有机合成作业(论文)
有机合成的论文合成材料论文
有机合成的论文合成材料论文《精细有机合成技术》项目化教学改革探索摘要:精细有机合成技术是精细化学品技术专业的一门主干课程。
对课程进行项目化教学改革,在教学过程中通过选择合适的教学项目,确定适宜的考核方案,使单元合成的专业知识融于项目化过程中,有利于提高职业院校学生的综合能力和培养高职应用型人才。
关键词:精细有机合成技术;项目化教学;考核评价《精细有机合成技术》是精细化学品生产技术专业的专业核心课程,是承担学生职业核心能力培养的一门课程。
本课程的教学内容是由十多个有机合成单元反应组成的,各个单元反应既相互独立又相互联系,也是一系列经典反应的抽象总结。
传统的教学方法是将这些反应的规律与特点全部灌输给学生,然后安排期中、期末考试,进行理论知识的考核。
这种传统教学方法的弊端在于,课程的理论性较强、考核手段单一,实践动手与理论脱节。
如何有效地开展该课程的教学,一直是比较棘手的问题。
项目化教学具有项目载体、任务驱动、工学结合等特点,受到了国内外职业院校教师的普遍认可。
为了解决上述问题,我们对《精细有机合成技术》课程开展了项目化教学的改革尝试,取得了解决问题的一些思路和方法。
我们在三年制高中后大专的精细化工0711、0721班的第4学期进行了项目化改革的初步尝试。
在项目化教学改革中,学生的基础知识已经具备,通过设立一些教学项目,以完成项目的方式,达到实践动手与理论知识的充分结合。
这些项目主要是依据现实工作项目的具体过程分析而确定的,其主要特点是项目载体、任务驱动、学生主体、素质渗透、工学结合,学生各种能力的训练、素质的培养、知识的运用全部体现在项目完成过程之中。
教学方式的改变,同时也改变了考核的方式,由过去传统的一份试卷决定学生学习成绩的考核方法改为项目化的过程考核。
那么,这种项目教学实施后的教学效果如何评价?学生学习的质量如何考核?项目化过程考核的过程是怎样进行的?笔者从以下几个方面进行了探索。
改造企业案例成为适合教学的项目项目教学的特点之一就是项目载体,通过项目训练实现学生知识的渗透、能力的掌握、素质的培养,因此,项目的选择十分重要。
有机合成论文【最新】
肉桂酸合成方法简介【摘要】肉桂酸是一种重要的精细化工合成中间体,应用非常广泛。
本文主要介绍了常见的六种合成肉桂酸的方法,以及这些方法的改进与优缺点。
【关键词】肉桂酸;合成;生产肉桂酸(C6H5-CH=CH-COOH),又名β-苯丙烯酸、3-苯基-2-丙烯酸。
分子量为148.17,呈白色至淡黄色粉末状态,微有桂皮香气。
是从肉桂皮或安息香分离出的有机酸。
可溶于乙醇、甲醇、石油醚、氯仿,易溶于苯、乙醚、丙酮、冰醋酸、二硫化碳及油类,微溶于水。
肉桂酸是一种重要的精细化工合成中间体,在医药、农药、塑料、感光树脂、食品添加剂和香精香料等有广泛应用。
可作为水果香精、花香香精调和使用,并且肉桂酸的各种酯(如甲、乙、丙、丁等)都可用作定香剂,用于饮料、冷饮、糖果、酒类等食品。
在食品添加剂方面,肉桂酸可用微生物酶法合成重要的食品添加剂—甜味阿斯巴甜(Aspartame)的主要原料L-苯丙氨酸。
医药工业中,可用于合成治疗冠心病的重要药物乳酸可心定和心痛平,及合成氯苯氨丁酸和肉桂苯哌嗪,用来制造“心可安”、局部麻醉剂、止血药等。
在有机化工合成方面,肉桂酸可作为镀锌板的缓释剂,聚氯乙烯的热稳定剂,乙内酰和聚己内酰胺的阻燃剂。
它还是负片型感光树脂的最主要合成原料,主要合成桂酸酯、聚乙烯醇肉桂酸酯、聚乙烯氧肉桂酸乙酯和侧基为肉桂酸酯的环氧树脂。
合成肉桂酸的方法众多,主要合成方法如下: Perkin 合成法、苯乙烯-四氯化碳法、苯甲醛-丙二酸法、苯甲醛-乙烯酮法、肉桂醛氧化法以及刚开发出的氯代芳烃和丙烯酸及其衍生物生产肉桂酸等方法。
一、以苯甲醛与乙酸酐为原料的Perkin法Perkin法[1]是国内外生产肉桂酸的主要方法,具有原料易得、操作简单、工艺流程短、条件温和、分离简单,同时副产物少且纯度较高等优点。
但其肉桂酸收率低、成本相对较高等因素的存在也制约了此法的发展,许多厂家因此已经停止了肉桂酸的生产。
苯甲醛与乙酸酐进行的反应,以无水乙酸盐作催化剂是最早实现的肉桂酸工业化生产的途径,但该工艺路线反应时间较长,产率最高为55 %~60 %,苯甲醛需用水蒸气蒸馏法回收。
药物研发中有机合成发展论文
药物研发中有机合成发展论文摘要:十九世纪末,在钢铁与冶金业的废料中,研究者们发现了具有治疗作用的有机合成药物,从而开始了通过有机合成的渠道来研发新药物,并且取得惊人的进展,所以许多研究者都致力于降低合成成本,研发出药效更佳的新药物。
随后将会有副作用更小的更多新药物被逐一研发出来。
若要提升我国医疗卫生水平,为百姓提供更加有效的合成药物,制药企业必须运用有机合成技术,实现不对称反应、高效率反应以及绿色反应等创新的反应模式,运用自动化手段实现制药材料的纯化与分离;同时应采用最简洁的步骤、最直接的路线和最经济的成本来实施创新合成策略,进而实现有机合成在创新药物研发中的有效运用。
现有药物的基本功能是维持目前的基础医疗水平,然而随着人类社会的进步,有些很难治愈的疑难杂症与一些新出现的疾病亟需研发创新药物,除此之外,为了提高患者对药物疗效的认可度,企业也必须不断对新药实现创新研发。
现代药物研发的主要来源之一就是有机合成,伴随此项技术的成熟,其在创新药物的研发中也得到愈来愈广泛的应用。
一、有机合成的概念及其在药物研发中的状况1.有机合成的基本概念有机合成是从比较简单的化合物或单质,在光照、加热、加催化剂或者加压的条件下合成复杂有机物的过程,当然也包括从复杂的原料分解成比较简单的单质或化合物的过程。
鉴于有机物当中碳原子具有极强的结合能力,能够结合成碳链或者碳环,所以有机物具有复杂的性质与结构。
2.有机合成的获取途径首先,可以从天然产物中获得。
天然产物是药物研发的主要源泉,例如水杨酸就是柳树皮的提取物,属于天然的消炎药;其衍生物如阿司匹林、水杨酸钠等药物也广泛应用于研发药物的实践当中。
另外,还可以直接合成新药物。
除了从天然产物中提取或对现有的药物进行改造以外,还可以通过有机化合物直接合成来研发新药。
比如氯霉素,即是通过对硝基苯乙酮或苯乙烯直接合成的。
二、有机合成药物的研发现状近几年来,由于有机合成技术的进展,有机合成药物在药品市场中的占有率在逐渐升高,世界药品市场每年都会有几百种有机合成药物上市,而各国为了提高本国医疗卫生的技术和水平,每年均会投入大量人力、物力和财力研发合成新药。
有机论文—Combes 喹啉合成法
Combes 喹啉合成法***(2012012***)(**师范大学化学学院201*级,shengfen chengshi)摘要综述了Combes喹啉合成法的定义,机理,以及该反应的范围和限制。
同时也叙述了喹啉的一些重要衍生物的合成和应用。
关键词 Combes喹啉合成催化剂合成法衍生物Make the Quinolines by the way of Combes*** ***(2012012***)( Faculty of Chemistry ,the *** Normal University,shengfen chengshi ) Abstract The paper introduced something about the definition of the method of making the Quinolines ,the mechanism of it and the scope and limits of the chemical reaction. Meanwhile, the application and synthesis of some important derivatives of quinoline are also briefly introduced. Keywords quinoline and Combes catalyst synthesis derivative 喹啉最早是Runge从煤焦油中分离得到的(1834年)[1]。
从煤焦油中分离出喹啉不久,人们用碱干馏抗疟药物奎宁(Qulnine)也得到了喹啉,喹啉又称苯并吡啶, 其结构相当于萘上有一个CH 为 N所取代, 故又称氮杂萘[2]。
在有机合成中,喹啉环的形成理论上可以有三条途径:1.苯环和吡啶环同时形成;2.先有吡啶环后合成苯环;3.先有苯环后合成吡啶环。
但是在实际合成中,只有第三条途径是普遍使用的目前喹啉的合成主要有Combes法、Conrad-Limpach法、Knorr法、Skraup 法、Friedlander法、Povaov法、Doebner法[3]等。
精细有机合成论文
精细有机合成论文不对称合成及其在药物合成中的应用不对称合成是指手性分子或前手性分子在形成新的手性中心的反应过程中,优势地生成某一立体构型产物,而其非对映异构体的生成量却很少的合成方法。
如果在完全没有手性因素存在的场合,虽能进行引入手性中心的反应,但所得产物通常为消旋体。
不对称合成方法很多,其中包括利用反应物本身存在的手性结构的不对称诱导进行不对称合成。
1.利用手性试剂前手性物质的分子在手性试剂的作用下进行不对称合成,能优势的生成一种手性化合物。
此类前手性物质很多,主要有醛、酮、烯烃、不饱和羧酸、席夫碱、环己酮和羧酸等。
手性试剂种类亦很多,如手性醇、手性胺、手性酯、手性格氏试剂、手性醇铝、手性醇氢化锂铝、氨基酸、手性肼化物、微生物试剂等。
选择手性试剂时,应先了解其性质和作用,以便选择河湖要求者,切不可滥用,因为手性试剂在不对称合成中的手性影响和不对称诱导的作用不尽相同,且同一个手性试剂对构型不同的前手性分子的不对称诱导作用也有显著差异。
现分两种情况说明。
(1)利用手性化学试剂例如,在天然前列腺素的不对称合成中,可以利用手性丙烯酸苯基薄荷醇酯合成光学纯的前列腺素中间体。
又如利用手性噁啉试剂能够合成光学活性羧酸、醇类等。
手性噁啉试剂在国外已有商品出售,这是一个很有前途的手性试剂。
(2)利用微生物的不对称合成在药物合成的某些氧化、还原反应中,常利用微生物的高度选择性,采用生物合成方法实现用化学方法较难做到的不对称合成反应。
例如在甲基炔诺酮的不对称合成中,可以应用卡尔伯斯酵母或啤酒酵母进行不对称还原。
2.利用手性催化剂利用手性催化剂进行不对称合成近年来有了显著进展,主要是因为手性催化剂过渡金属络合物的研究取得了很大的进步。
消耗少量的手性催化剂,就能获得相当高的光学收率。
它对于药物以及氨基酸的不对称合成研究具有重要意义。
例如,用具有两个手性中心的膦化物为配位体的络合物进行催化氢化,最后可得()(+)-氨基酸,其光学收率为100%。
有机功能材料合成技术课程小论文
有机功能材料合成技术课程论文、光电有机功能材料的发展摘要:随着环境问题与能源问题的日渐严峻,作为清洁能源的太阳能的利用越来越受重视。
有机太阳能电池在第三代太阳能电池器件中将承担极其重要的角色。
相比于无机材料,有机材料存在明显优势,但是与无机太阳能电池相比,有机太阳能电池的转化效率还较低。
如何从本质上解决有机半导体光电转换效率低的问题,是太阳能电池研究的关键。
关键词:有机光电材料,太阳能电池正文:有机太阳能电池的研究进展众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
众所周知,传统能源储量不是无限可再生的,随着人类大规模的生产和过度的使用,在不久以后其不再能满足人类的需要,为了持续人类社会不断发展,科研工作者刻不容缓地寻找和开发可替代的新能源。
其中,太阳能因其来源广、可再生、天然无污染等特点得到了社会各界强烈的反响。
而有机太阳能电池(OSCs)作为重要的新能源已成为研究的热点,但要想实现商业化道路依然还有诸多困难需要得到解决,特别是在光电转换效率方面还没办法达到产业化的最低要求,这使得其成为争相研究的范畴之一。
精细有机合成论文
课程:精细有机合成化学与工艺学专业:化学工程与工艺班级:10205302姓名:***学号:**********论甲基丙烯酸甲酯之工艺作者:邱春桃一、甲基丙烯酸甲酯的简介及现实意义[1]甲基丙烯酸甲酯是一种重要的有机化工原料,主要作为聚合单体用于生产其聚合物和共聚物,还可通过酯交换用于生产甲基丙烯酸高碳酯。
其聚合物为透明性极佳的塑胶材料,故常被称为有机玻璃,且具有极好的耐候性等优良特性,广泛用于汽车、容器、建筑、设备部件、家用电器材料、卫生洁具等方面,特别是近年来应用在光学级有机玻璃、防射线有机玻璃、光导纤维、光盘等高新技术领域。
同时,甲基丙烯酸甲酯作为高性能建筑涂料的改性剂使用,也有很大的利用空间。
除此之外,还可用于聚氯乙烯改性抗冲助剂ACR和MBS、腈纶第二单体、医药功能材料等。
其2003年国内消费结构为:有机玻璃占44% ,模塑料约占10% ,塑料加工助剂ACR和MBS占24% ,表面涂料占10% ,其他占12%。
二、甲基丙烯酸甲酯的主要生产工艺由甲基丙烯酸甲酯可聚合成聚甲基丙烯酸甲酯(PMMA粉)。
其结构式分别如下:甲基丙烯酸甲酯聚甲基丙烯酸甲酯甲基丙烯酸甲酯的生产工艺有:㈠、丙酮氰醇法[2]ACH法合成工艺主要包括氰化反应,酰胺化反应,酯化反应。
第①步:氰化反应丙酮与氢氰酸在碱催化剂的存在下发生氰化反应生成丙酮氰醇:第②步:酰氨化反应丙酮氰醇与浓硫酸反应生成甲基丙烯酰胺硫酸盐。
过量的硫酸和丙酮氰醇反应生成 2 - 硫酸根亚氨基中间体,接着中间体前段丙酮氰醇和硫酸反应生成的水发生水解反应,生成酰胺中间体,再经脱除硫酸生成甲基丙烯酸酰胺硫酸盐。
第③步:酯化反应甲基丙烯酸酰胺硫酸盐与甲醇水溶液反应生成甲基丙烯酸甲酯(MMA):㈡、异丁烯催化氧化法[2]在氧化反应过程中,第一步异丁烯氧化为异丁烯醛;第二步异丁烯醛转化转化为甲基丙烯酸。
反应方程式如下:甲基丙烯酸在硫酸存在下与甲醇在液相中酯化反应生成甲基丙烯酸甲酯,甲基丙烯酸酯化反应是用硫酸作催化剂,可以提高甲基丙烯酸转化率。
有机化学合成论文药物合成论文
有机化学合成论文药物合成论文两相厌氧工艺处理化学合成类制药废水试验研究摘要:采用两相厌氧工艺处理化学合成类制药废水,实验结果表明:产酸相进水COD多在14000~20000mg/L之间(平均为17883mg/L),容积负荷在30~42 kgCOD/m3·d之间,pH值为4.8~5.2,COD去除率为32%~52%,挥发酸含量从4.12%提高到22.54%,为产甲烷相的进一步处理提供了有利条件。
经过产酸相后,UASB进水COD浓度在10000mg/L 左右, COD平均去除率为86.7%,出水COD浓度为1240~1550mg/L,平均容积负荷为4.5 kgCOD/(m3·d),产甲烷相出水pH值在6.5~7.0左右。
关键词:两相厌氧;产酸相;产甲烷相;化学合成类制药废水制药工业属于精细化工,是国家环保规划要重点治理的12个行业之一。
根据制药产品的种类、生产工艺过程及排污特点,可将制药生产企业分为6大类,其中化学合成类制药废水是制药工业废水中较难处理的废水[1]。
其特点是组成复杂,有机污染物种类多,浓度高且波动性大,生物难降解物质多,毒性大,固体悬浮物SS浓度高[2,3]。
对于化学合成类制药废水来说,其可生化性较差,采用其他工艺处理效果较差。
所以本实验采用两相厌氧工艺来处理这种高浓度难降解的废水。
两相厌氧工艺是20世纪70年代Ghosh和Poland根据厌氧微生物代谢机理和微生物种群生态学的研究所提出的。
该方法将产酸菌和产甲烷菌分别置于两个反应器中,以便更好地控制反应条件最大程度地发挥产酸菌、产甲烷菌的活性,提高出水效果。
与单相厌氧消化工艺相比,两相厌氧工艺更适用于有机物和悬浮物浓度高、含有毒有害物质及难降解物质的废水,而且处理效果也明显优于单相厌氧消化反应器[4~5]。
1 试验装置材料与方法1.1 试验装置化学合成类制药废水属于高浓度、难降解有机废水,有机物种类繁多,可生化性差。
有机合成论文
绿色有机合成的发展与应用摘要:绿色化学是21世纪化学化工研究的重要研究方向,是实现可持续发展规律的重要保障。
绿色合成,作为当代有机合成发展的一个重要学科前沿.已成为化学发展的一个方向。
该文介绍了绿色合成的含义及基本要点并综述了近年来国内外绿色合成研究的一些进展。
关键词:绿色有机合成、不对称合成、采用无毒、无害的催化剂、提高烃类氧化反应的选择性正文:1. 绿色化学的进展绿色化学是依靠科技进步,创造出单位产品产污系数最低,资源消耗最小的先进工艺技术;从化学反应的根本上减少污染。
而不是对“三废”等进行处理的环保局部性终端治理技术。
2.绿色化学的含义及原理:含义绿色有机合成是指采用无毒、无害的原料、催化剂和溶剂,选择具有高选择性、高转化率,不生产或少生产副产品的对环境友好的反应进行合成,其目的是通过新的合成反应和方法,开发制备单位产品产污系数最低,资源和能源消耗最少的先进合成方法和技术,从合成反应入手,从根本上消除或减少环境污染。
研究的内容绿色化学是对传统化学的挑战,是对传统化学思维方式的更新和发展,因此,绿色化学的研究内容是从反应原料、反应条件、转化方法或开发绿色产品等角度进行研究,打破传统的化学反应,设计新的对环境友好的化学反应。
包括:①使用无毒无害的原料;②利用可再生资源;③新型催化剂的开发研究;④不同反应介质的研究;⑤寻找新的转化方法;⑥设计对人类健康和环境安全的化学产品。
非传统溶剂有机溶剂因其对有机物具有良好的溶解性。
但有机溶固相合成的剂的较高的挥发性和毒性成为有机合成造成污染的主要原因。
因此新型绿色反应介质代替有机溶剂成为绿色化学研究的重要方向。
目前, 水、超临界流体、离子液体、仿酶化学和含氟溶剂作为反应介质的有机合成在不同程度上已取得了一定的进展。
无溶剂有机合成研究发现, 在固态下能够进行的有机反应大多数较溶液中表现出高的反应效率和选择性。
无溶剂有机合成具有高选择性、高产率、工艺过程简单和不污染环境、能耗少和无爆炸性等优点。
有机合成实验论文参考范本PDF文件
第51卷 第5期吉林大学学报(理学版)V o l .51 N o .52013年9月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )S e p2013d o i :10.7694/j d x b l x b 201305423,4,5,6-四溴酚磺酞合成及纯化方法的改进修志明,黄梦媛,胡 冰,雷莉妍,王丽萍(吉林大学生命科学学院,长春130012)摘要:以2-磺基苯甲酸环酐为原料,溴代后与苯酚反应合成3,4,5,6-四溴酚磺酞粗产品,并用溶剂抽提和重结晶方法进行纯化.结果表明,所得产物的纯度为97.45%,收率为36.5%.关键词:2-磺基苯甲酸环酐;3,4,5,6-四溴酚磺酞;纯化中图分类号:Q 503 文献标志码:A 文章编号:1671-5489(2013)05-0965-04M e t h o d I m p r o v e m e n t o f S y n t h y e s i s a n dP u r i f i c a t i o no f 3,4,5,6-T e t r a b r o m o p h e n o l s u l f o n e ph t h a l e i n X I UZ h i -m i n g ,HU A N G M e n g -y u a n ,HU B i n g ,L E IL i -y a n ,WA N GL i -p i n g (C o l l e g e o f L i f eS c i e n c e ,J i l i nU n i v e r s i t y ,C h a n gc h u n 130012,C h i n a )A b s t r a c t :3,4,5,6-T e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i nw a s s y n t h e s i z ed b yt h e r e a c t i o n o f 2-s u l f o b e n z o i c a c i dc y c l i ca n h y d r i d es u f f e r e df r o m b r o m i n a t i o n w i t h p h e n o l .T h ec r u d e p r o d u c t w a s p u r i f i e db y s o l v e n t e x t r a c t i o na n d r e c r y s t a l l i z a t i o nw i t ha p u r i t y o f t h e p r o d u c t o f 97.45%a n d a y i e l do f 36.5%,r e s p e c t i v e l y .K e y w o r d s :2-s u l f o b e n z o i c a c i d c y c l i c a n h y d r i d e ;3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i n ;pu r i f i c a t i o n 收稿日期:2012-08-15.作者简介:修志明(1978 ),男,汉族,博士研究生,从事药物筛选的研究,E -m a i l :x i u z m 10@m a i l s .j l u .e d u .c n .通信作者:王丽萍(1967 ),女,汉族,博士,教授,博士生导师,从事药物筛选的研究,E -m a i l :w a n g l p @jl u .e d u .c n .基金项目:吉林省自然科学基金(批准号:201015171)㊁吉林省科技发展计划项目(批准号:201205017)和吉林省医药产业发展专项基金(批准号:Y Y Z X 201150-2).酚磺酞类衍生物属于三苯甲烷类染料,是目前应用较广泛的一类酸碱指示剂[1-5].3,4,5,6-四溴酚磺酞作为酚磺酞类衍生物,是合成多种蛋白误差指示剂的原料,如四溴酚蓝和D I D N T B (5ᶄ,5ᵡ-二硝基-3ᶄ,3ᵡ-二碘-3,4,5,6-四溴酚磺酞)等作为检测尿液白蛋白已广泛用于临床早期肾病的诊断[6-8].3,4,5,6-四溴酚磺酞通常采用3,4,5,6-四溴-2-磺苯甲酸环酐与苯酚在无水四氯化锡催化条件下反应生成,并进一步用碱溶㊁酸沉法纯化后制得[9].C i h e l n i k 等[10]以3,4,5,6-四溴-2-磺基苯甲酸环酐为原料,采用微波法合成了3,4,5,6-四溴酚磺酞.但上述两种方法制得的四溴酚磺酞纯度较低,同时原料四溴-2-磺基苯甲酸环酐不易购买,且价格昂贵.本文在文献[11-12]的基础上,以2-磺基苯甲酸环酐为原料,经溴代反应得到3,4,5,6-四溴-2-磺基苯甲酸环酐,再与苯酚反应合成了3,4,5,6-四溴酚磺酞,并改进了纯化方法.1 材料与方法1.1 试剂与仪器2-磺基苯甲酸环酐(质量分数为98%,国产);3,4,5,6-四溴酚磺酞对照品(美国S i gm a 公司);669吉林大学学报(理学版)第51卷发烟硫酸㊁液溴㊁碘㊁亚硫酸㊁苯酚㊁无水四氯化锡㊁乙酸乙酯和乙醚均为国产A R级.液相色谱仪(L C-2010H T型,日本岛津公司);核磁共振仪(300MH z,美国V a r i a n公司);液质联用仪(1100型,美国A g i l e n t公司).1.2方法1.2.13,4,5,6-四溴酚磺酞的合成3,4,5,6-四溴酚磺酞的合成路线如图1所示.图13,4,5,6-四溴酚磺酞的合成F i g.1S y n t h e s i s o f3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i n1.2.1.13,4,5,6-四溴-2-磺基苯甲酸环酐的合成将184.2g(1m o l)2-磺基苯甲酸环酐置于900m L 发烟硫酸(含体积分数为50%的S O3)中,混合均匀后加入18.0g碘.量取307m L(1.5m o l)液溴,先滴加200m L液溴,升温至80ħ控温反应约3h,再升温至100ħ控温反应约3h.反应冷却后,滴加70m L液溴,升温至130ħ反应1h,直至液溴被完全吸收.反应冷却后滴加37m L液溴,并升温至150ħ控温反应30m i n.反应冷却至室温后加入1.5L水,用亚硫酸充分洗涤,除去过量的液溴,沉降,过滤,滤饼干燥后,用V(乙酸酐)ʒV(冰醋酸)=1ʒ3重结晶即可制得产物.1.2.1.23,4,5,6-四溴酚磺酞的合成将117.6g(1.25m o l)苯酚于120ħ控温搅拌0.5h,加入250.0g(0.5m o l)四溴-2-磺基苯甲酸环酐,搅拌均匀后加入发烟四氯化锡93m L(0.8m o l),将混合液升温至130ħ,控温搅拌反应8h,T L C监测反应(V(甲醇)ʒV(乙酸乙酯)=1ʒ5,下同),反应完成后,趁热倒入10L水中,沉降,倾去上清液;再加入5L水,搅拌10m i n,沉降,倾去上清液,过滤,滤饼于105ħ烘干2h,制得粗品,用H P L C检测纯度(检测波长:254n m;色谱柱:C18(5μm, 4.6mmˑ250mm);流动相:含质量分数为0.1%T F A的V(乙腈)ʒV(水)=35ʒ65溶液,下同).1.2.23,4,5,6-四溴酚磺酞的纯化1.2.2.1溶剂抽提取3,4,5,6-四溴酚磺酞粗品100.0g,将w(粗品)ʒV(乙酸乙酯)=1ʒ10混合,搅拌2h,过滤,滤液浓缩至干,于105ħ干燥1h,制得抽提产物,用H P L C检测纯度.1.2.2.2重结晶将w(抽提产物)ʒV(乙醚)=1ʒ5混合,搅拌1h,过滤,滤饼于105ħ干燥1h,制得3,4,5,6-四溴酚磺酞纯品,用H P L C检测纯度.2结果与讨论2.1反应温度对3,4,5,6-四溴酚磺酞合成的影响按照方法1.2.1.1制得3,4,5,6-四溴-2-磺基苯甲酸环酐402.0g,产物为白色晶体,收率80.4%; m.p.:217~219ħ;质谱检测结果:M S(E S I):m/z500.7[M+H]+,与目标化合物一致.按照方法1.2.1.2,将苯酚㊁四溴-2-磺基苯甲酸环酐和无水四氯化锡依次投入反应器中,分别于120,130,140ħ控温反应,T L C监测至原料反应完全,制得产物,用H P L C检测纯度,实验结果列于表1.表1反应温度对3,4,5,6-四溴酚磺酞合成的影响T a b l e1E f f e c t o f r e a c t i o n t e m p e r a t u r e o n t h e s y n t h e s i s o f3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i n反应温度/ħ反应时间/h产率/%纯度/%1201482.161.35130895.565.87140692.552.34四溴-2-磺基苯甲酸环酐先与一分子苯酚发生加成反应,再与一分子苯酚缩合生成酚磺酞产物.当n (催化剂)ʒn (底物)>1.6时,提高催化剂用量对产率影响较小;当反应温度较低时,需延长反应时间,但产率和纯度均较低;提高反应温度,产率增加,但温度过高在反应后期易使产物碳化;苯酚过量将导致产物产率和纯度均较低.3,4,5,6-四溴酚磺酞产物分析结果:M S (E S I ):m /z 670.5[M+H ]+;1H NM R (300MH z ,D M S O -d 6),δ7.13(d ,J =9.0H z ,4H ),6.79(d ,J =9.0H z ,4H ).与目标化合物一致.2.2 抽提溶剂对3,4,5,6-四溴酚磺酞纯化的影响取3份各50g 3,4,5,6-四溴酚磺酞粗品按照1.2.2.1方法分别将该粗品与1L 的丙酮㊁乙腈和乙酸乙酯混合,制得抽提产物,用H P L C 检测纯度,实验结果列于表2.表2 抽提溶剂对3,4,5,6-四溴酚磺酞纯化的影响T a b l e 2 E f f e c t o f e x t r a c t i o n s o l v e n t o n t h e p u r i f i c a t i o no f 3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e ph t h a l e i n 溶剂 产率/%纯度/%乙腈69.682.25丙酮65.084.57乙酸乙酯61.088.36 由于四溴酚磺酞㊁加成产物和苯酚均易溶于质子溶剂,且不易分离,因此抽提溶剂不能使用质子溶剂;四溴酚磺酞和苯酚可完全溶解于非质子极性溶剂中,而加成产物不易溶解,因此产物中含有微量加成产物杂质.由于非质子极性溶剂的极性越强,溶解度越大,产率越高,但纯度越低,因此,用乙酸乙酯做抽提溶剂所得产物纯度较高.2.3 重结晶溶剂对3,4,5,6-四溴酚磺酞纯化的影响取4份各50g 按照1.2.2.1方法制得的抽提产物,按照1.2.2.2方法分别将抽提产物与0.5L 苯㊁乙醚㊁石油醚和四氯化碳混合,制得产物,用H P L C 检测纯度,实验结果列于表3.表3 重结晶溶剂对3,4,5,6-四溴酚磺酞纯化的影响T a b l e 3 E f f e c t o f r e c r y s t a l l i z a t i o n s o l v e n t o n t h e p u r i f i c a t i o no f 3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i n 溶剂 产率/%纯度/%苯60.490.21乙醚80.497.45四氯化碳72.692.58石油醚77.095.361.合成的3,4,5,6-四溴酚磺酞;2.3,4,5,6-四溴酚磺酞对照品.图2 3,4,5,6-四溴酚磺酞薄层色谱F i g .2 T L Co f 3,4,5,6-T e t r a b r o m o ph e -n o l s u l f o n e ph t h a l e i n 四溴酚磺酞在非质子非极性(或低极性)溶剂中难溶,而苯酚相对易溶,因此产物中仅含有微量苯酚杂质.由表3可见:选用苯或四氯化碳为重结晶溶剂,产物的产率低㊁纯度低,且溶剂的毒性较大;使用乙醚作为重结晶溶剂,产物的产率高㊁纯度高,效果较好.图2为本文合成提纯的3,4,5,6-四溴酚磺酞与其对照品的薄层色谱.由图2可见,3,4,5,6-四溴酚磺酞对照品主斑点(R f =0.3)上方存在加成产物杂质斑点(R f =0.5)和苯酚斑点(R f =0.9),合成产物中未出现加成产物和苯酚杂质斑点.图3为本文合成提纯的3,4,5,6-四溴酚磺酞与其对照品的液相色谱.由图3可见,3,4,5,6-四溴酚磺酞对照品在14.142m i n 和18.531m i n 处存在杂质峰,合成的3,4,5,6-四溴酚磺酞未出现杂质峰,因此纯化效果较好.综上,本文以2-磺基苯甲酸环酐为原料,合成了3,4,5,6-四溴酚磺酞粗品,使用乙酸乙酯为抽提溶剂,制得了纯度较高的抽提产物;使用乙醚为重结晶溶剂,制备了纯度和收率均较高的终产物.769 第5期 修志明,等:3,4,5,6-四溴酚磺酞合成及纯化方法的改进图3 合成的3,4,5,6-四溴酚磺酞(A )及其对照品(B )的液相色谱F i g .3 H P L Co f 3,4,5,6-t e t r a b r o m o p h e n o l s u l f o n e p h t h a l e i n s a m p l e s s a m p l e s (A )a n d r e f e r e n c e s u b s t a n c e (B )参考文献[1] R a oG G ,V i s w a n a t hSG.S o m eT r i p h e n y l m e t h a n eD y e sa sR e d o xI n d i c a t o r s i nt h eT i t r a t i o no fA n t i m o n y (Ⅲ)w i t hC e r i u m (Ⅳ)S u l p h a t e [J ].T a l a n t a ,1977,24(5):323-324.[2] D u x b u r y DF .T h eP h o t o c h e m i s t r y a n dP h o t o p h y s i c so fT r i p h e n y l m e t h a n eD y e s i nS o l i da n dL i qu i d M e d i a [J ].C h e m R e v ,1993,93(1):381-433.[3] T a m u r a Z ,M a e d a M.D i f f e r e n c e s b e t w e e n P h t h a l e i n sa n d S u l f o n p h t h a l e i n s [J ].Y a k u ga k u Z a s s h i ,1997,117(10/11):764-770.[4] T a m u r aZ .S t u d i e so nt h eS t r u c t u r e so f M o l e c u l a rS p e c i e so fP h t h a l e i n sa n d S u l f o n ph t h a l e i n s [J ].B u n s e k i ,2005(10):557-562.[5] B a l d e r a s -H e r n 췍n d e zP ,R a m ír e z -S i l v a M T ,R o m e r o -R o m o M ,e t a l .E x p e r i m e n t a lC o r r e l a t i o nb e t w e e nt h e p k a V a l u eo fS u l f o n p h t h a l e i n s w i t ht h e N a t u r eo ft h eS u b s t i t u e n t s G r o u p s [J ].S p e c t r o c h i m A c t aa M o l b i o m o l S pe c t r o s c ,2008,69(4):1235-1245.[6] P u g i aMJ ,L o t t JA ,P r of i t t JA ,e t a l .H igh -S e n s i t i v i t y D y eB i n d i n g A s s a y f o rA l b u m i n i nU r i n e [J ].JC l i nL a b A n a l ,1999,13(4):180-187.[7] S a s a k iM ,P u g i a M J ,P a r k e r D R ,e ta l .M e a s u r e m e n to ft h e A l b u m i n C o n t e n to f U r i n a r y P r o t e i n U s i n gD i p s t i c k s [J ].JC l i nL a bA n a l ,1999,13(5):246-250.[8] W a l l a c e JF ,P u g i a M J ,L o t tJA ,e ta l .M u l t i s i t eE v a l u a t i o no fa N e w D i ps t i c kf o rA l b u m i n ,P r o t e i n ,a n d C r e a t i n i n e [J ].JC l i nL a bA n a l ,2001,15(5):231-235.[9] B o y d W C ,R o w eA W.A N e wS e r i e so fH a l o g e n a t e dS u l f o n e ph t h a l e i n s [J ].JA m C h e m S o c ,1930,52(12):4954-4959.[10] C i h e l n i kS ,S t i b o r I ,L h o t 췍kP .S o l v e n t -F r e e S y n t h e s i s o f S u l f o n e p h t h a l e i n s ,S u l f o n e f l u o r e s c e i n s a n dF l u o r e s c e i n s u n d e r M i c r o w a v e I r r a d i a t i o n [J ].C o l l e c t i o n o f C z e c h o s l o v a k C h e m i c a l C o mm u n i c a t i o n s ,2002,67(12):1779-1789.[11] K a c h u rA V ,P o p o vA V ,K a r p J S ,e t a l .D i r e c t F l u o r i n a t i o no f P h e n o l s u l f o n p h t h a l e i n :A M e t h o d f o r S yn t h e s i s o fP o s i t r o n -E m i t t i n g I n d i c a t o r s f o r i n v i v o P H M e a s u r e m e n t [J ].C e l l B i o c h e m B i o p h y s ,2013,66(1):1-5.[12] Z HA N GC u n -h u a ,F A N X i a n -h o n g ,WA N G Z h i -g a n g ,e ta l .S t u d i e so nP r o c e s so fR e a c t i o no fB r o m i n e w i t h B e n z e n e [J ].J o u r n a l o f J i l i nU n i v e r s i t y:S c i e n c eE d i t i o n ,2005,43(2):222-224.(张存华,范鲜红,王志刚,等.苯分子的溴代反应研究[J ].吉林大学学报:理学版,2005,43(2):222-224.)(责任编辑:单 凝)869 吉林大学学报(理学版) 第51卷。
有机合成论文
目录摘要 (1)关键词 (1)1概述 (1)1.1 有机合成含义 (1)1.2 有机合成的重要性 (2)2 有机合成路线设计的一般方法和要求 (2)2.1 逆合成法 (2)2.2 合成路线设计的一般要求 (3)3 常见的有机化合物的合成路线的设计 (3)3.1 常见的含单官能团化合物的合成路线 (3)3.1.1 简单醇的切断 (3)3.1.2 烯烃的合成 (4)3.1.3 芳香酮的合成 (5)3.1.4 简单醛酮和羧酸的合成 (5)3.2 常见的二官能团化合物的合成 (7)3.2.1 β- 羟基醛酮和α,β-不饱和醛酮的合成 (7)3.2.2 二羰基化合物的合成 (8)3.2.3 α-羟基羰基化合物(包括α-羟基酸和α-羟基酮)的合成 (9)3.3 含杂原子和芳香族化合物的合成 (10)3.3.1 胺的合成 (10)3.3.2 芳香族化合物的合成 (11)4总结 (11)5参考文献 (11)有机合成常用方法及解题思路的研究摘要:有机合成的方法是有机合成化学发展的基础,有机合成方法的产生和发展可为有机合成开拓研究领域和发展方向。
现代有机合成不只是合成什么的问题,更重要的是如何合成和怎样合成的问题。
有机合成与21 世纪的三大发展学科——材料科学、生命科学和信息科学有着密切的联系,为三大学科的发展提供理论、技术和材料的支持。
新世纪有机合成将进一步在这三大学科领域中发挥作用并开辟新的领域。
随着生命科学和材料科学的发展,尤其进入后基因组时代后,需要有机合成快速提供各种具有特定生理和材料功能的有机分子,而要获得有新结构的功能类型分子往往取决于新的合成方法,本文中通过大量的范例及实验,讲述有机合成方法的重要作用及相关解题思路。
关键词:有机合成方法解题思路1概述有机合成在当代社会发展得非常快,有机合成的目的主要是合成自然界已经有的但数量很少的物质或者合成自然界没有的物质。
20世纪70年代以后,有机合成的新领域迅速发展,如一些有一定立体构象的天然复杂分子的合成,一些新的理论和方法如反应机理、构象分析、光化学,各种物理方法分析手段的应用等方面的进展,尤其是分子轨道对称守恒原理的提出,对有机合成化学起着极大的推动作用。
化学专业优秀毕业论文范本有机合成反应机理与优化研究
化学专业优秀毕业论文范本有机合成反应机理与优化研究在化学专业中,有机合成是一个重要的研究领域,它涉及到有机化合物的构建和合成过程。
有机合成反应机理与优化研究是化学专业优秀毕业论文的关键内容之一。
本文将通过讨论有机合成反应机理的解析和优化研究的方法,为化学专业学生提供一个优秀毕业论文范本的参考。
在有机合成反应中,了解反应机理对于优化反应条件以及预测产物的生成具有重要意义。
有机合成反应涉及到多种反应类型,例如取代反应、加成反应、消除反应等。
对于每一种反应,了解其机理是进行优化研究的第一步。
通过研究反应物的电子结构、键的极性以及催化剂的作用等因素,可以推导出反应机理,并且在论文中进行详细描述和解析。
在描述机理时,需要使用化学方程式、结构式、反应路径图等工具,以便清晰地展示反应步骤和中间体的生成。
除了了解反应机理,优化研究也是有机合成论文中的关键内容。
通过优化反应条件,可以提高反应的产率、选择性和纯度。
优化研究可以包括温度、压力、溶剂、催化剂以及反应时间等因素的调节。
优化的目标是使得反应在更温和的条件下进行,从而减少副反应的生成,并提高产物的纯度。
在优化研究中,可以使用各种实验技术,如核磁共振、质谱、红外光谱等,以验证优化研究的效果。
在写有机合成反应机理与优化研究的毕业论文时,需要注意以下几点。
首先,清晰地描述反应步骤和机理,使用简明扼要的语言,避免过于冗长和复杂的句子。
其次,合理地组织论文的结构,可以按照反应步骤进行分节处理,以保证文章的逻辑性和流畅性。
另外,图表的使用是必不可少的,可以将反应路径图、实验数据和结果以图表的形式展示,有助于读者更好地理解和分析研究结果。
最后,引用正确的参考文献是一个重要的要求,确保论文的学术准确性和可信度。
综上所述,化学专业优秀毕业论文范本中的有机合成反应机理与优化研究是一个重要的内容。
在写作过程中,我们需要解析反应机理并优化研究反应条件,以提高反应产率和纯度。
为了写好这部分内容,需要注意清晰地描述机理,并使用适当的图表和实验数据进行展示。
有机合成研究进展论文
有机合成研究进展课堂体会姓名学号学院专业班级指导教师成绩不对称催化研究进展——仲崇民主讲不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。
经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。
不对称催化反应的发展历程:1966 年,野依良治设计了以希夫碱与铜合成的络合物催化剂,进行均相不对称催化环丙烷化反应,开创了首例均相不对称催化反应的先河;1968年手性磷配体被引入到不对称氢化反应中;2001年诺贝尔化学奖授予了三位从事不对称催化反应的科学家-孟山都公司的威廉S.诺尔斯(William S.Knowles),名古屋大学的野依良治(Ryoji Noyori),斯克里普斯研究所的巴里.夏普雷斯(K.Barry Sharpless)。
不对称催化实例:手性磷酸不对称催化:不对称有机小分子催化是指用催化量的手性有机分子加速不对称有机化学反应。
尽管有机小分子催化已经出现了将近一个世纪,但是没有引起有机化学家的关注。
直到本世纪初,List 报道了脯氨酸催化的丙酮与醛的分子间直接Adol 反应和MacMillan报道了苯丙氨酸衍生的二级胺催化的不对称Diels-Alder反应以后,有机小分子催化的不对称反应研究才真正复苏。
此后,有机小分子催化的反应类型不断涌现、催化剂种类和活化模式不断丰富、反应底物范围不断扩大、反应结果不断提高,逐渐成为了当代有机化学研究的热点。
有机小分子催化主要集中在烯胺催化、亚胺正离子催化、硫脲催化、磷酸催化、相转移催化和卡宾催化等研究方向。
下面将简要总结手性磷酸催化的不对称反应。
手性Lewis酸催化的不对称反应已经被广泛地研究,然而手性Brønsted酸催化剂的研究一直没有得到足够的重视。
Brønsted酸最初是主要用来催化水解、酯化和缩醛的合成。
现代有机合成论文
学年论文学院 _______________ 化学化工学院 _______________ 专业 ___________________ 化学___________________ 年级 ____________________________________姓名 _____________________________________论文题目 ____________ 现代有机合成 _______________ 指导教师 ____________ 职称教授成绩 ___________________________________________摘要 (1)关键词 (1)Abstract ........................................................................................................................ ..1 Keywords ............................................................................................................. (1)引言 (1)1开发“原子经济性⑸”反应 ...................................... .2 2选用更“绿色化”的起始原料和试剂 .............................. .2 3采用无毒无害的高效催化剂 ................................... (3)4采用无毒无害的溶剂 ............................................ .3结束语......................................................... ..4参考文献....................................................... .4学号:20115051217学生姓名:马韵会化学化工学院化学指导老师:金春雪职称:教授现代有机合成摘要:有机合成是综合应用各类有机反应及其组合、有机合成新技术⑴、有机合成设计及策略以获得目标产物的过程。
有机化学合成英语作文
有机化学合成英语作文In organic chemistry synthesis, we often encounter challenges such as selectivity, yield, and scalability. It requires a combination of creativity, knowledge, and experimental skills to design and optimize a synthetic route.One of the key steps in organic synthesis is the functional group transformation. By converting one functional group into another, we can build complex molecules from simple starting materials. This process involves the use of various reagents, catalysts, and reaction conditions.Another important aspect of organic synthesis is the use of protecting groups. These groups are used to temporarily mask reactive functional groups in a molecule, allowing selective reactions to occur. By carefully choosing the right protecting group strategy, chemists can control the regioselectivity and stereoselectivity of areaction.In modern organic synthesis, green chemistry principles are increasingly important. Chemists strive to minimize waste, reduce the use of hazardous reagents, and optimize reaction conditions to make the process more sustainable. This involves the development of new catalytic methods, solvent-free reactions, and renewable starting materials.Overall, organic synthesis is a dynamic and challenging field that requires constant innovation and problem-solving skills. By combining theoretical knowledge with practical experimentation, chemists can create novel molecules with diverse applications in medicine, materials science, and beyond.。
化工行业中固相有机合成技术的运用论文
化工行业中固相有机合成技术的运用论文化工行业中固相有机合成技术的运用论文在以前的化工业发展过程中,人们经常会采用传统的有机合成的方式来实现对于物质的研究和利用,但是随着科研技术的不断发展,传统的有机合成方式的高能耗和高污染的缺点逐渐暴露。
人们又在不断尝试和研究其他的合成方式,尽管对于固相有机合成方式的利用时间不长但是它已经成为化工、医疗等领域广泛采用的一种合成技术和方法,与人们的生产生活息息相关,给生产技术的发展和突破带来了新的辉煌。
1.固相有机合成的定义固相有机合成就是将要发生化学反应的反应物或者是催化剂与固相高分子这一载体进行化学反应,将生成出来的中间产物再与其他的试剂进行一步或者多步的化学反应,把生成的化学物和其他的载体共同过滤和冲洗,与试剂和其他的一些产物进行分离。
这个化学反应的过程可以多次进行重复,可以将多个重复单元或者是不同的单元联系起来最后将目标产物通过试剂从固相高分子这一载体中解脱出来。
它的工作原理就如下图所示:【1】2.固相有机合成的优点2.1 处理方式的简易化固相有机合成可以通过过滤和冲洗等简单易于操作的形式就将化学反应过程中的每一步和其他的组成部分分离出来。
处理方式的简易化,对于今天这个高速发展的社会来说具有十分重要的意义。
2.2 自动化程度高固相有机合成可以对重复性的化学操作步骤实现自动化的处理,具有广阔的工业应用前景,对于化工业的发展大有裨益。
2.3 绿色环保催化剂与固相高分子这一载体进行化学反应和连接,可以达到回收和重复再利用的目的,十分的绿色环保,对于我们建设资源节约型国家具有重要的作用和意义。
2.4 转化率高在进行固相有机合成的过程中,可以利用加大试剂的量来实现快速完成化学反应增强转化率而不会造成分离困难的局面。
大大提高了化工工人的工作效率,有利于化工企业的增收。
2.5 控制化学反应的选择性固相有机合成在进行化学反应的过程中,在一些情况是可以利用高分子的化学结构和空间结构为高分子提供具有特殊功能的微环境,可以自由地控制化学反应的选择性,实现技术的发展和应用。
有机合成英语论文原文与翻译
Organic Syntheses, Vol. 82, p. 18-21 (2005); Coll. Vol. 11, p. 778-781 (2009).2,2-DIETHOXY-1-ISOCYANOETHANE(2,2-Diethoxyethyl isocyanide, Isocyanoacetaldehyde diethyl acetal)Submitted by Francesco Amato and Stefano Marcaccini.Checked by Raghuram S. Tangirala and Dennis P. Curran.1. ProcedureCAUTION: All the operations must be conducted in an efficient hood because the isocyanide has an obnoxious odor.A. N-(2,2-Diethoxy)ethyl formamide. A 100-mL round-bottomed flask equipped with a magnetic stir bar and fitted with a reflux condenser is charged with aminoacetaldehyde diethyl acetal (28.34 g, 213 mmol, Note 1) and propyl formate (22.48 g, 255 mmol, Note 2). The resulting clear solution is heated at reflux in an oil bath for 3 h (Note 3). After cooling, the reaction mixture is transferred to a 250-mL round-bottomed flask and freed from the 1-propanol and the unreacted propyl formate by rotary evaporation. The residue is transferred to a distillation apparatus equipped with a 10 cm Vigreux column and a two-necked receiver, and distilled under reduced pressure. After a short forerun, the fraction boiling at 110-111 °C (0.5 mmHg) is collected to give 29.3–29.5 g (86% yield) of N-(2,2-diethoxy)ethyl formamide (Notes 4, 5).B. 2,2-Diethoxy-1-isocyanoethane. A 500-mL one-necked flask equipped with a reflux condenser bearing a CaCl2 trap at the upper end is charged with N-(2,2-diethoxyethyl formamide (24.20 g, 150 mmol), tetrachloromethane (24.61 g, 160 mmol, Note 6), triphenyl phosphine (44.59 g,170 mmol, Note 7), triethylamine (17.20 g, 150 mmol, Note 8), and 150 mL dichloromethane (Note 9). The clear mixture is heated at reflux in an oil bath, and a precipitate (triphenyl phosphine oxide) begins to appear after 20- 30 min. After 3.5 h at reflux, the suspension is cooled to 5 °C and filtered through a Büchner funnel under vacuum from a water aspirator. The collected solid is washed with 50 mL diethyl ether. The filtrate and the washings are combined and evaporated to dryness, and the residue is stirred with a mixture of 100 mL ethyl ether and 100 mL pentanes (Note 10). The resulting suspension is allowed to stand overnight in the freezer (Note 11), and then filtered through a fritted funnel under vacuum with chilling of thecollected filtrate in an ice-sodium chloride bath. The solid residue is washed with 60 mL of pentanes. The filtrate is concentrated on a rotary evaporatorin a fume hood and the residue is transferred to a flask equipped with a short path distillation head and a two-necked receiver. Distillation under reduced pressure gives 13.5–13.8 g (63-64%) of 2,2-diethoxy-1-isocyanoethane (Note 12), bp 60-61 °C at 1 mm Hg, as a colorless, vile-smelling liquid (Notes 13, 14).2. Notes1. Aminoacetaldehyde diethyl acetal was purchased from Aldrich and used as supplied.2. Propyl formate (40 mL, purchased from Aldrich) is stirred with 20 mL aq. 5% NaHCO3 for 2 min. The layers are separated, and the propyl formate layer is washed with 3 x 20 mL of distilled water then dried over magnesium sulfate. After filtration, the filtrate is distilled at atmospheric pressure and the fraction boiling at 80-81 °C is collected for use in Step A.3. The submitters used an electric shell for heating.4. The distillation tends to bump, but the Vigreux column prevents overflow into the receiver.5. IR spectrum (neat) 3304, 1666 cm-1; 1H NMR (300 MHz, CDCl3), the formamide is an 6/1 ratio of amide rotamers in this solvent, major rotamer resonances: 8.21 (s, 1 H, NCHO), 5.81 (broad s, 1 H, NH), 4.52 (t, J = 5.1 Hz, 1 H, O-CH-O), 3.50-3.77 (m, 4 H, CH2CH3), 3.45 (t, J = 5.4 Hz, 2 H, CH2N), 1.29 (t, J = 7.1 Hz, 3 H, CH2CH3), minor rotamer resonances: 8.05 (d, J = 13.5 Hz, 1 H, NCHO), 4.45 (t, J = 6 Hz, 1 H, O-CH-O), 3.31 (t, J = 6 Hz, 2 H, CH2N); 13C NMR (75 MHz, CDCl3) major rotamer resonances: 161.3, 100.2, 62.4, 40.1, 14.9, minor rotamer resonances: 165.0, 101.3, 63.0, 44.3; LRMS (EI) m/z 117 (M – CH3NO, 10%), 103 (100%), 91 (17%), 84 (55%), 75 (77%); HRMS (EI) m/z calcd for C7H16NO2 (M + H) 162.1130, found, 162.1126.6. Tetrachloromethane was purchased from Baker or Fisher and dried over molecular sieves before use.7. Triphenyl phosphine (99%) was purchased from Aldrich or Acros and used as supplied.8. Reagent grade triethylamine (Fluka) was dried over calcium hydride pellets and distilled. The fraction boiling at 89 °C was employed.9. Dichloromethane was stored overnight on 4 Å molecular sieves (submitters) or distilled from calcium hydride (checkers) prior to use.10. The lumps that formed were carefully broken with a spherical- ended glass rod.11. The freezer temperature is about –15 °C. If this operation is omitted, then additional solid that precipitates during the distillation makes this process difficult.12. IR (neat) 2156 cm-1; 1H NMR (300 MHz, CDCl3) 4.64 (t, J = 5.4 Hz, 1 H, O-CH-O), 3.48-3.71 (m, 2 H, CH2CH3), 3.43 (d, J = 5.4 Hz, 2 H, CH2NC), 1.17 (t, J = 7.0 Hz, 3 H, CH2CH3); 13C NMR (75 MHz, CDCl3) 157.8, 99.1, 62.8, 44.3, 14.8.13. The submitters obtained 71-75% yields. The submitters report that 2,2-diethoxy-1-isocyanoethane can be stored for at least two years at –30 °C under nitrogen without appreciable decomposition. The checkers stored a sample at –20 °C for three months, and the resulting liquid was still clear and exhibited a 1H NMR spectrum identical to that recorded on the starting sample.14. The checkers had the impression that this isonitrile smells fouler than phenyl isonitrile and related aryl isonitriles. Glassware can be freed from the isonitrile odor by rinsing with a 1:10 mixture of 37% hydrochloric acid/ethanol.Waste Disposal InformationAll hazardous materials should be handled and disposed of in accordance with "Prudent Practices in the Laboratory"; National Academy Press; Washington, DC, 1995.3. DiscusssionThis synthesis of 2,2-diethoxy-1-isocyanoethane is based on the dehydration of N-substituted formamides, which is the most important route to isocyanides.2 The combination of triphenylphosphine, carbon tetrachloride and triethylamine allows a smooth dehydration and a facile workup. The formylation of aminoacetaldehyde diethyl acetal employs propyl formate, because of the instability of acetals towards acidic reagents such as formic acid and formic-acetic anhydride that are usually employed in N-formylations.Hartke3 reported a synthesis of 2,2-diethoxy-1-isocyanoethane in which amino acetaldehyde acetal was transformed initially into the corresponding thioformamide. The thioformamide was then converted into the isocyanide by treatment with diphenylacetyl chloride/diisopropyl carbodiimide/triethylamine. The present method appears to be more convenient, because the experimental procedures are simpler, the yields are higher (62-68% overall) and the reagents are easily available and cheap.This isocyanide has been employed as C–C–N–C unit in the synthesis of imidazoles, imidazo-imidazoles and aminoisoxazoles.4 2,2-Dimethoxy-1- isocyanoethane can be prepared starting from aminoacetaldehyde dimethyl acetal following this procedure. The yields are similar and the product shows the same reactivity of its ethyl analogues. A procedure for thesynthesis of 2,2-dimethoxy-1-isocyanoethane based on the dehydration ofthe corresponding formamide with POCl3/NEt3 has recently been reported.5 The dehydration with PPh3/CCl4/NEt3 appears to be a superior method,giving better yields without employing a tedious aqueous work-up. 2,2- Dimethoxy-1-isocyanoethane has been used for the synthesis of 4,5- dihydrothiazoles and thiazoles.译文:2,2-二乙氧基-1-异氰基乙烷的合成(2,2-二乙氧基乙基异腈,异氰基乙醛缩二乙醇)论文由Francesco Amato 和Stefano Marcaccini发表,经Raghuram S. Tangirala 和Dennis P. Curran审核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白藜芦醇的合成摘要:白藜芦醇具有多种生物和药理活性,使其广泛应用于食品、医药、保健品、化妆品等领域。
白藜芦醇具有优良药理活性和保健功能其市场需求很大且与日剧增,目前已有大部分国家和地区都开发了白藜芦醇及其制品。
白藜芦醇是一种含有芪类结构的非黄酮类多酚化合物。
它不仅是植物遭受胁迫时产生的一种能提高植物抵抗病原性攻击和环境恶化的植物抗毒素, 还具有抗癌、抗氧化、调节血脂、影响寿命等多方面有益于人类健康的重要功能。
以下对白藜芦醇的理化特性、合成、提取、纯化与检测方法进行了全面总结, 并在其作用的分子机制基础上, 对其生物学活性、基因工程研究及产业化情况进行了重点介绍。
发现在传统育种的基础上, 借助于现代生物技术手段, 将白藜芦醇的天然活性保健作用应用于保健食品的开发、作物经济附加值的提高具有广阔的前景。
关键词:白藜芦醇;化学合成;研究进展Abstract:Resveratrol has multiple biological and pharmacological activities, it is widely used in food, medicine, health products, cosmetics and other fields. Pharmacological activity of resveratrol has an excellent and great demand for health functions and with its market-increasing, there are most of the developed countries and regions of resveratrol and its products.Key words:resveratrol;chemical synthesis;progres1 前言白藜芦醇(Resveratro1),化学名为反式3,4ˊ,5-三羟基二苯乙烯(3,4ˊ,5-Trihydroxy-trans-stilbene),是一种存在于植物中的具有芪类结构的非黄酮类天然多酚化合物,其化学结构式如下所示。
白藜芦醇广泛存在于葡萄、虎杖、决明子和花生等天然植物中, 它是植物在受到生物或非生物威胁时产生的一种植物抗毒素。
白藜芦醇生理活性显著, 高效低毒, 有抗肿瘤、抗炎、抗菌、抗氧化、抗自由基、保护肝脏、保护心血管和抗心肌缺血等功能,被喻为继紫杉醇之后又一新的绿色抗肿瘤药物;同时其保健功能也引起了欧美科学家的普遍兴趣, 被美国专著《抗衰老圣典》列为100种最热门有效抗衰老物质之一。
由于白藜芦醇在医药和食品工业中的广泛应用, 导致白藜芦醇需求量的大幅增加。
因此,了解白藜芦醇的合成对进一步的发展利用是必要的。
2 白藜芦醇的化学合成法2.1 Wittig法和Wittig-Homer法Wittig反应通过磷叶立德与醛、酮反应生成烯烃及氧化膦,是有机合成中常用的双键形成手段。
1985年,Moreno-Manas等[7]借鉴了Steynberg的合成方法,利用3,5-二羟基甲苯为起始原料,经过羟基保护、溴代等步骤制备了相应的Wittig盐,再与4-甲基硅氧基苯甲醛反应合成白藜芦醇,但收率只有10%。
国内晏日安等以对甲氧基苄醇、3,5-二甲氧基苯甲醛为原料,经溴代、成盐、Wittig 反应、异构化、脱甲基5步反应合成了白藜芦醇,产品纯度较高,但收率不高。
近年来出现了很多改进方法解决了收率和分离问题,如在氢氧化钾(粉末)/二氯甲烷液/同两相反应中.以18一冠一6作相转移催化剂。
使反应收率大大提高。
利用高分子聚苯乙烯作载体以固定三苯基膦,可以解决副产物的分离问题。
Wittig-Homer反应是对Wittig反应的一种改进,是用简单易得的膦酸酯来代替磷叶立德试剂来实现双键的形成,条件温和、操作简便、收率高并具有良好的立体选择性,与Wittig反应比较具有更多的优点。
潘华君等以价廉易得的3,5-二羟基苯甲酸为起始原料,经甲醇酯化、苄醚保护酚羟基、还原、溴化、Arbuzov 重排和Wittig-Horner缩合制得3.5,4'-三苄氧基-(E)-二苯乙烯;再用廉价的三氯化铝脱苄醚保护基,成功合成了白藜芦醇,有效降低了原材料成本。
此外,引入苄基有利于中间产物的结晶分离,使得操作更简便,收率更高,总收率48%,反应过程如下。
图1 潘华君等合成白藜芦醇的路线Fig.1 Synthetic routes of resveratrol by Pan Hua-jan由于通过Wittig或Wittig-Homer反应构造双键条件温和,国内有关白藜芦醇的合成研究大多采用该合成路线。
但由于这一合成路线步骤繁多,导致收率不高,此问题仍待解决。
2.2 Perking反应Perking反应是有机化学中的一个经典反应。
1941年Späth和Kromp[17]首次利用Perking反应合成了白藜芦醇。
他们用3,5-二羟基苯甲醛与对羟基苯乙酸钠缩合得到反式-3,4’,5-三甲氧基二苯乙烯,但因脱羧后未能得到结晶而无法与天然提取物相比。
然而Späth和Kromp并未放弃,他们将产物脱羧后置于甲醇和盐酸的混合液48h后得到了纯净的反式结晶。
2003年,Solladié等对Perking缩合反应进行了改进,以3,5-二异丙氧基苯甲醛和对异丙氧基苯乙酸为原料通过Perking反应得到单一顺式构型的产物,经脱羧反应后,得到以顺式构型为主的混合构型产物,再经异构化、脱保护基得到反式构型的白藜芦醇,总收率为55.2%,反应式下。
图2 Solladi6等合成白藜芦醇的路线Fig.2 Synthetic routes of resveratrol by SolladiéPerking反应脱羧步骤反应条件苛刻.从而限制了它的应用。
若能将Perking 缩合和脱羧反应一步完成,则减少了合成步骤,具有较大的发展潜力。
例如.对羟基苯甲醛和苯乙酸在吡啶中反应,直接生成4-羟基芪,收率达86%。
但Perking 缩合和脱羧反应一步完成合成白藜芦醇未曾报道。
2.3 利用碳负离子与羰基化合物的缩合反应碳负离子与羰基发生亲核加成反应,所得的羟基消除后可形成双键,这类反应也可用于白藜芦醇的合成。
西班牙的Alonso等使3,5-二甲氧基苄醇的硅衍生物通过强碱作用形成碳负离子,该碳负离子再与茴香醛缩合得中间体1,继而脱水、去甲基,最后得到单一的反式产物,总收率为21%。
合成路线如图3所示。
在这一合成路线中,中间体1收率较低只有31%,导致总收率低。
Zhang等[在Emma Alonso的金属锂方法基础上以价廉易得的对甲氧基苯甲醇和3,5-二甲氧基苯甲醛为原料,提高了中问产物1的收率(51.3%),并且使用硫酸氢钾代替二甲基亚砜脱水降低了成本。
醛与活泼亚甲基在强碱催化下构建反式二苯乙烯骨架结构,可以避免Wittig 反应中生成的顺反式结构混合物分离纯化的问题。
此缩合反应具有反应条件温和、操作简便、选择性好等特点,为白藜芦醇的合成开辟了新的途径。
但这一合成路线合成步骤过于繁复,亲核反应步收率过低。
图3 Emma Alonso等合成白藜芦醇路线Fig.3 Synthetic routes of resveratroi by Emma Alonso2.4 Heck反应Heck反应是在钯催化剂作用下烯烃或炔烃与芳基卤代物的偶联反应,具有很高的反式立体选择性,而且反应条件温和,操作简便。
2002年,Guiso等[21]使用了一种新的方法合成白藜芦醇,利用3,5-二乙酰氧基苯乙烯与对乙酰氧基碘苯发生Heck反应,然后水解即可,总收率达到了70%。
合成路线如图4所示。
该方法步骤较少,但其中3,5-二乙酰氧基苯乙烯需通过Wittig反应制得。
图4 Guiso等合成白藜芦醇的路线Fig.4 Synthetic routes of resveratroi by Guiso2008年,Moro等[23]以重氮盐为离去基团通过三步反应合成了白藜芦醇,总收率达72%。
他考察了不同烯烃对中间体3的收率的影响,得出对乙酰氧基苯乙烯(95%)比对甲氧基苯乙烯(53%)好。
此合成路线少,立体选择性高,收率高。
其合成路线如图5。
图5 Angelica Venturini Moro等合成白藜芦醇的路线Fig.5 Synthetic routes of resveratrol by Angelica Venturini Moro此外,为了保证产物构型为单一反式、提高收率、减少反应步骤、降低成本。
2003年Jefery和Ferber采用钯催化一锅法合成白藜芦醇,总收率可达80%。
此方法把两步Heck反应先后在同一反应器中完成,既简化了反应步骤又可得到单一的反式产物,这一合成方案具有一定的开发前景。
关于Heck反应,其特点是:在底物种类、反应条件、催化剂类型等多方面有较大的选择余地;易于实现高效、高化学与立体选择性;可在较温和的反应条件下实现工业化生产。
2.5 其它合成方法Julia—Koeienski反应是烯烃合成的一个重要工具。
Alonso等首次将其用于合成白藜芦醇,收率和立体选择性方面都取得了满意的结果。
Chang等运用钌碳烯做催化剂,使和固相连结的苯乙烯酯与苯乙烯衍生物进行烯烃置换作用制得白藜芦醇,收率高且是单一构型(反式)产物。
3 结论综上所述, 白藜芦醇不仅能够提高植物的抗病能力, 对人类的健康也有多方面有益的作用。
今后在继续深入研究其作用分子机制的同时, 应进一步明确其具体生物活性及药用机理, 将之更有效的应用于心血管、肿瘤等疾病的预防、治疗及代谢的调节和延长寿命中。
同时, 可在挖掘富含白藜芦醇的植物品种或通过人工栽培和育种手段获得高含量白藜芦醇的新品种的基础上, 通过植物细胞克隆技术、基因工程技术, 将芪合酶基因转入植物细胞或水稻、小麦、大豆、花生、马铃薯等重要粮食作物和经济作物等方法, 结合分离、提取白藜芦醇的工艺技术的提高, 进一步加强白藜芦醇的综合开发,提高白藜芦醇及其相关产品的市场竞争力,并保护白藜芦醇资源的可持续开发利用, 在带来巨大经济效益的同时造福人类。
参考文献:[1] 赵霞, 陆阳, 陈泽乃. 白藜芦醇的化学药理研究进展.中草药, 1998, 29(12): 837−839.[2] 张兰胜, 刘光明. 白藜芦醇的研究概述. 大理学院学报,2007, 16(4): 72−74.[3] 程丽英, 刘树兴. 白藜芦醇研究现状与应用展望. 食品研究与开发, 2005, 26(1): 25−27.[4] 郭景南, 刘崇怀, 潘兴, 等. 葡萄属植物白藜芦醇研究进展. 果树学报, 2002, 19(3): 199−204.[5] Soleas GL, Diamandis EP, Goldberg DM. Resveratrol: Amolecule whose time has come? And gone? Clin Biochem,1997, 30(2): 91−113.[6] Orsini F, Pelizzoni F, Bellin(i B, et al. Synthesis ofbiologically active polyphenolic glycosides( combretastatinand resvertrol series). Carbohydr Res, 1997, 301(3):95−109.[7] Orsini F, Verotta L, Lecchi M, et al. Resveratrol derivativesand their role as potassium channels modulators. J NatProd, 2004, 67(3): 421−426.[8] Wang M, Jin Y, Ho CT. Evaluation of resveratrolderivatives as Potential antioxidants and identification ofa reaction product of resveratrol and 2,2-diphenyl-1-picryhydrazyl radical. J Agric Food Chem, 1999, 47:3974−3977.[8] Yoshiaki Takaya, Kenji Terashima, Junko Ito, et al.Biomimic transformation of resveratrol. Tetrahedron,2005, 61(43): 10285−10290.[9] SolladiéG, Pastural-jacopéY, Maignan J. A reinvestigationof resveratrol synthesis by Perkins reaction. Application tothe synthesis of aryl cinnamic acids. Tetrahedron, 2003,59(18): 3315−3321.[10] 何水林, 郑金贵, 林明, 等. 植物芪类次生代谢物的功能、合成调控及基因工程研究进展. 农业生物技术学报,2004, 12(1): 102−108.[11] Schwekendiek A, Pfeffer G, Kindl H. Pine stilbenesynthase cDNA, a tool for probing environmental stress.FEBS Lett, 1992, 301(1): 41-44.[12] Hain R, Reif HJ, Krause E, et al. Disease resistance resultsfrom foreign phytoalexin expression in a novel plantNature, 1993, 361: 153−156.[13] Hipskind JD, Paiva NL. Constitutive accumulation of aresveratrol glucoside in transgenic alfalfa increasesresistance to Phoma medicaginis. Mol Plant Microbe Interac,2000, 13(5): 551−562.[14] 田文忠, 丁力, 曹守云, 等. 植物抗毒素转化水稻和转基因植株的生物鉴定. 植物学报, 1998, 40(9): 803−808.[15] 郭斌, 尉亚辉, 曹炜. He-Ne 激光诱变选育高产白藜芦醇细胞系. 光子学报, 2002, 31(3): 277−280.[16] Kobayashi S, Ding CK, Nakamura Y, et al. Kiwifruits(Actinidia deliciosa) transformed with a vitis stilbenesynthase gene produce piceid (resveratrol-glucoside).Plant Cell Rep, 2000, 19(2): 904−910.[17] 魏萌, 王水兴, 陆豫. 虎杖中的白藜芦醇分离、提取及HPLC 检测的研究. 食品科技, 2006, 31(8): 118−120.[18] 张敏, 曹庸, 于华忠, 等. 虎杖白藜芦醇提取工艺的初步研究. 林产化工通讯, 2004, 38(3): 629.。