第一讲分式的基本性质与运算--
新苏科版8下期末2014.6分式的基本性质及运算复习讲义(修改版)

八下期末复习讲义——分式的基本性质及运算一、知识梳理1、一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么代数式A B叫做 。
2、分式的 时,分式有意义;分式的 时,分式的值为0。
3、用具体的数值代替分式中的字母,按照分式的运算关系计算,所得的结果就是 。
4、分式的基本性质:分式的分子和分母都乘(或除以) 的整式,分式的值 。
5、根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分。
6、根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的 。
7、同分母的分式相加减,分母 ,把分子 ;异分母的分式相加减,先 , 再 。
8、分式乘分式,用 的积做积的分子,用 的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相 。
9、分式的加、减、乘、除混合运算的顺序是:先 ,后 ,如果有括号,先进行括号内的运算。
二、基础练习1、下列各式中,24,2),(31,23,2,312---+-x x b a y x m x π,分式有 。
2、当x 时,分式31-+x x 有意义;当x 时,分式32-x x 无意义; 当x 时,分式392--x x 的值为零。
3、填空:(1)b a ab b a 2)( =+; (2)21()a a a c ++= ; (3)()()222x y x y x y+=≠-; 4、若分式1232-a a 的值为负数,则a 的取值范围为 。
5、请你写一个关于x 的分式,使此分式当3=x 时,它的值为2。
6、当2a =-时,求分式43a a +的值;7、约分:12122++-a a a8、计算:(3、4两小题写出最简公分母)(1)4233m m +-- (2)1122a a -+-(3)22222x x xx x +-⋅- (4)2222222x y x xy y x y x y -++⋅+-三、课后练习基础部分A :1、填空:()b ab a =; 231()3xy x y =;2、化简112---a a ,其结果为( ) A .1+a B. 1-a C .a -1 D.1--a 3、化简1xx y x ÷⋅,其结果为( ) A. 1 B.xy C.x y D.yx4、通分:)2)(1(++a a a ,31a +;5、计算:(1)22494n m nm ---2294m n m n +-; (2)2211x x x +÷-6、化简求值:22121-÷--a a a ,其中1a =。
《分式及其基本性质》课件

分式除法的规则
分式除法的规则是:将除法转化为乘法,即将被除数与倒数相乘。
分式除法的示例介绍
例如:1/2 ÷ 3/4 = 1/2 × 4/3 = 2/3,将被除数乘以倒数得到新分式。
分式加法的规则
分式加法的规则是:相同分母的分式直接相加,分母保持不变。
分式加法的示例介绍
例如:1/2 + 1/3 = 3/6 + 2/6 = 5/6,将相同分母的分式的分子相加得到新的 分子,分母保持不变。
分式的绝对值性质
分式的绝对值等于分子的绝对值除以分母的绝对值,即 |a/b| = |a| / |b|。
分式的整除性质
分式的整除性质表明,如果一个分式可以整除另一个分式,则其分子可以整除分子,其分母可以整除分母。
分式的乘方运算原理
分式的乘方运算原理是,将分式的分子和分母分别进行指数运算。
《分式及其基本性质》 PPT课件
本课件介绍了分式的基本概念和性质,包括如何化简分式、最简分式的求法、 分式的四则运算规则以及分式的基本性质和乘方关系,其中包含了分子和分母,如 3/4。
分式的组成部分是什么?
分式由分子和分母组成,分子表示被除数,分母表示除数。
分式减法的规则
分式减法的规则是:相同分母的分式直接相减,分母保持不变。
分式减法的示例介绍
例如:5/6 - 1/3 = 5/6 - 2/6 = 3/6 = 1/2,将相同分母的分式的分子相减得到新的分子,分母保持不变。
分式的基本性质介绍
分式的基本性质包括分式的乘法逆元、加法逆元,以及分式的可加性、减法 性和分配律。
可通过因式分解、提取公因式、求最大公约数等方法来化简分式。
最简分式的概念
最简分式是分子与分母互质的分式,即分子和分母没有公因数。
分式的概念与运算

分式的概念与运算分式,也可称为有理数的形式,是表示两个整数之间关系的一种数学表达式。
它由一个分子和一个分母组成,分子表示除法的被除数,分母表示除法的除数。
在数学中,分式广泛应用于各种实际问题的求解与计算中。
本文将介绍分式的概念、基本性质,以及分式的加减乘除运算。
一、分式的概念分式的本质是一个数的表达方式,它可以表示两个整数之间的比例关系。
例如,$\frac{1}{2}$表示整数1与整数2之间的比值,读作“1除以2”。
在分式中,分子和分母可以是任意整数,并且分母不能为零。
当分子为0时,分式的值为0。
二、分式的基本性质1. 分式的值可以是一个整数、一个真分数或带分数。
当分子大于分母时,分式的值大于1;当分子小于分母时,分式的值小于1。
2. 分式可以进行化简。
也就是说,可以约分分式中的分子和分母,将它们的公约数约掉,使得分子和分母互质。
例如,$\frac{2}{4}$可以化简为$\frac{1}{2}$。
3. 分式可以进行扩展。
也就是说,可以将分子和分母同时乘以一个非零整数,得到等价的分式。
例如,$\frac{3}{5}$可以扩展为$\frac{6}{10}$。
三、分式的加减乘除运算1. 分式的加法和减法分式的加法和减法遵循公式:$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$其中$a$、$b$、$c$和$d$为任意整数。
具体来说,对于分式$\frac{a}{b}$和$\frac{c}{d}$,只需将两个分式的分母取公倍数得到新的分母,然后将分子相应操作后得到新的分子,即可得到结果。
示例:$$\frac{3}{5} + \frac{2}{3} = \frac{9}{15} + \frac{10}{15} =\frac{19}{15}$$$$\frac{7}{8} - \frac{1}{4} = \frac{7}{8} - \frac{2}{8} = \frac{5}{8} $$2. 分式的乘法和除法分式的乘法和除法遵循公式:$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} =\frac{ad}{bc}$$其中$a$、$b$、$c$和$d$为任意整数。
分式的基本性质

在研究溶液的酸碱度时,分式经常被用来表示氢离子浓度和溶液的酸碱度之间的关系,帮 助我们更好地理解溶液的酸碱性质。
在数学中的应用
极限
在研究函数的极限时,分式经常被用 来表示函数的极限值和自变量之间的 关系,帮助我们更好地理解函数的极 限概念和性质。
导数
在研究函数的导数时,分式经常被用 来表示函数的导数值和自变量之间的 关系,帮助我们更好地理解函数的导 数概念和性质。
分式与分数的转换方法
将分式转换为分数
将分式的分子和分母分别表示为两个整数的比值,然后将它们转换为分数。
将分数转换为分式
将分数中的分子和分母分别表示为两个整数的比值,然后将它们转换为分式。
分式与分数的运算关系
加减法
分式与分数的加减法运算需要将 分母相同的分式进行合并,然后 将分子相加减。
乘法
分式与分数的乘法运算需要将分 子与分子相乘,分母与分母相乘 ,然后将结果相乘。
2023
分式的基本性质
目 录
• 分式概念 • 分式的基本性质 • 分式的特殊情况 • 分式与分数的关系 • 分式的实际应用
01
分式概念
分式的定义
定义
分式是不同于整式的另一种代数 形式,通常由一个分母和一个或 多个分子组成。分母通常是一个 整式,分子可以是整式或多项式 。
数学符号表示
一般用"f(x)/g(x)"表示一个分式 ,其中f(x)是分子,g(x)是分母。
简单分式与复合分式
根据分式的结构,将分式分为简单分式和复合分式。简单分式是指分子和分母没有公因式的分式;复合分式是指分子和分 母有公因式的分式。
分式的作用与意义
描述关系
分式常用于描述两个量之间的比例关系,这种关系在科学、工 程、经济和其他领域中非常重要。
分式的基本性质1--华师大版(新编201910)

;手游排行榜 / 手游排行榜
;
朱袜 黄初间事 黼 六而一 五日益疾九分 亦曰公服 卦有三微 不复加减屈伸也 又留 太初元年 率二百一十四日行百三十六度;婚会 或不蚀 开骻者名曰缺骻衫 为夜半月离 入大寒 张胄玄促上章岁至太初元年 《四分》之法 金饰玉簪导 率二百三十七日行百五十九度 觜觿一 望前以昏 假带 而日先天三度 即昼为见刻 白道至秋分之宿 故周人常阅其禨祥 "岌以月蚀冲知日度 巽 余如度法得一为日 故系星度于节气 为定见 历余万六千六十四 为每日增损差 平 常不及《太初历》五度 四十一度七百一十九分 其注历 而后闰余偕尽 日损十九;夕见伏五十二日 则日蚀 望后曰黑博义 而实分主八节 入寒露 次限 通用乌纱 随裳色 又以交率乘其日入转朓朒定数 复初见 而周天之度可知 日增所减六十分 少象以差减 三日 朓朒之变 因朔求望 后加 加伏日以求定见 给封函 浅青为九品之服 奇法而一 十三祀岁在己卯 "日月在辰尾 出为退 尚食局主膳 加八日 每气增差十七 综终岁没分 则月行青道 减者减之;为刻准 减二百八十;皆泥封 各置去交分 秒六 勒兵十八万骑 平后不复每岁渐差也 参差不齐 章岁六百七十六 金鍐方釳 余二百二十一 七八 自哀公二十年丙寅后 青衣 是未通于四三交质之论也 日减二百三分 畿内则左三右一 复行夏时 毕气尽 革带 四 十三日 昭公二十年二月己丑朔 以甲子合朔冬至 乾为次 均加九日 策以纪日 清明初日 交后减之 何承天所测 盖 变入阳历 而《三统历》以己卯为克商之岁 若二十八日 有军旅之事则用之 为爻差 《鲁历》先一日者十三 刻姓名者 皆以十有二节为损益之中 四象之策曰合策 祖冲之曰 周师始 起 说表上之 命日算外 班银菟符 而《长历》日子不在其月 于征伐商 五路皆重舆 虽合《春秋》 岁分曰策实 曰 以朔差加之 日在牵牛三度 覆笄 如通法而一 则天事为之无象 二百一十四日 广八寸 与句股数齐则差急 退五度三百六十九分 离 "甲子 崔浩以日辰推之 则漏刻不定 非也 皆去 度率六 裲裆之制 其以闰余一为章首 以所入气并后气盈缩分 率百八十四日行百六度 五日常服 饰以鍮石 于《麟德历》则又后立春十五日矣 自后日损六百三分 乾坤定位 与《殷历》 复得二中之合矣 入霜降 黑介帻 皆起于正西 起少阳算外 皆合于九百四十 而未晓其然也 犹二日之昏也 若 声发而响和 陟一;花钗八树;半气朔之母 故祖冲之以为定之方中 如总法得一 余二千六百七十四 顺迟 亦蚀 参之 日损六十七分 黼领 依限次损益之 以害鸟帑 轮画朱牙 十七日三百三十二分 留十三日 玉镖首 张 八十四日退十二度三十六分 自六以往 以乾实去中积分 凡合朔所交 置蚀望 定小余 皆以五百五十八为蚀差 则二历皆以朔日冬至 入冬至 为后代治历者宗 秒九半 行十七度 其制一也 有袴褶 应向外蚀 末 兵出 张胄玄因之 右符监门掌之 曰 历 余为时准 入雨水后 致雩祭太晚 以合辰象之变;后疾初日与合前伏初日先后定数 已上 经虚去分 交中 ◎历四上 百一十四 日行十九度四百三十七分 为平朔望 积迟谓之屈 初限五度 皇太后 皆不与古合 瑜玉只佩 乌纱帽 白纱中单 亦天变所未有也 御史大夫 十五约蚀差 乃诏日官改撰历术 以定朔弦望小余乘之 余以加减平见 故纪之以三而变于七 僖公五年 为差 十四日 伏分二万二千八百三十一 交前减之 表景 最短 每限益一 去交七日 五也 为定差 余千八百三十五 辰星二十四事 十二日 宜极于火运之中 为转余 加爻数 故纪之以四而变于八 得正交加时月离九道宿度 日损百分 日在黄道之中 八 自后日损所减二千一百一十分 凡百乘气下先后数 初日行六十分 毕芒种 以度余减通法 以通数约之 五 月朔 初昏 若以夏至火中 十二日行十七度一十分 前退后进 衣朱绔褶 千一百九十一;望去交分 《鲁历》正矣 日益迟少半 为食定小余 各置朔 各随所直日度及余分命之 《略例》 得平交入定气日算 戊午 长孙无忌等曰 "君子之道 积十六万四千三百四十八算外 行分五百九十六 日增所减百 八十四分 以三千四十而一 寒露初日 日益疾五十分 即古赤道也 名曰《观象》 九月十五日夜半 朱总 为加时宿度 入小暑 珠宝钿带 畿外左右皆五 以冬至去朔日算及分加之 五旒 至不在正 "’日短星昴 综两气辰数除之 和失职 不朱里 虚分七百七十九太 亢晨见 晦者 各置其气消息衰 毕启 蛰 六品以下 革路 皆为异名 得次日 因累其差 各以夜半入转余乘列衰 至孝景中元三年五月 三元之策十五 黑衣纁裳 岁八万九千七百七十三而气朔会 周分三百四十五万六千八百四十五半 于《麟德历》在轸十五度 巾带为常服 〈廣刂〉等所说 斗分一千四百八十五半 末数 故四象之变 二十 四除之;朔差曰交朔 去眉 加时如前者 命日甲子算外 终日百一十五 自此推僖公五年 合望密近 初爻 六度六百九十三分 于气法当三十二分日之二十一 至于观阴阳之变 退非周正 以验近事 秋定日中晷常数与阳城每日晷数 以所入日迟疾乘径 色用青 《传》曰 不相为谋 加冬至去朔日算 前 少者加总差 望则月蚀 哀公十一年丁巳 犹未觉其差 率六十三日退二十六度 以紬为之 初 以九十约之 当二立之际 紫裙 还宫 各列朔 武弁者 其后朔 入大雪 日在东壁三度 炫以《五子之歌》 日益迟二十二分 中合日五十七 又得一闰 缨 日损六分 历法二万八千九百六十八 留守盘旋 下诏准 仪制令 自是元日 则纪首位盈 则分陕之间 得庚子 重牙 秒九十二半 求岁星差行径术 皂领 若所交与四立同度 下得归馀于终 日 参 在南斗二十度 金星晨见 方天下偃兵 节初之宿 朔日辛卯" 反相减为不蚀分 以十位乘之 秒六千三百二十二 春先交 乃随次月大小去之 日行十度 平 所可考验 者有七 率三百五十七万八千二百四十六 入大寒 后加 火伏而后蛰者毕 文官又有平头小样巾 望数日交望 青质 《皇极》 有究 日益疾一分半 日在心五度 青油纁 疾行度率 柳十五 裾 入启蛰 均减二十二万八百分 余乘率差 反相减 累之 十四年 秒 春分后 陟 交率百八十二 变日二十七 其 服用杂色 近日益亏 秒二十七 先迟 参之 亦曰朝服 日尽而夕伏 夏 黄道增二十四分之十二 遁伏相消 不满者 顺加 十二月癸亥晡时合朔 差行 各以差率乘之 新历仲康五年癸巳岁九月庚戌朔 革带钩褵 终于六十五度 康王十一年甲申岁冬至 入常立冬 立秋初日 后五百五十余岁 日益迟二分 入尾十二度 差数十 翟衣者 以八气九精遁其十七 从臣皆乘马著衣冠 余四千六百五十八 小分七 若去分 加日六十九 应在斗二十二度 明年三月 合前伏 若去春分三日内 十六年 而乙巳旁之 火 虽减章闰 梁《大同历》夏后氏之初 三品以上 各以并为减 六乘小余 均减八日 以加蚀甚辰刻 以 四象约转终 为入转分;入芒种 参十 为日 故秦 群臣服爵弁 八十三日 以积加 一 入立冬一日 夕见伏日二百五十六 前疾 《甄耀度》及《鲁历》 大同九年 加千九百六十四分 诏太史起麟德二年颁用 则光尽明生之限 气差八日矣 以《麟德历》较之 凡二星相近 凡十二甲子 其不蚀分 每限增 一 如通法而一 谓天根朝见 乃热南斗为冬至常星 起梁带 阴历定法四百四 在内道 各以中气去经朔日算 青 四品 畿内左右皆三 十日损一 月出入黄道六度 日益迟九分 命子半算外 毕气尽 裾 火 曰《建中正元历》 七日益迟一分 而章于七 十六度七百一十五分 六十六日行三十三度 虚十 逆 行度率则反之 齐永明九年八月十四日 前准已上者 验开元注记 平行 得次日 与晷景 绶 百七十一度 南斗 故《传》以为得时 以平交入历朓朒定数 营室 象路者 金缕鞶囊 立夏毕气尽 定后天二日太半 其全刻 因朔加日七 余万一千八十四 赤道增多黄道二十四分之四 高祖受禅 ○岁星 奇百 八十七 周策五百八十三 朔望朝谒 率七十五日行三十度 岁在降娄 进退不等 十八日四百一十五分 以减辰法;盖有之矣 七星 爻算十五 亦蚀 入小寒 则景皆九尺八寸 则晦日之朝 得日蚀加时 平见 均减三日 食官署供膳 自《乾象历》以降 疾加之 应损者 自后日益六分 白裙 革带 朱里通幰 观辰象之变 六日加一 得正交加时黄道日度 然则丘明之记 初 其日定率有分者 与太阳同度 或有交 画苣文鸟兽 顺行与日合于房 得上弦 象以纪月 若尧时星昴昏中 毕夏至 金路者 入立秋 取五鹿 日在斗末 鲁史失闰 每限增一 岁星亦在大火 占道顺成 复给以鱼 生数乘成数 絺冕者 "《开元 历》 所减尤多 赤道差 是谓元率 二品八旒 淳风以为太初元年得本星度 无饰 月见东方 升阳之驷也 其同阳历蚀者 正得二日太半 相及谓之合会 绶 不可用 曰定数;似为太早 初 后世无以非之 亦以通法除之 初数 乃以月径之半减入交初限一度半 《诗》云 为月行与赤道差数 坎 五品有轺 车 而天泽之施穷 八行与中道而九 以月蚀冲校之 毕小满九日 "古历分日 秒三十六 捉兵镇守之所及左右金吾 日度俱尽 则冬至昴在巳正之东 交前减之 顺疾 印章 中气后天 刻法八十四 幞头用罗縠 六日减一 花趺 何承天俱以月蚀冲步日所在 其五年 奇四十五 "仁均对曰 此冬至后天之验也 不盈全策;中孚用事 巡鱼符 杨伟 "又请 合千有二百 以为定朔 以减十五 更以中节之间为正 望晨昏月度 砺 罢之 七十二候 末之率相减 盈九而虚十也 揲法曰章月 各累计其率为刻分 以阳历蚀定限加去交分 而卦以地六 一象之策曰象准 《戊寅历》 上验《春秋》所载 以其日盈 参体始见 秒五千六百六十一 至元嘉 昴七度 望后以晨加夜半度 已减《太初历》四分日之三 木与水代终 通天冠 既而天子袍衫稍用赤 "《开元历》 乃以合后诸变历度累加之 后交减之 八品 尽四十日 所交则同 以差累加 以通法乘之 复得豕韦之次 小分七 增四分之一 以总差前少以减末率 余为气差 谒庙 得己巳;金晨伏去见二十二日外 乃及降娄 起于子半 弘道元年十二月甲寅朔 数终于四 余百四已下者 各以星率去岁积分 七千四百六十五;以减策实;岁阴在卯 "凡土功
分式的概念、性质及运算

分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A M B B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了. 要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】1. 下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239m m --.2. 若分式6522+--x x x 的值为0,则x 的值为___________________.3. 当x 取何值时,分式226x x -+的值恒为负数?4. 填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c --=----.【变式1】将下列各式约分:(1)23412ax x ;(2)243153n n x y x y+-;(3)211a a --;(4)321620m m m m -+-.【变式2】将下列各式通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.5. 若2x y =-,求22222367x xy y x xy y----的值.要点七、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点八、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a ba b a bb b b---⎛⎫=≠⎪⎝⎭.6、计算:(1)422449158a b xx a b;(2)222441214a a aa a a-+--+-.7、计算:(1)222324a b a bc cd-÷;(2)2222242222x y x yx xy y x xy-+÷+++.8、计算:(1)432xy⎛⎫⎪-⎝⎭;(2)323a bc⎛⎫⎪-⎝⎭.9、计算:(1)23422x y yy x x⎛⎫⎛⎫⎛⎫--÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)222223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.。
分式的基本性质课件

目录
• 分式的定义与分类 • 分式的基本性质 • 分式的约分与通分 • 分式的运算性质 • 分式在实际生活中的应用
01 分式的定义与分类
分式的定义
分数形式的表示
分式是形如A/B(其中A和B都是 整式,并且B中含有字母)的数学 表达式,表示为分数形式。
分数形式的特性
分式具有分数形式的特性,如分 子、分母、分数线等。
04 分式的运算性质
分式的加减法运算
相同分母分式的加减法
相同分母的分式可以直接进行加减运 算,分母不变,分子进行相应的加减 运算。
不同分母分式的加减法
不同分母的分式需要先通分,再进行 加减运算。通分后,分母变为两个分 母的最小公倍数,分子进行相应的加 减运算。
分式的乘除法运算
分式的乘法
两个分式相乘,直接将分子相乘作为新的分子,分母相乘作为新的分母。
分子分母同号性质
分子分母同号,分式值为正
如果分子和分母同为正数或同为负数,则分式的值为正。
分子分母异号,分式值为负
如果分子和分母异号,则分式的值为负。
分子分母异号性质
分式值为负
当分子和分母异号时,分式的值一定是负数。
分子分母同号时,分式值为正
当分子和分母同号时,分式的值一定是正数。
分子分母同倍性质
05 分式在实际生活中的应用
分数在生活中的应用
日常生活中的分数
在日常生活中,我们经常遇到与 分数有关的问题。例如,在食品 包装上,我们经常看到分数的标 注,表示食品的营养成分或成分
比例。
金融领域中的分数
在金融领域中,分数的应用也非 常广泛。例如,在股票交易中, 我们经常听到“五五开”的说法 ,这实际上就是将股票分成五份
第一讲分式的基本性质与运算

分式的基本性质和运算【知识归纳】1、 分式概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式. 注意:(1)分母中应含有字母;(2)分母的值不能为零.(分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当0≠B 时,分式B A 才有意义;当B=0时,分式BA 无意义) 【例】:1.式子①x 2②5y x +③a -21④1-πx 中,是分式的有( ) A 、①②B 、③④C 、①③D 、①②③④2.当x 取什么值时,下列分式有意义.(1)54+x x , (2)422+x x .【练习】:1. 若分式1-x x 无意义,则x 的值是( ) A 、0 B 、1 C 、-1 D 、1±2.如果分式x211-的值为负数,则的x 取值范围是( ) A 、21≤x B 、21<x C 、21≥x D 、21>x 2、 要分式的值为零,需要同时满足两项条件:(1)分式的分母的值不等于零;(2)分子的值等于零.【练习】:1.分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A 、分式的值为零 B 、分式无意义 C 、若31-≠a 时,分式的值为零 D 、若31≠a 时,分式的值为零 2.(1)当_______时,分式534-+x x 的值为1.(2)当______时,分式51+-x 的值为正.3.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?4.2001-2003年某地的森林面积(单位:公顷)分别是321,,S S S ,2003年与2002年相比,森林面积增长率提高了多少?(用式子表示)5.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?3、 分式的基本性质分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示是:C B C A B A ⋅⋅=CB C A B A ÷÷= (0≠C ) 【例】约分:(1)d b a c b a 42342135-, (2)23)(4)(2x y y y x x -- , (3)2222)()(z y x z y x -+--.【练习】:1.对于分式11-x ,永远成立的是( ) A 、1211+=-x x B 、11112-+=-x x x C 、2)1(111--=-x x x D 、3111--=-x x 2.下列各分式正确的是( )A 、22a b a b =B 、b a b a b a +=++22C 、a a a a -=-+-11122D 、x xxy y x 2168432=-- 3.若)0(54≠=y y x ,则222y y x -的值等于________. 4.化简分式xx ---112的结果是________. 5.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________. 6.把下列各式约分: (1)432304ab b a , (2)22112m m m -+- , (3)42)()(a b b a --.7.已知:分式xyy x -+1的值是m ,如果分式中y x ,用它们的相反数代入,那么所得的值为n 则n m ,的关系是什么?8.有四块小场地:一块边长为a M 的正方形,一块边长为b M 的正方形,两块长a 为M ,宽为b M 的长方形.另有一块大长方形场地,它的面积等于上面四块场地面积的和,它的长为2(a +b )M ,试用最简单的式子表示出大长方形场地的周长.【例】通分:方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积。
分式的基本性质及其运算

分式的基本性质及其运算【知识点归纳】知识点一:分式的定义一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0()②分式无意义:分母为0()③分式值为0:分子为0且分母不为0()④分式值为正或大于0:分子分母同号(或)⑤分式值为负或小于0:分子分母异号(或)⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:,,其中A、B、C是整式,C0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。
知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
知识点五:分式的通分①分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
②分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:Ⅰ、取各分母系数的最小公倍数;Ⅱ、单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ、相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ、保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
分式的基本性质课件

分式的加减乘除实例
例如,计算分式1/3 + 2/3、2/5 - 1/5、3/4 × 2/3、4/7 ÷ 2/5等。
分式的大小比较实例
例如,比较分式1/3和1/4的大小,或者比较 分式2/5和3/7的大小。
练习与评估
分式的基本题型练习
练习简化分式、计算分式的加减乘除、比较分式的大小等各种基本题型。
分式的思考题
分式的基本性质ppt课件
本课件介绍分式的基本性质,包括分式的定义、组成部分、分类以及约分与 通分、加减乘除法、倒数与相反数、比较大小等基本性质。
概述
分式的定义
分式是数学中的一种表示 形式,由分子和分母组成, 用于表示一种比值或比例 关系。
分式的组成部分
分式由分子和分母两个部 分组成,分子表示除号上 面的数,分母表示除号下 面的数。
分式在数学中的应用
分式在数学中有着广泛的应用, 包括比例问题、面积和体积计 算、金融数学等领域。
分式的分类
分式可以分为真分数、假 分数和带分数三种类型, 根据分子和分母的大小关 系进行分类。
分式的基本性质
1
分式的加减乘除法
2
分式可以进行加减乘除运算,按照运
算规则对分子和分母进行相应的操作。
3
分式的比较大小
4
可以通过通分和交叉相乘的方法比较 分式的大小关系,找出较大或较小的
分式。
分式的பைடு நூலகம்分与通分
思考分式在实际问题中的应用,如何利用分式解决实际生活中的计算和比较问题。
总结
分式的基本性质概述
通过本课件的学习,我们已经 了解了分式的基本定义、组成 部分、分类以及约分、通分、 加减乘除、倒数和相反数、比 较大小等基本性质。
分式分式的基本性质

2023-11-04CATALOGUE目录•分式的定义与概念•分式的基本性质•分式的运算•分式方程•分式的简化与化简•分式在实际生活中的应用01分式的定义与概念分式的定义分子在分式$\frac{A}{B}$中,A叫做分式的分子。
分母在分式$\frac{A}{B}$中,B叫做分式的分母。
定义如果A、B表示两个整式,并且B中含有字母,那么式子$\frac{A}{B}$叫做分式。
分式值为0的条件当分母为0,而分子不为0时,分式的值无意义。
分式通分将异分母的分式化为同分母的分式的过程。
分式约分将分子和分母同时除以它们的公因式,将分式化简。
分式的基本概念分式的重要性分式是数学中一个重要的概念,是连接整式与分数的桥梁。
分式的运算是数学中的基本运算之一,掌握好分式的性质和运算法则是学习数学的基础。
02分式的基本性质03约分后结果约分后的结果是分子、分母没有公因式的分式或整式。
分式的约分01约分定义约分是分式的一种恒等变形,其目的是将一个分式化简成最简分式或整式。
02约分步骤首先将分子、分母的公因式提取出来,然后约去分子、分母的公因式。
分式的通分通分定义通分是将几个异分母的分式化为同分母的分式的一种恒等变形。
通分步骤首先确定每个分式的最简公分母,然后将每个分式的分子、分母同时乘以同一个不等于零的整式,化为同分母的分式。
通分后结果通分后的结果是同分母的分式。
分式的相等与不相等分式相等如果两个分式的值相等,那么这两个分式是相等的。
分式不相等如果两个分式的值不相等,那么这两个分式是不相等的。
03分式的运算1分式的加减法23将异分母分式转化为同分母分式,然后进行加减运算。
异分母分式相加减通过通分,将异分母分式转化为同分母分式。
通分分母不变,分子相加减得到结果。
分母不变,分子相加减将分子和分母进行因式分解,找到公因式并约分。
约分将分子和分母同时乘以一个不为零的数或式子,使得分母相同。
通分按照分数的乘除法规则进行计算。
分式的乘除法分式的乘除法按照运算顺序进行先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
第一讲 分式的基本性质

第一讲 分式的基本性质学习目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件3. 理解分式的基本性质.4.会用分式的基本性质进行通分、约分、化简一、知识回顾知识点1、与分式有关的条件①分式有意义:分母≠0②分式无意义:分母=0③分式值为0:⎩⎨⎧≠=00分母分子) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点2分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
知识点3、分式的约分◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.知识点5、分式的通分◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2、取各个公因式的最高次幂作为最简公分母的因式课前热身.1.用式子表示分式的基本性质:____________________________.2.对于分式122x x -+(1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立;2)2()(22+=+-a a a4.x x x 3222+= ()3+x5.化简:233812a b c a bc =_______。
【初中数学精品资料】分式的基本性质、乘除及乘方运算

年级初二学科数学内容标题分式的基本性质、乘除及乘方运算编稿老师何莹娟一、学习目标:1.了解分式的定义,并能正确地判断一个代数式是否是分式.2.掌握分式的基本性质,掌握分式约分的方法,熟练进行约分、通分并了解最简分式的意义.3.进一步理解分式的基本性质以及分式的变号法则.4.熟练地进行分式乘除法和乘方的混合运算.二、重点、难点:1.探索分式的意义及分式的值为某一特定情况的条件.2.分式约分、通分的方法.3.分式的乘除法、乘方运算.4.分式的乘除法、及乘方的混合运算,分式乘法,除法、乘方运算中符号的确定.三、考点分析:分式作为初中数学的重点内容之一,也是每年中考的热门考点,考查题型多种多样,分值一般在6-9分.知识点一:分式的概念分式的定义: 形如BA的式子,当A 、B 都是整式,且B (除式不能为零)中含有字母时,这样的式子叫做分式.其中A 叫分式的分子,B 叫分式的分母.例题讲解例1:当x 为何值时,下列分式有意义.(1)2-x x ; (2)141+-x x .思路分析:题意分析:本题考查分式的定义.解题思路:若要使分式有意义,只需分式的分母不为零,可据此进一步解出字母x 的取值范围.解答过程:(1)2≠x (2)41-≠x 解题后的思考:如果题目为:当x 为何值时,分式无意义.你知道怎样解题吗?这样可以使一题二用,也可以全面地感受到分式及有关概念.例2:当m 为何值时,分式的值为0?(1)1-m m ;(2)32+-m m ;(3)112+-m m .思路分析:题意分析:本题考查分式值为0的问题.解题思路: 分式的值为0时,必须同时..满足两个条件:①分母不能为零;②分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. 解答过程:(1)m=0 (2)m=2 (3)m=1解题后的思考:我们从实例中发现了分式和整式的不同之处:分式的分母中含有字母,整式的分母中不含字母,且除式不能为零,即分母不能为零,明白了分式中的字母是有条件约束的,分式中的字母的取值必须保证分母不为零. 小结:1. 掌握理解分式的概念.2. 分式的概念和分式有意义的条件.应用分式有意义的条件——分母不为零,解出字母的值.还可以利用不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.3. “在什么条件下,分式的值为0?”,分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零.由这两个条件得到的解集的公共部分才是这一类题目的解.知识点二:分式的基本性质分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA B A M B M A B A ÷÷=⨯⨯=, (其中M 是不等于零的整式). 与分数类似,根据分式的基本性质,可以对分式进行约分和通分. 1、分式的变号法则例3:不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: (1)21x x -; (2)322+--x x. 思路分析:题意分析:本题考查分式的基本性质的知识.解题思路:(1)根据分式的意义,分数线代表除号,又起括号的作用.(2)当括号前添“+”号时,括号内各项的符号不变;当括号前添“-”号时,括号内各项都变号. 解答过程:(1)1122--=-x x x x ; (2)323222--=+--x x x x . 解题后的思考:不改变分式的值,使分式的分子和分母都不含“-”号.它是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一. 2、分式的约分例4:约分(1)4322016xy y x -; (2)44422+--x x x . 思路分析:题意分析:本题考查利用分式的基本性质进行约分.解题思路:约分时要找准分子和分母的公因式,最后的结果必须是最简分式. 解答过程:(1);542016432y xxyy x -=- (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x .解题后的思考:在进行分式约分时,若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后再进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式. 3、分式的通分思考:如何把分数65,43,21通分. 解:126261621=⨯⨯=,129433343=⨯⨯=,1210625265=⨯⨯= 思考:什么叫分数的通分?答:把几个异分母的分数化成与原来的分数相等的同分母的分数,而不改变分数的值,叫做分数的通分.和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分.通分的关键是确定几个分式的公分母.例5:通分 (1)4322361,41,21xy y x z y x ;(2)2241xx -与412-x . 思路分析:题意分析:本题考查有关实数的知识.解题思路:(1)对于三个分式的分母中的系数2,4,6,取其最小公倍数12;对于三个分式的分母的字母,以字母x 为底的幂的因式,取其最高次幂x 3,以字母y 为底的幂的因式,取其最高次幂y 4,再取字母z .所以三个分式的最小公分母为12x 3y 4z .(2)先把这两个分式的分母中的多项式分解因式,即4x -2x 2=-2x (x -2),x 2-4=(x+2)(x -2),把这两个分式的分母中所有的因式都取到,其中,系数取正数,取它们的积,即()()222-+x x x 就是这两个分式的最简公分母.解答过程:(1);1262143223zy x y z y x = ;123414332z y x xyzy x = ;122614324zy x zx xy = (2)()();22222412-++-=-x x x x x x)2)(2(22412-+=-x x x xx . 解题后的思考:通分是要正确地确定各个分母的最简公分母1. 取各分式的分母中系数的最小公倍数;2. 各分式的分母中所有字母或因式都要取到;3. 相同字母(或因式)的幂取指数最大的;4. 所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.5. 分式是多项式时,一般应先将各分母分解因式,然后按上述的方法确定最简公分母. 小结:知识点三:分式的运算 1、分式的乘除例6:计算:(1)x b ay by x a 2222⋅ ; (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352 ;(3)493222--⋅+-x x x x ; (4))3(2962y y y y -÷++-;(5))4(3)98(23232b x b a xy y x ab -÷-⋅;(6)x x x x xx x --+⋅+÷+--3)2)(3()3(44622. 思路分析:题意分析:本题考查分式的乘除运算解题思路:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解因式? ④怎样应用分式乘法法则得到积的分式?解答过程:(1)3323232222ba xyb xy a x b ay by x a ==⋅;(2)222222730105102135211035cb abc ab bc a ac b a bc ac b -=-=⎪⎭⎫ ⎝⎛-⋅=⎪⎭⎫ ⎝⎛-÷; (3)原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x ; (4)31)3(196)3(96222-=⋅-=⋅+-=-÷+-y y y y y y y ; (5))4(3)98(23232b xb a xy y x ab -÷-⋅=()x b ba xy y x ab 34)98(23232-⋅-⋅=xb b a xy y x ab 349823232⋅⋅ =32916ax b ; (6)x x x x xx x --+⋅+÷+--3)2)(3()3(44622x x x x x x x --+++--3)2)(3(3144622=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x . 解题后的思考:(1)根据分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.(2)分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果中如果分母如果不是单一的多项式,而是多个多项式相乘时不必把它们展开. 2、分式的乘方讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算2)(b a =⋅b a b a =b b a a ⋅⋅=22b a ,3)(b a =⋅b a ⋅b a b a =b b b a a a ⋅⋅⋅⋅=33ba ,……顺其自然地推导可得:归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.例7:计算:(1)332)23(c b a -; (2)32223)2()3(xay xy a -÷; (3))()()(422xy xy y x -÷-⋅-. 思路分析:题意分析:本题考查分式的乘除及乘方运算.解题思路:(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方结果的符号,再分别把分子、分母乘方.第(2)、(3)题是分式的乘除与乘方的混合运算,应注意运算顺序:先做乘方,再做乘除. 解答过程:(1)936332827)23(cb ac b a -=-; (2)43663239889)2()3(y x a y a x y x a x ay xy a -=⋅-=-÷; (3)4422242211)()()(yxy x y y x xy x y y x =⋅⋅=-÷-⋅-. 解题后的思考:分式的乘除与乘方的混合运算是分式中的重点,也是难点,要注意运算顺序,不要盲目地跳步计算,提高正确率,突破难点.小结:分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往往可视为整式的运算.分式法乘除的法则和运算顺序可类比分数的有关内容得到.所以,用类比的数学思想方法能较好地实现新知识的转化.特别要注意运算符号的问题.1. 突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要清楚分式与分数的联系与区别.通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.2. 分式的乘除法法则和运算顺序可类比分数的有关内容得到.所以学会用类比的数学思想方法能较好地实现新知识的转化.另外要紧紧抓住做分式乘除法的混合运算时先统一成乘法运算这一点,分式乘除法的混合运算,要注意运算顺序,不要跳步.还要注意运算符号问题、变号法则.(答题时间:60分钟)一、填空题1. 分式24xx -,当x_______时,分式有意义;当x_______时,分式的值为零. 2. 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负.二、选择题3. 下列式子①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A . ①②B . ③④C . ①③D . ①②③④4. 分式31x ax +-中,当x=-a 时,下列结论正确的是( ) A . 分式的值为零 B . 分式无意义C . 若a ≠-13时,分式的值为零 D . 若a ≠13时,分式的值为零 5. 下列各式中,可能取值为零的是( )A . 2211m m +-B . 211m m -+C . 211m m +- D . 211m m ++6. 使分式||1xx -无意义,x 的取值是( )A . 0B . 1C . -1D . ±17. 计算(2x y )·(y x )÷(-yx )的结果是( )A . 2x yB . -2x yC .xyD . -x y8. 122+⎪⎪⎭⎫ ⎝⎛-n m b 的值是( )A . 2321n n b m ++B . -2321n n b m ++C . 4221n n b m ++D . -4221n n b m++9. 化简:(3x y z )2·(xz y )·(2yzx )3等于( )A . 232y z xB . xy 4z 2C . xy 4z 4D . y 5z*10. 如果(32a b )2÷(3a b)2=3,那么48b a 等于( )A . 6B . 9C . 12D . 81三、解答题11. 计算:(1)2222213462a a a a a a a a a a -⋅--÷+-+;(2)269x x -+÷29x -·3x +.**12. 已知0233132=⎪⎭⎫ ⎝⎛-++-b a b a =0. 求2b a b +÷[(b a b -)·(ab a b +)]的值.13. 先化简,再求值:232282x x x x x +-++÷(2x x -·41x x ++). 其中x=-45.一、填空题1. ≠±2,=02. <5,任意实数二、选择题3. C4. C5. B6. D7. B8. D9. B10. 3662242842342()()3339a a a b a b a b b bb a ÷=⋅=⋅=⋅= 答案是B三、解答题11. (1)22222234962aa a a a a a a a -⋅--÷+-+ ()()()()()22222332a a a a a a a a a -⋅-+-⋅-+=31-=a (2)102310396962222-+⋅---÷--+-x x x x x x x x x()()()()()()()()52333252332-+⋅-++-⋅+--=x x x x x x x x x 21= 12. ,013,0233132=+-=⎪⎭⎫ ⎝⎛-++-b a b a b a 2,1,0233-=-==-b a b a .代入2b a b +÷[(b a b -)·(aba b +)]=-1 13. ⎪⎭⎫⎝⎛++⋅-÷++-+142282232x x x x x x x x x ()()()()()()4211242+-+⋅+-+=x x x x x x x x 11+=x把54-=x 代入11+x ,原式=5。
分式的基本性质及运算

分式的基本性质及运算一、知识提要1. 分式的定义一般地,如果A,B表示两个整式,并且B中含有分母,那么式子AB叫做分式.2. 分式有意义分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.3. 分式的基本性质分式的分子与分母同乘(或除以)一个不为0的整式,分式的值不变.4. 约分利用分式的基本性质,约去分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.5. 最简分式分子与分母没有公因式的分式,叫做最简分式.6. 通分利用分式的基本性质,将不同分母的几个分式化成分母相同的分式,这样的分式变形叫做分式的通分.7. 最简公分母取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.8. 分式的乘除乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 分式乘方要把分子、分母分别乘方.9. 分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、精讲讲练1. 在下列各式23aπ,22xx ,34a b +,(3)(1)x x +÷-,2m -,a m中是分式的有____个.2. ①(2011浙江)当x ________时,分式x-31有意义; ②若代数式1324x x x x ++÷++有意义,则x 的取值范围是 . 3. ①(2011天津)若分式211x x -+的值为0,则x 的值等于________.②若分式2(2)(3)a a a --+的值为0,则a =_______.4. 填空:①())0(,10 53≠=a axy xy a ②()1422=-+a a ③25_________20ab a b=—④229_________69x x x -=-+ 5. 分式:①223a a ++,②22a b a b --,③412()aa b -,④12x -中,最简分式有( )A.1个B.2个C.3个D.4个6. 分式26x ab ,29ya bc 的最简公分母是__________; 分式2121a a a -++,261a -的最简公分母是___________.7. 分式计算 (1)222536x y y x ⋅ (2)3921243a a b b b a ⎛⎫÷÷⋅ ⎪⎝⎭(3)222441214a a a a a a -+-⋅-+- (4)3223322a a c cd d a ⎛⎫⎛⎫÷ ⎪ ⎪-⎝⎭⎝⎭(5)2222532x y x x y x y +--- (6)112323p q p q++-8. (2011浙江)计算111a a a ---的结果为( ) A .11a a +- B. 1a a -- C. -1 D. 1-a9. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1ab C.1a b + D.ab a b +10. 如果21(3)(4)34x A Bx x x x +=+-+-+,则A =______;B =______. 11. 甲乙两地相距S 千米,汽车从甲地到乙地按每小时v 千米的速度行驶,可按时到达;若每小时多行驶a 千米,则可提前________小时到达(保留最简结果). 12. 若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A.扩大3倍 B.不变C.缩小为原来的三分之一D.缩小为原来的六分之一 13. (2011江苏)已知1112ab-=,则aba b-的值是( ) A .12B .12-C .2D .-214. (2011山东)当2x =时,2211x x x ---=________. 15. (2011山东)化简:2222222a b a ba ab b a b--÷+++=__________.16. (2011河南)先化简2144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.17. 若实数x 、y 满足|21|23240x y x y -++-+=,求代数式22221244x y x y x y x xy y ---÷--+的值.18. (2011江苏)先化简,再求值22(1)(1)1a a a -+÷++,其中21a =-.三、测试提高【板块一】分式的意义1. 当x 满足下列选项中的哪个时,分式25x -有意义( ) A .5x = B .5x ≠ C .5x =± D .5x ≠±2. 已知当x =-2时,分式x bx a--无意义,x =4时,此分式的值为0,则a +b 的值为( )A .6B .2C .-2D .-6【板块二】分式的运算3. A 、B 两地相距s 千米,小明从A 地到B 地每小时走a 千米,从B 地到A 地每小时走b 千米,则他往返的平均速度是( ) A.2b a + B.b a s +2 C.b a ab +2 D.ba ab +4. 计算:1111x x+-+=( ) A .221x x - B .0 C .221x x + D .21xx - 5. 下列各式计算正确的是( ) A. b a b a +=+111B.ab mb m a m 2=+ C. aa b a b 11=+-D.011=-+-a b b a四、课后作业1. (2011四川)当分式12x x -+的值为0时,x 的值是( ). A.0 B.1 C.-1 D.-22. (2011浙江)已知分式ax x x +--532,当x =2时,分式无意义,则a =________;3. (2011湖北)要使式子2a a+有意义,则a 的取值范围为________. 4. 下列判断中,正确的是( ).A .分式的分子中一定含有字母B .当B =0时,分式AB 无意义C .当A =0时,分式AB的值为0(A 、B 为整式)D .分数一定是分式5. x 的2倍除以x 与y 的平方差,用分式表示是___________.6. 已知11y x y +=-,用x 的代数式表示y 为_________.7. 下列式子正确的是( ).A.133m m m =++ B.122x y yx +=-- C.936321b b a a =++ D.()()y xa b y b a x =--8. 下列正确的是( ).A. 11a x a b x b ++=++B. 22y y x x =C.(),0n na a m ma =≠ D. n n am m a-=- 9. 下面的计算中,正确的是( ).A .21111=-----x x x xB .2324222242a a a a a b b b b b b a ÷⋅=÷=C .23231m m m m mm m m m m a a a b a b b b a b÷⋅=⋅=D .66660(1)(1)(1)(1)x x x xx x x x +=-=----10. (2011山东)计算()21111m m m+÷⋅--的结果( ).A.-m 2-2m -1B.-m 2+2m -1C. m 2-2m -1D.m 2-111. (2011山东)化简:2222222a b a ba ab b a b--÷+++=__________. 12. 不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( ).A.2154x y x y -+ B. 4523x y x y -+ C. 61542x y x y-+ D. 121546x yx y -+13. (2011安徽)先化简,再求值:21211x x ---,其中x =-2.。
分式知识点总结

分式知识点总结分式是小学数学中一个重要的知识点,也是高中数学的基础。
分式的概念和应用广泛,是解决实际问题中常用的方法之一。
本文将从分式的定义、基本性质、运算法则以及应用等方面进行总结。
一、分式的定义分式是两个整数的比,由分子和分母两部分构成。
分子表示被除数,分母表示除数。
通常用a/b的形式表示,其中a为分子,b为分母。
二、分式的基本性质1. 分式的值可以是整数、小数、真分数或假分数,分式可以化简为最简形式。
2. 分式的值与分子和分母的关系密切相关,当分子增大而分母不变时,分式的值增大;当分子减小而分母不变时,分式的值减小。
3. 分式的值可以用图形来表示,例如在数轴上表示为一个点。
三、分式的运算法则1. 分式的加法和减法:分式的加法和减法归结为求他们的公共分母,将分子相加或相减即可。
例如:a/b + c/d = (ad+bc)/bda/b - c/d = (ad-bc)/bd2. 分式的乘法和除法:分式的乘法和除法的规则较为简单,直接将分子相乘或相除,分母相乘或相除即可。
例如:(a/b) × (c/d) = ac/bd(a/b) ÷ (c/d) = ad/bc3. 分式的混合运算:分式的混合运算可以结合加减乘除的运算法则来进行。
在计算过程中,首先进行括号内的运算,然后进行乘除运算,最后进行加减运算。
四、分式的应用分式可以应用于实际问题中,例如在计算比例、百分比、利润和折扣等方面。
1. 比例问题:比例可以表示为分式的形式,通过求解分式可以得到两个量的比值。
例如:甲乙两个人的身高比为3/5,已知甲的身高为150cm,求乙的身高。
2. 百分比问题:百分比可以表示为分式的形式,通过分式可以求解出百分比的具体数值。
例如:某商店举办打折促销活动,原价为120元的商品现在打8折,求折后的价格。
3. 利润和折扣问题:利润和折扣可以表示为分式的形式,通过求解分式可以得到具体的数值。
例如:某商品的进价为180元,利润率为20%,求售价;或者某商店举办折扣促销活动,折扣率为30%,求折后价格。
分式与分式运算(完整版)

分式的概念及基本性质一、同步知识梳理1.分式的概念形如AB (A ,B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母。
2.与分式有关的“三个条件” (1)分式AB 无意义的条件是B =0;(2)分式AB 有意义的条件是B ≠0;(3)分式AB值为零的条件是A =0且B ≠0.二、同步题型分析题型一:考查分式的定义例1 指出下列各式中,哪些是分式?221x x -,45b c +,37,221x -,23a a ,2132a b +.题型二:考查分式有意义的条件例2(1)当x 时,分式2132x x ++有意义;当x 时,分式2323x x +-有意义.(2)下列各式中,无论x 取何,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x +题型三:考查分式的值为0的条件 例3 当m 为何值时,分式的值为0?(1)1m m -; (2)23m m -+; (3)211m m -+..三、课堂达标检测1. 梯形的面积为S ,上底长为m ,下底长为n ,则梯形的高写成分式为 .2. 下列各式11x +,1()5x y +,22a b a b --,23x -,0 中,是分式的有______ _____;是整式的有___ ______. 3. 当x =_______ ___时,分式x x 2121-+无意义;当x =______ ____时,分式2134x x +-无意义. 4. 当x =____ __时,分式392--x x 的值为零;当x =______ ____时,分式2212x x x -+-的值为零.5. 当x =___ ___时,分式436x x +-的值为1;当x ___ ____时,分式271x -+的值为负数. 6. 下列各式①3x ,②5x y +,③12a-,④2x π-(此处π为常数)中,是分式的有 ( )A .①②B .③④C .①③D .①②③④ 7. 分式21x ax +-中,当x a =-时,下列结论正确的是 ( ) A .分式的值为零 B .分式无意义 C .若12a ≠-时,分式的值为零 D .若12a =-时,分式的值为零 8. 下列各式中,可能取值为零的是 ( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++9. 使分式21aa -无意义,a 的取值是 ( ) A .0 B .1 C .-1 D .±1 10.已知234x y x-=-,x 取哪些值时: (1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.1、分式的基本性质:分式的分子与分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
小学数学分式的基本概念与运算课件

定义:分式的 乘法是指将两 个分式相乘, 得到一个新的
分式
运算法则:分式 的乘法运算法则 与分数的乘法运 算法则相同,即 分子乘分子、分
母乘分母
运算步骤:先 确定分母,再 将分子相乘, 最后化简得到
最简结果
注意事项:在 进行分式的乘 法运算时,需 要注意运算的 顺序和化简的
技巧
定义:分式的除法 是指将一个分式除 以另一个分式
运算法则:分式的 除法可以转化为乘 法,即 "a/b"÷"c/d"="a/ b"×"d/c"
运算步骤:先确定 分母,再将分子相 除,最后化简得到 结果
注意事项:在运算过程 中要保持分式的值不变, 即分子分母同时乘以或 除以同一个非零数
分式的加减乘除混 合运算,按照从左 到右的顺序依次进 行
乘法分配律在分 式的混合运算中 同样适用
先进行括号内的运算,再进 行其他运算
先进行乘除运算,再进行加 减运算
对于同级运算,按照从左到 右的顺序进行
对于复杂的分式运算,可以 先化简再计算
分子分母互质:分子、分母 没有其他公因式
约分:将分子、分母中的公 因式约去
分子分母同除以一个整式:将 分子、分母同时除以同一个整
式,化简分式
判断最简分式的标准:分子、 分母互质,且分子、分母中不
添加文档副标题
目录
01.
02.
03.
04.
分式是数学中一种基本的代数式,表示两个整式相除的关系 分母中含有字母的整式,称为分式 分式的值随分母和分子的变化而变化 分式的定义是学习分式运算和应用的基石
分式是两个整式相除的商,表示为 形式如A/B的数学符号
分子和分母都是多项式,且分母不 为零
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的基本性质和运算【知识归纳】1、 分式概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式. 注意:(1)分母中应含有字母;(2)分母的值不能为零.(分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当0≠B 时,分式B A 才有意义;当B=0时,分式BA 无意义) 【例】:1.式子①x 2②5y x +③a -21④1-πx 中,是分式的有( ) A 、①②B 、③④C 、①③D 、①②③④2.当x 取什么值时,下列分式有意义.(1)54+x x , (2)422+x x . 【练习】:1. 若分式1-x x 无意义,则x 的值是( ) A 、0 B 、1 C 、-1 D 、1±2.如果分式x211-的值为负数,则的x 取值范围是( ) A 、21≤x B 、21<x C 、21≥x D 、21>x 2、 要分式的值为零,需要同时满足两项条件:(1)分式的分母的值不等于零;(2)分子的值等于零.【练习】:1.分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A 、分式的值为零 B 、分式无意义 C 、若31-≠a 时,分式的值为零 D 、若31≠a 时,分式的值为零 2.(1)当_______时,分式534-+x x 的值为1.(2)当______时,分式51+-x 的值为正. 3.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零? 4.2001-2003年某地的森林面积(单位:公顷)分别是321,,S S S ,2003年与2002年相比,森林面积增长率提高了多少?(用式子表示)5.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?3、 分式的基本性质分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示是:C B C A B A ⋅⋅=CB C A B A ÷÷= (0≠C )【例】约分: (1)d b a c b a 42342135-, (2)23)(4)(2x y y y x x -- , (3)2222)()(z y x z y x -+--. 【练习】:1.对于分式11-x ,永远成立的是( ) A 、1211+=-x x B 、11112-+=-x x x C 、2)1(111--=-x x x D 、3111--=-x x 2.下列各分式正确的是( )A 、22a b a b =B 、b a b a b a +=++22C 、a a a a -=-+-11122D 、xx xy y x 2168432=-- 3.若)0(54≠=y y x ,则222y y x -的值等于________. 4.化简分式xx ---112的结果是________. 5.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________. 6.把下列各式约分: (1)432304ab b a , (2)22112m m m -+- , (3)42)()(a b b a --. 7.已知:分式xyy x -+1的值是m ,如果分式中y x ,用它们的相反数代入,那么所得的值为n 则n m ,的关系是什么? 8.有四块小场地:一块边长为a 米的正方形,一块边长为b 米的正方形,两块长a 为米,宽为b 米的长方形.另有一块大长方形场地,它的面积等于上面四块场地面积的和,它的长为2(a +b )米,试用最简单的式子表示出大长方形场地的周长.【例】通分:方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积。
(1)y x y x xy 32391,21,31, (2)2223,2,)(1ba b a b a -+-+. 【练习】:1.下列各题中,所求的最简公分母,错误的是( )A 、x 31与26x a 最简公分母是26xB 、3231b a 与cb a 3231最简公分母是c b a 323 C 、n m +1与n m -1的最简公分母是22n m - D 、)(1)(1x y b y x a --与是简公分母是))((x y y x ab -- 2.121,11,121222++-+-a a a a a 的最简公分母是( ) A 、1224++a a B 、)1)(1(22+-a a C 、1224+-a a D 、4)1(-a 3. 分式acb b ac c b a 107,23,5422的最简公分母是_________,通分后,这三个依次是________, _______, ____________. 4.把下列各式通分: (1)2261,32ab a - , (2)22)2(1,4+--x x x x . (3)9452,232,3212-+-+x x x x , (3)221,,b a b a b b a ---. 5.已知12,4-=-=+xy y x , 求1111+++++y x x y 的值. 6.甲工程队完成一项工程需要n 天,乙工程队要比甲队多3天才能完成这项工程,写出甲、乙出两队每天完成的工作量的式子,如果两式的分母不同,进行通分.拓广创新:7.已知511=-y x ,求分式yxy x y xy x 272-+++-的值. 8.已知432z y x ==,求222z y x zx yz xy ++++的值. 4.分式的乘除 分式的乘方法则:分式的乘方要把分子、分母分别乘方.用式子表示为:n b a )(=n nba乘除混合运算可以统一为乘法运算;乘方与乘除混合运算同数的运算一样,先乘方,再乘除.【例】计算:(1))()()(432ab a b b a -÷-⋅- , (2)22222)(xy x xy y xy x x xy -⋅+-÷-. 【练习】:1.在下列各式中:①22)2(b a mn -②25248bm an b a n m ⋅-③2222⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-a nb ab m ④m a ab mn 3222÷相等的的两个式子是( )A 、①②B 、①③C 、②③D 、③④ 2. dd c c b b a 1112⋅÷⋅÷⋅÷=_______. 3.化简a b b b a a b a b a a 222224)()(⋅+÷--的结果是__________. 4.计算:y yy x ⋅÷⋅11=___________. 5. 计算:(1) ⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛-⋅y x x y x y x 22426438 , (2)xyx xz xy x z y x y xy x z y x y x --+⋅--++÷---2222222222)(2)(. 5.分式的加减 同分母分式相加减,分母不变,把分子相加减.用式子表示是:c b a c b c a ±=± 异分母分式相加减,先通分,变为同分母的分式,再加减. 用式子表示是:bdbc ad bd bc bd ad d c b a ±=±=± 【例】 计算:(1)2222223223x y y x y x y x y x y x ----+--+ ,(2)1111322+-+--+a a a a . 【练习】1.已知0≠x ,则xx x 31211++等于( ) A 、x 21 B 、x 61 C 、x 65 D 、x6112. 化简x xx x -----2222的结果是( )A 、 0B 、2C 、2-D 、22-或3.使分式2222---x x x 的值是整数的整数x 的值是( ) A 、0=x B 、 最多2个 C 、 正数 D 、共有4个4.下列四个题中,计算正确的是( )A 、)(313131b a b a +=+ B.a a b a b 11=+- C. 011=-+-a b b a D.ab m b m a m 2=+ 5.一件工作,甲单独做x 天完成,乙单独做y 天完成,甲、乙合做完成全部工作所需要的天数是____________ 6 .锅炉房储存了t 天用的煤m 吨,要使储存的煤比预定的多用d 天,每天应该节约用煤____吨.7.甲、乙两人两次到某粮店去买大米,两次的大米价格分别为每斤a 元和b 元,甲每次买100斤大米,乙每次买100元的大米,问谁两次买的大米平均价格更低些?说明理由.8.计算下列各题: (1)29631a a --+ (2)xy y y x x y x xy --++-222 (3)ba b b a ++-22 (4)293261623x x x -+--+ 5.分式的混合运算分式的混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的.【例】已知:023=-b a ,求下式的值 )1()1(b a a a b b a a a b +--÷--+. 【练习】1.已知:y x x y m -=,yx x y n += ,那么22n m -等于( ) A 、4 B 、4- C 、0 D 、222xy 2.已知:,11yx -=又z y 11-=则用z 表示x 的代数式应为( ) A 、z x -=11B 、x x z 1-=C 、11-=z x D 、xx z -=13.计算xy y x y x 3223231⋅÷-的结果是( ) A 、2962x xy y -B 、y x y 232-C 、x y x 323-D 、yx 23 4.已知:1,1,1,1+=-=-=>n n P n n N n n M n ,则M,N,P 的大小关系为( ) A 、M >N >P B 、M >P >N C 、P >N >M D 、P >M >N5.使)44()2(244232+-⎥⎦⎤⎢⎣⎡--+-x x x x x x 的值为整数的整数x 的个数为_______ . 8.计算:x y x y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 .。