数表达式为y=﹣x+1,则下列说法不正确的是()A.直线l与y轴交于点(0,1)B.直线l不经过第三象限C.直线l与x轴交于点(﹣1,0)D.y随x的增大而减小7.已知点A(1,﹣3),点B(2,﹣1),将线段AB平移至A1B1.若点A1(a,1),点B1(3,﹣b),则a﹣b的值为()A.1B.﹣1C.5D.﹣58.如图,在平面直角坐标系中,若三角形ABC的三个顶点分别为A(2,3),B(3,1),C (﹣2,﹣2),则三角形ABC的面积为()A.6.5B.13C.5.5D.119.一次函数y=kx﹣b与y=﹣x(k,b为常数,且kb≠0),它们在同一坐标系内的图象可能为()A.B.C.D.10.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同的路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分钟)之间的函数关系如图所示,下列结论:①乙先到达科技馆;②乙的速度是甲的速度的2.5倍;③b=480;④a=24.其中正确结论的个数为()个.A.1B.2C.3D.4二、填空题(本大题共4小题,满分20分)11.若点M的坐标为(﹣1,3),则点M在第象限.12.在平面直角坐标系中,如果直线l与直线y=﹣2x+1平行,且截距为3,那么直线l的表达式是.13.已知A(x1,y1),B(x2,y2)是直线y=(﹣m+1)x+2上相异的两点,若(x1﹣x2)(y1﹣y2)<0,则m的取值范围是.14.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a为任意两点横坐标差的最大值,“铅垂高”h为任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点的坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)若点A(﹣1,4),B(3,1),C(﹣3,﹣3),则A,B,C三点的“矩面积”S为;(2)若点A(1,2),B(﹣3,1),P(0,﹣t),则A,B,P三点的“矩面积”S的最小值为.三、解答题(本大题共9小题,满分90分)15.已知点P(2a+8,a﹣2).(1)若点P在y轴上,求a的值.(2)若点P在第四象限,且点P到x轴的距离等于点P到y轴的距离,求点P的坐标.16.如图,三角形ABC的顶点都在格点(小正方形的顶点)上.(1)画出三角形ABC向上平移2格,再向右平移3格后所得到的三角形A′B′C′.(2)画出以点A为坐标原点建立的平面直角坐标系,并写出点C和点C′的坐标.17.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.18.在平面直角坐标系中:(1)若点M(m﹣6,2m+3),点N(5,2),且MN∥x轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥y轴,MN=3,求点M的坐标.19.在如图平面直角坐标系中画出函数y=﹣x+3的图象,并利用图象解决下列问题:(1)求方程﹣x+3=0的解;(2)求不等式﹣x+3<0的解集;(3)若﹣3≤y≤6,求x的取值范围.20.某市为了节约用水,采用分段收费标准.设居民每月应交水费y(元),用水量x(立方米).用水量x(立方米)应交水费y(元)不超过12立方米每立方米3.5元超过12立方米超过的部分每立方米4.5元(1)若某户居民某月用水10立方米,应交水费元;若用水15立方米,应交水费元.(2)求每月应交水费y(元)与用水量x(立方米)之间的函数关系式;(3)若某户居民某月交水费78元,则该户居民用水多少立方米?21.某校需要采购一批办公桌,A,B两家器材公司都愿意成为这批办公桌的供应商.经了解,两家公司生产的办公桌的质量和单价都相同,即每张办公桌500元.经洽谈协商:A 公司给出的优惠条件是所有办公桌按单价打九折,但校方需承担1000元的运费;B公司的优惠条件是每张办公桌的售价不变,但公司承担运费.设该校需要采购x张办公桌,去A公司购买所付的总费用为y1元,去B公司购买所付的总费用为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)问该校选择哪家公司来购买办公桌比较合算?请说明理由.22.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1,点P1的“﹣3阶派生点”P2位于坐标轴上,求点P2的坐标.23.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(不包括边界),则m的取值范围是.参考答案一、选择题(本大题共10小题,满分40分)1.解:由题意,得2﹣x>0.解得x<2,故选:C.2.解:A、y=是一次函数,故此选项符合题意;B、y=是反比例函数,不是一次函数,故此选项不合题意;C、y=x2是二次函数,故此选项不符合题意;D、当k=0时,y=kx+b(k,b为常数)不是一次函数,故此选项不合题意;故选:A.3.解:∵正比例函数y=kx(k≠0)的图象经过(﹣1,3),∴3=﹣k,解得:k=﹣3.故选:B.4.解:如图所示:则“兵”位于(﹣3,2).故选:B.5.解:由上加下减”的原则可知,将直线y=﹣3x沿y轴向下平移4个单位后的直线所对应的函数解析式是:y=﹣3x﹣4.故选:D.6.解:A.当x=0时,y=﹣1×0+1=1,∴直线l与y轴交于点(0,1),选项A不符合题意;B.∵k=﹣1<0,b=1>0,∴直线l经过第一、二、四象限,即直线l不经过第三象限,选项B不符合题意;C.当y=0时,﹣x+1=0,解得:x=1,∴直线l与x轴交于点(1,0),选项C符合题意;D.∵k=﹣1<0,∴y随x的增大而减小,选项D不符合题意.故选:C.7.解:由题意得:a=1+1=2,﹣b=﹣1+4=3,∴a=2,b=﹣3,∴a﹣b=5,故选:C.8.解:三角形ABC的面积=5×5﹣×5×3﹣×5×4﹣×1×2=6.5.故选:A.9.解:根据一次函数的图象分析可得:A、由一次函数y=kx﹣b图象可知k>0,﹣b<0,﹣<0;正比例函数y=﹣x的图象可知﹣>0,故此选项不可能;B、由一次函数y=kx﹣b图象可知k<0,﹣b>0,﹣<0;正比例函数y=﹣x的图象可知﹣>0,故此选项不可能;C、由一次函数y=kx﹣b图象可知k<0,﹣b>0,﹣<0;正比例函数y=﹣x的图象可知﹣<0,故此选项有可能;D、由一次函数y=kx﹣b图象可知k>0,﹣b>0,﹣>0;正比例函数y=﹣x的图象可知﹣<0,故此选项不可能;故选:C.10.解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(米/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(米),∴乙的运动速度为:1200÷6=200(米/分),∴200÷80=2.5,故②正确;当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,故①正确;此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(米),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,故④错误;∵甲19分钟运动距离为:19×80=1520(米),∴b=2000﹣1520=480,故③正确.故正确的有:①②③.故选:C.二、填空题(本大题共4小题,满分20分)11.解:在平面直角坐标系中,点M的坐标为(﹣1,3)在第二象限.故答案为:二.12.解:∵直线l与直线y=﹣2x+1平行,设直线l的解析式为y=﹣2x+b,∵截距为3,∴直线过点(0,3),∴b=3,∴直线l的解析式为y=﹣2x+3,故答案为:y=﹣2x+3.13.解:∵(x1﹣x2)(y1﹣y2)<0,∴x1﹣x2与y1﹣y2的值符号不同,∴y随x的增大而减小,∴﹣m+1<0,∴m>1.故答案为:m>1.14.解:(1)∵A(﹣1,4),B(3,1),C(﹣3,﹣3),∴a=3﹣(﹣3)=6,h=4﹣(﹣3)=7,∴S=ah=6×7=42,故答案为:42;(2)对于点A(1,2),B(﹣3,1),P(0,﹣t),其“水平底”a=1﹣(﹣3)=4,根据题意得:h的最小值为:1,∴A,B,P三点的“矩面积”的最小值为4.故答案为:4.三、解答题(本大题共9小题,满分90分)15.解:(1)∵点P(2a+8,a﹣2),点P在y轴上,∴2a+8=0,解得:a=﹣4;(2)由题意可得:2a+8=|a﹣2|,即2a+8=a﹣2或2a+8=2﹣a,解得:a=﹣10或a=﹣2,当a=﹣10时,2a+8=﹣12,(不合题意,舍去);当a=﹣2是,2a+8=4,a﹣2=﹣4,故P(4,﹣4).16.解:(1)如图,△A′B′C′为所作;(2)如图,点C的坐标为(3,﹣1),点C′的坐标为(6,1).17.解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.18.解:(1)∵MN∥x轴,∴2m+3=2,∴m=﹣,∴M(﹣,2);(2)∵MN∥y轴,∴a=5,∵MN=3,∴b=2+3=5或b=2﹣3=﹣1,∴M(5,5)或(5,﹣1).19.解:(1)函数y=﹣x+3的图象为:所以方程﹣x+3=0的解是x=2;(2)不等式﹣x+3<0的解集是x>2;(3)如图,从图象可知:当﹣3≤y≤6时﹣2≤x≤4,即x的取值范围是﹣2≤x≤4.20.解:(1)由题意可得,某户居民某月用水10立方米,应交水费:10×3.5=35(元);若用水15立方米,应交水费:12×3.5+(15﹣12)×4.5=55.5(元),故答案为:35,55.5;(2)由题意可得,当0<x≤12时,y=3.5x,当x>12时,y=12×3.5+(x﹣12)×4.5=4.5x﹣12,由上可得,每月应交水费y(元)与用水量x(立方米)之间的函数关系式是y=;(3)∵12×3.5=42<78,∴该户居民用水超过12立方米,设该户居民用水a立方米,则4.5a﹣12=78,解得a=20,答:该户居民用水20立方米.21.解:(1)由题意,得y1=500×0.9x+1000=450x+1000;y2=500x;(2)当y1=y2时,450x+1000=500x,解得:x=20.即学校购买的办公桌数量为20时,去A、B两家器材公司购买所需费用相同;当y1>y2时,450x+1000>500x,解得x<20,即学校购买的办公桌数量小于20时,去B两家器材公司购买所需费用较少;当y1<y2时,450x+1000<500x,解得x>20,即学校购买的办公桌数量多于20时,去A两家器材公司购买所需费用较少.22.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴点P的坐标为(﹣1,5),则它的“3级派生点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(﹣2,1);(3)∵点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1,∴P1(c﹣1,2c),∴P1的“﹣3阶派生点“P2为:(﹣3(c﹣1)+2c,c﹣1﹣6c),即(﹣c+3,﹣5c﹣1),∵P2在坐标轴上,∴﹣c+3=0或﹣5c﹣1=0,∴c=3或c=﹣,∴﹣c+3=0或,﹣5c﹣1=﹣16或0,∴P2(0,﹣16)或(,0).23.解:(1)∵点A在正比例函数y=x的图象上,且点A的横坐标为4.∴点A(4,2),∴2=﹣4+b,∴b=6,∴一次函数解析式为y=﹣x+6,∵一次函数y=﹣x+6的图象与x轴,y轴分别交于B,C两点,∴点B(6,0),点C(0,6);(2)由(1)可知:OC=6,x A=4,∴S△OAC=×OC×x A=×6×4=12,∵S△OMC=S△OAC=4,∴S△OMC=×OC×|x M|=4,∴|x M|=,∴x M=±,分情况讨论:①当动点M在线段OA上时,x>0,则当x=时,y=,∴此时M点的坐标为(,),②动点M射线AC上运动时:a.若x>0,则当x=时,y=﹣+6=,故此时M点的坐标为(,),b.若x<0,则当x=﹣时,y=+6=,故此时M点的坐标为(﹣,),综上,M点的坐标为(,)或(,)或(﹣,);故答案为:(,)或(,)或(﹣,);(3)∵点P(m,1)在△AOB的内部(不包括边界),∴当y=1时,代入正比例函数中得:1=x,解得:x=2,当y=1时,代入一次函数中得:1=﹣x+6,解得:x=5,∴2<m<5.故答案为:2<m<5.。
八年级数学(上)第一次月考试题(含答案)
第一学期第一次月考测试题八年级数学(时间:90分钟满分:100分)一、选择题:本大题共10小题;每小题3分;共30分.每小题给出的四个选项中;只有一个选项是符合题目要求的;将此选项的答案填入相应的答题区域。
.1、下列图形中有稳定性的是()A. 平行四边形B. 直角三角形C. 长方形D. 正方形2、若现有长为;;;的四根木棒;任取其中三根组成一个三角形;则可以组成不同的三角形的个数是()A. 个B. 个C. 个D. 个3、在△ABC中;∠A;∠B都是锐角;则∠C是()A.锐角B.直角C.钝角D.以上都有可能4.已知;在△ABC中;∠A=60°;∠C=80°;则∠B=()A.60°B.30°C.20°D.40°5.若一个多边形的内角和与它的外角和相等;则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.下面四个图形中;能判断∠1>∠2的是()A.B.C.D.7.如图;已知△ABC中;∠C=90°;若沿图中虚线剪去∠C;则∠1+∠2等于()A.90°B.135°C.270°D.315°8.如图;点O是△ABC内一点;∠A=80°;∠1=15°;∠2=40°;则∠BOC等于()A.95°B.120°C.135°D.无法确定9.下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形10、把一张形状是多边形的纸片剪去其中某一个角;剩下的部分是一个四边形;则这张纸片原来的形状不可能是()A. 三角形B. 四边形C. 五边形D. 六边形二、填空题:(本大题共10小题;每小题3分;共30分).11.三角形的两边长分别是10和8;则第三边的取值范围是.12.正多边形的一个内角等于144°;则该多边形是正______边形.13.如图;三角形纸片ABC;AB=10cm;BC=7cm;AC=6cm;沿过点B的直线折叠这个三角形;使顶点C落在AB边上的点E处;折痕为BD;则△AED的周长为cm.14、已知如图所示、分别是的中线、高;且;;则与的周长之差为;与的面积关系为 .15.已知△ABC≌△DEF;∠A=52°;∠B=57°;则∠F=.16.如图;△ABD≌△ACE;AD=8cm;AB=3cm;则BE=cm.17.已知△ABC≌△DEF;且∠A=90°;AB=6;AC=8;BC=10;△DEF中最大边长是;最大角是度.18、如图;在四边形中;;的平分线与的平分线交于点;则()19、如图;小明从点出发;前进后向右转;再前进后又向右转;…这样一直下去;直到他第一次回到出发点为止;他所走的路径构成了一个多边形.小明一共走了_______米?这个多边形的内角和是_______度?20、等腰三角形中;一个角为50°;则这个等腰三角形的顶角的度数为________三、解答题(一)本题共4小题;共40分.解答时;应写出必要的文字说明、证明过程或演算步骤.21、(8分)一个多边形的内角和与外角和的和是;通过计算说明它是几边形.22(8分)、如图所示;在中;是边上一点;;求的度数.23、(12分)如图所示;已知AD;AE分别是△ADC和△ABC的高和中线;AB=6cm;AC=8cm;BC=10cm;∠CAB=90°.试求:(1)(3分)AD的长;(2)(4分)△ABE的面积;(3)(5分)△ACE和△ABE的周长的差.24(12分)如图;已知点B、D、E、C四点在一条直线上;且△ABE≌△ACD.求证(1)(5分)BD=CE;(2)(7分)△ABD≌△ACE.第一次月考数学答案一;BCDDB DCCAD二;11.2<c<18;12.十;13.9;相等;15.71;16.5;17.10 90;18.αº或80º三;21.n=8;º;23.⑴24/5cm()⑵12cm²⑶2cm;。
人教版2022-2023学年八年级数学上册第一次月考测试题含答案
2022-2023学年八年级第一学期第一次检测数学试卷一、选择题(每题3分,共24分)1.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.402.如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD 分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是()A.SSS B.ASA C.SAS D.AAS3.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,BC∥EF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=EF B.AE=DB C.∠A=∠DEF D.∠A=∠D4.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°5.如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=32°,则∠EAC的度数为()A.18°B.30°C.32°D.38°6.已知在△ABC中,点D为线段BC边上一点,则按照顺序,线段AD分别是△ABC的()A.①中线,②角平分线,③高线B.①高线,②中线,③角平分线C.①角平分线,②高线,③中线D.①高线,②角平分线,③中线7.如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°8.如图所示的五边形花环是用五个全等的等腰三角形拼成的,则∠BAC的度数为()A.28°B.36°C.45°D.72°二、填空题(每题3分,共18分)9.已知,如图,AD=AE,BD=CE,那么图中△ADC≌.10.如图,在2×2的方格中,∠1+∠2=°.11.用一条长18cm的细绳围成一个腰长是底边长的2倍的等腰三角形,那么这个三角形的各边长分别是、、.12.如图,△ABC中,AB=13cm,BC=11cm,AC=6cm,点E是BC边的中点,点D在AB边上,现将△DBE沿着BA方向向左平移至△ADF的位置,则四边形DECF的周长为cm.13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.14.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB 以2cm/s的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=时,△POQ是等腰三角形.三、解答题(共72分)15.如图,已知等腰△ABC一腰上的中线BD把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边BC的长.16.已知:如图,AC,BD交于点O,AB=CD,AC⊥AB,BD⊥CD,垂足分别为A,D.求证:OB=OC.17.如图,C、E分别在AB、DF上,O是CF的中点,EO=BO,求证:∠ACE+∠DEC=180°.证明:∵O是CF的中点,∴=,在△COB和△FOE中,.∴△COB≌△FOE(),∴∠=∠,().∴AB∥DF,().∴∠ACE+∠DEC=180°.().18.课本中有一探究活动:如图1,有甲、乙两个三角形,甲三角形内角分别为10°,20°,150°;乙三角形内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出每个等腰三角形顶角的度数.(1)小明按要求画出了图1中甲图的分割线,请你帮他作出图1中乙图的分割线;(2)小明进一步探究发现:能将一个顶角为108°的等腰三角形分成三个等腰三角形;请在图2中用两种不同的方法画出分割线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种方法)19.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F 两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数.20.如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC 的度数及线段AE、BE、CE之间的数量关系,并说明理由.21.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到过点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米(1)求AP长的取值范围;(2)当∠CPN=60°时,求AP的值.22.通过对如图数学模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为.A.50B.62C.65D.68[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;23.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案一、选择题(每题3分,共24分)1.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.40解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.【点评】此题主要考查了全等三角形的性质,正确得出对应边是解题关键.2.如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD 分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是()A.SSS B.ASA C.SAS D.AAS解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,故选:A.【点评】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,BC∥EF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=EF B.AE=DB C.∠A=∠DEF D.∠A=∠D解:添加∠A=∠D,理由如下:∵BC∥EF,∴∠ABC=∠DEF,∵AC=DF,∠A=∠D,根据“AAS”判定△ABC≌△DEF.故选:D.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.4.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B=(180°﹣110°)=35°.故选:B.【点评】本题考查了等腰三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,根据求出的∠A是钝角可知∠B是底角是解题的关键.5.如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=32°,则∠EAC的度数为()A.18°B.30°C.32°D.38°解:∵∠B=80°,∠C=30°,∴∠BAC=70°,∵∠DAC=32°,∴∠BAD=38°,∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠BAD=38°,故选:D.【点评】本题考查了全等三角形的性质,三角形的内角和定理等,熟练掌握这些知识是解题的关键.6.已知在△ABC中,点D为线段BC边上一点,则按照顺序,线段AD分别是△ABC的()A.①中线,②角平分线,③高线B.①高线,②中线,③角平分线C.①角平分线,②高线,③中线D.①高线,②角平分线,③中线解:在△ABC中,点D为线段BC边上一点,则按照顺序,线段AD分别是△ABC的①高线,②角平分线,③中线.故选:D.【点评】本题考查了作图﹣基本作图,三角形的角平分线、中线和高,解决本题的关键是掌握三角形的角平分线、中线和高的作法.7.如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.【点评】本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.8.如图所示的五边形花环是用五个全等的等腰三角形拼成的,则∠BAC的度数为()A.28°B.36°C.45°D.72°解:如图所示,五个全等的等腰三角形拼成内外两个正五边形,∴∠EAB=∠ACD=,∴∠ACB=∠EAC=180°﹣108°=72°,∴∠BAC=∠EAB﹣∠EAC=108°﹣72°=36°,故选:B.【点评】主要考查正多边形内角和及等腰三角形的性质,邻补角等,理解题意,熟练掌握运用正多边形内角和的计算公式是解题关键.二、填空题(每题3分,共18分)9.已知,如图,AD=AE,BD=CE,那么图中△ADC≌△AEB.解:∵AD=AE,BD=CE,∴AD+BD=AE+CE,即AB=AC,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS).故答案为:△AEB.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.10.如图,在2×2的方格中,∠1+∠2=90°.解:如图,由题意得:AB=DE=2,∠ADE=∠CBA=90°,AD=CB=1,∴△ADE≌△CBA(SAS),∴∠2=∠BAC,∵∠ABC=90°,∴∠BAC+∠1=90°,∴∠1+∠2=90°,故答案为:90.【点评】本题考查了全等三角形的判定与性质,掌握全等三角形的判定方法是解决问题的关键.11.用一条长18cm的细绳围成一个腰长是底边长的2倍的等腰三角形,那么这个三角形的各边长分别是7.2cm、7.2cm、 3.6cm.解:设底边长为xcm,∵腰长是底边的2倍,∴腰长为2xcm,∴2x+2x+x=18,解得x=3.6,∴2x=2×3.6=7.2.故答案为:7.2cm,7.2cm,3.6cm.【点评】本题考查的是等腰三角形的性质,熟记等腰三角形的两腰相等是解题的关键.12.如图,△ABC中,AB=13cm,BC=11cm,AC=6cm,点E是BC边的中点,点D在AB边上,现将△DBE沿着BA方向向左平移至△ADF的位置,则四边形DECF的周长为17cm.解:连接EF.由平移的性质可知,AF=DE.EF=AD,AF∥DE,EF∥AD,DF∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,,∴△CEF≌△DFE(ASA),∴DE=CF,∴AF=CF=DE=3cm∵E是BC的中点,∴EC=EB=DF=5.5cm,∴四边形DECF的周长=2(3+5.5)=17cm.故答案为:17.【点评】本题考查平移变换,全等三角形的判定和性质等知识,解题的关键是理解题意灵活运用所学知识解决问题.13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18cm.解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB 以2cm/s的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=或10时,△POQ是等腰三角形.解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即10﹣2t=t,解得,t=s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用5s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣5)=t,解得,t=10s故填或10.【点评】本题考查了等腰三角形的判定;解题时把几何问题转化为方程求解,是常用的方法,注意要分类讨论,当点P在点O的左侧还是在右侧是解答本题的关键.三、解答题(共72分)15.如图,已知等腰△ABC一腰上的中线BD把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边BC的长.解:AB=AC,BD为腰AC上的中线,设AD=DC=x,BC=y,根据题意得或,解得或,当x=4,y=17时,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系,舍去;当x=7,y=5时,等腰三角形的三边为14,14,5,答:这个等腰三角形的底边BC长是5.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.16.已知:如图,AC,BD交于点O,AB=CD,AC⊥AB,BD⊥CD,垂足分别为A,D.求证:OB=OC.【解答】证明:∵AC⊥AB,BD⊥CD,∴∠A=∠D=90°,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS),∴OB=OC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解决问题的关键.17.如图,C、E分别在AB、DF上,O是CF的中点,EO=BO,求证:∠ACE+∠DEC=180°.证明:∵O是CF的中点,∴CO=FO,在△COB和△FOE中,.∴△COB≌△FOE(SAS),∴∠OBC=∠OEF,(全等三角形对应角相等).∴AB∥DF,(内错角相等,两直线平行).∴∠ACE+∠DEC=180°.(两直线平行,同旁内角互补).【解答】证明:∵O是CF的中点,∴CO=FO,在△COB和△FOE中,,∴△COB≌△FOE(SAS),∴∠OBC=∠OEF(全等三角形对应角相等),∴AB∥DF(内错角相等,两直线平行),∴∠ACE+∠DEC=180°(两直线平行,同旁内角互补).故答案为:CO;FO;SAS;OBC;OEF;全等三角形对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.【点评】本题考查了全等三角形的判定和性质,平行线的判定和性质,熟练掌握知识点是解题的关键.18.课本中有一探究活动:如图1,有甲、乙两个三角形,甲三角形内角分别为10°,20°,150°;乙三角形内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出每个等腰三角形顶角的度数.(1)小明按要求画出了图1中甲图的分割线,请你帮他作出图1中乙图的分割线;(2)小明进一步探究发现:能将一个顶角为108°的等腰三角形分成三个等腰三角形;请在图2中用两种不同的方法画出分割线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种方法)解:(1)按要求作图如图:(2)按要求作图如图:或(视为同一种);【点评】本题主要考查了等腰三角形的判定以及作图,确定分割三角形中的哪一个角是解题的关键.19.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F 两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数.解:(1)连接PF,PE,由作图过程可知AE=AF,PE=PF,AP=AP,∴△AFP≌△AEP,∴∠FAP=∠EAP,∴AP平分∠CAB.(2)∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=180°﹣114°=66°,由(1)知AP平分∠CAB,即∠MAB=∠MAC,∴∠MAB=∠CAB=33°.【点评】本题考查了三角形全等的判定、角平分线的性质和平行线的性质,做题关键是掌握三角形全等的判定、角平分线的性质和平行线的性质.20.如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC 的度数及线段AE、BE、CE之间的数量关系,并说明理由.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°,∴△ADE是等边三角形;(2)解:AE+CE=BE.∵∠BAD+∠DAC=60°,∠CAE+∠DAC=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠AEC=∠ADB=120°,∴BE=BD+DE=AE+CE,∠BEC=∠AEC﹣∠AED=60°.【点评】本题考查的是等边三角形的判定和性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.21.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到过点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米(1)求AP长的取值范围;(2)当∠CPN=60°时,求AP的值.解:(1)∵BC=2.0分米,AC=CN+PN=12分米,∴AB=12﹣2=10(分米),∴AP的取值范围为:0分米≤AP≤10分米.(2)∵CN=PN,∠CPN=60°,∴△PCN等边三角形.∴CP=6分米.∴AP=AC﹣PC=12﹣6=6(分米).即当∠CPN=60°时,AP=6分米.【点评】本题考查了等边三角形的判定与性质.解答该题时,需要弄清楚遮阳伞的工作原理.22.通过对如图数学模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=DE,BC=AE.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为50.A.50B.62C.65D.68[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【解答】[模型呈现]解:∵△ABC≌△DAE,∴AC=DE.故答案为:DE;[模型应用]解:如图2中,由“K字”模型可知,△EPA≌△AGB,△BGC≌△CHD,∴EP=AG=6,PA=BG=3,BG=CH=3,GC=DH=4,∴PH=PA+AG+GC+CH=3+6+4+3=16,∴图中实线所围成的图形的面积=梯形EPHD的面积﹣△EPE的面积﹣△ABG的面积﹣△BGC的面积﹣△CHD的面积=×(6+4)×16﹣2××3×6﹣2××3×4=50.故答案为:50;[深入探究]证明:如图3,过D作DM⊥AF于M,过E作EN⊥AF于N,由“K字”模型得:△ABF≌△DAM(AAS),∴AF=DM,同理:AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,∴△DMG≌△ENG(AAS),∴DG=EG,即点G是DE的中点;【点评】本题是三角形综合题目,考查了全等三角形的判定与性质、直角三角形的性质、“K字”模型的应用以及三角形面积等知识,本题综合性强,熟练掌握“K字”模型的应用是解题的关键,属于中考常考题型.23.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=或时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。
人教版八年级上册数学《第一次月考》考试题(必考题)
人教版八年级上册数学《第一次月考》考试题(必考题)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为()A.485B.325C.245D.1257.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A .SASB .ASAC .AASD .SSS二、填空题(本大题共6小题,每小题3分,共18分)1.若代数式1x -在实数范围内有意义,则x 的取值范围是_______.2.计算:16=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D(1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、43、13k <<.4、72°5、49136、(-10,3)三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=-⎩2、2x-y ;-312.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略;(2)4.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
湖北省孝感市汉川市部分学校2024-2025学年八年级上学期第一次月考数学试卷
湖北省孝感市汉川市部分学校2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列长度的三条线段能组成三角形的是( )A .2、3、5B .3、4、5C .2、2、5D .3、4、8 2.在下列图形中,正确画出AC 边上的高的是( )A .B .C .D .3.如图,在ABC V 中,55A ∠=︒,45B ∠=︒,那么ACD ∠的度数为( )A .110︒B .100︒C .55︒D .45︒4.正多边形的一个外角的度数为30°,则这个正多边形的边数为( ).A .6B .10C .8D .125.在给定的下列条件中,不能判定三角形是直角三角形的是( )A .123ABC ∠∠∠=::::B .A BC ∠∠=∠+ C .A B C ∠=∠=∠D .3,2A C B C ∠=∠∠=∠6.如右图,已知AM 是ABC V 的中线,点P 是AC 边上一动点,若ABC V 的面积为10,4AC =,则MP 的最小值为( )A .5B .4C .2.5D .1.257.如图,在ABC V 中,12∠=∠,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF AD ⊥于H .下列判断正确的是( )A .线段AD 是ABE V 的角平分线B .线段CH 为ACD V 边AD 上的高C .线段BE 是ABD △边AD 上的中线 D .线段AH 为ABC V 的角平分线8.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,若∠ABP =20°,∠ACP =60°,则∠A ﹣∠P =( )A .70°B .60°C .50°D .40°9.如图,机器人从点0A 出发朝正东方向走了2m 到达点1A ,记为第1次行走;接着,在点1A 处沿逆时针方向旋转60︒后向前走2m 到达2A ,记为第2次行走;再在点2A 处沿逆时针方向旋转60︒后向前走2m 到达点3A ,记为第3次行走,…,以此类推,该机器人从出发到第一次回到出发点0A 时所走过的路程为( )A.20m B.16m C.12m D.10m10.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°二、填空题11.木工师傅在做好门框后,为了防止变形,常常按如图所示的方法钉上两根斜拉的木板条,其数学依据是三角形具有.12.过多边形的一个顶点能引出7条对角线,则这个多边形的边数是.13.形如燕尾的几何图形我们通常称之为“燕尾形”.如图是一个燕尾形,已知105∠=︒,ADC∠的度数为.∠=︒,2263ABC∠=︒,则BCDBAD14.如图,一个直角三角形纸板的直角边,AC BC 分别经过正八边形的两个顶点,则图中12∠+∠=15.在等腰△ABC 中,AB =AC ,一腰上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为三、解答题16.一个多边形的内角和比它的外角和多720°,求该多边形的边数.17.已知,ABC V 的三边长为4,10,x .(1)求x 的取值范围.(2)当ABC V 的周长为偶数时,求x .18.如图,在ABC V 中,2,4AB BC ==.ABC V 的高AD 与CE 的比是多少?(提示:利用三角形的面积公式.)19.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,CD ⊥AC 交AB 于点D ,∠BCD =∠A ,求∠BEA 的度数.20.已知a b c ,,是ABC V 的三边长.(1)若a b c ,,满足,2()||0a b b c -+-=,试判断ABC V 的形状;(2)化简:||||||b c a a b c a b c --+-+---21.(1)如图1,计算下列五角星图案中五个顶角的度数和. 即:求∠A+∠B+∠C+∠D+∠E 的大小.(2)如图2,若五角星的五个顶角的度数相等, 求∠1的大小.22.如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E .(1)若∠B =30°,∠ACB =80°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.23.数学课本第29页复习题的第9题如下:如图1,填空:由三角形两边的和大于第三边,得AB AD +>________,PD CD +>________.将不等式左边、右边分别相加,得AB AD PD CD +++>________,即AB AC +>________.(1)补全上面步骤;(2)仿照图1的方法,请你利用图2,过P 作直线交AB ,AC 于M ,N ,证明:AB AC PB PC +>+. 24.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =70°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC ,∠NCB 的角平分线交于点Q ,试探索∠Q ,∠A 之间的数量关系.(3)如图③,延长线段BP ,QC 交于点E ,在△BQE 中,存在一个内角等于另一个内角的3倍,求∠A 的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
13、已知a 2=25, |b|=3,则a +b 的值是〔 〕
14、一个数的平方根等于它的立方根,这个数是……………………〔 〕 A 、0和1 B 、1 C 、0 D 、0和±1
15、如果a <0,则a 的立方根是………………………………………〔 〕 A 、-3a B 、3a C 、± 3a - D 、3a -
16、若一个三角形的三边长的平方分别为32,42,x 2,则此三角形是直角三角形的x 的值是…………………………………………………………〔 〕 A 、4 B 、5 C 、7 D 、5或7 18、下列结论中:①若x 2=y 2,则x =y ;②若x >y ,则x >y ; ③若3x =3y ,则x =y ;④若x 3
=y 3
,则x =y ,其中正确的有…〔 〕 A 、1个 B 、2个 C 、3个 D 、4个 25、233221-+
-+
-
2、若
3125a =-
______=
3、若||3a ==,且0ab <,则____b a
-=
5
______y
x = 11 )
12、下列说法中,正确的是( )
A .无限小数是无理数
B .无理数是无限小数
C .带根号的数是无理数
D .无理数是带根号的数 17、若a
为任意实数,下列等式中成立的是( ) A .
2
a = B .
2
a =- C a
= D ||a =
20、已知,a b
均为有理数,且(2
3a +=,则( ) A .9,12a b == B .11,6a b ==- C .11,0a b == D .9,6a b == 3. 下列说法正确的是( )
A 、有理数只是有限小数
B 、无理数是无限小数
C 、无限小数是无理数
D 、3
π
是分数
4. 下列说法错误的是( )
A 、1的平方根是1
B 、–1的立方根是-1
C 、2是2的平方根
D 、–3是2
)3(-的平方根 5. 若规定误差小于1, 那么60的估算值为( )
A 、3
B 、7
C 、8
D 、7或8 7. 下列说法正确的是( )
A 、064.0-的立方根是0.4
B 、9-的平方根是3±
C 、16的立方根是316
D 、0.01的立方根是0.000001 8. 若a 和a -都有意义,则a 的值是( )
A 、0≥a
B 、0≤a
C 、0=a
D 、0≠a
9. 边长为1的正方形的对角线长是( )
A 、整数
B 、分数
C 、有理数
D 、不是有理数 3。
21. 求下列各式中的x 的值(每小题4分,共8分)。
(1)、()2
3216x += (2)、3
1
(21)42
x -=-
9.
(
)
(
)
=+⨯
-2007
2006
3
23
2 。
21、已知x 、y 为实数,2
1
4422-+-+-=
x x x y ,试求13x +4y 立方根。
9、已知一个正方形的边长为a ,面积为S ,则 ( ) (A) a S = (B) S 的平方根是a (C) a 是S 的算术平方根 (D) S a ±=
10、若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5- 9、已知032=++-b a ,则______)(2=-b a ;
10、计算:______1112=-+-+-x x x ;
11、若a 、b 互为相反数,c 、d 互为负倒数,则______3=++cd b a ; 12、已知x 、y 满足0242422=+-++y x y x ,则_______16522=+y x ;
21. 27)1(32=-x ; 22. 0125
81
33=+x 25. )322)(223(-+ 26. 7518278123+-+--
27.
205
1
3
375⨯-
- 28.)35)(35()23()2(1612102--+------- 14.当10≤≤x 时,化简__________12=-+x x ;15.当________x 时,式子2
1
--x x 有意义; 16.计算:______1112=-+-+-x x x ;
17.210-的算术平方根是 ,0)5(-的平方根是 ; 18.若a a -=-2)2(2,则a 的取值范围是 ;
19.若06432=+++-++z y x x y x ,则____=y xz
;
20.如果a 的平方根等于2±,那么_____=a ;
16、一个直角三角形的两边m 、n 恰好满足等式m-12-2n +n 2-12=8,求第三条边的长.
17、如图,梯形ABCD 中,AB DC ∥,90ADC BCD ∠+∠= ,且2DC AB =,分别以DA AB BC ,,为边向
梯形外作正方形,其面积分别为123S S S ,,,则123S S S ,,之间的关系是 .
18、如图,E 是正方形ABCD 边AD 上一点,AE=2cm ,DE=6cm ,P 是 对角线BD 上的一动点,则AP+PE 的最小值是 .。