数学第十章分式试卷
苏科版八年级数学下《第10章分式》测试题含答案
![苏科版八年级数学下《第10章分式》测试题含答案](https://img.taocdn.com/s3/m/ceffa5b427d3240c8547ef59.png)
八年级下第10章 分式 测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m -++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x x x x --+=2(4)(4)4x x xx x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1. (2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b-. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。
苏科版数学八年级下册《第10章分式》单元自测卷含答案
![苏科版数学八年级下册《第10章分式》单元自测卷含答案](https://img.taocdn.com/s3/m/4e45810f6edb6f1aff001f91.png)
第10章 分式 单元自测卷(满分:100分 时间:90分钟)一、选择题(每题3分,共30分)1.下列各式:其中分式有 ( )11,,,1,,52235a n a a b y m b xπ++-A .2个 B .3个 C .4个 D .5个2.把分式中的x 和y 都扩大2倍,则分式的值 ( )3xy x y-A .不变B .扩大为原来的2倍C .缩小为原来的D .扩大为原来的4倍3.要使分式的值为0,你认为x 可取的数是 ( )2939x x -+ A .9 B .±3 C .-3 D .34.若,则w=( )241()142w a a +=-- A. B. C.D. 2(2)a a +≠-2(2)a a -+≠2(2)a a -≠2(2)a a --≠-5.化简的结果是( ) A .x +1B .x ﹣1C .﹣x D .x 6.下列计算错误的是 ( ) A .B .C .D .0.220.77a b a b a b a b ++=--3223x y x x y y =1a b b a -=--123c c c+=7.(2014.孝感)分式方程的解为 ( )2133x x x =-- A .x =-B .x =C .x =1D .x =1623568.关于x 的方程=0可能产生的增根是 ( )12n m x x +--A .x =1 B .x =2 C .x =1或2 D .x =-1或29.若,则 ( )()()412121a m n a a a a -=++-+- A .m =4,n =-1B .m =5,n =-1C .m =3,n =1D .m =4,n =110.在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是2(x +);当矩形成为正方形时,就有x = (x>0),解得x =1,这时矩形的周长1x 1x 1x2(x +)=4最小,因此x + (x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是 1x 1x29x x +( )A .2B .1C .6D .10二、填空题(每题2分,共14分)11.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是_______米.12.代数式有意义时,x 应满足的条件为x_______.11x -13.计算:_______.2422x x x+=--14.如果实数x 、y 满足方程组,那么代数式的值为_______.30233x y x y +=⎧⎨+=⎩12xy x y x y ⎛⎫+÷ ⎪++⎝⎭15.若关于x 的分式方程无解,则m 的值为_______.2213m x x x+-=-16.若,则的值为_______.1171m n m +=+n m m n +17.化简(1+)÷的结果为 _________ .三、解答题(共56分)18.(8分)计算:(1) ;(2)22211x x x x --+22691933m m m m m m m ⎛⎫-+--÷ ⎪-++⎝⎭19.(8分)解方程:(1) (2)15121x x =-+11322y y y-+=--20.(10分)已知关于x 的方程的解是一个正数,求m 的取值范围.233x m x x =---21.(10分)先化简,再求值:,其中x 是不等式3x +7>1的负整数解.2214244x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭22.(10分)已知三个数x 、y 、z 满足,,,求的值.2xy x y =-+43yz y z =+43zx z x =-+xyz xy yz zx++23.(10分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 的值应是多少?此时,哪种方案对公司更有利?参考答案一、1.B 2.B 3.D 4.D 5.D 6.A 7.B 8.C 9.C 10.C二、11. 12.≠±1 13.x +2 14.1 15. -12或- 16.5a b a +3217.x ﹣1三、18.(1) (2) 19.(1)x =2 (2)无解 20.m<6且m ≠3 1x x -31m --21.x =-1 3 22.-423.(1)9万元 (2)有5种进货方案 (3)(2)中所有的方案获利相同,此时购买A 款汽车6辆,B 款汽车9辆对公司更有利。
苏科版初中数学八年级下册《第10章 分式》单元测试卷
![苏科版初中数学八年级下册《第10章 分式》单元测试卷](https://img.taocdn.com/s3/m/06cd4b3e10a6f524ccbf8548.png)
苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。
_第10章 分式 单元测试卷 2021-2022学年七年级数学沪教版(上海)上册(word 含答案)
![_第10章 分式 单元测试卷 2021-2022学年七年级数学沪教版(上海)上册(word 含答案)](https://img.taocdn.com/s3/m/0a6303f87cd184254a35356f.png)
2021-2022学年沪教新版七年级上册数学《第10章分式》单元测试卷一.选择题1.下列各式:,其中分式共有()A.1个B.2个C.3个D.4个2.若分式无意义,则x的值为()A.3B.﹣3C.3或﹣3D.93.下列式子是分式的是()A.B.C.D.1+x4.下列式子:①,②,③,④,其中是分式的有()A.2个B.3个C.4个D.5个5.下列各式,,,,(x﹣y),中,分式的个数共有()A.2个B.3个C.4个D.5个6.能使分式的值为零的所有x的值是()A.x=2B.x=﹣2C.x=2或x=﹣2D.x=07.下列约分正确的是()A.B.C.D.8.当分式的值为0时,x的值为()A.0B.2C.0或2D.9.如果把分式中的x和y都扩大3倍,那么分式的值是()A.扩大3倍B.不变C.缩小3倍D.缩小6倍10.下列运算中正确的是()A.B.C.D.二.填空题11.已知,用x的代数式表示y,则y=.12.写出一个含有字母m,且m≠2的分式,这个分式可以是.13.下列各式:(1﹣x),,,+x,,其中是分式的有个.14.如果分式的值为0,则x的值是.15.下列各式:①;②;③;④;⑤;⑥;⑦﹣3x2,是分式的有,是整式的有.(只填序号)16.在有理式:﹣3x、、、、、中,分式有.17.使分式有意义的x的取值范围.18.已知m﹣n=2018,n﹣p=﹣2019,p﹣q=2021,则的值是.19.若把分式中的字母x和y同时增加3倍,分式的值将.20.约分:=;=.三.解答题21.当x为何值时,分式的值为0?22.当m为何值时,分式的值为0?23.当x取什么值时,下列各式的值等于零?(1);(2);(3).24.是否存在x的值,使得当a=4时,分式的值为0?25.已知,求的值.参考答案与试题解析一.选择题1.解:由题可得,分式有:,共1个,故选:A.2.解:∵分式无意义,∴x2﹣9=0,∴x=3且﹣3,故选:C.3.解:A.属于整式,不合题意;B.属于整式,不合题意;C.属于分式,符合题意;D.1+x属于整式,不合题意;故选:C.4.解:由题可得,属于分式的式子为:,,,共3个,故选:B.5.解:由题可得,是分式的有:,,(x﹣y),,共4个,故选:C.6.解:由题意得,解得x=﹣2.故选:B.7.解:A.=1,故本选项错误;B.=x4,故本选项错误;C.=,故本选项错误;D.,故本选项正确;故选:D.8.解:∵分式值为0,∴2x=0,解得:x=0.故选:A.9.解:∵如果把分式中的x和y都扩大了3倍,xy扩大到原来的9倍,x+y扩大的到原来的3倍,∴分式的值扩大3倍.故选:A.10.解:A、=x3,原计算错误,故此选项不符合题意;B、的分子分母没有公因式,不能约分,原计算错误,故此选项不符合题意;C、的分子分母没有公因式,不能约分,原计算错误,故此选项不符合题意;D、==,原计算正确,故此选项符合题意,故选:D.二.填空题11.解:xy﹣x=2y+1,(x﹣2)y=x+1y=,故答案为:.12.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).13.解:(1﹣x),是多项式,属于整式;,是单项式,属于整式;,是多项式,属于整式;分式有+x,,共2个.故答案为:2.14.解:由题意得,x(x﹣2)=0,x﹣2≠0,解得,x=0,故答案为:0.15.解:②;④;⑦﹣3x2的分母中均不含有字母,因此它们是整式,而不是分式.①;③﹣;⑤;⑥分母中含有字母,因此是分式.故答案是:①、③、⑤、⑥,②、④、⑦.16.解:﹣3x、、、中,的分母中均不含有字母,因此它们是整式,而不是分式.、的分母中含有字母,因此是分式.故答案是:、.17.解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.18.解:m﹣n=2018①,n﹣p=﹣2019②,p﹣q=2021③,①+②得:m﹣p=﹣1②+③得:n﹣q=2④①+④得:m﹣q=2020所以原式==﹣.故答案为﹣.19.解:中的字母x和y同时增加3倍,,故答案为:缩小.20.解:=;==;故答案为:,.三.解答题21.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.22.解:由题意得,m2﹣4=0,m2﹣m﹣6≠0,解得,m=2,则当m=2时,此分式的值为零.23.解:(1)由题意得,3x﹣1=0,2x+5≠0,解得,x=,则当x=时,此分式的值为零.(2)由题意得,x+2=0,解得,x=﹣2,则当x=﹣2时,此分式的值为零.(3)由题意得,|x|﹣2=0,x+2≠0,解得,x=2,则当x=2时,此分式的值为零.24.解:a=4时,a﹣x=4﹣x=0,x=4,a2﹣x2=42﹣42=0,分式无意义,∴不存在x的值,得当a=4时,分式的值为0.25.解:∵=,∴x≠0.x+=3,x2+2+=9,∴x2+=7.∴=x2+1+=8,∴=.。
八年级数学上册《第十章分式》单元测试卷-含答案(京改版)
![八年级数学上册《第十章分式》单元测试卷-含答案(京改版)](https://img.taocdn.com/s3/m/212f76d3541810a6f524ccbff121dd36a32dc40b.png)
八年级数学上册《第十章分式》单元测试卷-含答案(京改版) 一、单选题(本大题共12小题,每小题3分,共36分)
1.新型冠状病毒平均直径为100纳米,即0.00001厘米.0.00001用科学记数法表示为()
A.x≠-1B.x≠0C.x≠1D.x≠±1
A.2个B.3个C.4个D.5个
7.有“新材料之王”称号的石墨烯在新能源、电子信息、航天航空、生物医药等领域具有广阔的应用前景.石墨烯中每两个相邻碳原子间的键长为0.000000000142米,数
0.000000000142用科学记数法表示是()
9.下列各式中,计算正确的是()
236
36
a a
+-+=
)(3)
a a a
10.一列火车到某站已经晚点8分钟,如果将速度每小时加快10千米,那么继续行驶30千米便可以在下一站正点到达,设火车原来行驶的速度是x千米/小时,求火车原来行驶的速度是()
A .0x ≠
B .1x ≠-
C .3x ≠±
D .3x =±
二、填空题(本大题共8小题,每小题3分,共24分)
三、解答题(本大题共5小题,每小题8分,共40分) 21.解方程:
参考答案:。
2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)
![2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)](https://img.taocdn.com/s3/m/ace58c9da8956bec0975e3f9.png)
第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。
第十章 分式数学七年级上册-单元测试卷-沪教版(含答案)
![第十章 分式数学七年级上册-单元测试卷-沪教版(含答案)](https://img.taocdn.com/s3/m/77a6b3e5fc4ffe473268abc2.png)
第十章分式数学七年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A.2a 2+2a 3=2a 5B.2a ﹣1=C.(5a 3)2=25a 5D.(﹣a 2)2÷a=a 32、分式方程﹣=10的解是()A.3B.2C.0D.43、(2009-)0等于( ).A.0B.1C.2009D.4、若分式的值为0,则a的值是( )A.2B.-2C.1D.-15、当m>0,n>0时,若m、n都扩大为原来的k倍,则分式的值( )A.缩小到原来的B.扩大到原来的k倍C.缩小到原来的D.扩大到原来的k2倍6、分式方程=1的解为()A.x=﹣1B.x=C.x=1D.x=27、分式的值为零,则m取值为()A.m=B.m=-1C.m=1D.m的值不存在8、若分式无意义,则a值的是()A.0B.﹣2C.0或2D.±29、下列各式中,属于分式的是()A. B. C. D.10、在分式中,x的取值范围是()A.x≠1B.x≠0C.x>1D.x<111、若等式成立,那么满足等式成立的的值得个数有()A.2个B.3个C.4个D.5个12、若分式有意义,则满足的条件是()A. 或-2B.C.D.13、下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)nD.1 ﹣214、如果把分式中的x、y同时扩大为原来的2倍,那么该分式的值().A.不变B.扩大为原来的2倍C.缩小为原来的D.缩小为原来的15、使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣2二、填空题(共10题,共计30分)16、化简的结果是________.17、当________时,分式有意义.18、函数y= 的自变量取值范围是________.19、(﹣2)2+(﹣2)﹣2=________ .20、若分式的值为零,则x的值等于________.21、若分式在实数范围内有意义,则x的取值范围是________.22、已知x﹣=4,则x2﹣4x+5的值为________.23、函数的自变量的取值范围是________.24、当a=2016时,分式的值是________.25、若代数式的值为零,则x=________.三、解答题(共5题,共计25分)26、计算:(﹣3)0+(﹣)﹣2﹣|﹣2|﹣2cos60°.27、若分式的值为负数,求x的取值范围.28、关于x的分式方程的解为负数,求a的取值范围.29、若关于x的分式方程﹣1= 无解,求m的值.30、已知,求A、B的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、A6、A7、B8、C9、B10、A11、A12、B13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版八年级数学下10章分式综合测试卷(A)及答案
![苏科版八年级数学下10章分式综合测试卷(A)及答案](https://img.taocdn.com/s3/m/b805b0067375a417866f8f5b.png)
第十单元 分式 综合测试卷(A)一、选择题(每题2分,共20分)1.在代数式221133122x x xy x x y mπ++、、、、、a+中,分式的个数有 ( ) A .2个 B .3个 C .4个 D .5个2·分式21162x y xyz-和最简公分母是 ( ) A .6xyz - B .26x yz C .12xyz D .212x yz3.分式方程2124111x x x -=-+-的解是 ( ) A·x =0 B .x =-1 C .x =±1 D .无解4.当x =12-时,下列分式有意义的是 ( ) A .221x x + B .112x x+- C .2141x x -- D .2121x x +- 5·下列条件中,使27722x x x x=++自左向右的变形成立的是 ( ) A .x <0 B .x >0C .x ≠OD .x ≠0且x ≠76·若31a +表示一个整数,则整数a 可以取的值有 ( ) A .1个 B .2个 C .3个 D .4个7·已知关于x 的分式方程211a x +=+的解是非正数,则以的取值范围是 ( ) A .a ≤一1 B .a ≤一1且a ≠一2C .a ≤1且a ≠2D .a ≤18·关于x 的方程012n m x x +=--可能产生的增根是 ( ) A .x =1 B .x =2C .x =1或x =2D .x =一1或=29.已知小明上学时,走上坡路,速度为m 千米/时;放学回家时,沿原路返回,速度为n千米/时,则小明上学和放学时的平均速度为 ( )A·2m n +/时 B .mn m n+千米/时 C .2mn m n +/时 D .m n mn +千米/时10.甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶 15千米.设甲车的速度为x 千米/时,依题意列方程正确的是 ( )A .304015xx =- B .304015x x =- C .304015x x =+ D .304015x x=+ 二、填空题(每题2分,共26分)11·已知x =--2时,分式x b x a -+无意义;x =4时,分式的值为0,则a b += . 12·分式24,,222x mn y x xy x y--的最简公分母是 .13·0.的x 值是 . 14·若22440,x y x xy y x y--+=+则等于 . 15.若221,0,xy y x y x y x x x ⎛⎫+++=≠÷ ⎪⎝⎭且则x+的值为 . 16.若一个分式只含有字母x ,且当x =2时,分式的值为2,那么这个分式可以是 .(写出一个即可)17.若1142,22a ab b a b a ab b+--=--则的值是 . 18·已知关于x 的方程3221x n x +=+的解是负数,则n 的取值范围为 . 19.若关于x 的分式方程311x a x x --=-无解,则a = . 20·已知234x y z ==,则232x y z x y z+--+= . 21.若41x +的值为正整数,则整数x 的值等于 . 22.若13x x -=,则221x x += . 23.某农场原计划用朋天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 2hm . 三、解答题(共54分)24.(本题12分)计算.(1)2x x y x y-++ (2)2222111x x x x x x -+-÷-+(3)211()1122x x x x -÷-+- (4)11()22m n m n m m n m +---+25.(本题8分)解下列方程(1)51141022233x x x x +++=-- (2)214111x x x +-=--26.(本题6分)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式3x +7>1 的负整数解.27.(本题8分)当m 为何值时,关于x 的方程223242mx x x x +=--+无解?28.(本题8分)甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的32倍.求甲、乙两队单独做各需多少天完成该项工程?29.(本题12分)某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元.如果卖出相同数量的电脑,去年的销售额为10万元,那么今年的销售额只有8万元.(1)今年三月份甲种型号电脑每台的售价为多少元?(2)为了增加收入,电脑公司决定经销乙种型号电脑.已知甲种型号电脑每台的进价为3500元,乙种型号电脑每台的进价为3 000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种型号的电脑共15台,则有几种进货方案?(3)如果乙种型号电脑每台的售价为3 800元,为打开乙种型号电脑的销路,公司决定每售出一台乙种型号电脑,返还顾客现金a元,要使(2)中所有方案的获利相同,那么a的值应是多少?参考答案一、1.B 2.B 3.D 4.D 5.C 6.D 7.B8.C 9.C 10.C二、11.6 12.2()xy x y - 13. 14.1315.1 16.4x (答案不唯一) 17.25- 18.n <2且n ≠32 19.一2或1 20.3421.o 或1或3 22.11 23.()b b m a m -- 三、24.(1)2y x y+ (2)x (3)4x (4)1 25.(1)2x = (2)1x =,为增根,原方程无解. 26.原式2x x-=∵解371,x +>得2x >- ∴它的负整数解为1x =-,∴原式=3. 27.解:去分母、化简得:(1)10m x -=-∵原方程无解,∴①原方程有增根,则2x =或 一2,∴4m =-或6;②10m -=,∴1m =,综上,当4m =-或6或1时,原方程无解.28.设:甲队单独做需要x 天完成,则乙队单独做需要32x 天完成,根据题意得: 2×11113322x x x ⎛⎫ ⎪++= ⎪ ⎪⎝⎭,解得:4x =,经检验,4x =是原方程的根.又乙队单独完成的 时间为32x 天,即6天.答:甲、乙两队单独完成这项工程各需4天、6天. 29.(1)设今年三月份甲种型号电脑每台的售价为x 元.根据题意,得100000800001000x x=+,解得4000x =.经检验,4000x =是原方程的解.∴今年三月份甲种型号电脑每台的售价为4 000元 (2)设购进甲种型号电脑y 台,则购进乙种型号电脑(15一y)台.由题意,得48 000≤3 500y+3 000(15一y)≤50 000,解得6≤y≤10.∴ y 的正整数解为6,7,8,9,10.∴共有5种进货方案 (3)设总获利为ϖ元,则ϖ=(4 000—3 500)y+ (3 800—3 000一a )(15一y)一(a 一300)y+12 000—15a ,∴当a =300时,(2)中所有方 案的获利相同.。
京改版八年级上册数学第十章 分式含答案(满分必刷)
![京改版八年级上册数学第十章 分式含答案(满分必刷)](https://img.taocdn.com/s3/m/bcf17eee4793daef5ef7ba0d4a7302768e996f29.png)
京改版八年级上册数学第十章分式含答案一、单选题(共15题,共计45分)1、如果a﹣b=,那么代数式的值为()A.﹣B.C.3D.22、若分式的值为0,则x的取值为()A.x≠1B.x≠﹣1C.x=1D.x=﹣13、若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变4、方程的解是()A. B. C. D.5、如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍6、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠﹣17、用换元法解方程时,设,则原方程可变形为()A. y2-3y+2=0B.2y 2 +y-1=0C.y 2–y+2=0D.y 2 +y-2=08、计算的结果是( )A. B. C.-1 D.19、将分式方程去分母后,所得整式方程正确的是()A. B. C. D.10、已知:a,b,c三个数满足,则的值为()A. B. C. D.11、下列变形正确的是()A. B. C. D.12、为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B. C. D.13、下列计算正确的是()A.2(x﹣1)﹣(x﹣1)=x﹣3B.C.D.(x+1)÷y× =x+114、若关于x的分式方程有增根,则m的值是()A.0或3B.3C.0D.﹣115、下列分式是最简分式的是()A. B. C. D.二、填空题(共10题,共计30分)16、在函数y=+(x﹣4)0中,自变量x的取值范围是________.17、当x=________ 时,分式的值为0.18、有五张正面分别标有数-2,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程有正整数解的概率为________.19、当x________时,分式有意义.20、若分式方程无解,则________.21、已知,则式子的值等于________22、若,则分式的值为________.23、代数式有意义,则x的取值范围是________.24、下列运算:① ;② ;③ ;④其中错误的是________.(填序号)25、若解关于x的分式方程=3会产生增根,则m=________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中m= ﹣127、甲乙两地之间的高速公路全长400千米,比原来国道的长度减少了40千米,高速公路开通后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半,求该长途汽车在原来国道上的行驶速度.28、先化简,再求值:÷(x﹣1﹣),其中x=﹣2.29、先化简,再求值:(2﹣)÷ ,其中x=2sin30°+tan60°.30、先化简,再求值:÷(1﹣),其中x= .参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、A5、B6、A7、A8、A9、B10、A11、B12、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
苏科版八年级数学下册 第十章《分式》综合练习
![苏科版八年级数学下册 第十章《分式》综合练习](https://img.taocdn.com/s3/m/97cfafacf7ec4afe04a1dfee.png)
苏科版八年级第十章《分式》一、选择题:1、下列计算中,正确的是( ).A. 12a =12(a+b)B. C. D.2、用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是()A .B .C .D.3、已知关于x的分式方程211ax+=+的解是非正数,则以的取值范围是 ( )A.a≤一1 B.a≤一1且a≠一2C.a≤1且a≠2 D.a≤14、若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,35、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、无论x取何值,下列分式总有意义的是()[来源:学。
科。
网Z。
X。
X。
K]A.3xx-B.122x+C.2221x+D.1xx-7、若分式1(3)(1)xx x--+的值为0,则x等于()A.-1 B.-1或3 C.-1或1 D.18、如果把分式3xyx y+中的x和y都扩大为原来的2倍,那么分式的值()A.扩大2倍 B.缩小2倍 C.缩小4倍 D.扩大4倍9、下面是嘉淇在学习分式运算时解答的四道题:()其中计算正确的是( )A.①B.②C.③D.④ 10、下列说法:①解分式方程一定会产生增根;②方程x−2x −4x+4=0的根为2;③ 方程12x =12x−4的最简公分母是2x(2x −4);④x+1x−1=1+1x−1是分式方程. 其中正确的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个11、已知关于x 的方程3x−1−x+ax(x−1)=0增根是1,则字母a 的取值为 2 B. −2 C. 1D. −112、已知,关于x 的分式方程2x−3+x+a3−x =2有增根,且关于x 的不等式组{x >ax ≤b只有4个整数解,那么b 的取值范围是( )A. −1<b ≤3B. 2<b ≤3C. 8≤b <9D. 3≤b <4 13、化简211211x x x x ⎛⎫÷- ⎪+++⎝⎭的结果是( ) A.11x + B. 1x x+ C. x+1 D. x ﹣1 14、甲、乙两人同时从A 地出发至B 地,如果甲的速度v 保持不变,而乙先用 的速度到达中点,再用的速度到达B 地,则下列结论中正确的是( )A. 甲、乙同时到达B 地B. 甲先到达B 地C. 乙先到达B 地D. 谁先到15、达B 地与速度v 有关16、已知,则的值是( )230.5x y z==32x y z x y z +--+A .B.7C.1D. 17、已知,且,则的值为( ) A . B . C .2 D .18、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m≠C .m >﹣D .m >﹣且m≠﹣ 19、已知1a +12b =3,则代数式2a−5ab+4b4ab−3a−6b的值为( )A. 15B. −15C. 12D. −1220、已知:点p(1−2a,a −2)在第三象限内,且a 为整数,则关于x 的分式方程x+1x−a=2的解是( )A. 5B. 3C. 1D. 不能确定 21、对于两个不相等的实数a 、b ,我们规定符号Max{a,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,−x}=2x+1x的解为( )A. 1−√2B. 2−√2C. 1+√2或1−√2D. 1+√2或−122、如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A. k >2B. 1<k <2C. 12<k <1D. 0<k <12二、填空题:1、约分:= ___________.1713226a b ab +=0a b >>a ba b+-22±2±2、在分式:①224a a +-;②25xy x xy -;③1421()a ab -;④2369x x x +-+中,最简分式有 个.3、若关于x 的分式方程311x a x x--=-无解,则a = . 4、若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为___________.5、若关于x 的分式方程311x a x x--=-无解,则a =__________. 6、若1142,22a ab b a b a ab b+--=--则的值是________.7的值为0的x 值是___________.8、若22440,x yx xy y x y--+=+则等于________. 9、已知,则的值为______. 10、当a=﹣1时,代数式的值是 .11、已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =−mx +10−m 经过一、二、四象限且关于x 的分式方程mxx−8=3+8xx−8的解为整数的概率是______ .12、某农场原计划用m 天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 ___________ 2hm . 13、若,则w = __________.14、若代数式(x−2)(x−3)2x−6的值为零,则x =______________.2242141x y y x y y +-=-+-24y y x ++15、从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a使关于x 的不等式组()127330x x a ⎧+≥⎪⎨⎪-⎩,<无解,且使关于x 的分式方程3x x --23a x --=-1有整数解,那么这5个数中所有满足条件的a 的值之和是 16、若分式方程xx−1−m1−x =2有增根,则这个增根是______. 17、解关于x 的方程1−kx x−2=12−x 出现增根,则增根x =________,常数k =________.18、若关于x 的分式方程1ax+b =1bx+a 有增根(a ≠b ,且a ,b 都不为零),则a b=________.19、当x>2时,M=12--x x 与N=23--x x 的大小关系______20、某农场原计划用朋天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 2hm . 21、A 1与-11-x 的最简公分母是2(x2-1),则分母A________22、已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,1a +1b =1;②若a =3,则b +c =9;③若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 __________. (把所有正确结论的序号都填上)23、若分式A =4x 2−4,B =1x+2+12−x ,其中x ≠±2,则A 与B 的关系是________. 24、对于正数x ,规定.例如,,则 ______ .三、解答题: 1、计算:(1)222242x y x xy y -++·22x xy x y ++÷22x xy x y -+; (2)62122-++x x x ÷⎪⎭⎫ ⎝⎛---331x x x .(3)2411241111x x x x +++-+++ (4) 221111x x x x+⎛⎫-÷ ⎪--⎝⎭;2、先化简,后求值:(1) 211122a a a -⎛⎫-÷⎪++⎝⎭,其中3a =. (2)2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭ ÷ 222a a a b a b ⎛⎫- ⎪+-⎝⎭+1 ,其中a=23,b=-32、先化简代数式(a a+2−aa−2)•2−a a,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值.4、解下列方程 (1)51141022233x x x x +++=-- (2)214111x x x +-=--5、苏科版教科书对分式方程验根的归纳如下: “解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.” 请你根据对这段话的理解,解决下面问题:已知关于x 的方程m−1x−1−xx−1=0无解,方程x 2+kx +6=0的一个根是m .(1)求m 和k 的值;(2)求方程x 2+kx +6=0的另一个根.6、当m 为何值时,关于x 的方程223242mx x x x +=--+无解?7、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?8、已知为整数,且为整数,求所有符合条件的x 的值.9、先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程xx−3=2+ax−3会产生增根?x 918232322-++-++x x x x(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?10、先阅读下列解法,再解答后面的问题.已知3x−4x-3x+2=Ax−1+Bx−2,求A、B的值.解:将等号右边通分,再去分母,得:3x−4=A(x−2)+B(x−1),即:3x−4=(A+B)x−(2A+B),∴{A+B=3−(2A+B)=−4解得{A=1 B=2(1)已知11x-3x2-14x+24=Ax+6+B4−3x,用上面的解法求A、B的值.(2)计算:[1(x−1)(x+1)+1(x+1)(x+3)+1(x+3)(x+5)+…+1(x+9)(x+11)](x+11),并求x取何整数时,这个式子的值为正整数.11、阅读理解:小铭、小冲和小新学习完《整式的乘法》和《分式》两章后,小铭提出了一问题:小铭:“我知道一般情况下,当m ≠n 时,m 2+n ≠m +n 2.可是我发现有这样一个神奇的等式:当m 、n 分别取m =ab ,n =b−a b时,有(a b )2+b−a b=ab +(b−a b)2(其中a ,b 为任意实数,且b ≠0),却满足m 2+n =m +n 2.但我不知道为什么,你们知道吗?”小冲和小新对小铭的问题进行了探究,请你帮他们完成下面的探究过程: (1)小冲先取特殊值a =2,b =3,分别代入(a b )2+b−a b和ab +(b−a b)2进行计算,请你分别计算这两个式子的值,判断它们是否相等;(2)小冲后来想到a 、b 的值不能一一列举完,于是分别计算(a b )2+b−a b和ab +(b−a b)2的结果,请你帮小冲完成这两个式子的计算,判断它们是否相等; (3)小新发现,由m =ab ,n =b−a b可得m +n =1.于是设计了这样一道变式题:已知:m 2+n =m +n 2(其中m 、n 为任意实数且m ≠n),求证:m +n =1. 请你完成小新的这道证明题.12、华昌中学开学初在金利源商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球的售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?13、某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆?总运费为多少元?14、超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.(1)试销时该品牌苹果的进货价是每千克多少元?(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?15、某一工程,在工程招标时,接到甲、乙两个工程队的投标书。
苏科版初二数学下学期第10章《分式》单元测试题 (附答案)
![苏科版初二数学下学期第10章《分式》单元测试题 (附答案)](https://img.taocdn.com/s3/m/06b77507dd88d0d233d46aea.png)
苏科版八年级数学下册第10章《分式》单元测试题满分100分班级________姓名________座号______成绩________一.选择题(共10小题,满分30分)1.下列式子,,,,不是分式的有()A.1个B.2个C.3个D.4个2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2 3.计算的结果是()A.B.C.D.4.下列分式是最简分式的是()A.B.C.D.5.如果将分式中的x和y都扩大为原来的3倍,那么分式的值()A.缩小到原来的B.扩大到原来的3倍C.不变D.扩大到原来的9倍6.已知x=5是分式方程=的解,则a的值为()A.﹣2B.﹣4C.2D.47.解分式方程=时,去分母化为一元一次方程,正确的是()A.x+1=2(x﹣1)B.x﹣1=2(x+1)C.x﹣1=2D.x+1=2 8.已知,则A=()A.B.C.D.x2﹣1 9.如果a2+3a+1=0,那么代数式()•的值为()A.1B.﹣1C.2D.﹣210.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是xkm/h,则下列等式正确的是()A.+5=B.﹣5=C.+5=D.﹣5=二.填空题(共6小题,满分18分)11.若分式值为0,则x=.12.约分:=.13.某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,根据题意可列方程为.14.计算的结果是.15.若,则分式的值为.16.已知x,y,z,a,b均为非零实数,且满足,则a的值为.三.解答题(共7小题,满分52分)17.解下列方程:(1)=﹣3(2)﹣=018.,若方程无解,求m的值.19.先化简,再求值,其中x=3,y=2.20.现有一段360米长的河堤的整治任务,打算请A,B两个工程队来完成,经过调查发现,A工程队每天比B工程队每天多整治4米,A工程队单独整治的工期是B工程队单独整治的工期的.(1)问A,B工程队每天分别整治多少米?(2)由A,B两个工程队先后接力完成,共用时40天,问A,B工程队分别整治多少米?21.制文中学2019年秋季在政大商场购进了A、B两种品牌的冰鞋,购买A品牌冰鞋花费了8000元,购买B品牌冰鞋花费了6000元,且购买A品牌冰鞋的数量是购买B品牌冰鞋数量的2倍,已知购买双B品牌冰鞋比购买一双A品牌体鞋多花100元.(1)求购买一双A品牌、一双B品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定是你购买两种品牌冰鞋共50双,如果这所中学这次购买A、B两种品牌冰鞋的总费用不超过13100元,那么制文中学最多购买多少双B品牌冰鞋?22.已知:已知常数a使得x2+2(a+1)x+4是完全平方式,(1)a=.(2)化简代数式T=(a+1﹣)÷()(3)在(1)的条件下,求T的值.23.阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式,例如:a+b+c,abc,a2+b2,…含有两个字母a,b的对称式的基本对称式是a+b和ab,像a2+b2,(a+2)(b+2)等对称式都可以用a+b,ab表示,例如:a2+b2=(a+b)2﹣2ab.请根据以上材料解决下列问题:(1)式子:①a2b2②a2﹣b2③④a2b+ab2中,属于对称式的是(填序号)(2)已知(x+a)(x+b)=x2+mx+n.①若m=2,n=﹣4,求对称式a2+b2的值②若n=﹣4,求对称式的最大值;参考答案一.选择题(共10小题)1.【解答】解:式子,,,,不是分式的有:,共1个.故选:A.2.【解答】解:由题意的,2﹣x≠0,解得,x≠2,故选:D.3.【解答】解:=.故选:D.4.【解答】解:A、==,故不是最简分式,不合题意;B、,是最简分式,符合题意;C、==﹣,故不是最简分式,不合题意;D、==,故不是最简分式,不合题意;故选:B.5.【解答】解:因为=×,所以分式的值变为原来的.故选:A.6.【解答】解:∵x=5是分式方程=的解,∴=,∴=,解得a=2.故选:C.7.【解答】解:去分母得:x+1=2,故选:D.8.【解答】解:∵,∴A=•(1+)=•=,故选:B.9.【解答】解:()•===2a(a+3)=2(a2+3a),∵a2+3a+1=0,∴a2+3a=﹣1,∴原式=2×(﹣1)=﹣2,故选:D.10.【解答】解:设该客车在高速公路上行驶的平均速度是x千米/小时,依题意有+5=.故选:C.二.填空题(共6小题)11.【解答】解:∵分式值为0,∴x(x﹣1)=0且x≠0,解得:x=1.故答案为:1.12.【解答】解:=﹣=﹣.故答案为:﹣.13.【解答】解:设该列车提速前的速度是x千米/小时,由题意得:﹣=1,故答案为:﹣=1.14.【解答】解:原式=÷=•=,故答案为:15.【解答】解:∵,∴y+x=2xy,则===1.故答案为:1.16.【解答】解:∵,∴+=∴+=a3﹣b3①+=∴+=a3②+=∴+=a3+b3③①+②+③得,++=∴===∴3a3=81∴a=3.故答案为3.三.解答题(共7小题)17.【解答】解:(1)=﹣3去分母得:﹣1=1﹣x﹣3(2﹣x)解得:x=2,2﹣x=2﹣2=0,所以分式方程无解;(2)﹣=0去分母得:5(x2﹣x)=x2+x,解得:或x=0,经检验x=是分式方程的解.18.【解答】解:,方程两边同时乘以(x+2)(x﹣1)得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5,当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,若方程无解,则原方程有增根,∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=;当x=1时,m=﹣6,∴m的值为﹣1或﹣6或.19.【解答】解:===,当x=3,y=2时,原式==.20.【解答】解:(1)设A工程队每天整治x米,则B工程队每天整治(x﹣4)米.根据题意,得:,解得:x=12,经检验,x=12是原分式方程的解,且符合题意,∴x﹣4=8.答:A工程队每天整治12米,B工程队每天整治8米.(2)设A工程队整治了y米,则B工程队整治了(360﹣y)米,根据题意,得:+=40,解得:y=120,∴360﹣y=240.答:A工程队整治河堤120米,B工程队整治河堤240米.21.【解答】解:(1)设购买一双A品牌的冰鞋需要x元,则购买一双B品牌的冰鞋需要(x+100)元,依题意,得:=2×,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴x+100=300.答:购买一双A品牌的冰鞋需要200元,购买一双B品牌的冰鞋需要300元.(2)设制文中学购买y双B品牌冰鞋,则购买(50﹣y)双A品牌冰鞋,依题意,得:200(50﹣y)+300y≤13100,解得:y≤31.答:制文中学最多购买31双B品牌冰鞋.22.【解答】解:(1)∵x2+2(a+1)x+4是完全平方式,∴a+1=±2,解得a=±2﹣1,即a=1或a=﹣3,故答案为:1或﹣3;(2)T=(﹣)÷[﹣]=•=a(a﹣2)=a2﹣2a;(3)当a=1时,分式无意义,此情况不存在;当a=﹣3时,T=a2﹣2a=(﹣3)2﹣2×(﹣3)=9+6=15.23.【解答】解:(1)根据“对称式”的意义,得①③④是“对称式”,故答案为:①③④,(2)①∵(x+a)(x+b)=x2+mx+n.∴m=a+b,n=ab,①当m=2,n=﹣4时,即∴a+b=2,ab=﹣4,∴a2+b2=(a+b)2﹣2ab=4+8=12,②当n=﹣4时,即ab=﹣4===﹣,故代数式的最大值为﹣2.。
沪教版七年级上册数学第十章 分式 含答案
![沪教版七年级上册数学第十章 分式 含答案](https://img.taocdn.com/s3/m/8fa6ea205022aaea988f0f17.png)
沪教版七年级上册数学第十章分式含答案一、单选题(共15题,共计45分)1、下列各式:,,,,,其中分式的个数有()A.5个B.4个C.3个D.2个2、如果分式的值为0,那么x为()A.-2B.0C.1D.23、已知﹣=,则的值为()A. B. C.2 D.-24、下列各式中,正确的是()A. B. =a+b C. D.5、使代数式有意义的x的取值范围为()A.x>2B.x≠0C.x<2D.x≠26、若分式有意义,则x的取值范围是()A.x>5B.x≠﹣5C.x≠5D.x>﹣57、若m等于它的倒数,则分式的值为()A. B.1 C. 或1 D.以上都不对8、计算的结果为()A.1B.xC.D.9、下列运算中,正确的是()A. =±2B. =﹣3C.(﹣1)0=1D.﹣|﹣3|=310、在xy,,(x+y),这四个有理式中,分式是()A.xyB.C. (x+y)D.11、分式方程 +1=去分母后得到的方程是()A.3x=0B.x 2-3x-2=0C.x 2-3x+4=0D.x 2-2=012、若分式的值为零,则x的取值为()A.0B.-3C.3D.3或-313、化简的结果是()A. B. C. D.14、若方程有一个根是x=1,则m的值是()A. B. C. D.15、下列关于x的方程,是分式方程的是()A. B. C. D.二、填空题(共10题,共计30分)16、计算的结果是________17、分式方程的解是________.18、若关于x的方程=的解为正数,则m的取值范围是________ .19、当x=________时,分式的值为0.20、解关于x的方程(其中m为常数)产生增根,则常数m的值等于________.21、要使式子有意义,则x的取值范围为________.22、a、b为实数,且ab=1,设P= ,Q= ,则P________Q (填“>”、“<”或“=”).23、要使方式的值是非负数,则x的取值范围是________.24、分式方程去分母时,两边都乘以________.25、计算:()÷()=________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)-228、先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.29、先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值30、当m为何值时,解方程会产生增根?参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、D6、C7、C8、A9、C10、D11、B12、C13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四期数学卷
一、填空题(每小题3分共30分)
1.(3分)(2004•淄博)写出一个含有字母x的分式(要求:不论x取任何实数,该分式都有意义)
_________.
2.(3分)使等式成立的条件是_________.
3.(3分)(2010•李沧区二模)随着微电子制造技术的不断进步,半导体材料的精细加工尺寸大幅度缩小.目前已经能够在350mm2的芯片上集成5亿个元件,那么一个元件大约占_________mm2.(用科学记数法表示)
4.(3分)不改变分式的值,将分式的分子与分母的各项系数化为整数为
_________.
5.(3分)化简:÷=_________.
6.(3分)(2009•成都)化简:=_________.
7.(3分)若x+x﹣1=2,则x2+x﹣2+2(x+x﹣1)+3=_________.
8.(3分)对于公式=+(f2≠f),若已知f,f2,则f1=_________.
9.(3分)“5•12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?若原计划每天修x米,所列方程正确的是_________.
10.(3分)小明一家四口人打电话预约两个姑姑及其一家人一起到某景点旅游,此景点按这样的规定收费:不超过5个人按每人50元收门票;若超过5个人,超过的每人门票将打六折.结果比单独去每人少花10元门票,那么两个姑姑家去的人数一共是_________人.
二、选择题(每小题3分共24分)
11.(3分)要使分式有意义,则x应满足()
12.(3分)如果把分式的x和y都变为原来的相反数,分式的值()
.
=
.
=
.
=
.=
14.(3分)(2009•烟台)学完分式运算后,老师出了一道题“化简:”.小明的做法是:原式=;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;
小芳的做法是:原式=.
15.(3分)当2a=3b时,÷(1+)的值是()
C
.B.
﹣
.6a•(﹣5a﹣3)=﹣
.
(y﹣x)÷(x﹣y)4=﹣
17.(3分)(2007•牡丹江)若关于x的分式方程的解为正数,则m的取值范围是A.m>﹣1 B.m≠1 C.m>1 D.m>﹣1且m≠1 18.(3分)若方程﹣=0有增根,则a的值为()
19.(3分)旅游节期间几名同学包租一辆面包车去游览,面包车的租价为180元,出发前,又增加两名同学,结果每个同学比原来少分摊3元车费,若设原来参加游览的学生有x人,
.B.C.D.
20.(3分)小华早上从家里去离家5千米的学校,今天比昨天每小时快了1千米,结果比
.B.C.D.
三、解答题(共46分)
21.计算:
(1);
(2);
(3).
22.解关于x的方程:
(1)a+=b+(a≠b);
(2)=2﹣(n+m≠0).
23.(2009•黑河)先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.
24.m为何值时,分式方程﹣+=0有解?
25.从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km的上坡路和2km的下坡路,小丽在上坡路上的汽车速度为每小时vkm,在平路上的汽车速度为每小时2vkm,在下坡路上的汽车速度为3vkm,那么
(1)当走第二条路时,她从甲地到乙地需要多长时间?
(2)她走哪条路花费时间少,少用多少时间?
26.(2009•朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.
27.(2008•宁德)5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽误了1小时,随后,先遣分队将步行速度提高
,于13日23时15分赶到汶川县城.
x千米,请根据题意填写下表:
每小时多少千米?。