暑假辅导班七年级上册数学一元一次方程应用题
七年级上册第三章《一元一次方程》列方程解应用题的练习(3)
![七年级上册第三章《一元一次方程》列方程解应用题的练习(3)](https://img.taocdn.com/s3/m/d9e308146edb6f1aff001fd2.png)
七年级上册第三章《一元一次方程》列方程解应用题的练习一、解下列方程(每题6分,共30分)1、6751413-=--y y2、246231x x x -=+--3、22836x x -=+4、126231-=+--x x x5、33-a 2211与--a 互为相反数,求a二、列一元一次方程解应用题。
(每题10分,共40分)1、某班组每天需生产50个零件才能在规定的时间内完成一项生产任务,实际上该班组每天比计划多生产6个零件,结果比规定时间提前3天并超额生产了120个零件,求该班组原计划完成的零件任务是多少个?2、某人从家骑自行车到火车站,如果每小时行15千米,那么可以比火车开车时间提前15分钟到达;如果每小时行9千米,则要比开车时间晚15分钟到达;则这个人的家到火车站的距离为多少千米?3、一辆慢车从甲地开往乙地,出发3小时后,一辆快车也从甲地开往乙地,快车比慢车晚20分钟到达乙地,已知慢车速度为20千米/时,快车速度是慢车速度的3倍,求甲乙两地的距离。
4、要加工200个零件。
甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。
已知甲每小时比乙多加工2个零件。
求甲、乙每小时各加工多少个零件?二、工程方面的练习(每题10分,共30分)1、一项工程甲队独做需要8天完成,乙队独做需要9天完成,甲做3天后,乙来支援,再经过多少天完成工程的43。
2、某项工作,甲单独做要4小时,乙单独做要6小时,甲先做30分,然后甲、乙共同做,问甲、乙共同做还要多少小时才能完成全部工作?3、一件工作,甲单独做20小时完成,乙单独做12小时完成。
现在先由甲单独做4小时,剩下的部分由甲、乙合做。
剩下的部分需要几小时完成?。
完整版七年级数学一元一次方程应用题专题练习
![完整版七年级数学一元一次方程应用题专题练习](https://img.taocdn.com/s3/m/e20f4175a9956bec0975f46527d3240c8547a17f.png)
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
七年级上册数学《一元一次方程》教材应用题
![七年级上册数学《一元一次方程》教材应用题](https://img.taocdn.com/s3/m/7cc10a3f551810a6f42486a1.png)
教材应用题1、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?级1班所捐款数比七年级2班少22元。
两班人数相同,每班有多少名学生?9、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年11、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t,新、旧废水的工艺排量之比为2:14、洗衣机厂今年计划生产洗衣机25500台,其中1型2型3型三洗衣机的数量1:2:14.这三种洗衣机计划各生产多少台?16、随着农业技术的现代化,节水型灌溉得到逐步推广,喷灌和摘灌是比漫灌节水的灌溉放水。
灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,用第三块用摘灌方式,后两种方式用水量分别是漫灌的25%和15%。
问(1)设第一块实验田用水X吨,则另两块实验田的用水量各如何表示?17、某造纸厂为节约木材,大力矿大再生纸的生产,这家工厂去年10月生产再生纸2050吨,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?24、张华和李明登一座山,张华每分钟登高10米并且先出发30分钟,李明每分钟登高1 5米,两人同时登上山顶。
设张华登山用了x分,如何用含x的式子表明李明登山所用的h,半小时后两车相遇,两车两车的速度各是多少?26、在风速为24千米一小时的条件下,一架飞机顺风从A机场到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,求(1)无风时这架飞机在这一航线的平均航速。
(2)两机场之间的航程。
28、有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中50平方米未来的及粉刷,同样时间5名2级技工粉刷了10个房间之外,还多粉刷了另外的4 0平方米,每名一级技工比二级技工多粉刷10平方米的墙面,问每个房间需要粉刷墙面面30、一列火车均速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.(1)设火车的长度为x米用含x的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x米用含x的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上诉问题中火车的平均速度发生了变化吗?(4)求这列火车的长度.螺母,为使每天的产品刚好配套,则应该分配多少名工人生产螺钉?多少名工人生产螺32、整理一批图书,由一个人做要40小时完成。
七年级上册数学一元一次方程应用题及答案
![七年级上册数学一元一次方程应用题及答案](https://img.taocdn.com/s3/m/169100ec81eb6294dd88d0d233d4b14e85243e93.png)
1.一块石头从高处自由下落,下落时间t与下落距离h之间的关系可以用一元一次方程表示为h=5t。
如果已知下落时间为2s,则求下落距离。
解:将已知条件代入方程中,得到h=5*2=10,所以下落距离为10米。
2.一家利用机器生产玩具,生产每个玩具需要2元的原材料费和3元的人工费。
如果每天生产了x个玩具,总成本为10x+6元。
求每天生产的玩具个数。
解:成本等于每个玩具的原材料费和人工费之和,所以可以列出方程10x+6=2x+3x,化简得到10x+6=5x,再化简得到5x=6,解得x=6/5=1.2、所以每天需要生产1.2个玩具。
3.一辆汽车每小时行驶a千米,行驶x小时后剩余距离为b千米。
如果已知汽车行驶总里程为100千米,求未知数a、b和x的值。
解:根据已知条件可列出方程ax + b = 100。
由于未指定具体数值,无法求得具体解。
4.一块土地在过去10年内每年平均涨价100元,现在的价格是1000元。
求10年前这块土地的价格。
解:设10年前土地价格为x元。
根据题意可列出方程x+10*100=1000,解得x=1000-1000=0。
所以10年前这块土地的价格为0元。
5.甲、乙两人一起做作业,甲一小时能做1/3份,乙一小时能做1/4份。
如果两人共用4小时做完了作业,求甲和乙一共做了多少份。
解:设甲共做了x份,乙共做了y份。
根据每个人的工作效率可列出方程x/1/3+y/1/4=4,化简得到4x/3+4y/4=4,化简得到4x+3y=12、由于只有一个方程无法求得具体解。
6.一个数的三倍减去7等于25,求这个数。
解:设这个数为x。
根据题意可列出方程3x-7=25,化简得到3x=32,解得x=32/3=10.67、所以这个数约为10.677.一个角的度数减去30等于它的三分之一,求这个角的度数。
解:设这个角的度数为x。
根据题意可列出方程x-30=x/3,化简得到3x-90=x,解得2x=90,解得x=45、所以这个角的度数为45度。
人教版七年级数学上册一元一次方程解应用题专题练习
![人教版七年级数学上册一元一次方程解应用题专题练习](https://img.taocdn.com/s3/m/9f5615f509a1284ac850ad02de80d4d8d15a01e5.png)
人教版七年级数学上册一元一次方程解应用题专题练习首先,题目中给出了学生总数和女生人数占男生的比例,因此可以设男生人数为x,那么女生人数就是0.4x。
而总人数是1049,因此可以列出方程:x + 0.4x = 1049,解方程可得男生人数为629人。
2、一块长方形的面积是60平方米,宽比长小3,求长和宽。
设长为x,则宽为x-3.根据题目中给出的信息,可以列出方程:x(x-3) = 60,解方程可得长为8,宽为5.3、甲、乙两人同时从A、B两地相向而行,甲行的速度是每小时4公里,乙行的速度是每小时3公里,他们相遇在距离A地40公里的地方,求AB两地的距离。
设AB两地的距离为x,那么甲和乙相遇的时间就是x/7(因为他们的速度是相加的)。
同时,由题目中给出的信息,他们相遇的地方距离A地40公里,距离B地就是x-40公里。
因此可以列出方程:x/7 = (x-40)/4,解方程可得AB两地的距离为140公里。
提高练:1、某商店的商品原价为100元,现在打8折出售,求现价。
打8折相当于原价的80%,因此现价就是80元。
2、一个三位数的个位数是3,百位数是个十位数之和,如果将这个三位数的百位数和个位数交换后得到一个比原来的数小108,求这个三位数。
设十位数为x,则百位数为x+3.原来的三位数就是100(x+3) + 10x + 3.交换百位数和个位数后得到的数是100x + 30 + x,比原来的数小108,因此可以列出方程:100(x+3) + 10x + 3 - (100x + 30 + x) = 108,解方程可得这个三位数为192.3、某人存款元,每年利率为5%,连续存5年,求5年后的本息和。
每年的利息是本金的5%,因此第一年的利息是500元,第二年的利息是×0.05=525元,以此类推,第五年的利息是1276.25元。
因此5年后的本息和就是+500+525+551.25+578.81+1276.25=2031.31元。
人教版七年级数学上册 一元一次方程应用题
![人教版七年级数学上册 一元一次方程应用题](https://img.taocdn.com/s3/m/157a4a0f17fc700abb68a98271fe910ef12dae1f.png)
七年级数学上册一元一次方程应用题1.一元一次方程的应用-年龄问题(1)兄弟二人今年分别为15岁和5岁,多少年后兄的年龄是弟的年龄的2倍?(2)儿子今年9岁,父亲今年35岁,多少年后,父亲的年龄是儿子的年龄的3倍?(3)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是多少?(4)小刚问妈妈的年龄,妈妈笑着说:“我们两人的年龄和为52岁,我的年龄是你的年龄的2倍多7,你能用学过的知识求出我们的年龄吗?”小刚想了一会儿,得出的正确结果是多少岁?(5)当列夫•托尔泰这位文学巨匠逝世后,一道关于他的算题悄然传开:伟大的文学家托尔泰活了82岁,他在19世纪比在20世纪多活了62岁,那么托尔泰出生于哪一年?2.一元一次方程的应用—方案设计问题(1)甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪个超市购买此种商品更合算?(2)学校准备组织教师和优秀学生去春游,其中教师22名,现有甲、乙两家旅行社,两家定价相同,但优惠方式不同;甲旅行社表示教师全价,学生按7折收费;乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲、乙旅行社的收费一样,则有多少名学生参加春游?(3)某地区的手机收费有两种方式,用户可任选其一:A、月租费20元,0.25元/分;B、月租费25元,0.20元/分.若某用户估计一个月内打手机时间为25小时,则采用哪种方式更合算?(4)我们用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的七折出售;乙商店的优惠条件是,从第一本起按标价的八五折出售.①若要购买22本练习本,则到哪个商店购买更省钱?②现有24元,最多可买多少本练习本?(5)现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).①当需购买40只茶杯时,则去哪个商店更合算?②当购买茶杯多少只时,两种优惠方法的效果是一样的?3.一元一次方程的应用—利息问题(1)小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的税率为20%,则一年期储蓄的利率为多少?(2)国家规定存款利息的纳税办法是:利息税=利息×5%;银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本金及利息时,交了4.5元的利息税,则小刚一年前存入银行的钱为多少元?(3)银行教育储蓄的年利率如下表:一年期二年期三年期2.252.43 2.70小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用.要使3年后的收益最大,则小明的父母应该采用哪种方式?(4)银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1000元,2000年12月3日支取时本息和是多少元,国家利息税税率是20%,交纳利息税后还有多少元?(5)一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税.例如,存入一年期100元,到期储户纳税后所得利息的计算公式为:税后利息=100×2.25%﹣100×2.25%×20%=100×2.25%(1﹣20%).已知某储户有一笔一年期定期储蓄到期纳税后得利息450元.问该储户存入本金多少元?4.一元一次方程的应用—配套问题(1)制一张桌子要用一个桌面和4条桌腿,1m³木材可制作20个桌面,或者制作400条桌腿.现有12m³木材,应安排多少m³木材制作桌面才能使桌子配套?(2)现有7立方米的木材做课桌,已知1立方米木材可以做120条桌腿或40张桌面.若一张桌面与四条桌腿能合成一张桌子,若合理安排木材,最多可做多少张桌子?(3)某家具厂生产一种方桌,设计时1m的木材可做40个桌面或200条桌3腿.现有9m的木材,用多少m的木材做桌面,用多少m的木材做桌腿,333才能使桌面和桌腿刚好配套?(一张桌面配四条桌腿)(4)中国足球队首次进入世界杯决赛圈,实现了近五十年的愿望.足球一般是由许多黑白相间的小皮块缝合而成的,黑块呈五边形,白块呈六边形(如图所示),已知黑块有12块,则白块有多少块?(5)制桶厂有工人28人,每个工人平均每小时可以生产圆形铁片12个,或长方形铁片8个,将两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,共有多少人生产圆形铁片,多少人生产长方形铁片,才能使生产的铁片恰好配套?5.一元一次方程的应用—数字问题(1)如果5个连续奇数的和是115,那么其中最小的奇数是多少?(2)一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数.设这个三位数的前两位数为x,则列出的方程应是怎样的?(3)如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是多少?(4)一个六位数左端的数字是1,如果把左端的数字1移到右端,那么所得新的六位数等于原数的3倍,则原来的六位数为多少?(5)一个两位数的十位数字与个位数字的和是6,把这个两位数加上18后,结果恰好成为数字对调后组成的两位数,则这个两位数是多少?6.一元一次方程的应用—调配问题(1)甲队有32人,乙队有28人,现从乙队抽多少人到甲队,可使甲队人数是乙队人数的2倍?(2)有两桶水,甲桶装有水180 升,乙桶装有水150 升,要使两桶水的重量相同,则甲桶应向乙桶倒水多少升?(3)春节临近,某旅行社欲组织200 人到海南和广州旅游,到海南的人数是到广州人数的2 倍少1 人,则到海南旅游的人数是多少人?(4)“我问开店李三公,多少客人在店中,一房七客多七客,一房九客一房空.请你仔细算一算,多少房间多少客?”诗的意思是:我问开店的李三公,有多少客人来住店?李三公回答说:“一个房间内若住7 个客人,则余下7 人没处住,如果每一个房间住满9 人,则又空出一个房间.”请你回答:有几间客房,有几位客人?(5)一天晚上停电了,小明同时点上两支粗细不同的蜡烛看书,若干分钟后电来了,小明将两支蜡烛同时熄灭,已知粗的新蜡烛可燃烧2 小时,细的新蜡烛可燃烧1 小时,开始时两根蜡烛一样长,熄灭时粗蜡烛长是细蜡烛长的2 倍,则停电时间为多少分钟?(6)在一个宴会上,每2 个客人分享一盘米饭,每3 个客人分享一盘汤,每4 个客人分享一盘肉,若一共有65 个盘子,假设每人都吃同样数量和品种的食物,则有多少个客人出席了宴会?7. 一元一次方程的应用-行程问题(1) A、B 两地相距900 千米,甲乙两车分别从A、B 两地同时出发,相向而行,已知甲车的速度为110 千米/时,乙车的速度为90 千米/时,则当两车相距100 千米时,甲车行驶的时间是多少小时?(2)小明每天早晨在8 时前赶到离家1 千米的学校上学.一天,小明以80 米/分的速度从家出发去学校,5 分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180 米/分的速度去追赶,并在途中追上了他.则小明爸爸追上小明所用的时间为多少分钟?(3)荣中自行车队两队员A、B相距3000 米,都以500 米/分的速度相向而行,同时A 肩上的一只苍蝇以1000 米/分的速度飞向B,苍蝇遇B 后立即回头飞向A,遇A 后又立即飞向B…直到A、B 相遇,求苍蝇一共飞了多少米?(4)小偷偷走李力的钱包后以6 米/秒的速度逃跑,李力发现时,小偷已逃到24 米外,他立即以8 米/秒的速度追赶,经过几秒后,他能追上小偷?(5)一队学生去校外参加劳动,以4km/h 的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员以14km/h 的速度按原路追上去,则通讯员追上学生队伍所需的时间是多少min?8. 一元一次方程的应用-工程问题(1)一项工程甲单独做要40 天完成,乙单独做需要50 天完成,甲先单独做4 天,然后两人合作x 天完成这项工程,则可列的方程是?(2)某项工程,甲单独做50 天完成,乙单独做40 天完成,若甲先单独做15 天,剩下的由甲、乙合作完成,问甲、乙前后共用几天完成工程?(3)一项工程甲单独完成需要20 小时,乙单独完成需要12 小时,则甲先做8 小时,然后甲乙合作,完成了这项工程,则从开始到现在甲做了多少小时?(4)某工程,甲工程队单独做40 天完成,乙工程队单独做100 天完成,若乙工程队先做30 天后,甲、乙两工程队再合作完成.则甲、乙两工程队合作的天数是几天?那么若将工程分成两部分,甲做其中的一部分,乙做另一部分,共用了79 天,则甲做了多少天?(5)一件工程,甲、乙、丙队单独做各需10 天、12 天、15 天才能完成,现在计划开工7 天完成,乙、丙先合作3 天后,乙队因事退出,由甲队代替,在各队工作效率不变的情况下 ______(填“能”或“否”)按计划完成此工程。
七年级数学 上册一元一次方程应用题及答案
![七年级数学 上册一元一次方程应用题及答案](https://img.taocdn.com/s3/m/6646f6bbc77da26925c5b083.png)
、、应用题甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。
7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题(2)---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成?5、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题(3)---------盈亏问题工作量与折扣问题1.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?3.将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?4.有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?5.修一条路,A队单独修完要20天,B队单独修完要12天。
4七年级上册数学一元一次方程应用题及答案(偏难)
![4七年级上册数学一元一次方程应用题及答案(偏难)](https://img.taocdn.com/s3/m/be38dbd848649b6648d7c1c708a1284ac8500594.png)
七年级上册数学第四单元一元一次方程应用题知识点1:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c(百位数字a·100+十位数字b·10+个位数字c)。
然后抓住数字间或新数、原数之间的关系找等量关系列方程。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。
[分析]由已知条件给出了百位、个位与十位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。
解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3xx+x+7+3x=17 解得x=2 x+7=9,3x=6答:这个三位数是926练习:1. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数。
2.有一个两个位数,两个数位上的数字之和是9,如果把个位数字与十位数字对调,那么所得的两位数比原来的两位数大63.求原来的两位数。
知识点2:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可表示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc例1.兄弟两人今年分别为15岁和9岁,多少年后(或前)兄的年龄是弟的年龄的2倍。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)
![2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)](https://img.taocdn.com/s3/m/727eae1576232f60ddccda38376baf1ffc4fe30a.png)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)
![人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)](https://img.taocdn.com/s3/m/644c03cc85254b35eefdc8d376eeaeaad1f3160e.png)
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(三)1.如图,将长方形ABCD分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD:AB=()A.5:3 B.7:5 C.23:14 D.47:292.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约()A.4819元B.4818元C.4817元D.4816元3.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上4.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶5.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.57.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能12.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元13.某商场购进一批服装,又恰巧碰到双十一的促销活动,商场决定将这批服装按标价的五折销售,若打折后每件服装可获纯利润60元,其利润率为10%;若双十一过后,该商场按这批服装的标价打八折出售,那么获得的纯利润是()A.264元B.396元C.456元D.660元14.小明和小亮进行100米赛跑,两人在同一起跑线上,结果第一次比赛时小明胜10米;在进行第二次比赛时,小明的起跑线比原来起跑线推后10米,如果两次他们速度不变,则第二次结果().A.小亮胜B.小明胜C.同时到达D.不能确定15.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?()A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银16.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm217.某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利20%,另一件亏损20%,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元18.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是()千米/时.A.700 B.666C.675 D.65019.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.20.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里21.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.20622.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.23.某套课外书的进价为80元/套,标价为200元/套,“双11”期间某网店打x折销售,此时可获利25%,则x为()A.7 B.6 C.5 D.424.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.625.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是()米/分.A.120 B.160 C.180 D.200参考答案1.解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,2(5x+3x)+4=148x=95x=45,3x=27,AD=45+2=47,AB=27+2=29,=.故选:D.2.解:设每年应还x元,则根据题意可知:50000×(1+0.05)15=x×(1+0.05)14+x×(1+0.05)13+ (x)用计算器得出:x=4817故选:C.3.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2018÷4=504 (2)∴乙在第2018次追上甲时的位置是BC上.故选:B.4.解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5](瓶),所以第三天喝了{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5(瓶),(x+0.5)+[(x﹣x﹣0.5)+0.5]+{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5=x,解得x=7.故选:C.5.解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.6.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.7.解:A、设最小的数是x.x+x+7+x+7+1=15x=0故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=15,x=.故本选项不符合题意.C、设最小的数是x.x+x+1+x+8=15,x=2,故本选项符合题意.D、设最小的数是x.x+x+1+x+7=15,x=,故本选项不符合题意.故选:C.8.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.9.解:设这种服装每件的成本是x元,依题意,得:80%×(1+40%)x﹣x=24,解得:x=200.故选:C.10.解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故选:D.11.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.12.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.13.解:设该服装的标价为x元,由题意得,0.5x﹣60=,解得:x=1320.所以1320×80%﹣=456(元)故选:C.14.解:第一次小明跑100米和小亮跑90米的时间相等,则设小明的速度是a,小亮的速度是a,设第二次比赛,小明经过x秒追上小亮,ax=x+10,∴x=,∴a×=90米,∴小亮跑了90米时,就被小明追上,∴小明胜.故选:B.15.解:设有x两银,,解得,x=46,则人数为:=6,即有6个人,46两银,故选:C.16.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x ﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.17.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).即亏了10元.故选:B.18.解:设飞机往返的平均速度是x千米/时,根据题意,得(2.5+2)x=1500×2.解得x=666.故选:B.19.解:设第一个数为x,根据已知:A:得得x+x+6+x+7+x+8=36,则x=3.75不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选:C.20.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.21.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.22.解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.23.解:根据题意得:200×﹣80=80×25%,解得:x=5.故选:C.24.解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.25.解:设爷爷的速度为x米/分钟,则小林的速度为2x米/分钟,根据题意得:5×(2x﹣x)=400,解得:x=80,∴2x=160.答:爷爷的速度为80米/分钟,小林的速度为160米/分钟.故选:B.。
七上数学一元一次方程应用题
![七上数学一元一次方程应用题](https://img.taocdn.com/s3/m/f9c0dcd6dbef5ef7ba0d4a7302768e9951e76e29.png)
七上数学一元一次方程应用题
七年级上册的一元一次方程应用题是培养学生利用数学思维解决实际问题的关键题目,可以提升学生观察、分析以及解决实际问题的能力。
以下是一些典型的一元一次方程应用题:
1. 一个笼子里有一些鸡和兔。
从上面看,头共30个;从下面看,脚共80只。
鸡和兔各有多少只?
2. 甲、乙两人进行百米赛跑,当甲到终点时,乙在甲后面20米。
如果两人速度不变,那么,当乙到达终点时,甲在乙后面多少米?
3. 小明在400米的操场上练习跑步,他跑了5分钟,跑了2圈,然后休息了1分钟。
小明平均每分钟跑了多少米?
4. 甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而跑,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟.
5. 甲、乙两地相距100公里,某团体从甲地到乙地游览,其中一半人用每小时4公里的速度步行,另一半人乘坐汽车,汽车速度为每小时40公里。
步行的旅客出发2小时后,汽车才开始出发,汽车到达乙地后立即返回,在甲地和乙地之间不断往返送步行的旅客前去乙地,直到最后一位旅客到达乙地为止。
问汽车最后在距离甲地多少公里处接到最后一位旅客?
以上题目都可以通过设立一元一次方程进行解答,帮助学生培养出分析问题并找出未知数的良好习惯。
一元一次方程应用题七年级上册
![一元一次方程应用题七年级上册](https://img.taocdn.com/s3/m/f0ff779ac0c708a1284ac850ad02de80d4d806b7.png)
一元一次方程应用题七年级上册
1.行程问题:
-小明骑自行车的速度是每小时15千米,如果他骑行了2小时到达目的地,那么他骑行了多少千米?
-或者:小华比小明早出发1小时,小华的速度是每小时8千米,小明的速度是每小时12千米,两人同时到达目的地,问目的地距离他们的起点有多远?
2.工程问题:
-一项工程由甲单独做需10天完成,乙单独做需15天完成,两人合作,多少天可以完成这项工程?
3.买卖问题:
-小红去商店买书,如果她买了3本书共花费了60元,那么每本书的价格是多少元?
4.存款与利率问题:
-小李存入银行1000元,年利率为5%,一年后取出,连本带息共得多少钱?
解决这些问题的关键步骤是:
-确定未知数(例如:路程、工程总量、物品单价、存款到期后的总额等);
-分析题意,找出题中的等量关系,列出方程;
-求解方程得出答案,并结合实际意义进行检验。
七年级数学上册一元一次方程应用题专题练习50题
![七年级数学上册一元一次方程应用题专题练习50题](https://img.taocdn.com/s3/m/72db42bb5ef7ba0d4a733b99.png)
七年级数学上册一元一次方程应用题专题练习50题1、某人乘车行121千米的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?3、从每千克0.8元的苹果中取出一部分,又从每千克0.5元的苹果中取出一部分混合后共15千克,每千克要卖0.6元,问需从两种苹果中各取出多少千克?4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的32,问甲、乙两队单独做,各需多少天?6、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?8、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人? 9、一个两位数,个位上的数字是十位上的数字的2倍.先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数.若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小.10、小王骑车从A地到B地共用了4小时.从B地返回A地,他先以去时的速度骑车行2小时, 后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟.求小王从A地到B地的骑车速度.11、某人每小时可走平路8千米,可走下坡路10千米,可走上坡路6千米.他从甲地到乙地去,先走一段上坡路,再走一段平路,到乙地后立即返回甲地.往返共用了2小时36分钟.若甲乙两地间的路程为10千米,问在这10千米路程中,上坡路及平路各有多少千米?12、有两支成分不同且长度相等的蜡烛,其中一支3小时可燃烧完,另一支4小时燃烧完.现在要求到下午四点钟时,其中一支蜡烛的剩余部分恰是另一支剩余部分的二倍,问应在何时点燃这两支蜡烛? 13、某同学要把450克浓度为60%的硝酸铵溶液配成浓度为40%的溶液,但他未经考虑便加入300克水.(1) 请通过计算说明,该同学加进的水是超量的.(2) 这时需加进硝酸铵多少克?配成浓度为40%的硝酸铵溶液多少克?14、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的75,丙班分到的比乙班少20本,问共有多少练习本?15、汽车从A地往B地送货.如果往返都以每小时60千米的速度行驶,那么可以按时返回.可是当司机到达B地后才发现,从A地到B地每小时只走了55千米,为了按时返回A地,汽车应以多大速度往回开?16、从家里骑摩托车到火车站,如果每小时行30千米,那么比开车时间早到15分钟;如果每小时行18千米,那么比开车时间迟到15分钟.现在打算在开车时间前10分钟到达,那么骑摩托车的速度应该是多少? 17、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.18、好马走15天的路程,劣马需走30天,已知劣马每天走150千米,问好马每天走多少千米?19、一艘轮船发生漏水事故,海水以每分钟24桶的速度涌进底舱,发现时已漏进600桶海水.水手立即开动两部抽水机向外抽水,经50分钟将舱内的水抽完,已知甲机抽水量是乙机的54,问甲、乙两机每分钟各抽水多少桶?20、现有浓度为10%.及浓度为20%的两种酒精溶液.问各取多少可配制成浓度为14%的酒精溶液100升?21、一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后.他们相遇.已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?22、敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?23、某班的男生人数比全班人数的85少5人,女生比男生少2人,求全班的人数.24、甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?25、某水池有甲、乙两个给水龙头,单独开甲龙头时,2小时可以把空池灌满水.单独开乙龙头时,3小时可以把空池灌满水.现在先开甲龙头,半小时后再甲、乙两个龙头齐开.问把空池灌水32,一共需要多少小时?26、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?27、一水池有一个进水管,5小时可以注满空池,池底有一个出水管,8小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?28、一列快车从甲地开往乙地需5小时,一列慢车从乙地开往甲地需要的时间比快车多51小时.两列火车同时从两地相对开出,2小时后,慢车在一个车站停了下来,快车继续行驶96千米与慢车相遇.问甲、乙两地相距多少千米?29、某班学生列队从学校到一个农场去参加劳动,以每小时4千米的速度行进.走完1千米时,一个学生奉命回学校取一件东西,他以每小时5千米的速度跑回学校,取了东西后又立即以同样的速度跑步追赶队伍,结果在距农场1.5千米的地方追上队伍.求学校到农场的距离.30、一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货两车的速度比为4:3.如果客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟.求两列火车的速度.31、甲、乙两人由A 村去B 城办事,乙临时因事耽误了30分钟,若乙的速度比甲的速度每小时快5千米,那么乙用了2小时追上甲.求甲、乙两人的速度及追上时离A 村的距离.32、某运输公司原有汽车900辆,其中小轿车占259 .现又购进一批小轿车,这样小轿车占该公司汽车的40%.问该公司现有小轿车多少辆?33、一辆拖拉机耕一片地.第一天耕了这片地的41,第二天耕了剩下的31少2亩,第三天耕了剩下的21多1亩,这时还有25亩没耕.问这片土地共有多少亩?34、某校四个班为“希望工程”捐款,甲班捐的钱数是另外三个班捐款总和的一半,乙班捐的钱数是另外三个班捐款总和的31, 丙班捐的钱数是另外三个班捐款总和的41,丁班共捐了169元.求这四个班捐款的总和.35、一块铜锌合金重24千克,放在水中称只有9121千克,已知铜在水中称时重量减少91,锌在水中秤时重量减少71.问这块合金中铜、锌各占多少千克?36、将一批白杨树苗栽在一条马路的两旁,若每隔3米栽一棵,将剩下3棵树苗;若每隔2.5米栽一棵,则还缺77棵树苗.求这条马路的长及这批树苗的棵数.37、一批材料,原计划用6辆汽车12次运完,为了提前完成任务,再增加3辆汽车,问几次可以运完?38、一个容器盛满纯药液63升.第一次倒出一部分药液后,用水加满;第二次倒出混合液的31,再用水加满,这时容器内所含的纯药液是28升,问第一次倒出的药液有多少升?39、已知三个连续奇数的和为39,求这三个奇数.40、修一条路,原计划每天修75米,20天修完,实际每天计划多修32,问可以提前几天修完?41、粗蜡烛和细蜡烛长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后粗蜡烛比细蜡烛长3倍.问这两只蜡烛已点了多长时间?42、现有糖水20千克,浓度为22%,问:需加多少千克糖后可使浓度变为40%?43、某学校开展一次建校劳动,若单独让初一学生完成需6小时,若单独让初二学生完成需4小时.现让初一、初二学生一起先干2小时,其余让初二学生完成,还需多少时间可全部完成任务?44、某商店存有一批棉布,第 一天卖出92,第二天卖出剩下的72,第三天补进第二天剩下的31,这时商店有布780米,问原来存布多少米?45、甲、乙两人从同一地点出发,同向而行,甲骑自行车,乙步行.如果乙先走12千米,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用21小时就能追上乙.求两人的速度.46、有含盐15%的盐水30千克,要使盐水含盐10%,需要加水多少千克?47、某市举行环城自行车赛,一圈7千米,甲的速度是乙的速度的75,出发后来161小时,两人第二次相遇.问:甲、乙二人每分钟相差多少千米?48、要把浓度为 4%的农药1.5千克,稀释到浓度为0.04%的药液,问需要加水多少千克?49、某工人每天早晨在同一时刻从家骑自行车去工厂,如果以每小时16千米的速度行驶,可在工厂上班时刻前15分钟到工厂;如果以每小时9.6千米的速度行驶,则在工厂上 班时刻后15分钟到工厂.(1) 求这位工人家到工厂的距离. (2) 这位工人每天早晨以每小时16千米的速度行驶,在工厂上班时刻前多少小时从家里出发,可在上班前15分钟到工厂?50、甲从A 地出发以6 千米/时的速度向B 地行驶,40分钟后,乙从A 地以8千米/时的速度按甲所走的路径追甲,结果在甲行至离B 地还差5千米处追上了甲,求A 、B 两地间的距离.。
人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)
![人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)](https://img.taocdn.com/s3/m/cd3bf152f121dd36a22d8209.png)
一.行程问题1.相遇问题1.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地.已知当快车回到甲地时,慢车距离甲地还有225km,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?2.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C 两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?3.列方程解应用题:周末,小明从城里去渡假村接父母回家,为了欣赏路边的风景,小明从城里步行出发,同时父母也从渡假村步行出发,相向而行,城里距渡假村14km,小明每小时走4km,父母每小时走3km,如果小明带一只狗和他同时出发,狗以每小时8km的速度向父母方向跑去,遇到父母后又立即回头跑向小明,遇到小明后又立即回头跑向父母,这样往返直到二人相遇.(1)小明与父母经过多少小时相遇?(2)这只狗共跑了多少km呢?2.追击问题4.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?5.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80m/min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160m/min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180m/min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?6.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.二.水流问题7.列方程求解:轮船沿江从A港顺流航行到B港,比从B港返回A港少用2小时,若轮船在静水中的速度为18km/h,水流的速度为2km/h,则A港和B港相距多少km?8.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?9.某人乘船从A地顺流去B地,用时3小时;从B地返回A地用时5小时.已知船在静水中速度为40km/h,求水的速度与AB间距离.三.数轴动点问题10.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?11.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.12.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且|ab+32|+(b﹣4)2=0(1)a=,b=;(2)在数轴上是否存在一点P,使PA﹣PB=2OP,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿A→O→A的路径运动,在路径A→O的速度是每秒2个单位,在路径O→A上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A 运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?四.数字表格问题13.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n,则这四个数的和为(用n的代数式表示);(2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.14.把2018个正整数1,2,3,4,…,2018按如图方式排列成一个表;(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是、、(请直接填写答案)(2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出x的值;如果不可能,请说明理由.15.小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2,4,6,8,…,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.五.分段收费问题16.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格.阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0﹣300(含)a 3第二阶梯300﹣600(含)a+0.5 3.5第三阶梯600以上a+1.5 5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?17.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:本市居民用水阶梯水价表:(单位:元/立方米)水价供水类型阶梯户年用水量x(立方米)自来水第一阶梯0≤x≤180 5第二阶梯180<x≤260 7第三阶梯x>260 9如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)六.工程问题18.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?19.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?20.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独需要做这项工程需要15天完成,丙队单独做这项工程需要20天完成,开始时三队共同做,中途甲队被调走另有任务,由乙、丙两队完成,从开始到工程完成共用了6天,问:甲队实际做了几天?七.比赛积分问题21.某小组6名同学参加一次知识竞赛,共答20道题,每题分值相同,答对得分,答错或不答扣分,下面是前5名同学的得分情况(如表):序号答对题数答错或不答题数得分1 182 842 17 m763 20 0 1004 19 1 925 10 10 n(1)表中的m=,n=;(2)该小组第6名同学说:“这次知识竞赛我得了0分”,请问他的说法是否正确?如果正确,请求出这位同学答对了多少题;如果不正确,请说明理由.22.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;23.某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A28 2 108B26 4 96C24 6 84 (1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?八.销售打折问题24.成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如表优惠活动:打折前一次性购物总金额优惠措施不超过3000元不优惠超过3000元且不超过4000元总售价打九折超过4000元总售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?25.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店交省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?26.李阿姨逛街时发现.大润发超市和永辉超市有如下促销活动(两超市相同商品标价相同):大润发:所有商品打8.8折;永辉:消费总金额不超过100元时,不打折;消费总金额超过100元,不超过300元时,打9折;消费总金额超过300元时,300元部分打9折,超出300元部分打8折.(1)李阿姨购买多少元的商品时,两个超市实际付款一样多?(2)活动期间李阿姨在永辉超市购买了两次商品,第一次实付款99元,第二次实付款286元,请问李阿姨两次购买商品的总价共为多少元?参考答案1.解:(1)设甲、乙两地相距x千米,依题意,得:=,解得:x=900.答:甲、乙两地相距900千米.(2)设经过y小时两车相遇.第一次相遇,(200+75)y=900,解得:y=;第二次相遇,200y﹣75y=900,解得:y=.答:从出发开始,经过或小时两车相遇.(3)设t小时后两车相距100千米.第一次相距100千米时,200t+75t=900﹣100,解得:t=;第二次相距100千米时,200t+75t=900+100,解得:t=;第三次相距100千米时,200t﹣75t=900﹣100,解得:t=;第四次相距100千米时,200t﹣75t=900+100,解得:t=8.答:经过,,或8小时后两车相距100千米.2.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.3.解:(1)设小明与父母经过x小时相遇,由题意得4x+3x=14,解得:x=2.答:两个人经过2小时相遇.(2)8×2=16(km).答:这只狗共跑了16千米.4.解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.5.解:(1)设爸爸追上小明时距离学校xm,依题意,得:﹣=5,解得:x=200.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为1000÷80=(min),爸爸的速度为1000÷(﹣5)=(m/min).答:爸爸的速度为m/min.(3)设爸爸需要ymin可追上小明,依题意,得:180y=80(y+5),解得:y=4,∴30+5+4+4=43.答:爸爸返回家的时间是7:43.6.解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门(x+5)分钟,依题意,得:280x=80(x+5),解得:x=2.答:爸爸追上乐乐用了2分钟.(2)设爸爸搭上乐乐到学校共骑行了s米,依题意,得:﹣=10,解得:s=1200,1200+280×2=1760(米).答:乐乐家离学校共1760米.7.解:设轮船从A港顺流航行到B港用时x小时,依题意得:(18+2)x=(18﹣2)(x+2),解得x=8,则(18+2)x=160(km),答:A港和B港相距160km.8.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.9.解:设水速为xkm/h,则3(40+x)=5(40﹣x),∴x=10,∴AB间距离=3×(40+10)=150(km),答:水的速度为10km/h,AB间距离为150km.10.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.11.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.12.解:(1)∵|ab+32|+(b﹣4)2=0,∴,∴.故答案为:﹣8;4.(2)设点P表示的数为x.当﹣8<x≤0时,x﹣(﹣8)﹣(4﹣x)=﹣2x,解得:x=﹣1;当0<x≤4时,x﹣(﹣8)﹣(4﹣x)=2x,该方程无解;当x>4时,x﹣(﹣8)﹣(x﹣4)=2x,解得:x=6.答:在数轴上存在一点P,使PA﹣PB=2OP,点P表示的数为﹣1或6.(3)设运动时间为t秒.当0≤t≤4时,点M表示的数为2t﹣8,点N表示的数为﹣3t+4,∵MN=1,∴|2t﹣8﹣(﹣3t+4)|=1,即5t﹣12=1或5t﹣12=﹣1,解得:t=或t=;当4<t≤6时,点M表示的数为﹣4(t﹣4)=﹣4t+16,点N表示的数为﹣8,∵MN=1,∴|﹣4t+16﹣(﹣8)|=1,即24﹣4t=1,解得:t=.答:秒、秒或后MN=1.13.解:(1)设框住四个数中左上角的数为n,则其他三个为n+2,n+2+12,n+2+12+2,四个数的和为:n+2+n+2+12+n+2+12+2=4n+32,故答案为:4n+32;(2)由题意得:4n+32=228,n=49,所以这四个数分别是49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508,理由:假设能,则4n+32=508,解得n=119,而119=9×12+11=(10﹣1)×12+11,这样左上角的数119在第10行第6列,所以不能框住这样的四个数,使四个数的和为508.14.解:(1)设左上角的一个数为x,由图表得:其他三个数分分别为:x+8,x+16,x+24.(2)由题意,得x+x+8+x+16+x+24=2019,解得:x=492.75,因为所给的数都是正整数,所以被框住的4个数之和不可能等于2019.故答案为:x+8,x+16,x+24.15.解:(1)设十字框中中间的数为x,则另外四个数分别为x﹣10,x﹣2,x+2,x+10,∴十字框中五个数的和=(x﹣10)+(x﹣2)+x+(x+2)+(x+10)=5x.(2)不能,理由如下:依题意,得:5x=2015,解得:x=403.∵图中各数均为偶数,∴x=403不符合题意,∴十字框不能框住和等于2015的五个数.16.解:(1)甲用户家2018年用气总量为280立方米,则总费用为280a元.(2)根据题意,可得:300a+(450﹣300)(a+0.5)=1200∴300a+150a+75=1200,∴450a=1125,解得a=2.5.(3)设丙用户2019年用气x立方米,则2018年用气(1200﹣x)立方米,①2019年的用气量不超过300立方米时,则2018年用气量1200﹣x>900,3x+2.5×300+(2.5+0.5)×(600﹣300)+(2.5+1.5)×(1200﹣x﹣600)=3625,解得x=425,∵425>300,∴不符合题意.②2019年的用气量超过300立方米,但不超过600立方米时,3×300+3.5×(x﹣300)+750+900+4(600﹣x)=3625,解得x=550,符合题意,1200﹣550=650(立方米)答:该用户2018年和2019年分别用气650立方米、550立方米.故答案为:280a.17.解:(1)∵0<100<180,∴小明家应缴纳的水费为=100×5=500(元),故答案为500;(2)设小明家共用水x立方米,∵180×5<1145<180×5+80×7,∴180<x<260,根据题意得:180×5+(x﹣180)×7=1145解得:x=215,故答案为:215;(3)当0≤x≤180时,水费为5x元,当180<x≤260时,水费为180×5+7×(x﹣180)=(7x﹣360)元,当260<x≤270时,水费为180×5+7×80+9×(x﹣260)=(9x﹣880)元.18.解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.19.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.20.解:设甲队实际做了x天,由题意得++=1,解得:x=3.答:甲队实际做了3天.21.(1)由于共有20道题,m=20﹣17=3,∴由同学3可知:答对一题可得5分,由第3位同学可知答对一题得5,设答错或不答扣x分,则从第1位同学可列方程:18×5﹣2x=84,解得:x=3,n=10×5﹣3×10=20,故答案为:(1)3,20(2)设这位同学答对y道题,则他答错或不答(20﹣y)题,则5y﹣3(20﹣y)=0,解得:y=,因为m不是整数,所以这位同学的说法不正确.22.解:(1)没有资格参加决赛.因为积分为4×2+(10﹣4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10﹣x)场,由题意,得:2x+1×(10﹣x)=18,解得:x=8,所以,10﹣x=10﹣8=2,答:甲队初赛阶段胜8场,负2场.23.解:(1)设答对一道题得x分,答错一道题得y分,依题意,得:,解得:.答:每答对1题得4分.(2)设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.24.解:(1)设甲种商品销售了x件,则乙种商品销售了(100﹣x)件,依题意,得:200x+450(100﹣x)=35000,解得:x=40,∴100﹣x=60.答:甲种商品销售了40件,乙种商品销售了60件.(2)设小王在该商场购买甲种商品m件,购买乙种商品n件,依题意,得:200m=2000,450×0.9n=3240或450×0.8n=3240,解得:m=10,n=8或n=9,∴m+n=18或19.答:这两天他在该商场购买甲、乙两种商品一共18件或19件.25.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.26.解:(1)设李阿姨购买x元的商品时,两个超市实际付款一样多,依题意,得:0.88x=300×0.9+0.8(x﹣300),解得:x=375.答:李阿姨购买375元的商品时,两个超市实际付款一样多.(2)设李阿姨第一次购买商品的价格为m元,第二次购买商品的价格为n元,依题意,得:m=99或0.9m=99,300×0.9+0.8(n﹣300)=286,解得:m=99或m=110,n=320,∴m+n=419或430.。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
![2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)](https://img.taocdn.com/s3/m/c0f6c46b0166f5335a8102d276a20029bd646323.png)
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.
七年级上册数学一元一次方程应用题及答案
![七年级上册数学一元一次方程应用题及答案](https://img.taocdn.com/s3/m/3c860c12e3bd960590c69ec3d5bbfd0a7956d5f8.png)
1.小明买了一些苹果,一共花了100元。
如果每个苹果2元,他一共买了多少个苹果?解:设苹果的个数为x,则2x=100,解得x=50。
小明买了50个苹果。
2.甲乙两个人一起跑步,甲每分钟跑500米,乙每分钟跑400米。
他们同时出发,如果甲跑了12分钟后才追上乙,请问甲跑了多少米?解:设甲跑了x米,则12分钟后甲共跑了12*500=6000米。
乙已经跑了400*12=4800米。
所以甲比乙多跑了6000-4800=1200米。
3.一辆汽车以每小时60公里的速度行驶,从A地到B地全程300公里。
如果汽车从A地出发一段时间后遇到雨,速度减少为每小时50公里,这时到达B地需要多少时间?解:设汽车在遇到雨前行驶了t小时。
则在遇到雨前汽车已经行驶了60t公里。
从遇到雨到到达B地,汽车的速度变为50公里/小时,所以这段路程需要的时间为(300-60t)/50小时。
所以汽车从A地到B地一共需要的时间为t+(300-60t)/50小时。
4.小明爸爸的年龄是小明年龄的3倍,两人的总年龄是60岁。
请问小明的年龄是多少?解:设小明的年龄为x岁,则小明爸爸的年龄为3x岁。
根据题意,有x+3x=60,解得x=15、所以小明的年龄是15岁。
5.一只小猫每天要吃掉它体重的1/10的食物,如果小猫每天吃1斤食物,请问它需要多少天才能吃完自己的体重?解:设小猫需要吃x天才能吃完自己的体重。
根据题意,有x*(1/10)=1,解得x=10。
所以小猫需要10天才能吃完自己的体重。
6.高铁的速度是普通列车的2倍,假设普通列车从A地到B地需要5小时,高铁从A地到B地需要多少小时?解:设高铁从A地到B地需要x小时。
根据题意,有5/x=2,解得x=2.5、所以高铁从A地到B地需要2.5小时。
7.一个矩形的长度是宽度的2倍,如果周长为30米,请问这个矩形的长和宽各是多少米?解:设矩形的宽度为x米,则矩形的长度为2x米。
根据题意,有2*(x+2x)=30,解得x=4、所以矩形的长度为8米,宽度为4米。
人教版数学七年级上册第三章《一元一次方程实际应用》专项练习
![人教版数学七年级上册第三章《一元一次方程实际应用》专项练习](https://img.taocdn.com/s3/m/de7fde94bdeb19e8b8f67c1cfad6195f312be8ed.png)
⼈教版数学七年级上册第三章《⼀元⼀次⽅程实际应⽤》专项练习《⼀元⼀次⽅程实际应⽤》专项练习1.某校七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,如果从B班调出6⼈到A班.(1)⽤代数式表⽰两个班共有多少⼈?(2)⽤代数式表⽰调动后,B班⼈数⽐A班⼈数多⼏⼈?(3)x等于多少时,调动后两班⼈数⼀样多?2.列⽅程解应⽤题举世瞩⽬的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给⼈们提供了看⼭、看⽔、看风景的机会.⼀天⼩龙和朋友⼏家去延庆世园会游玩,他们购买普通票⽐购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平⽇普通票?适⽤所有⼈除指定⽇外任⼀平⽇参观120优惠票?适⽤残疾⼈⼠、60周岁以上⽼年⼈、学⽣、中国现役军⼈(具体⼈群规则同指定⽇优惠票)购票及⼊园时需出⽰相关有效证件除指定⽇外任⼀平⽇参观803.(⽤列⽅程或⽅程组解答本题)元旦期间某商店进⾏促销活动,活动⽅式有如下两种:⽅式⼀:购物每满200元减60元;⽅式⼆:标价不超过400元的商品,打8折:标价超过400元的商品,不超过400元的部分打8折,超出400元的部分打5折.设某⼀商品的标价为x元.(1)当x=300元,则按⽅式⼀应该付的钱为元;则按⽅式⼆应该付的钱为元;(2)当400<x<600时,x取何值两种⽅式的实际⽀出的费⽤相同?4.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中⼀条线段的长度是另外⼀条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表⽰的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表⽰的数.【应⽤拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中⼀点到达终点时,两个点运动同时停⽌.当A、P、Q三点中,其中⼀点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.5.⼩明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数⽐原数的2倍少1478,求⼩明的考场座位号.6.为了丰富⽼年⼈的晚年⽣活,甲、⼄两单位准备组织退休职⼯到某风景区游玩.甲、⼄两单位退休职⼯共102⼈,其中⼄单位⼈数少于50⼈,且甲单位⼈数不够100⼈.经了解,该风景区的门票价格如表:数量(张)1~50 51~100 101张及以上单价(元/张)60 50 40 如果两单位分别单独购买门票,⼀共应付5500元.(1)甲、⼄两单位各有多少名退休职⼯准备参加游玩?(2)如果甲单位有12名退休职⼯因⾝体原因不能外出游玩,那么你有⼏种购买⽅案,通过⽐较,你该如何购买门票才能最省钱?7.现有120台⼤⼩两种型号的挖掘机同时⼯作,⼤型挖掘机每⼩时可挖掘⼟⽅360⽴⽅⽶,⼩型挖掘机每⼩时可挖掘⼟⽅200⽴⽅⽶,20⼩时共挖掘⼟⽅704000⽴⽅⽶,求⼤⼩型号的挖掘机各多少台?8.重庆育才中学需要为⽼校友们订制80周年纪念吉祥物“陶娃”,原计划订750份,每份50元,订制公司表⽰:如果多订,可以优惠.根据校庆当天前来的校友数量,学校最终订了1000份,并按原价⼋折购买,但订制公司获得了同样的利润.(1)求订制公司⽣产每套“陶娃”的成本;(2)求订制公司获得的利润.9.元旦期间,某超市对出售A、B两种商品开展元旦促销活动,活动⽅案有如下两种:(同⼀种商品不可同时参与两种活动)商品A B标价(单位:元)200 300 ⽅案⼀每件商品出售价格按标价降价20% 按标价降价a%⽅案⼆若所购商品超过100件(不同商品可累计)时,每件商品按标价降价18%后出售(1)某单位购买A商品40件,B商品30件,共花费14050元,试求a的值;(2)在(1)求出的a值的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数⽐A商品件数的2倍还多⼀件,请问该单位选择哪种⽅案才能获得最⼤优惠?请说明理由.10.蔬菜商店40元/箱的价格从哈达批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过千克数记为正数,不⾜千克数记为负数,称重后记录如下:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2(1)这8箱西红柿⼀共重多少千克?(2)若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?11.我们知道,有理数包括整数、有限⼩数和⽆限循环⼩数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么⽆限循环⼩数如何表⽰为分数形式呢?请看以下⽰例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=.根据以上阅读,回答下列问题:(以下计算结果均⽤最简分数表⽰)【类⽐应⽤】(1)4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.2=,2.0…18=;(注0.2=0.225225…,2.0…18=2.01818…)【拓展发现】(4)若已知0.1428=,则2.8571=.12.某班原分成两个⼩组进⾏课外体育活动,第⼀组28⼈,第⼆组20⼈,根据学校活动器材的数量,要将第⼀组的⼈数调整为第⼆组的⼀半,应从第⼀组调多少⼈到第⼆组去?13.如图,数轴上A,B,C三点对应的数分别是a,b,14,满⾜BC=6,AC=3BC.动点P 从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.14.百姓商场以每件80元的价格购进某品牌衬衫共500件,加价50%后标价销售,在“庆元旦,迎新春”期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批衬衫,仍可盈利20%,求应按⼏折销售;(2)请从A,B两题中任选⼀题作答.A.如果商场先按标价售出400件后再降价,那么剩余的衬衫按⼏折销售,才能使售完这批衬衫后盈利35%;B.如果商场先按标价的九折销售300件,但为了尽快销售完,将剩余数量衬衫在九折的基础上每购买⼀件再送打车费.求购买⼀件送多少元打车费,售完这批衬衫后可盈利25%.15.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了⼀个鱼塘,经过⼀年多的精⼼养殖,今年10⽉份从鱼塘⾥捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10⽉份收⼊52000元,(1)今年10⽉份从鱼塘⾥捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12⽉份再次从鱼塘⾥捕捞.捕捞数量和销售价格上,草鱼数量⽐10⽉份减少了2a千克,销售价格不变;花鲢数量⽐10⽉份减少了a%,销售价格⽐10⽉份减少了,该贫困户在10⽉份和12⽉份两次捕捞中共收⼊了94040元,真正达到了脱贫致富,求a的值.16.研学基地⾼明盈⾹⽣态园的团体票价格如表:数量(张)30~50 51~100 101及以上单价(元/张)80 60 50 某校七年级(1)、(2)班共102⼈去研学,其中(1)班⼈数较少,不⾜50⼈,两个班相差不超过20⼈.经估算,如果两个班都以班为单位购票,则⼀共应付7080元,问:(1)两个班各有多少学⽣?(2)如果两个班联合起来,作为⼀个团体购票,可省多少钱?17.某超市第⼀次⽤3600元购进了甲、⼄两种商品,其中甲种商品80件,⼄种商品120件.已知⼄种商品每件进价⽐甲种商品每件进价贵5元.甲种商品售价为20元/件,⼄种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第⼀次购进甲、⼄两种商品每件各多少元?(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得多少利润?(3)该超市第⼆次⼜购进同样数量的甲、⼄两种商品.其中甲种商品每件的进价不变,⼄种商品进价每件少3元;甲种商品按原售价提价a%销售,⼄种商品按原售价降价a%销售,如果第⼆次两种商品都销售完以后获得的总利润⽐第⼀次获得的总利润多260元,那么a的值是多少?18.为了打造“书⾹校园”,明德华兴中学计划购买20张书柜和⼀批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买⼀张书柜赠送⼀只书架,B超市的优惠政策为所有商品⼋折,设购买书架x只(x≥20).(1)若规定只能到其中⼀个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费⽤⼀样;(2)若学校想购买20张书柜和100只书架,且可到两家超市⾃由选购,你认为⾄少要准备多少货款,请⽤计算的结果来验证你的说法.19.青⽵湖湘⼀外国语学校初2019级全体学⽣从学校统⼀乘车去市科技馆参观学习,然后⼜统⼀乘车原路返回,需租⽤客车若⼲辆.现有甲、⼄两种座位数相同的客车可以租⽤,甲种客车每辆的租⾦为300元,另按实际⾏程每千⽶加收8元;⼄种客车每辆按每千⽶14元收费.(1)当⾏程为多少千⽶时,租⽤两种客车的费⽤相同?(2)青⽵湖湘⼀外国语学校距市科技馆约30公⾥,如果你是年级组杨组长,为节省费⽤,你会选择哪种客车?20.某超市计划购进甲、⼄两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30⼄型45 60 (1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进⾏⼤促销活动,决定对⼄型节能灯进⾏打折销售,要求全部售完后,⼄型节能灯的利润率为20%,请问⼄型节能灯需打⼏折?参考答案1.解:(1)∵七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,∴B班有(2x﹣8)⼈,则x+2x﹣8=3x﹣8,答:两个班共有(3x﹣8)⼈;(2)调动后A班⼈数:(x+6)⼈;调动后B班⼈数:2x﹣8﹣6=(2x﹣14)⼈,∴(2x﹣14)﹣(x+6)=x﹣20(⼈).答:调动后B班⼈数⽐A班⼈数多(x﹣20)⼈;(3)根据题意得:x+6=2x﹣14,解得:x=20.答:x等于20时,调动后两班⼈数⼀样多.2.解:设⼩龙和⼏个朋友购买了x张优惠票,根据题意列⽅程,得:80x+120(x﹣5)=1400,80 x+120x﹣600=1400,200x=2000,x=10.答:⼩龙和⼏个朋友购买了10张优惠票.3.解:(1)当x=300元,按⽅式⼀应该付的钱为:300﹣60=240(元),按⽅式⼆应该付的钱为:300×0.8=240(元).故答案为:240;240;(2)当400<x<600时,400×0.8+0.5(x﹣400)=x﹣120,故当400<x<600时,x取480时,两种⽅式的优惠相同.4.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表⽰的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表⽰的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.5.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:⼩明的考场号是2315.6.解:(1)设甲单位有x名退休职⼯准备参加游玩,则⼄单位有(102﹣x)名退休职⼯准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,答:甲单位有62名退休职⼯准备参加游玩,⼄单位有40名退休职⼯准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买⽅案,⽅案1:甲、⼄两单位分开购票,甲单位购买50张门票、⼄单位购买40张门票;⽅案2:甲、⼄两单位分开购票,甲单位购买51张门票、⼄单位购买40张门票;⽅案3:甲、⼄两单位联合购票,购买90张门票;⽅案4:甲、⼄两单位联合购票,购买101张门票.⽅案1所需费⽤为60×50+60×40=5400(元);⽅案2所需费⽤为50×51+60×40=4950(元);⽅案3所需费⽤为50×90=4500(元);⽅案4所需费⽤为40×101=4040(元).∵5400>4950>4500>4040,∴甲、⼄两单位联合购票,购买101张门票最省钱.7.解:设⼤型挖掘机x台,则⼩型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:⼤型挖掘机70台,⼩型挖掘机50台.8.解:(1)设订制公司⽣产每套“陶娃”的成本是x元,由题意,可得(50﹣x)×750=(50×0.8﹣x)×1000,解得x=10.答:订制公司⽣产每套“陶娃”的成本是10元;(2)(50﹣10)×750=30000(元).答:订制公司获得的利润为30000元.9.解:(1)由题意有,40×200×0.8+30×300×(1﹣a%)=14050,解得a=15.故a的值为15;(2)若某单位购买A商品x件(x为正整数),则购买B商品(2x+1)件.当x+2x+1=100时,解得:x=33,当总数不⾜101时,即只能选择⽅案⼀获得最⼤优惠;当总数达到或超过101,即x>33时,⽅案⼀需付款:200×0.8x+300×0.85(2x+1)=160x+510x+255=670x+255,⽅案⼆需付款:[200x+300(2x+1)]×0.82=656x+246,∵(670x+255)﹣(656x+246)=14x+9>0,∴选⽅案⼆优惠更⼤.综上所述:当x≤33时,只能选择⽅案⼀获得最⼤优惠;当x>33时,采⽤⽅案⼆获得最⼤优惠.10.解:(1)25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿⼀共重192千克;(2)设在销售过程中西红柿的单价应定为每千克x元,根据题意得:192x﹣40×8=160,解得:x=2.5.故在销售过程中西红柿的单价应定为每千克2.5元.11.解:(1)4.=4=4;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:∴∴0.=;(3)0.2==,∵∴∴;(4)∵0.1428=,∴等号两边同时乘以1000得:714..8571=,∴2.8571=714.8571﹣712=﹣712=.故答案为:4;,;.12.解:设应从第⼀组调x⼈到第⼆组去,依题意,得:28﹣x=(20+x),解得:x=12.答:应从第⼀组调12⼈到第⼆组去,13.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.14.解:(1)设应按x折销售,则80×(1+50%)×0.1x﹣80=80×20%解得x=8答:应按8折销售;(2)A、设剩余的衬衫按a折销售,由题意,得80×(1+50%)×400+80×(1+50%)×0.1a×(500﹣400)﹣80×500=80×35%×500.解得a=5.答:剩余的衬衫按5折销售,才能使售完这批衬衫后盈利35%;B、设购买⼀件送b元打车费,由题意,得80×(1+50%)×0.9×500﹣(500﹣300)b﹣80×500=80×25%×500 解得b=20答:购买⼀件送20元打车费,售完这批衬衫后可盈利25%.15.解:(1)设今年10⽉份从鱼塘⾥捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10⽉份从鱼塘⾥捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.16.解:(1)设七年级(1)班的⼈数为x,则(2)班的⼈数为(102﹣x),由题得:80x+60(102﹣x)=7080化简得:20x=960解得:x=48(⼈)∴102﹣x=102﹣48=54(⼈)答:七年级(1)班有48⼈,(2)班有54⼈.(⽤算术⽅法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元)则节省的钱数为:7080﹣5100=1980(元)答:如果两个班联合起来购票可省1980元.17.解:(1)设该超市第⼀次购进甲种商品每件x元,⼄种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第⼀次购进甲种商品每件15元,⼄种商品每件20元.(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.18.解:(1)设购买书架x只时,到两家超市购买所需费⽤⼀样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费⽤⼀样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:⾄少要准备9120元货款.19.解:(1)设当⾏程为x千⽶时,租⽤两种客车的费⽤相同,依题意有300+8x=14x,解得x=50.故当⾏程为50千⽶时,租⽤两种客车的费⽤相同;(2)300+8×30×2=780(元),14×30×2=840(元),∵840>780,∴为节省费⽤,会选择甲种客车.20.解:(1)设商场购进甲型节能灯x只,则购进⼄型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进⼄型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进⼄型节能灯600只进货款恰好为37000元.(2)设⼄型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:⼄型节能灯需打9折.。
七年级上册数学一元一次方程经典应用题
![七年级上册数学一元一次方程经典应用题](https://img.taocdn.com/s3/m/ccb446167dd184254b35eefdc8d376eeaeaa17ea.png)
应用题专题训练知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量= 16. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?8. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?9.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?10.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,?求这一天有几个工人加工甲种零件?11.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?知能点3:行程问题基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题(2)追及问题快行距+慢行距=原距快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度12. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暑假辅导班七年级上册数学
一元一次方程应用题总结 ○10 1,一本小说共M 页,一位同学第一天看了全书的31少6页,第二天看了剩下的3
1多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若M=800,则第三天看了多少页?
2,一项工程,甲单独完成要40天,乙单独完成要30天,则由甲乙先共同工作5天,然后乙单独做余下的部分还要 天才能完成.
3,把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?
4,小明去文具店买铅笔,店主说:“如果多买一些,可以打八折”,小明算了一下,如果买50支,比原价可以便宜6元,那么每支铅笔的原价是多少元?
5,商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
6,甲、乙两人骑自行车,同时从相距80千米的两地相向而行,甲的速度是14千米/时,乙的速度为16千米/时,经过几小时,两人相距25千米?。