2017中考数学投影与视图复习.doc

合集下载

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图—知识解说【考大纲求】1.经过实例认识平行投影和中心投影的含义及简单应用;2.会画基本几何体 ( 直棱柱、圆柱、圆锥、球 ) 的三视图 ( 主视图,左视图、俯视图 ) ,能依据三视图描绘基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常有的几何体的分类在丰富多彩的图形世界中,我们常有的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面订交成线,线线订交成点.重点解说:体体订交可成点,不必定成线.3.基本几何体的睁开图(1)正方体的睁开图是六个正方形;(2)棱柱的睁开图是两个多边形和一个长方形;(3)圆锥的睁开图是一个圆和一个扇形;(4)圆柱的睁开图是两个圆和一个长方形.考点二、投影1.投影用光芒照耀物体,在某个平面上获得的影子叫做物体的投影,照耀光芒叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光芒形成的投影是平行投影;由同一点( 点光源 ) 发出的光芒形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.重点解说:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度察看一个物体时,所看到的图象叫做物体的视图.我们用三个相互垂直的平面作为投影面,此中正对我们的叫做正面,正面下方的叫做水平面,右侧的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内获得的由前向后察看物体的视图,叫做主视图;在水平面内获得的由上向下察看物体的视图,叫做俯视图;在侧面内获得的由左向右察看物体的视图,叫做左视图.重点解说:三视图就是我们从三个方向看物体所获得的 3 个图象.2.画三视图的要求(1)地点的规定:主视图下方是俯视图,主视图右侧是左视图.(2)长度的规定:长对正,高平齐,宽相等.重点解说:主视图反应物体的长和高,俯视图反应物体的长和宽,左视图反应物体的高和宽.【典型例题】种类一、三视图及睁开图1.用大小和形状完整相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图以下图,()则搭成这样的一个几何体起码需要小正方体木块的个数为A .22 B.19C.16D.13【思路点拨】视图、俯视图是分别从物体正面、上边看,所获得的图形.【答案】 D;【分析】综合主视图和俯视图,这个几何体的基层最罕有3+3+1=7 个小正方体,第二层最罕有 3 个,第三层最罕有 2 个,第四层最罕有 1 个,所以搭成这样的一个几何体起码需要小正方体木块的个数为: 7+3+2+1=13 个.故答案为: 13.【总结升华】由三视图判断构成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.贯通融会:【变式 1】如图是由棱长为 1 的正方体搭成的积木三视图,则图中棱长为 1 的正方体的个数是________.【答案】 6.【高清讲堂:《空间与图形》专题:投影与视图例6】【变式2】以下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A. 5B. 6C. 7D. 8左面看正面看上边看【答案】 B.2.美术课上,老师要求同学们将以下图的白纸只沿虚线剪开,用裁开的纸片和白纸上的暗影部份围成一个立体模型,而后放在桌面上,下边四个表示图中,只有一个切合上述要求,那么这个表示图是()A.B.C.D.【思路点拨】着手操作看获得小正方体的暗影部分的详细部位即可.【答案】 B【分析】着手操作折叠成正方体的形状搁置到白纸的暗影部分上,所得正方体中的暗影部分应紧靠白纸,应选 B.【总结升华】用到的知识与正方体睁开图相关,观察学生空间想象能力.建议学生在平常的教课过程中应联合实质模型将睁开图的若干种状况剖析清楚.贯通融会:【变式】以下图的是以一个由一些相同的小正方体构成的简单几何体的主视图和俯视图.设构成这个几何体的小正方体的个数为 n,请写出 n 的全部可能的值.【答案】 n 为 8, 9, 10,11.3.以下图形中经过折叠能围成一个棱柱的是()A.B.C.D.【思路点拨】利用四棱柱及其表面睁开图的特色解题.【答案】 D;【分析】A、侧面少一个长方形,故不可以;B、侧面多一个长方形,折叠后不可以围成棱柱,故不可以;C、折叠后少一个底面,不可以围成棱柱;只有 D 能围成四棱柱.应选 D.【总结升华】四棱柱的侧面睁开图为四个长方形构成的大长方形.贯通融会:【高清讲堂:《空间与图形》专题:投影与视图讲堂练习【变式】如图,在正方体 ABCD-A1B1C1D1中, E、 F、 G分别是3】AB、 BB1、 BC的中点,沿EG、 EF、 FG将这个正方体切去一个角后,获得的几何体的俯视图是()A. B . C . D .【答案】找到从上边看所获得的图形即可,注意全部的看到的棱都应表此刻俯视图中.从上边看易得1个正方形,但上边少了一个角,在俯视图中,右下角有一条线段.应选B.种类二、投影相关问题4.如图,在斜坡的顶部有一铁塔AB, B 是 CD的中点, CD是水平的,在阳光的照耀下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是 1.6m ,同一时辰,小明站在点 E 处,影子在坡面上,小华站在平川上,影子也在平川上,两人的影长分别为2m 和 1m,求塔高AB的长 .【思路点拨】过点D结构矩形,把塔高的影长分解为平川上的BD,斜坡上的DE.而后依据影长的比分别求得 AG, GB长,把它们相加即可.【答案与分析】【分析 1】解:如图1,过 D 作 DF⊥CD,交 AE于点 F,过 F 作 FG⊥ AB,垂足为 G.可得矩形BDFG.由题意得:.∴D F=DE×1.6 ÷2=14.4 ( m).∴GF=BD= CD=6m.又∵.∴A G=1.6×6=9.6 ( m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1图2【分析 2】如图 2,作 DG∥AE,交 AB于点 G, BG的影长为BD, AG 的影长为DE,由题意得:AG=1.6.DE2∴ AG=18×1.6 ÷2=14.4 (m).又∵BG=1.6 .BD1∴ BG=1.6×6=9.6 ( m).∴ AB=14.4+9.6=24 ( m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实质生活中的问题,要求我们要具备数学建模能力(即将实质问题转变为数学识题).种类三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图以下图,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图观察几何体的形状,从俯视图看出几何体的小立方块最多的数量.【答案】 17.【分析】解:由主视图可知,它自下而上共有 3 列,第一列 3 块,第二列 2 块,第三列 1 块.由俯视图可知,它自左而右共有 3 列,第二列各 3 块,第三列 1 块,从空中俯视的块数只需最低层有一块即可.所以,综合两图可知这个几何体的形状不可以确立;如图,最多时有3×5+2×1=17 块小立方体.故答案为17.【总结升华】此题观察简单空间图形的三视图,观察空间想象能力,是基础题,但很简单犯错.6.太阳光芒与水平线的夹角在新疆地域的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为 28 度.现有两幢居民住所楼高为15 米,两楼相距20 米,以下图.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内持续兴建相同高的住所楼,楼距起码应当多少米,才不影响楼房的采光?(前一幢楼房的影子不可以落在后一幢楼房上)(计算结果精准到 0.1 米)【思路点拨】(1)如图,结构直角三角形 ADE,则∠ ADE=28°, DE=BC=20,在这个三角形中已知一边和一个锐角,满足解直角三角形的条件,可求出AE的长进而求得 CD的长.( 2)在△ ABC中,由角 C 的值和 AB的高,知足解直角三角形的条件,可求出BC的长.【答案与分析】解:( 1)以下图,作 DE⊥ AB,垂足为E,由题意可知∠ ADE=28°,DE=BC=20,在 Rt△ ADE中, tan∠ ADE=AE,DEAE=DE?tan∠DAE=20?tan28°≈ 10.6 ,则 DC=EB=AB-AE=15-10.6=4.4.即冬至时甲楼的影子在乙楼上约4.4 米高.( 2)若要不影响要房间的采光,以下图在Rt △ ABC中, AB=15,∠ C=28°,AB15BC=28.2.tan C tan28答:楼距起码28.2 米,才不影响楼房的采光.【总结升华】此题是解直角三角形在生活中的实质应用,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线 BP 所在的水平面上,且BP 过底面圆的圆心,其高 2 3 m,底面半径为 2m.某光源位于点 A 处,照耀圆锥体在水平面上留下的影长BE=4m.(1)求∠ B 的度数;(2)若∠ ACP=2∠ B,求光源 A 距平面的高度.【思路点拨】( 1)以以下图所示,过点 D 作 DF垂直 BC于点 F.由题意,得 DF=23 ,EF=2,BE=4,在Rt△DFB中,tan ∠ B= DF,由此能够求出∠B;BF(2)过点 A 作 AH垂直 BP于点 H.由于∠ ACP=2∠B=60°所以∠ BAC=30°, AC=BC=8.在 Rt△ ACH中,AH=AC?Sin∠ ACP,所以能够求出 AH了,即求出了光源 A 距平面的高度.【答案与分析】解:( 1)过点 D 作 DF 垂直 BC于点 F.由题意,得 DF=2 3 ,EF=2,BE=4.在 Rt△ DFB中, tan ∠ B= DF=2 3= 3 ,BF 2+43所以∠ B=30°;( 2)过点 A 作 AH垂直 BP于点 H.∵∠ ACP=2∠B=60°,∴∠ BAC=30°,∴ AC=BC=8,在 Rt△ ACH中, AH=AC?Sin∠ ACP=38=4 3,2即光源 A 距平面的高度为4 3 m.【总结升华】此题观察了学生运用三角函数知识解决实质问题的能力,又让学生感觉到生活到处有数学,数学在生产生活中有着宽泛的作用.。

中考数学-投影与视图(解析版)

中考数学-投影与视图(解析版)

专题29投影与视图知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。

2.平行投影:由平行光线形成的投影是平行投影。

3.中心投影:由同一点发出的光线形成的投影叫做中心投影。

4.正投影:投影线垂直于投影面产生的投影叫做正投影。

知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

视图可以看作物体在某一方向光线下的正投影。

2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。

主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。

知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。

通过下面知识导图加深对本章内容的了解。

【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A B C D【答案】B.【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为()A. B. C. D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是一个小正方形,第二层是三个小正方形,∴主视图为:【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.组合体从上往下看是横着放的三个正方形.【点拨】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.《投影与视图》单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共30分)1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【答案】D【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.2.(2020山东济宁)已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是5=(cm),∴侧面积=π×3×5=15π(cm2),故选B.3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A选项中的图形.【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D.【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层有两个小正方形,第二层右边有一个小正方形,【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】分别确定每个几何体的主视图和左视图即可作出判断.A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.【答案】C【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.7.(2020福建)如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.8.(2020新疆兵团)如图所示,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据俯视图是从上边看的到的视图,可得答案.从上边可以看到4列,每列都是一个小正方形,故C符合题意;【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】找到从上面看所得到的图形即可.解:从上面看可得四个并排的正方形,如图所示:【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(每空3分,共30分)11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.【答案】4.【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm)12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是.【答案】见解析。

中考数学一轮复习专题视图与投影

中考数学一轮复习专题视图与投影

专题26 视图与投影考点总结【思维导图】【知识要点】知识点一投影一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影。

照射光线叫做投影线,投影所在的平面叫做投影面。

平行投影概念:由平行光线形成的投影叫做平行投影。

特征:1.等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.2.等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.平行投影变化规律:1.在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.2.在同一时刻,不同物体的物高与影长成正比例. 即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.中心投影概念:由同一点 (点光源) 发出的光线形成的投影叫做中心投影。

特征:1.等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.2等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.考查题型(求点光源的位置)点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.中心投影与平行投影的区别与联系:正投影正投影的定义:如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.1.线段的正投影分为三种情况.如图所示.①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;、②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.2.平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,是类似图形但不一定相似.③当平面图形垂直于投影面Q时,它的正投影是直线或直线的一部分.3.立体图形的正投影.物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最大截面全等.【典型例题】1.(2019·四川中考模拟)下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是( ) A.B.C.D.【答案】A【解析】根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.2.(2019·广西中考模拟)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.3.(2019·北京清华附中中考模拟)如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长【答案】D【解析】由一点所发出的光线形成的投影叫做中心投影,而中心投影的影子长短与距离光源的距离有关,由题意可得,小莉和小玉在同一路灯下由于位置不同,影长也不相同,故无法判断谁的影子长,故选D.4.(2019·河北中考模拟)一个长方形的正投影不可能是()A.正方形B.矩形C.线段D.点【答案】D【详解】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是点,故选:D.5.(2019·湖北中考模拟)如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【答案】D【解析】试题分析:根据题意:水杯的杯口与投影面平行,即与光线垂直,则它的正投影图应是D.故选D.6.(2018·广东中考模拟)下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.【答案】C【解析】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选C.考查题型一中心投影的应用方法1.(2018·河北中考模拟)如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.2.(2020·银川外国语实验学校初三期末)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P 到地面的距离.【答案】(1)见解析;(2)见解析;(3)8米 【解析】()1如图:()2如图:()3//AB OP ,MAB ∴∽MOP ∆,AB AM OP OM ∴=,即1.6 2.510 2.5OP =+, 解得8OP =.即路灯灯泡P 到地面的距离是8米.3.(2019·泰兴市洋思中学初三期中)如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?【答案】(1)路灯A有6米高(2)王华的影子长83米.【解析】试题分析:22. 解:(1)由题可知AB//MC//NE,∴,而MC=NE∴∵CD=1米,EF=2米,BF=BD+4,∴BD=4米,∴AB==6米所以路灯A有6米高(2)依题意,设影长为x,则解得米答:王华的影子长83米.考查题型二利用平行投影确定影子的长度1.(2019·吉林中考模拟)如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.【答案】6.4【详解】解:由题可知:1.628树高,解得:树高=6.4米.2.(2018·四川中考模拟)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_____.【答案】10cm【详解】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴ABBC=DEEF∴53=6DE∴DE=10(m)故答案为10m.3.(2015·甘肃中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【详解】(1)平行;(2)连接AM、CG,过点E作EN⊥AB于点N,过点G作GM⊥CD于点M,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.考查题型三利用相似问题解决投影问题1.(2019·长沙市长郡双语实验中学中考模拟)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.【答案】5。

中考复习数学 简单几何体、视图与投影

中考复习数学 简单几何体、视图与投影

A.1个
B.2个
C.3个
D.4个
解析:从左到右第一个是三棱锥;第二个是三棱柱;第三个是四棱锥;第四个是三
棱柱,
故选B.
方法技巧:解答此类问题可以动手制作几何体,辅助解答问题,通过动手 操作培养空间想象能力.
经典考例:
G
A
B
E
变式练习:
B
经典考例:《中考复习指南》P120例1
(C)
A
B
C
D
经典考例:
中考复习
简单几何体、视图与投影
知识点一 投影
1.投影的定义
一般地,用光线照射物体,在某个平面上得到的影子叫做物体的

,投影所在的平面叫做②
.Байду номын сангаас
2(1.投)平投影行影的投类影型:由③
形成的投投影影面是平行投影,投影线垂直于投
影面产生的投影叫做正投影.
(2)中心投影:由④
发出的光线形成的投影叫做中心投影.
平行光线
同一个点
知识点二 视图
1.三视图:在正面内得到的由前向后观察物体的视图叫做⑤ 主视图 ;在水平面内
得到的由上到下观察物体的视图叫做⑥
物体的视图叫做⑦
.
俯视图;在侧面内得到的由左到右观察
左视图
2.三视图的画法:
(1)位置:先确定主视图的位置及大小,然后俯视图在主视图的下
面,左视图在主视图的右边.
一、选择题: 1.(2018潍坊)如图所示的几何体的左视图是 (
D)
2.(2018河北)图中三视图对应的几何体是 ( C )
(第2题图)
对接中考 3.图中三视图对应的正三棱柱是 ( A )
4.(2017济宁)下列几何体中,主视图、俯视图、左视图都相同的是 ( B )

中考数学考总复习考点25 视图与投影

中考数学考总复习考点25 视图与投影

考点25 视图与投影一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1下列几何体中,主视图和俯视图都是矩形的是A.B.C.D.【答案】B【解析】A、主视图为三角形,俯视图为带圆心的圆,故选项错误;B、主视图为矩形,俯视图为矩形,故选项正确;C、主视图为矩形,俯视图为圆,故选项错误;D、主视图为圆,俯视图为圆,故选项错误.故选B.1.如图是小明将5个大小相同的正方体块摆成的立体图形,它的主视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3一张矩形纸片在太阳光线的照射下,形成的影子不可能是A.平行四边形B.矩形C.正方形D.梯形【答案】D【解析】一张矩形纸片在太阳光线的照射下,形成影子不可能是梯形,故选D.4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是A.B.C.D.考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的左视图是A.B.C.D.2.如图所示的四棱柱的主视图为A.B.C.D.3.如图,按照三视图确定该几何体的侧面积是(单位:cm)A.24πcm2B.48πcm2C.60πcm2D.80πcm2 4.在太阳光下转动一个正方体,观察正方体在地上投下的影子,则这个影子边数最多时是A.四边形B.五边形C.六边形D.七边形5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作一个这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)1.(2018·无锡)由6个相同的小正方体搭成的几何体如图所示,则它的俯视图是A.B.C.D.2.(2018·铁岭)如图是由6个大小相同的小立方体搭成的几何体,这个几何体的主视图是A.B.C.D.3.(2018·本溪)如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是A.B.C.D.4.(2018•辽阳)如图所示的几何体是由五个相同的小正方体搭成的,它的左视图是A.B.C.D.5.(2018•广元)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是A.B.C.D.6.(2018•百色)如图,由5个完全一样的小正方体组成的几何体的主视图是A.B.C.D.7.(2018•巴彦淖尔)如图是一个几何体的三视图,则这个几何体的表面积是A.60π+48 B.68π+48 C.48π+48 D.36π+488.(2018•济南)如图所示的几何体,它的俯视图是A.B.C.D.9.(2018•锦州)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图A.B.C.D.10.(2018•牡丹江)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是A.B.C.D.11.(2018•东营)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为__________.12.(2018•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°,则AB的长为__________cm.13.(2018•青岛)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有__________种.14.(2018•陇南)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为__________.1.【答案】D【解析】从物体正面看,左边1个正方形,中间2个正方形,右边1个正方形.故选D.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,22345(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】A【解析】将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.5.【答案】B【解析】根据图示进行折叠可直接得到B答案符合题目要求.故选B.考点冲关变式拓展1.【答案】C【解析】从左边看是上下两个矩形,两矩形的公共边是虚线,故选C.2.【答案】B【解析】由图可得,几何体的主视图是:,故选B.3.【答案】A【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷2=4(cm),故侧面积=πrl=π×4×6=24π(cm2).故选A.4.【答案】C【解析】正方体在地上的影子相当于正方体的一个截面,正方体截面中边数最多的是六边形.故选C.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【解析】(1)由图可知地面正方形边长=18–12=6(cm),包装盒的表面积=6×6×2+4×6×12=360(cm2).答:制作一个这样的包装盒需要360平方厘米的硬纸板;(2)10×360÷10000×5=1.8(元).答:制作10个这样的包装盒需花费1.8元钱.1.【答案】A【解析】该几何体的俯视图为,故选A.2.【答案】A【解析】从正面看易得从下到上第一层有2个正方形,第二层有1个正方形,第三层有1个正方形,如图所示:.故选A.3.【答案】B【解析】从左面看易得第一层有2个正方形,第二层有2个正方形.故选B.4.【答案】D【解析】从左面可看到从左往右2列小正方形的个数为:2,1.故选D.5.【答案】B【解析】根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选B.6.【答案】B【解析】由5个完全一样的小正方体组成的几何体的主视图是:,故选B.7.【答案】A【解析】此几何体的表面积为π•42×34×2+34•2π•4×6+(4+4)×6=60π+48,故选A.8.【答案】D【解析】从几何体上面看,有2排,上面一排有3个正方形,下面一排有1个正方形.故选D.9.【答案】A【解析】左视图有2列,每列小正方形数目分别为2,1.故选A.10.【答案】A直通中考【解析】结合主视图、左视图可知俯视图中左上角有2层,其余1层,故选A.11.【答案】20π【解析】根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l=2234=5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π.12.【答案】42【解析】如图,过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=22×8=42(cm).故答案为:42.13.【答案】10【解析】由题意可知俯视图由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.14.【答案】108【解析】观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.考点26 统计一、全面调查与抽样调查1.有关概念(1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.(2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.3.抽样调查样本的选取(1)抽样调查的样本要有代表性;(2)抽样调查的样本数目要足够大.二、总体、个体、样本及样本容量1.总体:所要考察对象的全体叫做总体.2.个体:总体中的每一个考察对象叫做个体.3.样本:从总体中抽取的部分个体叫做样本.4.样本容量:样本中个体的数目叫做样本容量.三、几种常见的统计图表1.条形统计图条形统计图就是用长方形的高来表示数据的图形.它的特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2.折线统计图用几条线段连成的折线来表示数据的图形. 它的特点是:易于显示数据的变化趋势. 3.扇形统计图(1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.(2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.(3)扇形的圆心角=360°×百分比. 4.频数分布直方图(1)每个对象出现的次数叫频数.(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.(3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.(4)频数分布直方图的绘制步骤: ①计算最大值与最小值的差; ②决定组距与组数;学-科网③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点; ④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图. 四、平均数 1.平均数的概念(1)平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么,121()n x x x x n=+++…叫做这n 个数的平均数,x 读作“x 拔”.(2)加权平均数:如果n 个数中,1x 出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里12k f f f n +++=…),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k kx f x f x f x n+++=…,这样求得的平均数x 叫做加权平均数,其中f 1,f 2,…,f k 叫做权.2.平均数的计算方法 (1)定义法当所给数据1x ,2x ,…,n x 比较分散时,一般选用定义公式:121()n x x x x n=+++…. (2)加权平均数法当所给数据重复出现时,一般选用加权平均数公式:1122k kx f x f x f x n+++=…,其中12k f f f n +++=….(3)新数据法当所给数据都在某一常数a 的上下波动时,一般选用简化公式:x x a ='+.其中,常数a 通常取接近这组数据平均数的较“整”的数,x′1=x 1-a ,x′2=x 2-a ,…,x′n =x n -a .121()n x x x x n=++'+'''…是新数据的平均数(通常把1x ,2x ,…,n x 叫做原数据,x′1,x′2,…,x′n 叫做新数据). 五、众数、中位数 1.众数在一组数据中,出现次数最多的数据叫做这组数据的众数. 2.中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 六、方差在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即2222121[()()()]n s x x x x x x n=-+-++-….考向一 全面调查与抽样调查1.全面调查的适用范围:调查的范围小,调查不具有破坏性,数据要求准确、全面.2.抽样调查的适用范围:当所调查对象涉及面大、范围广,或受条件限制,或具有破坏性等.典例1 调下列调查中,不适宜采用全面调查的是A.旅客上飞机前的安检B.学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D.了解一批灯泡的使用寿命【答案】D【解析】旅客上飞机前的安检适宜采用全面调查;学校招聘教师,对应聘人员面试适宜采用全面调查;了解全班同学期末考试的成绩情况适宜采用全面调查;了解一批灯泡的使用寿命适宜采用抽样调查;故选D.1.下列调查:①了解炮弹的杀伤半径;②审查书稿有哪些科学性错误;③考察人们对环境的保护意识.其中不适宜全面调查而适宜抽样调查的个数是A.0 B.1 C.2 D.3考向二总体、个体、样本及样本容量1.在理解总体、个体和样本时,一定要注意总体、个体、样本中的“考察对象”是一种“数量指标”(如身高、体重、使用寿命等),是指我们所要考察的具体对象的属性,三者之间应对应一致.2.样本容量指的是样本中个体的数目,它只是一个数字,不带单位.典例2 为确定本市七、八、九年级学生校服生产计划,有关部门准备对180名初中学生的身高作调查,现有四种调查方案,样本选取正确的是A.测量体校篮球队和排球队中180名队员的身高B.随机抽取本市一所学校的180名学生的身高C.查阅有关外地180名学生身高的统计资料D.在本地的市区和郊县各任选一所完全中学、两所初级中学,在这六所学校的七、八、九年级的一个班中,用抽签的方法分别选出10名学生,然后测量他们的身高【答案】D【解析】理由:A方案所选取的方案太特殊;B方案抽取的一所学校的学生,代表性不强;C方案所选取的样本与考查对象无关,D方案抽取的样本比A方案,比B方案更具有代表性和科学性.故选D.2.为了了解我县4000名初中生的身高情况,从中抽取了400名学生测量身高,在这个问题中,样本是A.4000 B.4000名C.400名学生的身高情况D.400名学生考向三三种常见的统计图1.条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.2.扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3.在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同一单位长度所表示的意义应该一致.典例3 为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是A.选社团E的有5人B.选社团A的扇形圆心角是120°C.选社团D的人数占体育社团人数的1 5D.据此估计全校1000名八年级同学,选择社团B的有140人【答案】B典例4 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°【答案】C【解析】根据骑车的人数和百分比可得:被调查的学生数为:21÷35%=60(人),故A正确;步行的人数为60×(1-35%-15%-5%)=27(人),故B正确;全校骑车上学的学生数为:2560×35%=896(人),故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确.故选C.3.某校为了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示的两幅统计图.由图中所给信息知,扇形统计图中C等级所在的扇形圆心角的度数为A.72°B.68°C.64°D.60°4.要反映某市一天内气温的变化情况宜采用A.条形统计图B.扇形统计图C.频数分布图D.折线统计图5.为了了解家里的用水情况,以便能更好地节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是A.1月B.4月C.5月D.6月考向四直方图分组要遵循三个原则:不空,即该组必须有数据;不重,即一个数据只能在一个组;不漏,即不能漏掉某一个数据.典例5 某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是A.12 B.24 C.16 D.8 【答案】B【解析】分数在70.5到80.5之间的人数是:613642++++×64=24(人);故选B.6.为了了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:30分;B:29~25分;C:24~20分;D:19~10分;E:9~0分),统计图如图所示:分数段频数(人)百分比A 48 20%B a 25%C 84 35%D 36 bE 12 5%根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为__________,b的值为__________,并将统计图补充完整;(2)成绩在25分以上(含25分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生约有多少名?7.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成A.7组B.8组C.9组D.10组考向五平均数、中位数与众数1.如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2.平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数;中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势;众数考察的是各数据所出现的频数,其大小只与部分数据有关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题.典例6 为了参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,经统计10双运动鞋尺码(cm)如下表所示:尺码(cm)25 25.5 26 26.5 27购买量(双) 2 4 2 1 1则这10双运动鞋的众数和中位数分别为A.25.5 cm,26 cm B.26 cm,25.5 cmC.26 cm,26 cm D.25.5 cm,25.5 cm【答案】D【解析】众数是一组数据中出现次数最多的,所以众数是25.5 cm,中位数是一组数据按大小排列后,最中间或最中间两个数的平均数,所以中位数是25.5 cm,故选D.8.小莹和小亮进行飞镖比赛,两人各投了10次,成绩如图所示,则小莹和小亮成绩的中位数分别是A.7和7 B.7和8C.7.5和7 D.6和79.某校参加校园青春健身操比赛的16名运动员的身高如下表:则该校16名运动员身高的平均数和中位数分别是A.173 cm,173 cm B.174 cm,174 cmC.173 cm,174 cm D.174 cm,175 cm考向六数据的波动1.方差反映的是数据在它的平均数附近波动的情况,是用来衡量一组数据波动大小的量.2.一组数据的每个数据都变为原来的k倍,则所得的一组新数据的方差将变为原数据方差的k2倍.典例7 某校体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是成绩(个/分钟)140 160 169 170 177 180人数 1 1 1 2 3 2A.众数是177 B.平均数是170C.中位数是173.5 D.方差是135【答案】D【解析】A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5,此选项正确;D、方差=110[(140-170)2+(160-170)2+(169-170)2+2×(170-170)2+3×(177-170)2+2×(180-170)2]=134.7,此选项错误,故选D.学科-网典例8 甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选甲乙丙丁平均分85 90 88 90方差 3.5 3.5 4 4.2A.甲组B.乙组C.丙组D.丁组【答案】B10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手甲乙丙平均数9.3 9.3 9.3方差0.026 0.015 0.032则射击成绩最稳定的选手是__________.(填“甲”“乙”“丙”中的一个)11.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是__________.。

2017河北中考数学《6.3视图与投影》教材知识梳理

2017河北中考数学《6.3视图与投影》教材知识梳理

第三节视图与投影河北8年中考命题规律)年份题号考查点考查内容分值总分20168 正方体的展开图还原补图将展开图还原成正方体3 32015 4 几何体的三视图已知三视图,确定几何体3 3201410 正方体展开图的还原将正方体的展开图折叠还原,求正方体上两点的距离3 3201326(2) 三视图的相关计算以装有液体的正方体容器倾斜放在水平桌面上为背景,计算液体体积3 32012 3 三视图的识别判断所给几何体的主视图2 22011 6 正方体展开图的还原将正方体的展开图折叠,求已知标志图所对应的面2 2200910 几何体的相关计算求不完整立体图形的表面积2 22010年未考查命题规律视图、立体图形的展开与折叠在中考中一般设置1道题,分值为2~3分,题型以选择题为主,仅2013年在解答题中考查还原三视图并计算体积.分析近8年河北中考试题可以看出,本课时常考类型有:(1)判断几何体的三视图(在选择题中考查2次);(2)视图的相关计算(还原三视图的相关计算在解答题中考查1次;求不完整立体图形的表面积在选择题中考查1次);(3)正方体展开图的还原及相关计算(在选择题中考查3次).命题预测预测2017年中考,视图的相关知识仍为考查内容,可能会以选择题的形式考查.,河北8年中考真题及模拟)视图的识别与相关计算(4次)1.下图中的三视图所对应的几何体是(B),A) ,B) ,C) ,D)2.(2012河北3题2分)图中几何体的主视图是(A),A),B),C),D)3.(2009河北10题2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是(C)A.20B.22C.24D.26正方体展开图的还原及相关计算(3次)4.(2016河北中考)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是(A)A.① B.② C.③ D.④5.(2011河北6题2分)将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的(A)A.面CDHE B.面BCEFC.面ABFG D.面ADHG6.(2014河北10题3分)图①是边长为1的六个小正方形组成的图形,它可以围成图②的正方体,则图①中小正方形顶点A,B在围成的正方体上的距离是(B)A.0 B.1 C. 2 D. 37.(2016沧州中考)如图是某几何体的三视图,则该几何体的体积是(C)A.183B.543C.1083D.216 38.(2016邯郸十一中模拟)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(D),A),B),C),D)9.(2016唐山九中模拟)从一个边长为3 cm的大立方体挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C),A) ,B) ,C) ,D),中考考点清单)投影平行投影由平行光线照射在物体上所形成的投影,叫做平行投影正投影投影线垂直照射在投影面上的物体投影叫做正投影中心投影由一点射出的光线照射在物体上所形成的投影,叫做中心投影几何体的三视图1.一个几何体的正投影,又叫做这个几何体的视图.从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.2.三种视图的关系(1)主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.(2)在画三视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等,看得见的轮廓线要画成实线,看不见的轮廓线要画成虚线.3.常见几何体的三视图几何体主视图左视图俯视图4.常见几何体的体积和面积的计算公式名称几何体体积表面积正方体①__a3__ 6a2长方体abc②__2(ab+bc+ac)__三棱柱h·S底面2S底面+h·C底长圆锥13πr2hπr2+πlr(l为母线长)圆柱πr2h2πr2+2πrh球43πR34πR2【方法技巧】要求解几何体的体积或面积,就要先确定几何体的形状:1.由三视图确定出实物的形状和结构;2.由部分特殊图确定出实物的形状和结构.立体图形的展开与折叠5.常见几何体的展开图常见几何体展开图图示(选其一种)两个圆和一个矩形一个圆和一个扇形两个全等的三角形和三个矩形6.正方体表面展开图的类型一四一型二三一型三三型二二二型【警示】由上面几个展开图可以看出,不会出现两种形式的图形即“凹”字型和“田”字型.如下面2个图形:图①与图②两种形式不是正方体的表面展开图.7.立体图形的折叠一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的几何体,展开与折叠是一个互逆的过程.,中考重难点突破)几何体的三视图【例1】(2016内江中考)下列几何体中,主视图和俯视图都为矩形的是(),A),B),C),D)【解析】A.此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B.此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C.此几何体的主视图是矩形,俯视图是圆,故此选项错误;D.此几何体的主视图是梯形,俯视图是矩形,故此选项错误。

中考数学投影和视图复习(最新整理)

中考数学投影和视图复习(最新整理)

(2)第七单元 第 37 课时投影和视图知识点回顾 知识点一:三视图1. 三种视图的内在联系主视图反映物体的; 俯视图反映物体的 ; 左视图反映物体的.因此,在画三种视图时,主、俯视图要长对,主、左视图要高,俯、左视图要.2. 三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的 画出俯视图,在主视图的画出左视图.3. 三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成 线, 看不见部分的轮廓线通常画成线.例 1 画出右图 1 所示的两个几何体的三种视图.分析:这两个几何体,一个是被切去一角的三棱柱,另一个是由两个圆柱体组成的复合体,画它们的三种视图相对复杂,因此要更加仔细观察原几何体及其画三种视图的原则. 解:同步检测:1.小明从正面观察如图 1 所示的两个物体,看到的是()析解:本题是由正面观察两个物体,所以小明看到的图形应是物体的主视图.从正面看圆柱, 所得的图形是长方形;从正面看正方体,所得的图形为正方形,所以小明从正面看到的图形主视图(1)俯 视左 视 主 视左视图俯视图(1)图 1(2)应是两个,左边为长方形,右边为正方形,故选C. 2.(陕西省)如图2,水杯的俯视图是()析解:物体的俯视图就是从实物的上面看到的图形,从水杯正上面往下看,看到的一定是水杯圆形的上口和圆形的水杯底及右侧的杯柄,而不是长方形或带杯柄的长方形.观察四个选项符合题意的只有 D,故选 D.知识点二:平行投影和中心投影1.太阳光与影子太阳光线可以看成平行光线,像这样的光线所形成的投影称为.物体在太阳光照射的不同时刻,不仅影子的长短在,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东西的自然规律,可以判断时间的先后顺序.分别过每个物体的顶端及其影子的顶端作一条直线,若两直线,则为平行投影;若两直线,则为中心投影,其交点就是光源的位置.灯光的光线可以看成是从发出的(即为点光源),像这样的光线所形成的投影称为中心投影.中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的即为光源的位置.例 2 ,与一盏路灯相对,有一玻璃幕墙,幕墙前面地面上有一盆花和一棵树,晚上,幕墙反射路灯灯光形成了那盆花的影子如图 2,树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?分析:确定光源的问题,实际上是利用光线沿直线传播的性质进行作图.在这个问题中,应注意入射角等于反射角,如图 3,可以确定光源的位置为P 点.P图2图3例 3(1)如图 4 是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置.(2)请判断如图 5 所示的两棵树的影子是在太阳光下形成的,还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).分析:本题是由树及其影子寻找光线,具体方法是过树的顶端及其影子的顶端作两条直线作为光线,若两条直线平行,则是太阳光线;若两条直线相交,则是灯光光线,其交点就是光源的位置.解:(1)如图 4 所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线, 再过另一棵树的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置.(2)如图 5 所示,是太阳光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线平行.然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子. 同步检测:在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长解:因为在同一时刻的阳光下,小明的影子比小强的影子长,因此可知小明比小强高。

投影与视图

投影与视图

一、知识框架二、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。

难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。

三、知识点、概念总结第一节投影投影:从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影。

中心投影:由同一点(点光源发出的光线)形成的投影。

平行投影与中心投影的区别与联系:正投影:投影线垂直于投影面产生的投影。

物体正投影的形状、大小与它相对于投影面的位置和角度有关。

斜投影:投影线不平行于投影面产生的投影。

第二节 三视图三视图:三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。

视图:将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。

从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。

从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。

还有其它三个视图不是很常用。

三视图就是主视图、俯视图、左视图的总称。

1.投影规则:主俯长对正、主左高平齐、俯左宽相等 即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

在许多情况下,只用一个投影不加任何注解,是不能完整清晰地表达和确定形体的形状和结构的。

如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。

可见只用一个方向的投影来表达形体形状是不行的。

一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图—知识讲解责编:常春芳【考纲要求】1.通过实例了解平行投影和中心投影的含义及简单应用;2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),能根据三视图描述基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常见的几何体的分类在丰富多彩的图形世界中,我们常见的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面相交成线,线线相交成点.要点诠释:体体相交可成点,不一定成线.3.基本几何体的展开图(1)正方体的展开图是六个正方形;(2)棱柱的展开图是两个多边形和一个长方形;(3)圆锥的展开图是一个圆和一个扇形;(4)圆柱的展开图是两个圆和一个长方形.考点二、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.【典型例题】类型一、三视图及展开图1.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22 B.19 C.16 D.13【思路点拨】视图、俯视图是分别从物体正面、上面看,所得到的图形.【答案】D;【解析】综合主视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:7+3+2+1=13个.故答案为:13.【总结升华】由三视图判断组成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.举一反三:【变式1】(2014秋•莲湖区校级期末)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个.。

2017中考数学重要考点梳理:第二十六讲投影与视图(课件+2016真题演练+解析版)

2017中考数学重要考点梳理:第二十六讲投影与视图(课件+2016真题演练+解析版)

考点三
根据几何体的视图求长度、面积或体积
【示范题4】(2016·益阳中考)如图是
一个圆柱体的三视图,由图中数据计算 此圆柱体的侧面积为________.(结果
保留π )
【思路点拨】直接根据圆柱的侧面积公式计算即可.
【自主解答】由图可知,圆柱体的底面直径为4,高为6,
所以侧面积=4π×6=24π.
【解析】选B.观察图形可知,它的主视图是
.
2.(2016·宜昌中考)将一根圆柱形的空心钢管任意放
置,它的主视图不可能是
(
)
【解析】选A.∵一根圆柱形的空心钢管任意放置,
不管钢管怎么放置,它的三视图始终是
,主视图是它们中一个. ∴主视图体中,主视图和俯视图都
体本身的长度还短.
【变式训练】
(2016·北京中考)如图,小军、小珠之间的距离为2.7
m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已 知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高
为________m.
【解析】如图,因为小军、小珠的身高
与影长相等,所以,
∠E=∠F=45°,所以,AB=BE=BF,设路灯的高AB为xm, 则BD=x-1.5,BC=x-1.8,
(1)平行投影: ①平行投影中,同一时刻的光线是平行的.
②平行投影的物高与影长对应成比例.
(2)中心投影:
①等高的物体垂直于地面放置时,在灯光下,离点光源
近的物体的影子短,离点光源远的物体的影子长. ②等长的物体平行于地面放置时,在灯光下,离点光源
越近,影子越长;离点光源越远,影子越短,但不会比物
由前向后 观察物体的视图. 2.主视图:在正面内得到的_________

中考数学一轮复习第七章图形变化第二节投影与视图

中考数学一轮复习第七章图形变化第二节投影与视图
第二十二页,共三十页。
3.(2017·牡丹江)由一些大小(dàxiǎo)相同的小正方体搭成的几
何体的左视图和主视图如图所示,则搭成该几何体的小正
方体的个数最少是(
B)
A.3 B.4
C.5
D.6
第二十三页,共三十页。
4.(2017·荆州(jīnɡ zhōu))如图是某几何体的三视图,根据图中的 数据,求得该几何体的体积为( D ) A.800π+1 200 B.160π+1 700 C.3 200π+1 200 D.800π+3 000
D.三种视图的面积都是4
第二十一页,共三十页。
【分析】 先得出几何体的三视图,然后分析判断即可. 【自主(zìzhǔ)解答】 从正面看,可以看到4个正方形,面积为4,故A
选项错误;从左面看,可以看到3个正方形,面积为3,故B选项正
确;从上面看,可以看到4个正方形,面积为4,故C选项错误;三
种视图的面积不相同,故D选项错误.故选B.
图的是( D )
第二十八页,共三十页。
6.(2017·嘉兴)一个立方体的表面展开(zhǎn kāi)图如图所示,
将其折叠成立方体后,“你”字对面的字是(
C)
A.中页。
内容(nèiróng)总结
第二节 投影与视图。1.投影:物体在光线的照射下,会在地面或其他平面上。2.平行投影、中心 投影、正投影。(2)平行投影:由_______光线形成的投影称为平行投影.。(3)正投影:平行光线与投影面垂 直时,这种投影称为正投影.。(3)俯视图:从_______得到的视图叫做俯视图.。在判断几何体的三视图时 ,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别(qūbié)。的是( )。两两相连各错一,三个 两排一对齐。C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专题训练——投影与视图
一、选择题(每小题4分,共60分) 1、 如图所示,右面水杯的俯视图是( )。

2.下图所示的几何体的主视图是( )。

A. B. C. D.
3.下图中几何体的左视图是( )。

4.小明从正面观察下图所示的两个物体,看到的是( )。

5、如图:是一个正方体的平面展开图,当把它拆
成一个正方体,与空白面相对的字应该是
B A C
D
正面
A
C
B
D
()。

A、北
B、京
C、欢
D、迎
6.下列图中是太阳光下形成的影子是()。

A. B.C. D.7.下列说法正确的是()。

A、物体在阳光下的投影只与物体的高度有关
B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明
的影子一定比小亮的影子长.
C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也
可能发生变化.
D、物体在阳光照射下,影子的长度和方向都是固定不变的。

8.关于盲区的说法正确的有()。

(1)我们把视线看不到的地方称为盲区
(2)我们上山与下山时视野盲区是相同的
(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住
(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大
A、1 个
B、2个
C、3个
D、4
9.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是( )。

10.图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该
建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )。

A .P 区域 B .Q 区域 C .M 区域 D .N 区域
第13题
图2
图1
D
C
B
A
11.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正
方形中的数字表示该位置上小立方块的个数,则该几何体的主视
图为 ( )。

2
24
1
13第14题
A
B
C
D
12.下面平面图形经过折叠不能围成正方体的是( )。

A. B. C.
D
13.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )。

14.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭
成这个几何体的小正方体的个数是()。

A.3
B.4
C. 5
D. 6
15.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()。

二、填空题(每小题4分,共24分)
1、主视图、左视图、俯视图都相同的几何体为(写
出两个)。

2.直角三角形的正投影可能是_________。

3.太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为。

4.我们把大型会场、体育看台、电影院建为阶梯形状,是为了。

5.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米。

已知小A.B.C.
华的身高为1.6米,那么他所住楼房的高度为____________米。

6、 如图是由一些大小相同的小正方体组成的简单几何体的主视图和
俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 。

主视图 俯视图 三、解答下列各题(每小题11分,共66分) 1、画出如图中三棱柱的主视图、左视图、俯视图。

2.如图所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区。

3.如示意图,小华家(点A 处)和公路(l )之间竖立着一块35m 长且平行于公路的巨型广告牌(DE )。

广告牌挡住了小华的视线,请在图中画出视点A 的盲区,并将盲区内的那段公路计为BC 。


辆以60km/h匀速行驶的汽车经过公路段的时间是3s,已知广告牌
和公路的距离是40m,求小华家到公路的距离(精确到1m).
4.下列图形中,图(a)是正方体木块,把它切去一块,得到如图
(b)(c)(d)(e)的木块。

(1)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,
请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入下表:(6分)
(2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x 、棱数y 、面数z 之间的数量关系式。

5.如图4,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1m ,继续往前走3m 到达E处时,测得影子EF 的长为2m ,已知王华的身高是1.5m ,那么路灯A 的高度AB 为多少m ?
B C D E F
A
B C D E F
6、阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求
窗口底边离地面的高BC。

参考答案
一、1、D 2、B 3、D 4、C 5、C 6、A 7、C 8、C 9、
D 10、B 11、C 12、B 13、C 14、B 15、C
二、1、球体、正方体;2、三角形或线段; 3、平行投影,中心投
影;
4、减小盲区;
5、48;
6、38。

三、1、
2、略;
3、133m;
4、(1)
(2)规律:x+z-2=y
5、6m;
6、4m。

相关文档
最新文档