新人教版八年级数学下册期中复习
人教版数学八年级下册《期中考试题》及答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。
根据部编人教版八年级数学下学期期中复习资料
根据部编人教版八年级数学下学期期中复
习资料
一、整数与分数
1. 整数的概念
整数是由正整数、负整数和0组成的数集。
2. 整数的运算
- 加法:同号相加,异号相减,并且符号取绝对值较大的数的符号。
- 减法:加上被减数的相反数。
- 乘法:同号得正,异号得负。
- 除法:除法的商具有和被除数相同的符号。
3. 分数的概念
分数是指一个数除以另一个不为零的数所得的结果。
4. 分数的运算
- 加法:通分后,分子相加,分母保持不变。
- 减法:通分后,分子相减,分母保持不变。
- 乘法:分子相乘得分子,分母相乘得分母。
- 除法:被除数乘以除数的倒数。
二、代数式与方程式
1. 代数式的定义
代数式是由数和字母按照一定规则连接而成的式子。
2. 代数式的运算
- 合并同类项:将具有相同字母部分的项合并在一起。
- 拆分因式:将一个代数式按照公因式拆分成几个因式的乘积。
- 展开:将括号内的代数式依次与括号外的每一项相乘,并将
结果合并。
3. 方程式的定义
方程式是含有未知数的等式。
4. 解方程的方法
- 通过加减法消去项实现等式两边平衡。
- 通过乘除法消去项实现等式两边平衡。
- 通过整理方程,使等式两边形式相同,然后通过比较解出未
知数的值。
以上是根据部编人教版八年级数学下学期期中复习资料的内容
概述。
详细内容请参考教材,练习题可以帮助加深理解和熟练运用。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
人教版八年级数学下册期中考试知识点总结配练习
勤奋
努力
成功
限交于(4,n) ,请先确定该一次函数 解析式再建立直角坐标系画出其图象。
7、依据图象确定自变量或函数的取值范围:把图象垂直投影到 x 轴上,投影的区域为自变量 x 的取值范围,把图象垂直投影到 y 轴上,投影的区域为函数 y 的取值范围。 例:依据所给图象确定自变量和函数的取值范围。 Y 抛物线 0 2 x -1 0 3 x 1 -2 当 x 取____时 y>0, 当 x 取_____时 y<0 当 0<x<2 时 y 取值为___ 当 x 取______时 y>0 8、图象从左往右,自变量 x 是增大的,图象上升说明 y 在增大,图象下降说明 y 在减小。 例:1)上面左图中 y 随 x 的增大而___,右图中 y 随 x 增大而变化的关系是______ 2)直线 y=-2x+1 上两点(x1,y1)在(x2,y2)左边,比较 y1、y2 的大小_________ 9、函数图象的最高点,此处函数 y 取得最大值;最低点处函数 y 取得最小值。 例:上面右图中可以看出函数 有最__值,请先求这个抛物 线解析式,再求出这个最值 10、我们知道,在横(x)轴上的点纵坐标为 0,在纵(y)轴上的点横坐标为 0,函数式用图形表 示时 x 值作为横坐标、对应 y 的值作为纵坐标,因此,求一个函数图象与 x 轴的交点时,已 知交点纵坐标为 0 即有 y=0 而得对应 x 的值(此为交点横坐标);与 y 轴的交点,已知交点横 坐标为 0 即有 x=0 得 y 的值(此为交点纵坐标)。
m n m n
7.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法: a a a (2)幂的乘方: (a ) a
m n mn
;例、a 2 • a =________ 例、 (a 2 ) 3 ________
2020年新人教版八年级数学下册期中复习试题(三)
八年级数学下册 期中复习题 三一、填空题:(每小题3分,共12题,共计36分)1.有下列计算:①632)(m m =;②121442-=+-a a a ;③326m m m =÷;④1565027=÷⨯;⑤31448332122=+-.其中正确的运算有( )A.①②③④⑤B.②③④⑤C.①④⑤D. ①③④⑤2.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A.当AB=AD 时,它是菱形B.当AC=BD 时,它是正方形C.当∠ABC=90°时,它是矩形D.当AC ⊥BD 时,它是菱形3.已知ab <0,则b a 2化简后为( )A.b aB.-b aC.b a -D.b a --4.实数,a b 在数轴上的位置如图2所示,则化简22(1)()a a b b ---+的结果是( )A.1B.b+1C.2aD.12a -5.平行四边形一边长12cm ,那么它的两条对角线的长度可能是( )A.8cm 和16cmB.10cm 和16cmC.8cm 和14cmD.8cm 和12cm6.如图,在平行四边形ABCD 中,AB=3cm,BC=5cm,AC,BD 相交于点O,则OA 取值范围是( )A.1cm <OA <4cmB.2cm <OA <8cmC.2cm <OA <5cmD.3cm <OA <8cm第6题图 第7题图7.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB 于E,若∠EAD=53°,则∠BCE 度数为( )A.53°B.37°C.47°D.123°8.如图,在四边形ABCD 中,R,P 分别是BC,CD 上的点,E,F 分别是AP ,RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,下列结论成立的是( )A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P 的位置有关第8题图 第9题图 第10题图9.已知△ABC 中,∠ABC=450,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A.6B.4C.23D.510.如图,矩形ABCD 中,DE ⊥AC 于E,且∠ADE:∠EDC=3:2,则∠BDE 的度数为( )A.36°B.9°C.27°D.18°11.如图,正方形ABCD 边长为8,M 在DC 上,DM=2,N 是AC 上一动点,则DN+MN 最小值为() A.6 B.8 C.10 D.28第11题图 第12题图12.如图,在四边形ABCD 中,∠DAB=∠DCB=900,CB=CD,且AD=3,AB=4,则AC 长为( )A.227 B.5 C.72D.7二、填空题(每小题3分,共6题,共计18分)13.计算2327)3()3(3302-+-++-π=_________14.已知直角三角形两边长分别为3cm 、5cm ,则第三边的长为_________15.平行四边形ABCD 的周长为20cm,对角线AC,BD 相交于点O,若△BOC 的周长比△AOB 的周长大2cm,则CD = cm.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ′B ′C ′D ′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a = .第16题图 第17题图17.如图,在平行四边形ABCD 中,AE ⊥BD,∠EAD=600,AE=2cm ,AC+BD=14cm,则△OBC 周长是18.问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为13105、、,求这个三角形的面积.小明同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上 ;(2)若△ABC 三边的长分别为)0,0,(24916222222>>≠+++n m n m n m n m n m 、、,运用构图法可求出这个三角形的面积为三、综合题(共7题,共计66分)19.(本小题8分)在△ABC中,AB,BC,AC三边的长分别为、、,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上(2)画△DEF,DE,EF,DF三边的长分别为、、.①判断三角形的形状,说明理由.②求这个三角形的面积.20.(本小题8分)如图所示的一块地,AD=6m,CD=4m,∠ADC=90°,AB=11m,BC=9m,求这块地的面积.21.(本小题10分)如图,已知ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.22.(本小题10分)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,已知AD=10,CD=4,B′D=2.(1)求证:B′E=BF;(2)求AE的长.23.(本小题10分)如图,以△ABC 的三边为边在BC 的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)四边形ADEF 是什么四边形?并.说明..理由..(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?(3)当△ABC 满足什么条件时,以A 、D 、E 、F 为顶点的四边形不存在.24.(本小题10分)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN//BC,设MN 交∠BCA 的平分线于点E,交∠BCA 的外角平分线于点F.(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O 运动到何处,且△ABC 满足什么条件时,四边形AECF 是正方形?25.(本小题10分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-3,3).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)求∠EBP的度数和点D的坐标(点D的坐标用含t的代数式表示);(2)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.。
新人教版八年级数学下册期中考试卷(完整版)
新人教版八年级数学下册期中考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C.45357x x++= D.45357x x--=7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、B7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、-2 -33、14、15、46、24三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)略;(2)△ABC 的周长为5.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
2021-2022学年人教版八年级数学下册期中阶段复习综合练习题(附答案)
2021-2022学年人教版八年级数学下册期中阶段复习综合练习题(附答案)一、选择题1.计算的结果是()A.﹣7B.7C.﹣14D.492.下列式子是最简二次根式的是()A.B.C.D.3.以下列各组数为边长,不能构成直角三角形的是()A.7,24,25B.,4,5C.,1,D.40,50,60 4.如图,平行四边形ABCD的周长为20,对角线AC,BD相交于点O.点E是CD的中点,BD=6,则△DOE的周长为()A.6B.7C.8D.105.如图,在4×4的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD⊥BC于D,则AD的长为()A.1B.2C.D.6.如图,是一个含30°角的三角板放在一个菱形纸片上,且斜边与菱形的一边平行,则∠1的度数是()A.65°B.60°C.58°D.55°7.已知x+y=﹣5,xy=4,则的值是()A.B.C.D.8.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF ⊥CD于F,则EF的最小值为()A.B.C.2D.1二.填空题(9.计算:()2=.10.若二次根式有意义,则x的取值范围是.11.计算:|﹣3|﹣=.12.平面直角坐标系中,点P(3,4)到原点的距离是.13.如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面,则此攀岩墙的高度是米.14.如图,在正方形ABCD内,以AB为边作等边△ABE,则∠BEG=°.15.如图,在矩形ABCD中,DE⊥CE,∠ADE=30°,DE=4,则这个矩形的周长是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).三.解析题17.计算:﹣()2+(π﹣2)0﹣+||.18.如图,在菱形ABCD中,过点D分别作DE⊥AB于点E,作DF⊥BC于点F.求证:AE=CF.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.20.已知如图,四边形ABCD中,∠B=90°,AB=BC=5,CD=6,AD=8,求这个四边形的面积.21.已知:x=+,y=﹣.求下列各式的值.(1)x2﹣xy+y2;(2)﹣.22.如图,已知四边形ABCD中,AD=2,CD=2,∠B=30°,过点A作AE⊥BC,垂足为E,AE=1,且点E是BC的中点,求∠BCD的度数.23.如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:BD=DC.(2)若AB=AC时,试证明四边形AFBD是矩形.参考答案一、选择题1.解:=|﹣7|=7.故选:B.2.解:=2,故A不符合题意;=2,故B不符合题意;不能再化简,故C符合题意;==,故D不符合题意.故选:C.3.解:A.∵72+242=252,∴以7、24、25为边能组成直角三角形,故本选项不符合题意;B.∵42+52=()2,∴以4、5、为边能组成直角三角形,故本选项不符合题意;C.∵12+()2=()2,∴以、1、为边能组成直角三角形,故本选项不符合题意;D.∵402+502≠602,∴以40、50、60为边不能组成直角三角形,故本选项符合题意;故选:D.4.解:∵▱ABCD的周长为20,∴2(BC+CD)=20,则BC+CD=10.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=8,即△DOE的周长为8.故选:C.5.解:由勾股定理得:BC==5,∵S△ABC=4×4﹣×1×2﹣×2×4﹣×4×3=5,∴BC•AD=5,∴AD=5,∴AD=2.故选:B.6.解:如图所示,由题可得DE∥CF,∴∠DCF=∠ADE=60°,∵菱形中,EC平分∠DCF,∴∠DCE=∠DCF=30°,又∵∠A=90°,∴∠1=90°﹣30°=60°,故选:B.7.解:∵x+y=﹣5,xy=4,∴x、y同号,并且x、y都是负数,解得:x=﹣1,y=﹣4或x=﹣4,y=﹣1,当x=﹣1,y=﹣4时,=+=2+=;当x=﹣4,y=﹣1时,+=+=+2=,则的值是,故选:B.8.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.二.填空题9.解:原式=2021.故答案为:2021.10.解:二次根式有意义,则2021﹣x≥0,解得:x≤2021.故答案为:x≤2021.11.解:原式=3﹣2=.故答案为:.12.解:如图,过P点作PQ⊥x轴于点Q,则∠OQP=90°.∵P(3,4),∴OQ=3,PQ=4.在直角△OPQ中,∵∠OQP=90°,OQ=3,PQ=4,∴OP===5.故答案为:5.13.解:如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故答案为:15.14.解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.又∵三角形ABE是等边三角形,∴AB=AE=BE,∠EAB=∠ABE=∠AEB=60°.∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,∴AE=AD,∴∠ADE=∠AED=75°,∴∠BEG=180°﹣∠DAE﹣∠AEB=180°﹣75°﹣60°=45°.故答案为:45.15.解:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC.在Rt△ADE中,∵∠A=90°,∠ADE=30°,DE=4,∴AE=DE=2,AD=AE=2.∵DE⊥CE,∠A=90°,∴∠BEC=∠ADE=90°﹣∠AED=30°.在Rt△BEC中,∵∠B=90°,∠BEC=30°,BC=AD=2,∴BE=BC=6,∴AB=AE+BE=2+6=8,∴矩形ABCD的周长=2(AB+AD)=2(8+2)=16+4.故答案为:16+4.16.解:由勾股定理和正方形的性质可知:S A=S B+S C,S B=S D+S E,S C=S F+S G,∴S A=S B+S C=S F+S G+S B,S B+S C=S D+S E+S F+S G,故答案为:①②③.三.解析题17.解:原式=﹣2+1﹣2+2﹣=﹣2+1.18.证明:∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF.19.解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.解:∵∠B=90°,AB=BC=5,根据勾股定理得:AC===10,又∵CD=6,AD=8,∴AC2=102=100,CD2+AD2=62+82=36+64=100,∴CD2+AD2=AC2,∴△ACD为直角三角形,∠ADC=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AD•CD=×5×5+×8×6=49.21.解:(1)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,x﹣y=(+)﹣(﹣)=2,xy=(+)(﹣)=7﹣5=2,∴x2﹣xy+y2=(x+y)2﹣3xy=28﹣6=22;(2)﹣====2.22.解:如图,连接AC.∵AE⊥BC,点E是BC的中点.∴∠ACB=∠B=30°,∴AC=2AE=2.∴在△ACD中,AD2=8,AC2+CD2=4+4=8,∴AD2=AC2+CD2,∴∠ACD=90°,∴∠BCD=∠ACB+∠ACD=120°.23.解:MN⊥AC,证明:连接AM,CM,∵∠BAD=∠BCD=90°,M为BD的中点,∴AM=,CM=BD,∴AM=CM,∵N为AC的中点,∴MN⊥AC.24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.。
新人教版八年级数学下册期中试卷及答案
新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
人教版八年级数学下册期中试卷及答案【完整版】
人教版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.使x2-有意义的x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
人教版八年级下册数学期中考试重点知识复习提纲
人教版八年级下册期中考试重点知识复习提纲八年级下册第十六章二次根式2. 最简二次根式必须同时满足下列条件:(1)被开方数中不含开方开得尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式。
3. 同类二次根式二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4. 二次根式的性质5. 二次根式的运算(1)因式的外移和内移如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,·变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后,再移到根号里面。
(2)二次根式的加减法先把二次根式化成最简二次根式,再合并同类二次根式(3)二次根式的乘除法二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式。
用字母表示为:(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。
第十七章勾股定理1. 勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
【应用】(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2. 勾股定理逆定理如果三角形三边长a、b、c 满足a2+b2=c2,那么这个三角形是直角三角形。
【应用】勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
注意:定理中a、b、c 及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a、b、c满足a2+c2=b2,那么以a、b、c为三边的三角形是直角三角形,但是b为斜边。
3. 勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,a、b、c为正整数时,称a、b、c为一组勾股数。
②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。
新人教版八年级数学下册期中试卷(可打印)
新人教版八年级数学下册期中试卷(可打印) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2的倒数是( )A .-2B .12-C .12D .22.下列二次根式中,是最简二次根式的是( ).A .2xyB .2abC .12D .422x x y +3.下列运算正确的是( )A .4=±2B .(4)2=4C .2(4)-=﹣4D .(﹣4)2=﹣44.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.实数a 在数轴上的位置如图所示,则化简22(4)(11)--a a()A.7 B.-7 C.215a-D.无法确定8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.3二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为____________.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、-153、32或424、25、x≤1.6、4三、解答题(本大题共6小题,共72分)1、x=﹣3.2、22x-,12-.3、0.4、(1)略;(25、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
人教版数学八年级下册《期中考试题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.有意义,则x 的取值范围为( ) A. x≤0 B. x ≥-1 C. x ≥0 D. x≤-12.下列运算正确的是( )A. =B.3=C. 2=-D. = 3.下列二次根式中属于最简二次根式的是( )A. B. C. D. 4.设n 为正整数,且n n+1,则n 的值为( )A. 5B. 6C. 7D. 85.在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( )A. a =9 b =41 c =40B. a =b =5 c = C a :b :c =3:4:5 D. a =11 b =12 c =156.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 87.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月9.在平行四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶210.一个三级台阶,它每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为( )A. 481B. 25C.D. 11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24 3312.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③二.填空题13.计算:273-=_____.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分. 16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.三.解答题 17.计算:14363(53)(53)3⎛ ⎝18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中2x =19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分中位数.方案4:所有评委所给分的众数.为了探究上述方案合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中结论是否还成立?若成立,给出证明;若不成立,请说明理由.答案与解析一.选择题1.有意义,则x的取值范围为( )A. x≤0B. x≥-1C. x≥0D. x≤-1[答案]B[解析][分析]根据二次根式有意义有条件进行求解即可.[详解]有意义,则被开方数1x+要为非负数,x+≥,即10x≥-,∴1故选B.[点睛]本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.2.下列运算正确的是()A. =B. 3=C. 2=- D. =[答案]B[解析][分析]根据二次根式的加减法,二次根式的性质逐一进行计算即可.[详解]A,故A选项错误;B3=,正确;C2,故C选项错误;D,故D选项错误;故选:B.[点睛]本题考查了二次根式的运算,熟练掌握二次根式加减法的运算法则以及二次根式的性质是解题的关键.3.下列二次根式中属于最简二次根式的是()[答案]B[解析][分析]根据最简二次根式的定义分别判断即可.[详解]A,故错误;B,故正确;C,故错误;D,故错误;2故答案选B.[点睛]本题主要考查了二次根式的化简,准确运用公式是解题的关键.4.设n为正整数,且n n+1,则n的值为()A. 5B. 6C. 7D. 8[答案]D[解析][分析],即可得出n的值.[详解]∴89,∵n n+1,∴n=8,故选;D.[点睛]此题主要考查了估算无理数,5.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )A. a=9 b=41 c=40B. a=b=5 c=C. a:b:c=3:4:5D. a=11 b=12 c=15[答案]D[解析][分析]根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.[详解]解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=()2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选D.[点睛]本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c+=关系时,则三角形为直角三角形.6.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 8[答案]C[解析][分析]根据平均数求出x的值,再利用中位数定义即可得出答案.[详解]∵5,6,6,,7,8,9,这组数据的平均数是7,∴()775667898x =⨯-+++++=,∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7,∴这组数据的中位数是7.故选C .[点睛]此题主要考查了中位数,根据平均数正确得出的值是解题关键.7.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =[答案]A[解析][分析]根据平行四边形的性质分别判断得出答案即可.[详解]A .∵平行四边形ABCD 的对角线AC ,BD 相交于点,∴AO=CO ,BO=DO ,∴△△DOC △△AOD BOC AOB S S S S ===,∴平行四边形△=4ABCD AOB S S ,故A 正确;B .无法得到AC=BD ,故B 错误;C .无法得到AC BD ⊥,故C 错误;D .平行四边形邻边不相等,故D 错误;故答案选A .[点睛]本题主要考查了平行四边形的性质,准确进行分析是解题的关键.8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40有4个月[答案]C[解析][分析]根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.[详解]A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.9.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶2[答案]C[解析][分析]根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.详解]如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A∶∠B∶∠C∶∠D的值可以是1∶2∶1∶2.故选C.[点睛]本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.10.一个三级台阶,它的每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为()A. 481B. 25C.D.[答案]B[解析][分析]先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.[详解]如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长AB.由勾股定理得:2AB =220+()2[233]+⨯=225, 解得:25AB =.故选:B .[点睛]本题考查了平面展开-最短路径问题以及勾股定理的应用,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24C. 123D. 163[答案]D[解析]如图,连接BE,∵在矩形ABCD 中,AD∥BC ,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD 沿EF 翻折点B 恰好落在AD 边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF -∠BEF=120°-60°=60°.在Rt△ABE 中,3∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积=AB•AD=23×8=163.故选D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.12.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③[答案]A[解析][分析] 证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,CD=23再算出AB 长可得四边形ACEB 的周长是10+13[详解]①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=cos30AD ⋅︒=23, ∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB ,∴EB=4,DB=23,∴BC=43,∴AB=()2222243213AC BC +=+=,∴四边形ACEB 的周长是10213+,故③正确;综上,①②③均正确,故选:A .[点睛]本题主要考查了平行四边形判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法.二.填空题13.计算:273-=_____.[答案]23[解析][详解]解:原式=33323-=.故答案为23.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.[答案]110°.[解析]根据平行四边形的性质可得AB ∥CD ,根据平行线的性质可得∠1=∠CAB=20°,因BE ⊥AB ,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分.[答案]87[解析][分析]根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.[详解]∵笔试按40%,面试按60%,∴总成绩是()9040%+8560%=87⨯⨯分,故答案是87分.[点睛]本题主要考查加权平均数的知识点,准确分析是解题的关键.16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.[答案](8076,0)[解析][分析]先利用勾股定理求得AB 的长,再找到图形变换规律为:△OAB 每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.[详解]∵A (-3,0),B (0,4),∴OA=3,OB=4,∴22OA OB +=5,∴△ABC 的周长=3+4+5=12,图形变换规律为:△OAB 每连续3次后与原来的状态一样,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,∴△2020的直角顶点的横坐标=673×12=8076,∴△2020的直角顶点坐标为(8076,0)故答案为(8076,0).[点睛]本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.三.解答题17.计算:⎛ ⎝[答案]8[解析][分析]先利用乘法分配律计算,再利用平方差公式计算,最后把结果相加即可.[详解]解:原式=12-6+(5-3)=6+2=8.[点睛]本题考查了实数的混合运算,解题的关键是熟练运用乘法公式,注意运算顺序.18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中x =[答案]21x x -,2 [解析]分析]原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.[详解]2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭2(1)21(1)(1)(1)x x x x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 当2x =时,原式21x x =- 2(2)2-1= 2(21)(21)(21)+=-+ 222=+[点睛]本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解本题的关键.19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.[答案](1)证明见解析;(2)258. [解析][分析](1)观察图形,可得AE=DC ,又∵∠FEA=∠DFC ,∠AEF=∠CDF ,由全等三角形判定方法证△AEF ≌△CDF ,即得EF=DF ,从而得到AF =FC ;(2)在Rt △CDF 中应用勾股定理即可得.[详解]解:(1)证明:由矩形性质可知,AE=AB=DC ,根据对顶角相等得,∠EFA=∠DFC ,而∠E=∠D=90°,∴由AAS 可得,△AEF ≌△CDF .∴AF =FC.(2)设FA=x ,则FC=x ,FD=4x -,在Rt △CDF 中,CF 2=CD 2+DF 2,即()222x 34x =+-,解得x=258. [点睛]本题考查翻折变换(折叠问题),矩形的性质,全等三角形的判定与性质,勾股定理.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.[答案]方案一:7.8分;方案二:8分;方案三:8分;方案四:8分和8.4分[解析][分析]方案1:平均数=总分数10;方案2:平均数=去掉一个最高分和最低分的总分数8;方案3:10个数据,中位数应是第5个和第6个数据的平均数;方案4:求出评委给分中,出现次数最多的分数;[详解]方案1最后得分:()1 5.2+7.0+7.8+38+38.4+9.8=7.810⨯⨯⨯. 方案2最后得分:()17.0+7.8+38+38.4=88⨯⨯⨯. 方案3最后得分:8+8=82. 方案4最后得分:次数最多的分数是8分和8.4分.[点睛]本题主要考查了数据分析的知识点应用,准确判断各个数是解题的关键.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.[答案]见解析[解析][分析]先证四边形EFGH 是平行四边形,再利用平行四边形的性质,即可得证.[详解]证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,AD=BC ,AB=DC ,又∵AF=CH ,DE=BG ,∴DH=BF ,AE=CG ,∵AE=CG ,∠A=∠C ,AF=CH ,∴△AEF ≌△CGH ,∴EF=GH ,∵DH=BF ,∠B=∠D ,DE=BG ,∴△DEH ≌△BGF ,∴EH=FG ,∵EF=GH ,EH=FG ,∴四边形EFGH 是平行四边形.∴EG 和HF 互相平分.[点睛]本题考查了三角形全等的判定和性质、平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗[答案]乙船沿南偏东30°方向航行.[解析][分析]首先根据速度和时间计算出AO 、BO 的路程,再根据勾股定理逆定理证明∠AOB =90°,进而可得答案.[详解]解:由题意得:甲船的路程:AO =8×2=16(海里), 乙船的路程:BO =15×2=30(海里), ∵222301634+=,∴∠AOB =90°, ∵AO 是北偏东60°方向,∴BO 是南偏东30°. 答:乙船航行的方向是南偏东30°. [点睛]本题主要考查了勾股定理逆定理,以及方向角,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c 满足222+=a b c ,那么这个三角形就是直角三角形.23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.[答案](1)证明见解析;(2)∠CBE=70°.[解析][分析](1)证明AD∥BC,AD=BC,FH∥BC,FH=BC;(2)∠CBE是等腰△CBE的底角,求出顶角∠ECD即可.[详解](1)证明:∵BF=BE,CG=CE,∴BC∥12FG,BC=12FG又∵H是FG的中点,∴FH∥12FG,FH=12FG,∴BC∥FH,且BC=FH,又∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴四边形AFHD是平行四边形;(2)∵四边形ABCD是平行四边形,∠BAE=60°, ∴∠BAE=∠DCB=60°,又∵∠DCE=20°,∴∠ECB=∠DCB-∠DCE=60°-20°=40°,∵CE=CB,∴∠CBE=∠BEC=12(180°-∠ECB)=12(180°-40°)=70°.[点睛]此题考查了平行四边形的判定.考查平行四边形的判定方法,具体选用哪种方法,需要根据已知条件灵活选择;把所求角与已知角集中到同一个三角形中.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.[答案](1)AE=GC,AEGC;(2)成立,见解析[解析][分析](1)由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,AE=CG,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,AE=CG,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得证.[详解](1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.[点睛]本题主要考查了旋转的性质、正方形的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。
2022-2023学年新人教版八年级下数学期中试卷(含解析)
2022-2023学年初中八年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:140 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 在二次根式,,,,中,最简二次根式有( )个.A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 如图,在正方形网格中,每个小正方形的边长都为,的顶点都在格点上,则的边长为无理数的条数是( )A.条B.条C.条D.条16x 3−−−−√−2–√30.5−−−√a x−−√−a 2b 2−−−−−−√1234=2()2–√2=−2(−2)2−−−−−√=223−−√=−2(−)2–√21△ABC △ABC 01234. 在中, ,则 的度数为( )A.B.C.D.5. 在中,,,,则的长是( )A.B.C.D. 6.实数,在数轴上对应的位置如图,则化简结果为( )A.B.C.D.7. 如图,平行四边形的周长为,对角线,交于点,为的中点,,则的周长为( )A.B.C.D.8. 若一个三角形的一条边的长为,其面积为,则这条边上的高为( )▱ABCD ∠B +∠D =216∘∠A 36∘72∘80∘108∘Rt △ABC ∠C =90∘a =1c =2b 13–√25–√a b +(1−a)2−−−−−−−√(b −2)2−−−−−−√a +b −3a −b −33−a −ba −b −1ABCD 20AC BD O E CD BD =6△DOE 67810+13–√633–√A.B.C.D.9. 下列命题中,正确的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形10. 两条对角线相等且互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )12. 如图,受台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前的高度(树干与地面垂直)是________.13. 如图所示是一个矩形,在上取一点,过作于,于,其中,,求________.33–√6−63–√3+33–√6+63–√3m 4m ABCD AD P P PF ⊥AC F PE ⊥BD E AD =12AB =5PE +PF =14. 如图,点是长方形中边上一点,将沿折叠为,点落在边上,若,,则________.15. 菱形的两条对角线长分别是和,则它的面积为________.16. 已知中,, ,且有一个锐角为 ,则边的长等于________.17. 化简:_________.18. 如图,在中,,于点,是的中点.若,则的长为________ .三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )19. 计算:. 20. 计算下列各题:;先化简,再求值:,其中,. E ABCD CD △BCE BE △BFE F AD AB =8BC =10CE =14cm 20cm cm 2Rt △ABC ∠C =90∘AB =630∘BC −=2a −28−4a 2△ABC AB =AC AD ⊥BC D E AC DE =5AB −+(−2)2–√2−−−−−−−−√()1−12–√−1()2–√3(1)×+÷|−2|(−)13−240(−2)3(2)(x +y)(x −y)−−y (x −2y)(x −y)2x =−20202019y =20212020A C21. 如图,在所给的方格纸中,每个小正方形的边长都是,点,,位于格点处,请按要求画出格点四边形.(1)在图中画出格点,使=,且以点,,,为顶点的四边形面积为;(2)在图中画出一个以点,,,为顶点的格点四边形,使=.22. 已知:如图,平行四边形的对角线的垂直平分线与边,分别交于,.求证:四边形是菱形.23. 如图实数在数轴上表示为:化简:.24. 课堂上同学们正在讨论课本例题:如图,一架长的梯子斜靠在竖直的墙上,的距离为,若梯子顶端下滑的距离为,则点向外移动的距离为多少?同学甲:本题可以这样来做解:在中,,,根据勾股定理得:,则________,又在中,,根据勾股定理得:________,则________.同学乙.我发现在本题答案中,梯子顶端下滑的距离比末端向外移动的距离小,说明在梯子下滑时,梯子顶端下滑的距离一定比末端向外移动的距离小.同学丙:不一定,我能举个反例,比如,当梯子顶端下滑的距离为时,在中,,,根据勾股定理得:________,则,又在中,,根据勾股定理得:________,则________.即:,老师.通过上面的讨论,同学们发现有时大,有时大,那么有没有可能正好的情况存在呢?同学丁:有.当梯子顶端从处下滑时,末端向外也移动.你认为他的说法正确吗?说明理由.1A B C 1P AC CP A B C P 32A B C P A +C P 2P 215ABCD AC AD BC E F AFCE −|a −b |−|c −a |+a 2−−√(b −c)2−−−−−−√2.5m AB AC BC 0.7m 0.4m B Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =A 1m Rt △C A 1B 1=2.5m A 1B 1C =B 1m B =B 1m AA 1BB 11.9m Rt △ABC BC =0.7m AB =2.5m AC =m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 1m B =B 1m A >B A 1B 1AA 1BB 1A =B A 1B 1A 1.7m 1.7m =125. 小明在解决问题:已知,求的值他是这样分析与解的:∵,∴,∴,∴,.请你根据小明的分析过程,解决如下问题:(1)化简(2)若,求下面式的值①;②. 26. 如图,已知.猜测之间的数量关系,并证明你的结论.若点向右移动到线段的右侧,并且点在平行线 和之间时,之间的关系仍然满足中的结论吗?若满足,请证明你的结论;若不满足,请你写出正确的结论并证明,要求画出相应的图形.若点向右移动到线段的右侧,并且点在平行线和之外,则之间的数量关系又是怎样的?请你写出正确的结论并证明. 27. 提出问题:如图①,在四边形中,是边上任意一点,与和的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:当时(如图②):∵,和的高相等,∴.∵,和的高相等,∴.a =12+3–√2−8a +1a 2a ===2−12+3–√2−3–√(2+)(2−)3–√3–√3–√a −2=−3–√(a −2=3)2−4a +4=3a 2−4a =−1a 22−8a +1=2(−4a)+1=2×(−1)+1=−1a 2a 2+++...+1+13–√1+5–√3–√1+7–√5–√1+121−−−√119−−−√a =1−12–√2−8a +1a 22−5a ++2a 21a AB//DE (1)∠A ,∠ACD ,∠D (2)C AD C AB DE ∠A ,∠ACD ,∠D (1)(3)C AD C AB DE ∠A ,∠ACD ,∠D ABCD P AD △PBC △ABC △DBC AP =AD 12AP =AD 12△ABP △ABD =S △ABP 12S △ABD PD =AD −AP =AD 12△CDP △CDA =S △CDP 12S △CDA =−−S PBC S 边形ABCD S ABP S CDP∴.当时,探求与和之间的关系,写出求解过程;当时,与和之间的关系式为:________;一般地,当(表示正整数)时,探求与和之间的关系,写出求解过程;问题解决:当时,与和之间的关系式为:________.28. 如图,是与弦所围成的图形的内部的一定点,点是弦上一动点,连接并延长交于点,连接.已知,设、两点间的距离为,、两点间的距离为,、两点间的距离为,小东根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:按照表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;其中________;如图,函数的图象已经画出,请在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象;结合函数图象,解决问题:当为等腰三角形时,的长度约为________.=−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 12S △ABD 12S △CDA =−(−)−(−)S 四边形ABCD 12S 四边形ABCD S △DBC 12S 四边形ABCD S △ABC =+12S △DBC 12S △ABC (1)AP =AD 13S △PBC S △ABC S △DBC (2)AP =AD 16S △PBC S △ABC S △DBC (3)AP =AD 1n n S △PBC S △ABC S △DBC AP =AD(0≤≤1)m n m n S △PBC S △ABC S △DBC Q AB ˆAB P AB PQ AB ˆC AC AB =6cm A P xcm P C cm y 1A C cm y 2y 1y 2x (1)x y 1y 2x a =/cm x 10123456/cm y 1 5.64.73.8a 2.73.24.4/cm y 2 5.65.55.45.35.24.74.1(2)y 2xOy (x,)y 1y 1(3)△APC AP参考答案与试题解析2022-2023学年初中八年级下数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】最简二次根式【解析】根据二次根式的性质看看每个二次根式是否能继续往外开(也可以根据最简二次根式的定义直接判断),即可得出答案.【解答】解:,不是最简二次根式;是最简二次根式;,不是最简二次根式;,不是最简二次根式;是最简二次根式;即最简二次根式有个.故选.2.【答案】A【考点】二次根式的性质与化简【解析】本题考查二次根式的乘法和二次根式的化简,根据二次根式的乘法法则和性质解答.【解答】解:.原式,故正确;=4x 16x 3−−−−√x −√−2–√3==0.5−−−√12−−√2–√2=a x −−√ax −−√|x |−a 2b 2−−−−−−√2B A =2.原式,故错误;.原式,故错误; .原式,故错误.故选.3.【答案】C【考点】勾股定理【解析】根据图形和勾股定理来解答即可.【解答】解:∵,,,的边长有两条是无理数.故选.4.【答案】B【考点】平行四边形的性质【解析】此题暂无解析【解答】解:∵四边形是平行四边形,∴,,∵,∴,∴.故选.5.【答案】B【考点】B =2C =22–√D =2A AB ==+1242−−−−−−√17−−√BC ==+1232−−−−−−√10−−√AC ==5+3242−−−−−−√∴△ABC C ABCD ∠B =∠D ∠A +∠B =180∘∠B +∠D =216∘∠B =108∘∠A =−=180∘108∘72∘B勾股定理【解析】根据勾股定理即可求解.【解答】解:在中,,,,∴.故选.6.【答案】C【考点】二次根式的性质与化简数轴绝对值【解析】根据数轴表示数的方法得到,,则,,再根据化简原式,然后根据绝对值的意义得到原式 ,再去括号合并即可.【解答】解:,,,,原式 .故选.7.【答案】C【考点】三角形中位线定理平行四边形的性质【解析】Rt △ABC ∠C =90∘a =1c =2b ===−c 2a 2−−−−−−√−2212−−−−−−√3–√B b <1a <01−a >0b −2<0=|a|a 2−−√=|1−a|+|b −2|=1−a −(b −2)∵a <00<b <1∴1−a >0b −2<0∴=|1−a|+|b −2|=1−a −(b −2)=1−a −b +2=3−a −b C OB =OD CD根据平行四边形的对边相等和对角线互相平分可得,,又因为点是的中点,可得是的中位线,可得,所以易求的周长.【解答】解:∵▱的周长为,∴,则.∵四边形是平行四边形,,∴.又∵点是的中点,∴是的中位线,,∴,∴的周长 ,即的周长为.故选.8.【答案】B【考点】二次根式的应用【解析】设这边上的高为,根据三角形的面积公式列式,然后进行分母有理化即可得解.【解答】解:设这边上的高为,则,.故选.9.【答案】A【考点】正方形的判定OB =OD E CD OE △BCD OE =BC 12△DOE ABCD 202(BC +CD)=20BC +CD =10ABCD BD =6OD =OB =BD =312E CD OE △BCD DE =CD 12OE =BC 12△DOE =OD +OE +DE =BD +(BC +CD)1212=3+5=8△DOE 8C h h (+1)h =6123–√h ===6−612+13–√12(−1)3–√(+1)(−1)3–√3–√3–√B菱形的判定平行四边形的判定【解析】、根据矩形的定义作出判断;、根据菱形的性质作出判断;、根据平行四边形的判定定理作出判断;、根据正方形的判定定理作出判断.【解答】解:,对角线互相平分的四边形是平行四边形;故本选项正确;,两条对角线相等且相互平分的四边形为矩形;故本选项错误;,对角线互相垂直平分且相等的四边形是正方形;故本选项错误;,对角线互相垂直的平行四边形是菱形;故本选项错误;故选.10.【答案】D【考点】正方形的判定与性质【解析】两条对角线互相垂直平分的四边形是菱形,对角线相等的菱形是正方形,所以该四边形是正方形.【解答】解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11.【答案】【考点】分式有意义、无意义的条件二次根式有意义的条件A B C D A B C D A D x <12根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母,可得不等式,再解不等式即可.【解答】解:由题意得:,解得:.故答案为:.12.【答案】【考点】勾股定理的应用勾股定理【解析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:如图,由题意得,,在直角三角形中,根据勾股定理得:,所以大树的高度是.故答案为:.13.【答案】【考点】矩形的性质≠01−2x >01−2x >0x <12x <128mAB =3m BC =4m ABC AC ==5(m)+3242−−−−−−√3+5=8(m)8m 6013连接,由矩形推出,,,由勾股定理求出和的长,求出矩形的面积,进而得到的面积,根据三角形的面积公式即可求出答案.【解答】解:如图,连接.∵四边形是矩形,∴,,,.在中,,,,由勾股定理,得,∴.∵,∴,∴,即,∴.故答案为:.14.【答案】【考点】翻折变换(折叠问题)勾股定理【解析】由矩形的性质可得==,==,==,由折叠的性质可求==,=,由勾股定理可求的长,的长.【解答】解:∵四边形是长方形,∴,,.∵将沿折叠为,∴,.OP AC =BD OA =OC OB =OD AC BD ABCD △AOD OP ABCD ∠BAD =90∘AC =BD OA =OC OB =OD △BAD ∠BAD =90∘AD =12AB =5AC =BD ===13A +A B 2D 2−−−−−−−−−−√+52122−−−−−−−√OA =OD =132=12×5=60S 矩形ABCD ==15S △AOD 14S 矩形ABCD =+=OA ⋅PF +OD ⋅PE S △AOD S △APO S △DPO 121215=××PF +××PE 1213212132PE +PF =601360135AB CD 8AD BC 10∠A ∠D 90∘BF BC 10EF CE AF CE ABCD AB=CD =8AD=BC =10∠A =∠D=90∘△BCE BE △BFE BF =BC =10EF =CE∴.在中,,∴,∴.故答案为:.15.【答案】【考点】菱形的面积【解析】根据菱形的面积等于对角线乘积的一半,即可解答.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积.故答案为: .16.【答案】或【考点】勾股定理含30度角的直角三角形【解析】分两种情况讨论,当时,或当时,然后根据含角的直角三角形的性质和勾股定理即可解答.【解答】解:①当时,∵,,,∴;②当时,∵,,,∴.DF =AD −AF =4Rt △DEF D +D F 2E 2=EF 2=CE 216+(8−CE)2=CE 2CE =55140S =×14×20=140()12cm 2140333–√∠A =30∘∠B =30∘30∘∠A =30∘∠C =90∘AB =6∠A =30∘BC =AB =×6=31212∠B =30∘∠C =90∘AB =6∠B =30∘AC =AB =×6=31212∴的边长为或.故答案为:或.17.【答案】【考点】二次根式的化简求值【解析】此题暂无解析【解答】解:故答案为.18.【答案】【考点】直角三角形斜边上的中线等腰三角形的性质【解析】解答此题的关键在于对直角三角形斜边上的中线的理解,了解直角三角形斜边上的中线等于斜边的一半.【解答】解:如图,∵,BC 333–√333–√2a +2−2a −28−4a 2=−2a −28(a +2)(a −2)=−2(a +2)(a +2)(a −2)8(a +2)(a −2)=2(a −2)(a +2)(a −2)=2a +2:2a +210AD ⊥BC ∘∴.∵,∴.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )19.【答案】解:原式.【考点】二次根式的混合运算【解析】首先分别化简二次根式,然后进行加减计算即可解答.【解答】解:原式.20.【答案】解:原式.原式,将,带入,得.【考点】零指数幂、负整数指数幂有理数的混合运算平方差公式完全平方公式整式的混合运算——化简求值AC =2DE =10AB =AC AB =1010=|−2|−(−1)+22–√2–√2–√=2−−+1+22–√2–√2–√=3=|−2|−(−1)+22–√2–√2–√=2−−+1+22–√2–√2–√=3(1)=9×1+(−8)÷2=9−4=5(2)=−−+2xy −−xy +2x 2y 2x 2y 2y 2=xy x =−20202019y =20212020xy (−)×=−202020192021202020212019【解析】无无【解答】解:原式.原式,将,带入,得.21.【答案】如图中,四边形即为所求(答案不唯一).如图中,四边形即为所求(答案不唯一).【考点】作图—应用与设计作图勾股定理三角形的面积【解析】此题暂无解析(1)=9×1+(−8)÷2=9−4=5(2)=−−+2xy −−xy +2x 2y 2x 2y 2y 2=xy x =−20202019y =20212020xy (−)×=−20202019202120202021201912此题暂无解答22.【答案】证明:∵四边形是平行四边形,∴,∴,∵在与中,∴.∴,∴四边形为平行四边形,又∵,∴四边形为菱形;【考点】菱形的判定【解析】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.【解答】证明:∵四边形是平行四边形,∴,∴,∵在与中,∴.∴,∴四边形为平行四边形,又∵,∴四边形为菱形;23.【答案】解:原式.ABCD AE //FC ∠EAC =∠FCA △AOE △COF ∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,△AOE ≅△COF(ASA)EO =FO AFCE EF ⊥AC AFCE ABCD AE //FC ∠EAC =∠FCA △AOE △COF ∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,△AOE ≅△COF(ASA)EO =FO AFCE EF ⊥AC AFCE =|a |−|a −b |−|c −a |+|b −c |=−a −(b −a)−c +a +c −b =−a −b +a −c +a +c −b =a −2b二次根式的性质与化简在数轴上表示实数【解析】根据数轴上点的位置,可化简二次根式,绝对值,根据整式的加减,可得答案.【解答】解:原式.24.【答案】解:同学甲:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.故答案为:;;.同学丙:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.即.故答案为:; ;.同学丁:说法正确,理由如下:在中, ,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则 ,即.【考点】勾股定理的应用【解析】直接利用勾股定理解答即可【解答】解:同学甲:在中,,,根据勾股定理,得,=|a |−|a −b |−|c −a |+|b −c |=−a −(b −a)−c +a +c −b =−a −b +a −c +a +c −b =a −2b Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =2A 1m Rt △C A 1B 1=2.5m A 1B 1C =1.5B 1m B =0.8B 1m 2 1.50.8Rt △ABC BC =0.7m AB =2.5m AC =2.4m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 16–√m B =(−0.7)B 16–√m A >B A 1B 12.46–√(−0.7)6–√Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =0.7m A 1Rt △C A 1B 1=2.5m A 1B 1C ==2.4m B 1−2.520.72−−−−−−−−−√B =1.7m B 1A =B A 1B 1Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√根据勾股定理,得,则.故答案为:;;.同学丙:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.即.故答案为:; ;.同学丁:说法正确,理由如下:在中, ,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则 ,即.25.【答案】解:(1)原式;(2)①∵,∴;②.【考点】分母有理化【解析】(1)将原式分母有理化即可;(2)将分母有理化,化简为,代入①,②进行运算即可.【解答】解:(1)原式C =1.5B 1m B =0.8B 1m 2 1.50.8Rt △ABC BC =0.7m AB =2.5m AC =2.4m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 16–√m B =(−0.7)B 16–√m A >B A 1B 12.46–√(−0.7)6–√Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =0.7m A 1Rt △C A 1B 1=2.5m A 1B 1C ==2.4m B 1−2.520.72−−−−−−−−−√B =1.7m B 1A =B A 1B 1=×(+−+−+...+−)123–√5–√3–√7–√5–√121−−−√119−−−√=×(−1)12121−−−√=×1012=5a ==+11−12–√2–√2−8a +1a 2=2×(+1−8×(+1)+12–√)22–√=−6−12–√2−5a ++2a 21a =2×(+1−5(+1)+22–√)22–√=2a +12–√=×(+−+−+...+−)123–√5–√3–√7–√5–√121−−−√119−−−√=×(−1)12121−−−√×101;(2)①∵,∴;②.26.【答案】解:.证明如下:如图,过点作,则,∵,∴,∵,∴,∵,∴如图,此时之间的数量关系为.证明如下:过点作,则,∵,∴,∵,.∵,∴..证明如下:①当点直线的下方时,如图,过点作,则,则,∵,∴,∵,∴,∵,∴②当点直线的上方时,如图,过点作,则,=×1012=5a ==+11−12–√2–√2−8a +1a 2=2×(+1−8×(+1)+12–√)22–√=−6−12–√2−5a ++2a 21a =2×(+1−5(+1)+22–√)22–√=2(1)∠A +∠ACD +∠D =360∘1C CF//AB CF//DE CF//AB ∠A +∠ACF =180∘CF//DE ∠D +∠FCD =180∘∠ACD =∠ACF +∠DCF ∠A +∠ACD +∠D =+=.180∘180∘360∘(2)2∠A ,∠ACD ,∠D ∠ACD =∠A +∠D C CF//AB CF//DE CF//AB ∠A =∠ACF CF//DE ∴∠D =∠DCF ∠ACD =∠ACF +∠DCF ∠ACD =∠A +∠D (3)∠ACD =∠A −∠D C DE 3C CF//AB CF//DE CF//DE CF//AB ∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠ACF −∠DCF ∠ACD =∠A −∠DC AB 4C CF//AB CF//DE∵.,∵,∴,∵,.【考点】平行四边形的性质全等三角形的性质【解析】此题暂无解析【解答】解:.证明如下:如图,过点作,则,∵,∴,∵,∴,∵,∴如图,此时之间的数量关系为.证明如下:过点作,则,∵,∴,∵,.∵,∴..证明如下:①当点直线的下方时,如图,过点作,则,则,∵,∴,∵,∴,∵,CF//AB ∴∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠DCF −∠ACF ∴∠ACD =∠D −∠A (1)∠A +∠ACD +∠D =360∘1C CF//AB CF//DE CF//AB ∠A +∠ACF =180∘CF//DE ∠D +∠FCD =180∘∠ACD =∠ACF +∠DCF ∠A +∠ACD +∠D =+=.180∘180∘360∘(2)2∠A ,∠ACD ,∠D ∠ACD =∠A +∠D C CF//AB CF//DE CF//AB ∠A =∠ACF CF//DE ∴∠D =∠DCF ∠ACD =∠ACF +∠DCF ∠ACD =∠A +∠D (3)∠ACD =∠A −∠D C DE 3C CF//AB CF//DE CF//DE CF//AB ∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠ACF −∠DCF ∠ACD =∠A −∠D∴②当点直线的上方时,如图,过点作,则,∵.,∵,∴,∵,.27.【答案】解:∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.;,求解过程如下:∵,和的高相等,∴.又∵,和的高相等,∴.∴.∴.同理,当时,.∠ACD =∠A −∠DC AB 4C CF//AB CF//DE CF//AB ∴∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠DCF −∠ACF ∴∠ACD =∠D −∠A (1)AP =AD 13△ABP △ABD =S △ABP 13S △ABD PD =AD −AP =AD 23△CDP △CDA =S △CDP 23S △CDA =−−S △PBC S 四边形ABCD S △ABP S△CDP=−−S 四边形ABCD 13S △ABD 23S △CDA=−(−)−(−)S 四边形ABCD 13S 四边形ABCD S △DBC 23S 四边形ABCD S △ABC =+13S △DBC 23S △ABC =+S △PBC 13S △DBC 23S △ABC=+S △PBC 16S △DBC 56S △ABC (3)=+S △PBC 1n S △DBC n −1n S △ABC AP =AD 1n △ABP △ABD =S △ABP 1n S △ABD PD =AD −AP =AD n −1n△CDP △CDA =S △CDP n −1nS △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP=−−S 四边形ABCD 1n S △ABD n −1n S △CDA=−(−)−(−)S 四边形ABCD 1n S 四边形ABCD S △DBC n −1nS 四边形ABCD S △ABC =+1n S △DBC n −1n S △ABC=+S △PBC 1n S △DBC n −1n S △ABC AP =AD(0≤≤1)m n m n =+S △PBC m n S △DBC n −m n S △ABC【考点】规律型:图形的变化类三角形的面积【解析】此题暂无解析【解答】解:∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.故答案为:.,求解过程如下:∵,和的高相等,∴.又∵,和的高相等,∴.(1)AP =AD 13△ABP △ABD =S △ABP 13S △ABDPD =AD −AP =AD 23△CDP △CDA =S △CDP 23S △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 13S △ABD 23S △CDA =−(−)−(−)S 四边形ABCD 13S 四边形ABCD S △DBC 23S 四边形ABCD S △ABC =+13S △DBC 23S △ABC =+S △PBC 13S △DBC 23S △ABC (2)AP =AD 16△ABP △ABD =S △ABP 16S △ABD PD =AD −AP =AD 56△CDP △CDA =S △CDP 56S △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 16S △ABD 56S △CDA =−(−)−(−)S 四边形ABCD 16S 四边形ABCD S △DBC 56S 四边形ABCD S △ABC =+16S △DBC 56S △ABC =+S △PBC 16S △DBC 56S △ABC =+S △PBC 16S △DBC 56S △ABC (3)=+S △PBC 1n S △DBC n −1n S △ABCAP =AD 1n △ABP △ABD =S △ABP 1n S △ABD PD =AD −AP =AD n −1n △CDP △CDA =S △CDP n −1n S △CDA=−−S PBC S 边形ABCD S ABP S CDP∴.∴.同理,当时,.28.【答案】函数图象如图所示:或或【考点】动点问题勾股定理圆周角定理函数的图象【解析】左侧图片未给出解析左侧图片未给出解析左侧图片未给出解析【解答】解:时,,,,,,是直径,当时,,.故答案为:.函数图象如图所示:n =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 1n S △ABD n −1n S △CDA=−(−)−(−)S 四边形ABCD 1n S 四边形ABCD S △DBC n −1n S 四边形ABCD S △ABC =+1n S △DBC n −1n S △ABC =+S △PBC 1n S △DBC n −1n S △ABCAP =AD(0≤≤1)m n m n =+S △PBC m n S △DBC n −m n S △ABC 3(2)3 4.9 5.8(1)∵PA =6AB =6BC =4.4AC =4.1∴A ≈A +B B 2C 2C 2∴∠ACB =90∘∴AB x =3PA =PB =PC =3∴=3y 13(2)观察图象可知:当,即当或时,或,当时,即时,,综上所述,满足条件的的值为或或.(由于是结果是测量出来的,允许有误差)故答案为:或或.(3)x =y PA =PC PA =AC x =3 4.9=y 1y 2PC =AC x =5.8x 3 4.9 5.83 4.9 5.8。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)
2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
人教版八年级数学下册期中复习知识点
二次根式知识点复习【知识点1】二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
【知识点2】二次根式的性质:(1)二次根式的非负性,)0(0≥≥a a 的最小值是0;)是一个非负数,即)0(0≥≥a a 。
注:因为二次根式)0(0≥≥a a 表示a 0=,则a=0,b=00b =,则a=0,b=020b =,则a=0,b=0。
(2)2a =() 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式2a =()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则2a =,如: 22=专题二 二次根式的乘除【知识点1】二次根式的乘法法则:)0,0(≥≥=⋅b a ab b a 。
将上面的公式逆向运用可得:)0,0(≥≥∙=b a b a ab 积的算术平方根,等于积中各因式的算术平方根的积。
【知识点2】二次根式的除法:(1)一般地,对于二次根式的除法规定ba b a=).0,0(>≥b a 【注】分母有理化二次根式的除法运算,通常是采用化去分母中的根号的方法来进行的。
分母有理化:(1)定义:把分母中的根号化去,叫做分母有理化。
(2)关键: 把分子、分母都乘以一个适当的式子,化去分母中的根号。
【知识点3】最简二次根式:(1)被开放数不含分母;(2)被开放数中不含开得尽方的因数或因式。
专题三 二次根式的加减【知识点1】同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这样的二次根式叫做同类二次根式。
.【知识点2】二次根式的加减:二次根式加减时,可以先将二次根式化为最简的二次根式,再将被开放数相同的根式进行合并。
【知识点3】二次根式的混合运算 二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方,再乘除,最后加减,有括号的先算括号里面的。
初二数学人教新课标版(最新版)下学期期中复习
初二数学人教新课标版(最新版)下学期期中复习一、考点突破在下半学期的期中复习中,我们要紧把握以下内容:(1)进一步熟练把握利用二次根式的性质进行化简和运算,把握勾股定理及其逆定理的内容,把握平行四边形、矩形、菱形、正方形的性质和判定;(2)进一步提高分析实际问题中数量关系的能力,能熟练地利用勾股定理及其逆定明白得决一些实际问题;(3)在推理和运算中,体会和运用数形结合、转化、方程和分类讨论思想。
中考要求:知识点考纲要求题型分值二次根式的运算把握选择题、填空题、解答题6分左右勾股定理及其逆定理综合运用选择题、填空题、解答题6分左右平行四边形的性质和判定综合运用填空题、解答题6分左右专门的平行四边形的性质和判定综合运用选择题、填空题、解答题8分左右二、重难点提示重点:1. 运用二次根式的加、减、乘、除的法则进行二次根式的运算和化简;2. 会灵活运用勾股定理及其逆定理进行运算及解决一些实际问题;3. 明白得和把握平行四边形、矩形、菱形、正方形的性质和判定;4. 把握三角形的中位线定理。
难点:1. 正确明白得二次根式乘、除法公式的成立条件;2. 勾股定理的探究过程及适用范畴;3. 明白得平行四边形、矩形、菱形与正方形之间的区别和联系,能灵活运用其进行推理和论证。
二次根式的运算和化简【考点精讲】 【典例精析】 例题1 运算:133129()2452523÷-⨯ 思路导航:按照从左到右的顺序逐步运算,也能够按照各系数相乘除作为系数,各被开方数相乘除作为被开方数,化为一个二次根式后,再化简。
答案:解法1:原式=313129()2245523÷-÷⨯解法2:原式=31138[9()]224553÷-⨯÷⨯ 点评:本题考查二次根式的乘除混合运算,要注意运算顺序以及符号,当某数是带分数时,运算过程中要化为假分数。
例题2 先化简,再求值:111()x y y x÷--,其中32x =+,32y =-。
人教版初二第二学期数学期中复习
期中复习知识点一、二次根式1、二次根式的概念:一般地,我们把一般地,我们把形如√a (a ≥0)的式子叫做二次根式.二次根式的实质是一个非负数的算数平方根。
【注】二次根式中的被开方数必须是非负数,否则二次根式无意义.2、二次根式的性质:①2(0)a a =≥;(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪−<⎩;,0)a b =≥≥;0,0)a b =≥>。
总结:①二次根式有意义的条件是:被开方数大于等于0;②二次根式具有双重非负性(即被开方数大于等于0,二次根式的值大于等于0).3、二次根式的乘除:(1)积的算术平方根性质:(2)二次根式的乘法法则:(3(4)二次根式的除法法则:(5)最简二次根式:①被开方数不含分母;②被开方数中不含能开的尽方的因数或因式分母有理化:把分母中的根号化去,叫做分母有理化。
步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
4、二次根式的加减:二次根式的加减与合并同类项类似,把同类二次根式的系数相加减,作为结果得系数,根号即根号内部都不变.【注】在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:①将每个二次根式都化简成为最简二次根式;②判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;③合并同类二次根式。
5、 二次根式的混合运算:二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方,再乘除,最后加减,有括号的先算括号里面的。
二、勾股定理1、勾股定理:直角三角形两条直角边a 、b 的平方和等于斜边c 的平方. a 2+b 2=c 2.2、理解勾股定理的一些变式:222a c b =−,222b c a =−, ()222c a b ab =+−.3、勾股定理的逆定理:如果三角形的三边长分别为a 、b 、c ,且a 2+b 2=c 2,那么这个三角形是直角三角形.【注】勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.4、勾股数:满足关系a 2+b 2=c 2的3个正整数a 、b 、c 称为勾股数.【注】勾股数必须是正整数.5、常见的几组勾股数:①3、4、5; ②5、12、13; ③8、15、17; ④7、24、25; ⑤9、40、41…【注】如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形. 7、解勾股定理实际问题的一般步骤:①仔细审题,读懂题意;②找出或构造出与问题有关的直角三角形;③在直角三角形中根据勾股定理列算式或列方程;④求解所列算式或方程,直接或间接得到答案;⑤作答.解有关勾股定理的实际问题的关键是将实际问题转化为数学模型.2、求立体图形表面的最短路径关键点:解决有关立体图形中路线最短的问题,其关键是把立体图形中的路线问题转化为平面上的路线问题.如圆柱侧面展开图为长方形,圆锥侧面展开图为扇形,长方体侧面展开图为长方形等.运用平面上两点之间线段最短的道理,利用勾股定理求解. a b c 、、t at bt ct 、、三、平行四边形1、平行四边形(1)平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
►考点三 二次根式的化简
例 3 设 2=a, 3=b,用含 a,b 的式子表示 0.54,
则下列表示正确的是( C )
A.0.03ab
B.3ab
C.0.1ab3
D.0.1a3b
[解析] C
0.54=
15040= 1504=
190×6=
32· 10
3·
2,
因为 2=a, 3=b,所以 0.54=a1b03=0.1ab3,故答案为 C.
[解析] 两个以上的二次根式相乘与两个二次根式相乘 的方法一样,把它们的系数、被开方数分别相乘,根指 数不变.
解:(1)原式=(-130×53×2) 5acb·2bac·15abc =- 5×2×15×abc=-5 6abc. (2)原式=[1-( 3- 2)]·[1+( 3- 2)] =1-( 3- 2)2 =1-( 3)2+2· 3· 2-( 2)2 =1-3+2 6-2=2 6-4.
方法技巧 初中阶段主要涉及三种非负数: a≥0,|a|≥0,a2≥0.如果若 干个非负数的和为 0,那么这若干个非负数都必为 0.即由 a≥0, b≥0,c≥0 且 a+b+c=0,一定得到 a=b=c=0,这是求一个 方程中含有多个未知数的有效方法之一。
数学·人教版(RJ)
►考点二 二次根式性质的运用 例2 如图16-1所示是实数a,b在数轴上的位置,
考点攻略
►考点一 二次根式的非负性
例1若实数x,y满足 x+2 +(y- 3 )2=0,则xyx+2≥0,
(y- 3)2≥0,
因此要使
x+2 +(y-
3 )2
=0成立,必须满足
x+2=0, y- 3=0,
解得
x=-2, y= 3,
所以xy=-2
3.
答案:-2 3
方法点拨 1.化简二次根式时注意 ab= a· b(a≥0,b≥0)和 a=
b a(a≥0,b>0) 的综合运用. b
2.整体代换或转化等数学思想的应用.
►考点四 二次根式的运算
例 4 计算下列各题:
3 (1)10
5ab 5 c ·3
2bac·-2
15abc;
(2)(1- 3+ 2)(1+ 3- 2).
A.2a-b C.-b
图 16-2
B.b D.-2a+b
化简: (1- 2)2.
解:因为 1-
2<0,所以
(1-
2)2=1-
2
= 2-1.
1.下列计算正确的是( A ) A. 18- 2=2 2
B.(2- 5)(2+ 5)=1
C.
27- 3
12=
9-
4=1
6- D. 2
2=3
2
2.计算: 2÷ 13· 3. 解:原式= 2· 3· 3=3 2.
易错方法点拨
1.在二次根式的运算中,一般要把最后结果化为最简二
次根式.
2.在二次根式的运算中,要灵活运用乘法公式.
3.(a+b)÷d=(a+b)·1=a+b,但 ddd
d÷(a+b)≠d·
1+1 ab
.
1. 实数 a,b 在数轴上的位置如图 16-2 所示,那么化 简|a-b|- a2的结果是( B )
(2) 9 是二次根式,虽然 9 =3,但3不是二次根式.因 此二次根式指的是某种式子的“外在形态”.
2.二次根式的性质
( a)2=__a__(__a≥0__);
a2=a=
aa (a>0),
00 (a=0), -aa (a<0).
3.最简二次根式
满足下列两个条件的二次根式,叫做最简二次根式.
(1)被开方数不含__分__母___;
新人教版八年级数学下册
第十六章 二次根式
第十六章 过关测试
知识归纳
1.二次根式的概念
一般地,形如___a_(a≥0)的式子叫做二次根式;
(1)对于二次根式的理解:①带有根号;②被开方数是非 负数.
(2) a是非负数,即 a≥0.
[易错点] (1)二次根式中,被开方数一定是非负数,否 则就没有意义;
x)+
( x+1+ x)2
( x+1- x)( x+1+ x)
=((xx++11-)-xx)2+((xx++11+)-xx)2
=( x+1- x)2+( x+1+ x)2
=2(x+1)+2x=4x+2.
∵x= 2014-2a+ a-1007+5,
∴2014-2a≥0 且 a-1007≥0,解得 a=1004.
(2)被开方数中不含能_开__得__尽___方___的因数或因式.
4.二次根式的运算
a · b =___a_b__(a≥0,b≥0);
a
___b_(a≥0,b>0).
a b=
二次根式加减时,可以先将二次根式化成 _最__简__二__次__根__式__,再将再__将__被__开__方__数__相__同__的二次根式进行 合并.
3.计算: 15÷
1+ 3
15.
解:原式=
15÷
3+ 15
5=
15×
15 5+
= 3
15( 5- 3)
2
.
已知 x= 2014-2a+ a-1007+5,其中 a 是实数,
将式子
x+1- x+1+
x+ x
x+1+ x+1-
x化简并求值. x
解:原式=(
( x+1- x+1+ x)(
x)2 x+1-
化简: a2- b2- (a-b)2.
图16-1
[解析] 解决此问题需要确定a,b及a-b的正负. 解:根据实数a,b在数轴上的位置可知a<0,b>0,所以 a-b<0,所以 a2- b2- (a-b)2=|a|-b-|a-b|=-a -b-[-(a-b)]=-a-b+a-b=-2b.
易混辨析 ( a)2与 a2的区别:(1)表示的意义不同.( a)2表示非负实数 a 的算术平方根的平方; a2表示实数 a 的平方的算术平方根.(2) 运算的顺序不同.( a)2是先求非负实数 a 的算术平方根,然后再 进行平方运算;而 a2则是先求实数 a 的平方,再求 a2 的算术平 方根.(3)取值范围不同.在( a)2中,a 只能取非负实数,即 a≥0; 而在 a2中,a 可以取一切实数. ( a)2与 a2的联系:仅当 a≥0 时,有( a)2= a2.
∴x=5,
∴原式=4x+2=22.
在下列根式中,不是最简二次根式的是( B )
A. a2+1
B . 0.1y
C.
2b 4
D. 2x+1
1.计算 8- 2的结果是( D ) A.6 B. 6 C.2 D. 2
2.下列二次根式化简后与 3的被开方数相同的是( C ) A. 9 B. 6 C. 12 D. 18