2016北京市东城区高三(一模)数学(理)
2016东城区高三数学理期末试题及答案

东城区2015-2016学年度第一学期期末教学统一检测本试卷共5贞.150分•芳试时K 120分钟•考住务必将答至答在答題卡上■仗试卷I:作答无效•考试结束后•将本试总和答題卞一并交何.第一部分(选择题共40分)一■选择理(共8小0 ■毎小& 5分,共40分•在毎小題列出的囚个选项中■选出符合求的一项)1 •已知集合1丿=(1・2・3出几集合A»n>3>4h B={2・4}・那么集合(CM)nB-3•设i为谨数烦位.如果复数z满足(l-2i)z=5i^那么厂的虚邪为A. - IB. IC. •D.-i4•已知刃€«0・1〉・令a = b肛2. h二4『=2-・那么之树的大小关系为A. b<c<aB. b<a<cC. a<b<cD. c<u<b5・Ci知克线/的倾斜角为i斜卒为点.那么"a>y M是7A®的A.充分而不必耍条件B.必耍而不充分条件C.充分必姿条件D.既不充分也不必耍条件高三數学(现科)第1页(共5页)高三数学(理科)2016. 1側(左)现图A.⑵B・{4}C. {1.3} I). 24}11 9 cm Jf 1i ~ +1 • 0V#£26•已知旳数x •如果关丁丄的方程/Cr〉=A有两个不同的实根•那* lnx» x>2么实数百的取值范隔2A・(l.+vo〉B・[^・ + oo) C・[e+.+8) D.[ln2・+8)7.过抛物线;/=2仇r(p>0)的魅点F的f[线交粗物线于A・B丙点•点O泉坐标原点.如架I BF| =3, | BF|>|AF| ・ZBFO=¥・那么 | AF| 的伙为、夕A. 1B.yC.2 I). |&如图所示•正方体AHCD-A f B,C,D,的梭长为1, F・F分别圧梭八人'・CC'的中点.过血线EF的平面分別与梭BB'.DD'交丁M,M设BM-小.* (0・1〉,给出以卜四个命题:①四边形MENF为平行四边形I②若四边形MENF血枳Sr /(X). x€(0,l).则/(z)冇九小侑;③若四棱锥人一MENF的体积V=-p(x). ze<0.1>.则p(“为恋瓯数;④若多而体AHCD-MENF^J体枳V = A(.r),苏I),则AQ)为单浏函数. 只中假命题为• • •A.①B•②C•③D•④高三敷爭(瓦科)第2页(拱$员)第二部分(G选择&兵110 分〉二、填空11(共6小逊■毎小JR 5分,共30分)9•在△ ABC中・a・6分别为角八•〃的对边.如果〃一30°«: - IO5S a " •那么b .0在平而向M Q.b中・已知a = (】・3)・ b=(2.y)・如果a • b = 5・那么y= ___ ;如果|a + b| = |a — b|・那么y= ____ •丁一yWlO.11. 已知『q海足约束条件1—,£2・那么的歧大值为・才$312. 如來險数/Cr)-rsiar+«的图象过点GJ〉. R /(z)-2.那么•13. 如來平面直角坐标系中的f»iAA(«-l.a+D.B(a.a)X于虫线,对称.那么直线?的方程为•M•数列{“.}満足:如和+“…>2如5>lmWN・),给出卜•述命吆*①若数列2」溝足:如 >尙・则a>“. ,(”>】・”€'•)皿立;②存在甜数c使扫a.>r(W€N->成立:③若 /> + q>m + /t(其中)•则a»+y>“.=a. i④存在席数/使得“A心? 5-】>d3€N・)郁成立.上述命題正珂的是_.(吗出所冇正晞结论的*仍〉三、解答题(共6小麵,共80分.解答虫禹出文字说明,演算步廉或证明过程)15•(本小題共13分)设S.、#一个公比为曲>0心\)的等比数列•巾,・3“八2心成等力数列.且它的询4项和S< = 15.< I〉求数列"・>的通项公式:< 11〉令6=a. + 2”・5=l・2・3……)•求敷列仏}的前肪项和.高三软竽(理科〉第3页〈共5页)16. (4-小题共13分〉已知函数/(x) = sin2x+2 73sinTcosi* —cos:^(^6 R).<I )求/4〉的皿小正周期和在Co.xZJ:的单训递减区间;(【I)若a为第四欽限角,且cosa-y,求/(f+ jf)的fft.17. (本小题典14分)如图.在P-ABCD中.底丽ABCD为正方形,PA丄底面ABCD・AB=AP.E为披PD的中点.(I )证明:AELCD;(II)求il^AE弓平而PHD所成卅的正弦值;(山)若尸为人3中点,棱PC上是否存在一点M・使得FM丄八(:・若存在.求出耀的值.若不存在,说明埋山.18. (本小題共13分〉已知桶圆$ I话=讥>〃>0》的焦点是斤・幵,H. |F,F?| = 2、离心率为*・(I >求椭B0C的方程;(II〉若过椭圆右很点丘的直线/交椭圆FA,B两点•求\AF Z\• IF屮I的取值范国.高三散学〈理科)第4页(共5贞)19. (4:小題从I I分)(2知西数/<-r) -- ----- a(.r —< [)当a亠1时.试求/(j->/t(U/(D)处的切线方程(<n)当“wo时,试求/a》的单河风何:(111)若/<x)ft(OJ)内有极(TL试求"的取值范用.20•(本小聽共13分》已知初线(・.的方程为:i^r 11〉・1・=】>.<【〉分別求出”二1・” =2时.曲线C.所冊成的图形的滴枳,< II〉若5(”€2〉衣朋曲线C.所阳成的图形的面积.求证:S.(N€N-以于”是递增的;'5)若方程上・+>*=^5A2・”W?OdwHO・没右正整数解.求证:曲线C.(W>2>M6N*〉上任一点对应的坐标(x.y). .r.y不能全尺有理数.高三做孕(理科)事5页(*S M>东城区2015-2016学年度第-学期期末教学统一检测裔三数学(理科)参考答案及评分标准2016. 1 一、选择題二■填空超9. 2 72. 10. U- ・】1・5& 12. X0. 14•①④.三、廉答1915•解:(I圈为一个公比为g(g>0・</工1)的等比数列.所以= “I矿'・心*0・因为4““3“,・2山成等矗数列.所以6g = 4® +2“)•即—34/4-2=0.H得g=2或gh】(含).乂它的询 4 项和S,工15.1!)^^- = !5(v>0.<?#l).解冯5^1.所以2・'• .......................................................................................................... 9分(II )W 为九FT.+2机所以i^ = ia. + V2; = 2- + n(w4 1)-1. ............................................................... 13 分•—1 •* I •—>16. 解” 1〉由己知 /<x)^>ii/ar4 2 ySsiiurcosx—co>\r IX>52X—2sin(2x~b所以故小正周期丁守一几3 Z由計2*n<2r-矜蓼亠2虹""•得手卜后W/W罟+及irMW龙.故旳数“ 0在[0・O上的单调递滥区间泉石7:・|■町. ...............9分<l] )W为a为第四徐琨用・H cose二g •所以0g--£・浙三啟学(仗科〉冬脅怎案第I页(*50所以 /(号讨辔〉三f -|-) = — 2sina —y. 13分17. ( I )证明:因为卩人丄磺面ABCD.CDC平A AHCD.所以”人丄(。
北京市东城区2016-2017第一学期期末教学统一检测高三数学(理科)试题及参考答案

东城区2016-2017学年度第一学期期末教学统一检测高三数学 (理科)本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
)(1)已知集合{|(1)(3)0}A x x x =--<,{|24}B x x =<<,则A B =(A ){|13}x x << (B ){|14}x x << (C ){|23}x x << (D ){|24}x x << (2)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =-(D )12x =-(3)“1k =”是“直线0kx y --与圆229x y +=相切”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)执行如图所示的程序框图,输出的k 值为(A )6 (B )8(C )10 (D )12(5)已知,x y ∈R ,且0x y >>,则(A )tan tan 0x y -> (B )sin sin 0x x y y -> (C )ln ln 0x y +> (D )220xy->正(主)视图俯视图侧(左)视图时间(天)(6)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是增函数,则(1)0f x +≥的解集为(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ (7)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )23 (B )43(C )2 (D )83(8)数列{}n a 表示第n 天午时某种细菌的数量.细菌在理想条件下第n 天的日增长率0.6n r =(*1n nn na a r n a +-=∈N ,).当这种细菌在实际条件下生长时,其日增长率n r 会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率n r 的规律描述正确的是10(C )时间10时间(天)(D )0.0.0.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2016届高三数学一模试卷 文(含解析)

北京市东城区2015-2016学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)(1)若集合2{3}A x x x =∈<R ,{12}B x x =-<<,则AB =(A ){10}x x -<< (B ){13}x x -<< (C ){02}x x << (D ){03}x x << 【知识点】集合的运算【试题解析】因为,所以,故答案为:B 【答案】B(2)已知直线310ax y +-=与直线3+2=0x y -互相垂直,则a = (A )3- (B )1- (C )1 (D )3 【知识点】两条直线的位置关系 【试题解析】因为直线与直线互相垂直,所以,故答案为:C 【答案】C(3)已知4log 6a =,4log 0.2b =,2log 3c =,则三个数的大小关系是(A )c a b >> (B )a c b >> (C )a b c >> (D )b c a >> 【知识点】对数与对数函数 【试题解析】因为 所以,故答案为:A 【答案】A(4)若,x y 满足0230230x x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,,,则2u x y =+的最大值为(A )3 (B )52 (C )2(D )32【知识点】线性规划【试题解析】因为可行域如图,在AC 上任何一点取得最大值3.故答案为:A 【答案】A(5)已知数列{}n a 的前n 项和1159131721(1)(43)n n S n -=-+-+-++--,则11S =(A )21-(B )19-(C )19(D )21【知识点】数列的求和 【试题解析】因为故答案为:D 【答案】D(6)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“a b =”是“A b B a cos cos =”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【知识点】充分条件与必要条件 【试题解析】因为所以,是充分必要条件 故答案为:C 【答案】C(7)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出a 和i 的值分别为(A )0,3 (B )0,4 (C )2,3 (D )2,4【知识点】算法和程序框图 【试题解析】因为输出。
2016年东城一模数学(理)带问题详解

市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i a i ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若AB B =,则a 的取值围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为 (A )21 (B )1 (C )22 (D何体的最长棱长为 (A )2 (B)(C )3 (D(7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D 的面积为(A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
北京市东城区届高三数学综合练习(一)理(东城一模,含解析)

北京市东城区2012-2013学年度第二学期综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为(A ){3} (B ) {3,4} (C ){1,2} (D ){2,3} 【答案】B【解析】因为{1,2}A =,所以={3,4}U A ð,选B.(2)已知ABCD 为平行四边形,若向量AB =a ,AC =b ,则向量BC 为 (A )-a b (B )a +b(C )-b a (D )--a b 【答案】C【解析】因为=BC AC AB -,所以=BC b a -,选C.(3)已知圆的方程为22(1)(2)4x y -+-=,那么该圆圆心到直线3,1x t y t =+⎧⎨=+⎩(t 为参数)的距离为(A )2 (B (C )2 (D 【答案】C【解析】圆心坐标为(1,2),半径2r =,直线方程为20x y --=,所以圆心到直线的距离为2d ===,选 C.(4)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 (A )316 (B )14 (C )34 (D )116【答案】A【解析】到圆心的距离大于14且小于12的圆环面积为22113()()2416πππ-=,所以所有投掷到圆内的飞标中得到成绩为良好的概率为331616ππ=,选A.(5)已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于(A )130 (B )120 (C )55 (D )50 【答案】C【解析】由120n n a a +-=得12n n a a +=,所以数列{}n a 为公比数列,公比2q =,所以111222n n n n a a q --==⨯=,所以22log log 2n n n b a n ===,为等差数列。
北京市各城区2016届高三第一次统练(一模)数学理试题合集

北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分) 题号1 2 3 4 5 6 7 8 答案 D D A B C D A C二、填空题:(满分30分) 题号9 10 11 12 13 14 答案 10 21n a n =-,(3)(411)n n ++ (2,)4π 3(,]4-∞ 3(0,)4 121||i i i ab =-∑ 22(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+- 13sin cos 22x x =+ sin()3x π=+. 令22,232k x k k ππππ-≤+≤π+∈Z . 解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+. 因为()13f π=,所以sin()133ωππ+=. 则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>, 所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分 (Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4. 由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为 X0 1 2 3 4 P 170 835 1835 835 170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥.又因为1AC AA ⊥且1AB AA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B .因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A . 因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P . 易知平面ABM 的一个法向量(0,0,1)=m .设平面APM 的一个法向量为(,,)x y z =n , y x AMPCB A 1C 1B 1 z由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m nm n m n . 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BP PB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增;(2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-.(3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()a y x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)a x a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<. 取21+1e e a x =>,则221112()(1e 1)2e 0a a g x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e a x =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =. 因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k , 则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4. (ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N .再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分DABC海淀区高三年级第二学期期中练习参考答案数学(理科) 2016.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
东城区2016-2017第二学期(理)2.0答案

东城区2016-2017学年度第二学期高三综合练习(一)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)B (4)D (5)B (6)D (7)C (8)B 二、填空题(共6小题,每小题5分,共30分) (9(10)40 (11)6(12)己巳 (13)32 (14)11,0,2()10,0.2x g x x x 或⎧≤<⎪⎪=⎨⎪<≥⎪⎩ 4三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设22225c a b ab a ab =++=+,得2b a =.由正弦定理sin sin a b A B =,sin sin b Ba A=, 得sin 2sin BA=. ……………………………6分 (Ⅱ)由(Ⅰ)知3A B π∠+∠=. sin sin sin sin()3A B A A π⋅=⋅-1sin (cos sin )22A A A =⋅-112cos 2444A A =+- 11sin(2)264A π=+-. 因为03A π<∠<, 所以当6A π∠=,sin sin A B ⋅取得最大值14.…………………13分(16)(共13分)解:(Ⅰ)5a =.由表1知使用Y 共享单车方式人群的平均年龄的估计值为:Y 方式:2020%3055%+4020%+505%=31?创?.答:Y 共享单车方式人群的平均年龄约为31岁. ……………5分(Ⅱ)设事件i A 为“男性选择i 种共享单车”,12,3i =, 设事件i B 为“女性选择i 种共享单车”,12,3i =,设事件E 为“男性使用单车种类数大于女性使用单车种类数”. 由题意知,213132E A B A B A B = . 因此213132()()()()P E P A B P A B P A B =++0.58=.答:男性使用共享单车种类数大于女性使用共享单车种类数的概率为0.58.……11分(Ⅲ)此结论不正确. ……………………………13分 (17)(共14分)解:(Ⅰ)在直角三角形ABC 中,因为45ABC ? ,D 为AB 中点,所以CD AB ⊥.因为平面PAB ⊥平面ABC ,CD Ì平面ABC ,所以CD ⊥平面PAB . 因为AE ⊂平面PAB , 所以CD ⊥AE .在等边△PAD 中,AE 为中线, 所以AE PD ⊥. 因为PD DC D =I ,所以AE ⊥平面PCD . ……………………………5分 (Ⅱ)在△PAB 中,取AD 中点O ,连接PO ,所以PO AB ^.在平面ABC 中,过O 作CD 的平行线,交AC 于G . 因为平面PAB ⊥平面ABC , 所以PO ⊥平面ABC . 所以PO OG ^.因为,,OG OB OP 两两垂直,如图建立空间直角坐标系O xyz -. 设4AB a =,则相关各点坐标为:(0,,0)A a -,(0,3,0)B a ,(2,,0)C a a,)P ,(0,,0)D a ,(0,)2a E ,(,)2a Fa .(2,2,0)AC a a =u u u r ,(0,,)PA a =-u u r.设平面PAC 的法向量为(,,)x y z =n ,则0,0,ACPA ⎧⋅=⎪⎨⋅=⎪⎩uuu r uu rn n ,即0,0.x y y+=⎧⎪⎨=⎪⎩ 令1z =,则y =x =. 所以=n .平面PAB 的法向量为(2,0,0)DCa=, 设,DC n 的夹角为α,所以cos α=由图可知二面角B PA C --为锐角,所以二面角B PA C --的余弦值为7.…………………………10分 (Ⅲ)设M 是棱PB 上一点,则存在[0,1]λ∈使得PM PB λ=uuu r uu r.因此点(0,3(1))M a λλ-,(2,(3(1))CM a a λλ=---u u u r.由(Ⅰ)知CD ⊥平面PAB ,AE ⊥PD . 所以CD ⊥PD . 因为EF ∥CD , 所以EF PD ⊥. 又AE EF E =, 所以PD ^平面AEF . 所以PD 为平面AEF 的法向量.(0,,)PD a =u u u r.因为CM ⊄平面AEF ,所以CM ∥平面AEF 当且仅当0CM PD ⋅=u u u r u u u r,即(2,(31(1))(0,,)0a a a λλ---⋅=.解得23λ=. 因为2[0,1]3λ=∈,所以在棱PB 上存在点M ,使得CM ∥平面AEF , 此时23PM PB λ==. …………………………14分 (18)(共13分)解:(Ⅰ))(x f 的定义域为(0,)+∞.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x=-+. 因为(1)2f =且'(1)2f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为20x y -=.…………4分 (Ⅱ)若函数)(x f 在(0,)+∞上为单调递减,则'()0f x ≤在(0,)+∞上恒成立. 即2210m x x --≤在(0,)+∞上恒成立. 即221x m x -≤在(0,)+∞上恒成立. 设221()(0)g x x x x=->, 则max [()]m g x ≥. 因为22211()(1)1(0)g x x x x x=-=--+>, 所以当1x =时,()g x 有最大值1.所以m 的取值范围为[1,)+∞. ……………………9分(Ⅲ)因为b a <<0,不等式ln ln b ab a -<-ln ln b a -<.即lnb a <(1)t t >,原不等式转化为12ln t t t <-.令1()2ln h t t t t=+-, 由(Ⅱ)知1()2ln f x x x x=+-在(0,)+∞上单调递减,所以1()2ln h t t t t=+-在(1,)+∞上单调递减. 所以,当1t >时,()(1)0h t h <=. 即当1t >时,12ln 0t t t+-<成立. 所以,当时b a <<0,不等式ln ln b a b a -<-13分 (19)(共14分)解:(Ⅰ)由题意得2222,b caa b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得2,a b == 所以椭圆C 的方程为22142x y +=. …………………………5分(Ⅱ)设点00(,)P x y ,11(,)M x y ,22(,)N x y .①11(,)M x y ,22(,)N x y 在x 轴同侧,不妨设12120,0,0,0x x y y ><>>. 射线OM 的方程为002y y x x =+,射线ON 的方程为002yy x x =-, 所以01102y y x x =+,02202y y x x =-,且2200142x y +=. 过,M N 作x 轴的垂线,垂足分别为'M ,'N , ΔΔ'Δ'''OMN OMM ONN MM N N S S S S =--四边形 121211221=[()()]2y y x x x y x y +--+02011221120011()()2222y x y x x y x y x x x x =-=??-+ 0012121222000441112422y y x x x x x x x y y =⋅=⋅=-⋅--. 由221101101,42,2x y y y x x ⎧+=⎪⎪⎨⎪=⎪+⎩得2201102()42y x x x +=+, 即2220010222200004(2)4(2)2(2)2(2)4x x x x x y x x ++===+++++-,同理2202x x =-,所以,2222120042x x x y =-=,即120x x =,所以,OMN S ∆=② 11(,)M x y ,22(,)N x y 在x 轴异侧,方法同 ①.综合①②,△OMN………………14分(20)(共13分)解:(Ⅰ)由于{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,所以{6,7,8,9,10}N =,{5,6,7,8,9}N =,{4,5,6,7,8}N ={3,4,5,6,7}N =,{2,3,4,5,6}N =,回答其中之一即可 ………3分(Ⅱ)若集合12{,,,}n A a a a =L ,如果集合A 中每个元素加上同一个常数t ,形成新的集合12{,,,}n M a t a t a t =+++L . ……………5分根据1()||j i i j nT A a a ≤<≤=-∑定义可以验证:()()T M T A =. ……………6分取1nii C a t n=-=∑,此时11112{,,,}nnniiii i i n C a C a C a B a a a nnn===---=---∑∑∑L .通过验证,此时()()T B T A =,且1nii b C ==∑. ……………8分(Ⅲ)由于2m ³21314121()()()()()m T A a a a a a a a a =-+-+-++-L324222()()()m a a a a a a +-+-++-L4323()()m a a a a +-++-LM221()m m a a -+-121212=(21)(23)(23)(21)m m m mm a m a a a m a m a +-------+++-+-L L 212121=(21)()(23)()()m m m m m a a m a a a a -+--+--++-L2121=(21)()(23)()()m m m m b a m a a a a -+--+--++-L ………11分由于2120m a a b a -<-<-,2230m a a b a -<-<-, 2340m a a b a -<-<-,M10m m a a b a +<-<-.所以2(21)()()()m b a T A m b a --<<-.………13分。
东城区2016-2017第二学期高三一模数学(理)

北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|20}A x x x =--<,{|13}B x x =<<,则A B =U(A ){|13}x x -<< (B ){|11}x x -<< (C ){|12}x x << (D ){|23}x x << (2)已知命题:,2n p n ∀∈>N p ⌝是(A),2n n ∀∈≤N (B),2n n ∀∈<N (C),2n n ∃∈≤N (D),2n n ∃∈>N (3)已知圆的参数方程为1,x y θθ⎧=-⎪⎨=⎪⎩(θ为参数),则圆心到直线3y x =+的距离为(A )1 (B(C )2 (D)(4)已知m 是直线,,αβ是两个互相垂直的平面,则“m ∥α”是“m β⊥ ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)已知向量,a b 满足2+=0a b ,2⋅=-a b ,则(3+)()⋅-=a b a b(A )1 (B )3 (C )4 (D )5(6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )13 (B )23 (C )1 (D )43(7)将函数sin(26y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为 (A )12π (B )6π (C )4π (D )3π (8)甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是①甲抛出正面次数比乙抛出正面次数多. ②甲抛出反面次数比乙抛出正面次数少. ③甲抛出反面次数比甲抛出正面次数多. ④乙抛出正面次数与乙抛出反面次数一样多. (A )①②(B )①③(C )②③(D )②④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2016届高三一模数学(文)试题和答案-

北京市东城区2015-2016学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项) (1)若集合2{3}A x x x =∈<R ,{12}B x x =-<<,则AB =(A ){10}x x -<< (B ){13}x x -<< (C ){02}x x << (D ){03}x x << (2)已知直线310ax y +-=与直线3+2=0x y -互相垂直,则a =(A )3- (B )1- (C )1 (D )3(3)已知4log 6a =,4log 0.2b =,2log 3c =,则三个数的大小关系是(A )c a b >> (B )a c b >> (C )a b c >> (D )b c a >>(4)若,x y 满足0230230x x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,,,则2u x y =+的最大值为(A )3(B )52 (C )2(D )32(5)已知数列{}n a 的前n 项和1159131721(1)(43)n n S n -=-+-+-++--,则11S =(A )21-(B )19-(C )19(D )21(6)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“a b =”是“A b B a cos cos =”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出a 和i 的值分别为 (A )0,3 (B )0,4 (C )2,3 (D )2,4(8)函数()f x 的定义域为[]1,1-,图象如图1所示;函数()g x 的定义域为[]1,2-,图象如图2所示.若集合{}(())0A x f g x ==,{}(())0B x g f x ==,则 AB 中元素的个数为(A )1 (B )2 (C )3 (D )4图2图1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区高三数学一模试题 理(含解析)北师大版

2013年北京市东城区高考数学一模试卷(理科)参考答案与试题解析一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合∁U A为2.(5分)(2013•东城区一模)已知ABCD为平行四边形,若向量,,则向量﹣+﹣﹣=3.(5分)(2013•东城区一模)已知圆的方程为(x﹣1)2+(y﹣2)2=4,那么该圆圆心到直线(t为参数)的距离为()(=4.(5分)(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于,则成绩为及格;若飞标到圆心的距离小于,则成绩为优秀;若飞标到圆心的距离大于且小于,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩点到圆心的距离大于且小于的且小于﹣==5.(5分)(2013•东城区一模)已知数列{a n}中,a1=2,a n+1﹣2a n=0,b n=log2a n,那么数列{b n}由题意可得,可得数列,=2=n项和=1+2+ (10)6.(5分)(2013•东城区一模)已知F1(﹣c,0),F2(c,0)分别是双曲线C1:(a>0,b>0)的两个焦点,双曲线C1和圆C2:x2+y2=c2的一个交点为P,且2∠PF1F2=∠PF2F1,如图所示,利用圆的性质可得,由题意可得,∴=7.(5分)(2013•菏泽二模)已知定义在R上的函数f(x)的对称轴为x=﹣3,且当x≥﹣3 x8.(5分)(2013•东城区一模)已知向量,,O是坐标原点,若||=k||,且方向是沿的方向绕着A点按逆时针方向旋转θ角得到的,则称经过一次(θ,k)变换得到.现有向量=(1,1)经过一次(θ1,k1)变换后得到,经过一次(θ2,k2)变换后得到,…,如此下去,经过一次(θn,k n)变换后得到.设=(x,y),,,则y﹣x等于(),)逆倍得到向量=算出逆时针旋转弧度所得向量,从而得到,+1.接下来再对,)变换就是将向量逆时针旋转倍,由=逆时针旋转弧度,所得的向量为,即向量逆时针旋转得到向量,再将的模长度伸长为原来的倍,=,+1=﹣,+1﹣=时====本题给出向量的旋转和伸缩,求向量二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•东城区一模)复数z=(2﹣i)i的虚部是 2 .10.(5分)(2013•东城区一模)的展开式中x3的系数是160 .•x=16011.(5分)(2013•东城区一模)如图是甲、乙两名同学进入高中以来5次体育测试成绩的茎叶图,则甲5次测试成绩的平均数是84 ,乙5次测试成绩的平均数与中位数之差是2 .==84,=8412.(5分)(2013•东城区一模)如图,已知PA与圆O相切于A,半径OC⊥OP,AC交PO于B,若OC=1,OP=2,则PA= ,PB= .PA=∴PB=PA=,13.(5分)(2013•东城区一模)有甲、乙、丙在内的6个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有144 种.成四个元素,自由排列,有有种方法,由分步计数乘法原理得:共有•=14414.(5分)(2013•东城区一模)数列{a n}的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若(a≠0),则位于第10行的第8列的项等于a89,a2013在图中位于第45行的第77列.(填第几行的第几列)=81.,三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•东城区一模)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且.(Ⅰ)求角B;(Ⅱ)若,求ac的最大值.Ⅰ)因为,由正弦定理求得,由正弦定理可得,所以,因为,当且仅当16.(14分)(2013•东城区一模)如图,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AAB=AC=AE=2,,P是BC的中点.(Ⅰ)求证:DP∥平面EAB;(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值..利用三角形的中位线定理可得,ED∥AC,,,,的法向量,由,得,,则.作为平面==17.(13分)(2013•东城区一模)某班联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,游戏规则如下:每人每次不放回抽取一张,抽取两次.(Ⅰ)求所得奖品个数达到最大时的概率;(Ⅱ)记奖品个数为随机变量X,求X的分布列及数学期望.种方法,其中抽到的方法有;②两次中有一次取得是==;⑥由(.即可得到分布张有依次所求的概率为:.=;==;)==0 2 4 6 8 10.18.(14分)(2013•东城区一模)已知函数f(x)=(x2+ax+a)e﹣x,(a为常数,e为自然对数的底).(Ⅰ)当a=0时,求f′(2);(Ⅱ)若f(x)在x=0时取得极小值,试确定a的取值范围;(Ⅲ)在(Ⅱ)的条件下,设由f(x)的极大值构成的函数为g(a),将a换元为x,试判断曲线y=g(x)是否能与直线3x﹣2y+m=0( m为确定的常数)相切,并说明理由.的斜率为,说明曲线的斜率为19.(13分)(2013•东城区一模)已知椭圆(a>b>0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,证明:点O到直线AB 的距离为定值,并求出这个定值.,得,,的方程为.,的距离,,即.的距离20.(13分)(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自数组A中不同下标的“元”,则称A=(a1,a2,…,a n)为B=(b1,b2,…b n)的子数组.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的关系数为C(A,B)=a1b1+a2b2+…+a n b n.(Ⅰ)若,B=(﹣1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;(Ⅱ)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值;(Ⅲ)若数组A=(a1,a2,a3)中的“元”满足.设数组B m(m=1,2,3,…,n)含有四个“元”b m1,b m2,b m3,b m4,且,求A与B m的所有含有三个“元”的子数组的关系数C(A,B m)(m=1,2,3,…,n)的最大值.(=)满足.及时,得出的对称性,可以只计算,且达到最大值,于是即当,此时)满足.==,的最大值为时,,最大值小于)的最大值为。
北京市东城区2016届高三(上)期末教学统一检测数学(理科)

北京市东城区2015-2016学年第一学期期末教学统一检测高三数学 (理科)第一部分(选择题 共40分)一、选择题(1)已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =( )(A ){2} (B ){4} (C ){1,3} (D ){2,4} (2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于( )(A )32cm 3 (B )2cm 3 (C )3cm 3 (D )9cm 3(3)设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为( ) (A )1- (B )1 (C ) i (D )i - (4)已知(0,1)m ∈,令log 2m a =,2b m =,2m c =,那么,,a b c 之间的大小关系为( )(A )b c a << (B )b a c << (C )a b c << (D )c a b << (5)已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“3k >的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(6)已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是( )(A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞(7)过抛物线220)y pxp =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原 点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为( ) ()A 1 ()B 32()C 3 (D ) 6 (8)如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的 中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x , 给出以下四个命题:① 四边形MENF 为平行四边形;② 若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小 值;③ 若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④ 若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈,则)(x h 为单调函数.其中假命题...为( )()A ① ()B ② ()C ③ D )④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =, 那么b = .(10)在平面向量a,b 中,已知(1,3)=a ,(2,y)=b .如果5⋅=a b ,那么y = ; 如果-=a +b a b ,那么y = .(11)已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.(12)如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a = ;()f t -= .(13)如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为 .(14)数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题: ①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立. 上述命题正确的是____.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和.(16)(本小题共13分)已知函数22()sin cos cos ()f x x x x x x =+-∈R .(Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间;(Ⅱ)若α为第四象限角,且3cos 5α=,求7π()212f α+的值.(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在, 求出PMMC的值,若不存在,说明理由.(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B 的取值范围.(19)(本小题共14分)已知函数()(ln )xe f x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.(20)(本小题共13分)已知曲线n C 的方程为:*1()nnx y n N +=∈.(Ⅰ)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.东城区2015-2016学年第一学期期末教学统一检测参考答案高三数学 (理科)学校__________班级___________姓名__________考号__________ 本试卷共5页,150分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016北京市东城区高三(一模)数学(理)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知复数i•(1+ai)为纯虚数,那么实数a的值为()A.﹣1 B.0 C.1 D.22.(5分)集合A={x|x≤a},B={x|x2﹣5x<0},若A∩B=B,则a的取值范围是()A.a≥5 B.a≥4 C.a<5 D.a<43.(5分)某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为()A.9,18,3 B.10,15,5 C.10,17,3 D.9,16,54.(5分)执行如图所示的程序框图,输出的S值为()A.B.1 C.2 D.45.(5分)在极坐标系中,直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长为()A.B.1 C.D.6.(5分)一个几何体的三视图如图所示,那么该几何体的最长棱长为()A.2 B.C.3 D.7.(5分)已知三点P(5,2)、F1(﹣6,0)、F2(6,0)那么以F1、F2为焦点且过点P的椭圆的短轴长为()A.3 B.6 C.9 D.128.(5分)已知1,2为平面上的单位向量,1与2的起点均为坐标原点O,1与2夹角为.平面区域D由所有满足=λ+μ的点P组成,其中,那么平面区域D的面积为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在的展开式中,x3的系数值为.(用数字作答)10.(5分)已知等比数列{a n}中,a2=2,a3•a4=32,那么a8的值为.11.(5分)如图,圆O的半径为1,A,B,C是圆周上的三点,过点A作圆O的切线与OC的延长线交于点P,若CP=AC,则∠COA= ;AP= .12.(5分)若,且,则sin2α的值为.13.(5分)某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:货物体积(升/件)重量(公斤/件)利润(元/件)甲20 10 8乙10 20 10运输限制110 100在最合理的安排下,获得的最大利润的值为.14.(5分)已知函数f(x)=|lnx|,关于x的不等式f(x)﹣f(x0)≥c(x﹣x0)的解集为(0,+∞),其中x0∈(0,+∞),c为常数.当x0=1时,c的取值范围是;当时,c的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,,AC=2,且.(Ⅰ)求AB的长度;(Ⅱ)若f(x)=sin(2x+C),求y=f(x)与直线相邻交点间的最小距离.16.(14分)已知三棱柱ABC﹣A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,,AC=2,E、F分别为棱C1C、BC的中点.(Ⅰ)求证 AC⊥A1B;(Ⅱ)求直线EF与A1B所成的角;(Ⅲ)若G为线段A1A的中点,A1在平面EFG内的射影为H,求∠HA1A.17.(13分)现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.比赛项目男单女单混双平均比赛时间25分钟20分钟35分钟(Ⅰ)求按女单、混双、男单的顺序进行比赛的概率;(Ⅱ)求第三场比赛平均需要等待多久才能开始进行;(Ⅲ)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).18.(14分)设函数f(x)=ae x﹣x﹣1,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;(Ⅲ)求证:当x∈(0,+∞)时,ln>.19.(13分)已知抛物线C:y2=2px(p>0),焦点F,O为坐标原点,直线AB(不垂直x轴)过点F且与抛物线C 交于A,B两点,直线OA与OB的斜率之积为﹣p.(Ⅰ)求抛物线C的方程;(Ⅱ)若M为线段AB的中点,射线OM交抛物线C于点D,求证:.20.(13分)数列{a n}中,给定正整数m(m>1),.定义:数列{a n}满足a i+1≤a i(i=1,2,…,m﹣1),称数列{a n}的前m项单调不增.(Ⅰ)若数列{a n}通项公式为:,求V(5).(Ⅱ)若数列{a n}满足:,求证V(m)=a﹣b的充分必要条件是数列{a n}的前m项单调不增.(Ⅲ)给定正整数m(m>1),若数列{a n}满足:a n≥0,(n=1,2,…,m),且数列{a n}的前m项和m2,求V(m)的最大值与最小值.(写出答案即可)数学试题答案一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】∵i•(1+ai)=﹣a+i为纯虚数,∴﹣a=0,即a=0.故选:B.2.【解答】由x2﹣5x<0,解得0<x<5,∴B=(0,5),∵A∩B=B,∴a≥5.则a的取值范围是a≥5.故选:A.3.【解答】用分层抽样方法抽取容量为30的样本,则样本中的高级职称人数为30×=9,中级职称人数为30×=18,初级职称人数为30×=3.故选:A.4.【解答】当k=0时,满足进行循环的条件,故S=,k=1,当k=1时,满足进行循环的条件,故S=,k=2,当k=2时,满足进行循环的条件,故S=1,k=3,当k=3时,满足进行循环的条件,故S=2,k=4,当k=4时,不满足进行循环的条件,故输出的S值为2,故选:C5.【解答】直线ρsinθ﹣ρcosθ=1化为直角坐标方程:x﹣y+1=0.曲线ρ=1即x2+y2=1.∴圆心(0,0)到直线的距离d=.∴直线ρsinθ﹣ρcosθ=1被曲线ρ=1截得的线段长L=2=2=.故选:D.6.【解答】由三视图可知:该几何体为四棱锥P﹣ABCD,其中底面ABCD为直角梯形,侧棱PB⊥底面ABCD.∴最长的棱为PD,PD==3.故选:C.7.【解答】设椭圆的标准方程为:+=1(a>b>0),可得:c=6,2a=|PF1|+|PF2|=+=6,解得a=3.∴b===3.∴椭圆的短轴长为6.故选:B.8.【解答】以O为原点,以方向为x轴正方向,建立坐标系xOy,则=(1,0),=(cos,sin)=(,),又=λ+μ=(λ+μ,μ),其中λ≥0,μ≥0,λ+μ≤1;设=(x,y),则(x,y)=(λ+μ,μ),∴,解得;由于λ≥0,μ≥0,λ+μ≤1,∴,它表示的平面区域如图所示:由图知A(,),B(1,0);所以阴影部分区域D的面积为S=×1×=.故选:D.二、填空题:本大题共6小题,每小题5分,共30分.9.【解答】T r+1=(2x)5﹣r=25﹣3r x5﹣2r.令5﹣2r=3,解得r=1.∴T4=x3=20x3.故答案为:20.10.【解答】设等比数列{a n}的公比为q,∵a2=2,a3•a4=32,解得a1=1,q=2.那么a8=27=128.故答案为:128.11.【解答】由题意,OA⊥AP.∵CP=AC,∴∠P=∠CAP,∵∠P+∠AOP=∠CAP+∠OAC,∴∠AOP=∠OAC,∴AC=OC,∵OA=OC,∴△OAC是等边三角形,∴∠COA=,∵OA=1∴AP=故答案为:,12.【解答】∵=(cosα﹣sinα),∴cosα﹣sinα=>0,∴两边平方可得:1﹣sin2α=,∴sin2α=.故答案为:.13.【解答】设运送甲x件,乙y件,利润为z,则由题意得,即,且z=8x+10y作出不等式组对应的平面区域如图:由z=8x+10y得y=﹣x+,平移直线y=﹣x+,由图象知当直线y=﹣x+经过点B时,直线的截距最大,此时z最大,由,得,即B(4,3),此时z=8×4+10×3=32+30=62,故答案为:6214.【解答】∵函数f(x)=|lnx|,当0<x<1时,f(x)=﹣lnx,f′(x)=﹣∈(﹣∞,﹣1),当x>1时,f(x)=lnx,f′(x)=∈(0,1),①当x0=1时,f(x)﹣f(x0)≥c(x﹣x0)可化为:f(x)﹣f(1)≥c(x﹣1)当0<x<1时,f(x)﹣f(1)≥c(x﹣1)可化为:≤c,则c≥﹣1,当x>1时,f(x)﹣f(1)≥c(x﹣1)可化为:≥c,则c≤1,故c∈[﹣1,1];②当x0=时,f(x)﹣f(x0)≥c(x﹣x0)可化为:f(x)﹣f()≥c(x﹣)当0<x<时,f(x)﹣f()≥c(x﹣)可化为:≤c,则c≥f′()=﹣2,当<x<1时,f(x)﹣f()≥c(x﹣)可化为:≥c,则c≤f′()=﹣2,故c=﹣2,故答案为:[﹣1,1],﹣2三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵,∴C=45°.∵,AC=2,∴=4,∴AB=2.(Ⅱ)由,解得或,k∈Z,解得,或,k1,k2∈Z.因为,当k1=k2时取等号,所以当时,相邻两交点间最小的距离为.16.【解答】(Ⅰ)∵AA1⊥底面ABC,AC⊂平面ABC∴AC⊥AA1.∵∠BAC=90°,∴AC⊥AB.又A1A⊂平面AA1B1B,AB⊂平面AA1B1B,A1A∩AB=A,∴AC⊥平面A1ABB1.∵A1B⊂平面A1ABB1,∴AC⊥A1B.(Ⅱ)以A为原点建立空间直角坐标系A﹣﹣﹣xyz,如图所示:则A1(0,0,1),,,.∴,.∴.直线EF与A1B所成的角为45°.(Ⅲ),,.=(0,0,1).设平面GEF的法向量为=(x,y,z),则,∴令,则.∴cos<>==.∵A1在平面EFG内的射影为H,∴∠HA1A位AA1与平面EFG所成的角,∴sin∠HA1A=|cos<>|=.∴∠HA1A=.17.【解答】(I)三场比赛共有种方式,其中按按女单、混双、男单的顺序进行比赛只有1种,所以按女单、混双、男单的顺序进行比赛的概率为.(Ⅱ)令A表示女单比赛、B表示男单比赛、C表示混双比赛.按ABC顺序进行比赛,第三场比赛等待的时间是:t1=20+25=45(分钟).按ACB顺序进行比赛,第三场比赛等待的时间是:t2=20+35=55(分钟).按BAC顺序进行比赛,第三场比赛等待的时间是:t3=20+25=45(分钟).按BCA顺序进行比赛,第三场比赛等待的时间是:t4=35+25=60(分钟).按CAB顺序进行比赛,第三场比赛等待的时间是:t5=35+20=55(分钟).按CBA顺序进行比赛,第三场比赛等待的时间是:t6=35+25=60(分钟).且上述六个事件是等可能事件,每个事件发生概率为,所以平均等待时间为,(Ⅲ)按照比赛时间从长到短的顺序参加比赛,可使等待的总时间最少18.【解答】(Ⅰ)当a=1时,则f(x)=e x﹣x﹣1,f'(x)=e x﹣1;令f'(x)=0,得x=0;∴当x<0时,f'(x)<0,f(x)在(﹣∞,0)上单调递减;当x≥0时,f'(x)≥0,h(x)在(0,+∞)上单调递增;即a=1时,f(x)的单调减区间为(﹣∞,0),单调赠区间为[0,+∞);(Ⅱ)∵e x>0;∴f(x)>0恒成立,等价于恒成立;设,x∈(0,+∞),;当x∈(0,+∞)时,g′(x)<0;∴g(x)在(0,+∞)上单调递减;∴x∈(0,+∞)时,g(x)<g(0)=1;∴a≥1;∴a的取值范围为[1,+∞);(Ⅲ)证明:当x∈(0,+∞)时,等价于e x﹣x﹣1>0;设h(x)=e x﹣x﹣1,x∈(0,+∞),;由(Ⅱ)知,x∈(0,+∞)时,e x﹣x﹣1>0恒成立;∴;∴h′(x)>0;∴h(x)在(0,+∞)上单调递增;∴x∈(0,+∞)时,h(x)>h(0)=0;因此当x∈(0,+∞)时,.19.【解答】(I)解:∵直线AB过点F且与抛物线C交于A,B两点,,设A(x1,y1),B(x2,y2),直线AB(不垂直x轴)的方程可设为.∴,.∵直线OA与OB的斜率之积为﹣p,∴.∴,得 x1x2=4.由,化为,其中△=(k2p+2p)2﹣k2p2k2>0∴x1+x2=,x1x2=.∴p=4,抛物线C:y2=8x.(Ⅱ)证明:设M(x0,y0),P(x3,y3),∵M为线段AB的中点,∴,.∴直线OD的斜率为.直线OD的方程为代入抛物线C:y2=8x的方程,得.∴.∵k2>0,∴.20.【解答】(Ⅰ),a1=﹣1,a2=1,a3=﹣1,a4=1,a5=﹣1,V(5)=丨a2﹣a1丨+丨a3﹣a2丨+丨a4﹣a3丨+丨a5﹣a4丨=2+2+2+2=8,V(5)=8.…(2分)(Ⅱ)充分性:若数列{a n}的前m项单调不增,即a m≤…≤a2≤a1,此时有:=(a1﹣a2)+(a2﹣a3)+(a3﹣a4)+…+(a m﹣1﹣a m)=a1﹣a m=a﹣b.必要性:反证法,若数列{a n}的前m项不是单调不增,则存在i(1≤i≤m﹣1)使得a i+1>a i,那么:=丨a i+1﹣a i丨+丨a i+1﹣a i丨+丨a i+1﹣a i丨≥丨a i﹣a1丨+(a i+1﹣a i)+丨a m﹣a i+1丨,=丨a m﹣a i+a i﹣a i+1丨+(a i+1﹣a i),=丨a﹣b+a i+′﹣a i丨+(a i+1﹣a i),由于a i+1>a i,a>b,∴|a﹣b+a i+1﹣a i|+(a i+1﹣a i)>a﹣b.与已知矛盾.…(9分)(III)最小值为0.此时{a n}为常数列.…(10分)最大值为,当m=2时的最大值:此时a1+a2=4,(a1,a2≥0),…11分|a1﹣a2|≤|4﹣0|=4.当m>2时的最大值:此时a1+a2+a3+…+a4=m2.由|x﹣y|≤|x|+|y|易证,{a n}的值的只有是大小交替出现时,才能让V(m)取最大值.不妨设:a i+1≤a i,i为奇数,a i+1≥a i,i为偶数.当m为奇数时有:,=a1﹣a2+a3﹣a2+a3﹣a4+a5﹣a4+…+a m﹣a m﹣1,=a1﹣a m+2a i﹣4a2i≤2a i=2m2,当m为偶数时同理可证.…(13分)。