2.2.2用样本的数字特征估计总体的数字特征
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙
X乙≈25.406 S乙≈25.401
从生产的零件内径的尺寸来看,谁生产的质量较高?
练习
课本P79 练习
解: 依题意计算可得
x1=900
x2=900
s1≈23.8
s2 ≈42.6
甲乙两种水稻6年平均产量的平均数相同,但 甲的标准差比乙的小,所以甲的生产比较稳定.
解 : (1) 平均重量约为496.86 g , 标准差约为6.55
律,我们要通过样本的数据对总体的数字特征进行
研究。——用样本的数字特征估计总体的数字特征 (板出课题)。
1、众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2、中位数 将一组数据按大小依次排列, 把处在最中间位置的一个数据(或两个数据 的平均数)叫做这组数据的中位数. 3、平均数 (1) x = (x1+x2+……+xn) /n (2) x = x1f1+x2f2+……xkfk
2.2.2用样本的数字特征 估计总体的数字特征
创设意境
在一次射击比赛中,甲、乙两名运动员各射击
10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥 的更稳定些吗?为了从整体上更好地把握总体的规
标准差
标准差是样本数据到平均数的一种平均距 离.它用来描述样本数据的离散程度.在实际应 用中,标准差常被理解为稳定性.
1、平均距离
标准差
标准差是样本数据到平均数的一种平均距离.它 用来描述样本数据的离散程度.在实际应用中,标准 差常被理解为稳定性.
规律:标准差越大, 则a越大,数据的
离散程度越大;反
体现了样本数据的最大 无法客观反映总体 特征 集中点 不受少数极端值的影响 不受少数极端值的 影响有时也是缺点 与每一个数据有关,更 受少数极端值的影 能反映全体的信息. 响较大,使其在估 计总体时的可靠性 降低.
标准差
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
之,数据的离散程 度越小.
例1:画出下列四组样本数据的直方图, 说明它们的异同点.
(1)
(2)
(3)
(4)
例2:甲乙两人同时生产内径为25.40mm的一种零件. 为了对两人的生产质量进行评比,从他们生产的零件 中各抽出20件,量得其内径尺寸如下(单位:mm ) 甲
X甲≈25.401 s甲≈25.401
0.5 0.44 0.3 0.28 0.16 0.08
O
练习 课本P74 练习
应该采用平均数来表示每一个国家项目的平 均金额,因为它能反映所有项目的信息.但平均数 会受到极端数据2200万元的影响,所以大多数项 目投资金额都和平均数相差比较大.
三种数字特征的优缺点
特征数 众数 中位数 平均数 优 点 缺 点
思考
如何从频率分布直方图中估计众数、 中位数、平均数呢? 众数:最高矩形的中点 2.25
中位数:左右两边直方 2.02 图的面积相等. 平均数:频率分布直方 图中每个小矩形的面 积乘以小矩形底边中 点的横坐标之和. 2.02
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距
3.标准差描述Fra Baidu bibliotek组数据围绕平均数波动的大小,反
映了一组数据变化的幅度。
作业
练习
1.甲在一次射击比赛中的得分如下: ( 单位: 环).7, 8, 6, 8, 6, 5, 9, 10, 7, 5,则他 7.1 命中的平均数是_____,中位数是 7
5,6,7,8 众数是_____
2. 某次数学试卷得分抽样中得到:90分 的有3个人,80分的有10人,70分的有5人,60 77分 分的有2人,则这次抽样的平均分为______.
(2)重量位于(x-s , x+s)之间有14袋白糖,所占 百分比为66.67%.
解:平均数x≈19.25, 中位数为15.2, 标准差s≈12.50. 这些数据表明这些国家男性患该病的平均死亡率约为 19.25, 有一半国家的死亡率不超过15.2, x > 15.2 说 明存在大的异常数据, 这些异常数据使得标准差增大.
课本P79 阅读与思考
生产过程中的质量控制图
正态分布:一些总体的分布密度曲线是由它的平均
数 记作 正态分布. 与标准差 完全确定的,我们把这样的分布 ,称为平均数为 ,方差为 的
生产过程中的质量控制图
小结
1.用样本的数字特征估计总体的数字特征分两类:
a.用样本平均数估计总体平均数。
b.用样本标准差估计总体标准差。样本容量越大, 估计就越精确。 2.平均数对数据有“取齐”的作用,代表一组数据 的平均水平。