a小学数学奥赛6-1-21 鸡兔同笼问题(一).教师版
小学奥数--鸡兔同笼(含答案解析)
小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
小学奥数鸡兔同笼课件
图解法适用于较为直观的问题, 可以帮助学生更好地理解问题, 提高解题的趣味性。
04
鸡兔同笼问题的变种与扩展
变种问题
改变动物种类
改变笼子数量
改变动物数量
除了鸡和兔,也可以是 其他动物,如狗和鸭子
等。
问题可以涉及多个笼子, 每个笼子内有不同种类
的动物。
可以增加或减少动物的 数量,以增加问题的难
度。
,鸡兔同笼问题 逐渐演变为小学奥数中的经典题 目,被广泛用于训练学生的逻辑 思维和数学应用能力。
背景
鸡兔同笼问题是一个典型的代数问题,涉及到一元一次方程的求解。通过解决这 个问题,学生可以加深对代数概念的理解,提高解决实际问题的能力。
鸡兔同笼问题也是中小学数学教育中的重要内容,对于培养学生的数学兴趣和思 维能力具有重要意义。
兔的繁殖能力较强,因此在一些数学问题中,兔的数量可能 会被用来代表较大的数字或较多的数量。
笼子的概念
• 笼子是一种用于限制动物行动的容器,通常由金属或木材制成。 在数学问题中,笼子通常被用来代表封闭的空间或范围,例如 在鸡兔同笼问题中,笼子的大小和形状是已知的,鸡和兔的数 量和大小也是已知的,但它们的分布和位置是未知的,需要通 过解题来求解。
在数学竞赛中的应用
总结词
鸡兔同笼问题在数学竞赛中是一种常见的题型,可以考察学生的逻辑思维和数学能力。
详细描述
在数学竞赛中,鸡兔同笼问题通常会以各种形式出现,例如变种鸡兔同笼、多组数据鸡兔同笼等。这 些问题需要学生运用逻辑思维和数学方法来解决,能够有效地考察学生的数学能力和思维水平。
在日常生活中的应用
感谢您的观看
THANKS
实际应用问题
例如,可以将鸡兔同笼问题与 实际生活中的问题结合,如购 物问题、时间计算问题或行程
小学奥数 6-1-21 鸡兔同笼问题(一).教师版
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、两个量的“鸡兔同笼”问题——鸡兔同笼问题【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼问题 【难度】1星 【题型】解答【关键词】假设思想方法例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(一)【解析】假设46只都是兔,一共应有446184-=只脚,这⨯=只脚,这和已知的128只脚相比多了18412856是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228-=(只).当÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【答案】鸡28只,兔18只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,-=(只),所以有12只兔子,有351223-=(只)鸡.473512方法二:假设35只都是兔子,那么就有354140-=(只).每只⨯=(只)脚,比94只脚多了1409446鸡比兔子少422-=(只)脚,那么共有鸡46223÷=(只)方法三:还可以假设35只都是鸡,那么共有脚23570-=(只)脚,⨯=(只),比94只脚少了947024每只鸡比兔子少422÷=(只).-=(只)脚,那么共有兔子24212方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【答案】鸡23只,兔12只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算÷=(只)鸡被当作了-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240 18010080兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多-=,所以有5只兔子,另外40只是鸡.50455【答案】鸡40只,兔5只【巩固】老虎和鸡共l0只,脚共26只.鸡()只.【考点】鸡兔同笼问题【难度】1星【题型】填空【关键词】走美杯,3年级,初赛【解析】这属于鸡兔同笼问题,每只老虎有4只腿,每只鸡有2只腿。
小学奥数鸡兔同笼精品教案【通用7篇】
小学奥数鸡兔同笼精品教案【通用7篇】教案的评估和反馈可以为教师提供重要的教学考察和改进方向,促进其不断完善教学方法。
这里给大家分享一些关于小学奥数鸡兔同笼精品教案,供大家参考学习。
小学奥数鸡兔同笼精品教案篇1一、目标【知识与技能】理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
【过程与方法】经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。
【情感态度价值观】感受古代数学问题的趣味性。
二、重难点【教学重点】掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】理解掌握假设法,能运用假设法解决数学问题。
三、过程(一)引入新课PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?引出课题——《鸡兔同笼》(二)探索新知先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。
均不对追问:按顺序列表填写一下,应该是各有几只?得出结论有3只鸡,5只兔子。
进一步追问:还有没有其他方法?学生活动:前后四人一小组讨论。
教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。
如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。
多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2 =5只兔,3只鸡。
(三)课堂练习PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解(四)小结作业提问:今天有什么收获?教师引导学生回顾解决鸡兔同笼问题的方法。
小学奥数“鸡兔同笼”例题13种讲解方法
鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题。
WOW,还是个古董呢~好啦,废话少说,请听题……题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!鸡 0 3 5 79...兔1411 9 7 5...腿5650464238...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
鸡兔同笼奥数教案(6篇)
鸡兔同笼奥数教案(6篇)最新鸡兔同笼奥数教案(精选6篇)教案中需要对教学方法进行详尽的探讨,以使教师能够更好地操作和运用教具资源。
这里给大家分享一些关于最新鸡兔同笼奥数教案,供大家参考学习。
最新鸡兔同笼奥数教案【篇1】教学内容:人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。
教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。
“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。
通过两种方法的探究让学生感知解决问题的多样性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备:表格教学过程:一、导入师生谈话导入新知(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。
)二、探究新知1、质疑:提问:(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?(2)鸡和兔相比:什么比什么多?多多少?(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?(4)尝试解决,交流想法;(5)出示交换已知条件以后的题目。
小学奥数鸡兔同笼教案【7篇】
小学奥数鸡兔同笼教案【7篇】小学奥数鸡兔同笼教案篇1教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。
3在解决问题的过程中培养学生的逻辑思维能力。
教学重点:感受古代数学问题的趣味性。
教学难点:用不同的方法解决问题。
教学准备:课件教学程序:一、激趣导入师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。
师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?二、探索新知1(课件示:书中112页情境图)师:同学们看这就是《孙子算经》中的鸡兔同笼问题。
这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?生:试述题意。
(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。
问鸡兔各几只?)师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。
问鸡和兔各有几只?师:从题中你发现了那些数学信息?生:笼子里有鸡和兔共35只,脚一共有94只。
生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。
师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。
2、出示例一(课件示例一)题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?师:谁来读读这个问题。
谁能流利的读一遍?请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?生:读题师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。
鸡兔同笼问题(小学数学广角)
鸡兔同笼问题一、解决方法:(1)列表尝试:(必会)为了减少尝试的次数,当“头数”很大时,可以采用取中法,即:将头数÷2,作为开始尝试的第一组数据。
然后再根据尝试的结果进行调整,如果结果比目标脚数大,就让鸡的只数增多,兔的只数减少;如果结果比目标脚数小,就让兔的只数增多,鸡的只数减少。
当结果与目标脚数一致时,就可以终止尝试。
(2)假设法:(重点掌握)可以假设全是鸡,那么就先得到兔的只数;可以假设全是兔,那么就先得到鸡的只数。
注意:求出鸡和兔的只数后一定要验证一下是否正确。
(3)抬脚法:这是书上介绍的一种古人解决此类问题的方法,局限性很大,只限于解决2条腿和4条腿同笼的情况比较简单,其余情况用此方法解决起来会比较麻烦,不建议使用。
以书上103页的例题为例:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有几只?(1)列表法解决:(2)假设法:设全是鸡:35×2=70(只)——假设全是鸡的总脚数94-70=24(只)——与实际相差的脚数4-2=2(只)——一只兔子比一只鸡多的脚数(用一只兔子换一只鸡,总腿数就会增加2)兔:24÷2=12(只)——兔子的只数(用12只兔子换12只鸡才能与实际的腿数一致)鸡:35-12=23(只)——鸡的只数验:12×4+23×2=94(只) 94=94答:鸡有23只,兔有12只。
设全是兔:35×4=140(只)——假设全是兔的总脚数140-94=46(只)——与实际相差的脚数4-2=2(只)——一只兔子比一只鸡多的脚数(用一只鸡换一只兔子,总脚数就会减少2)鸡:46÷2=23(只)——鸡的只数(用23只鸡换23只兔子才能与实际的腿数一致)兔:35-12=23(只)——兔子的只数验:12×4+23×2=94(只)说明:答题时用哪一种方法解答都可以。
二、解决不是鸡兔同笼的“鸡兔同笼”问题的关键是找到:(1)题目中什么相当于“鸡”,每只的“脚数”是多少;(2)题目中什么相当于“兔”,每只的“脚数”是多少;(3)题目中什么相当于“总头数”;(4)题目中什么相当于“总腿数”;三、补充练习:(答案见下页)(1)自行车和轿车共有10辆,共有28个车轮,自行车和轿车各有多少辆?(2)红铅笔每支2元,蓝铅笔每支1元,两种铅笔共买了16支,花了29元。
鸡兔同笼题目及详细解答
鸡兔同笼题目及详细解答鸡兔同笼问题,是我国古代著名的趣味数学题之一,常常让很多同学感到头疼,但只要掌握了方法,其实并不难。
接下来,我们就通过几个具体的题目来深入了解一下。
题目一:笼子里有若干只鸡和兔,从上面数,有8 个头,从下面数,有 26 只脚。
问鸡和兔各有几只?解答:我们可以用假设法来解决这个问题。
假设笼子里全是鸡,因为每只鸡有 2 只脚,那么 8 只鸡就应该有 8×2 = 16 只脚。
但实际上有26 只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子有 4 只脚,比鸡多 2 只脚。
所以多出的 26 16 = 10 只脚,就是因为把兔子当成鸡少算的脚。
每只兔子少算了 2 只脚,那么兔子的数量就是 10÷2 = 5 只。
鸡的数量就是 8 5 = 3 只。
我们再来看一道稍微复杂一点的题目。
题目二:一个笼子里鸡兔共有35 个头,94 只脚,鸡兔各有多少只?还是用假设法,假设全是鸡,35 只鸡应该有 35×2 = 70 只脚,实际有 94 只脚,多出来的 94 70 = 24 只脚就是兔子多出来的。
每只兔子比鸡多 2 只脚,所以兔子的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
除了假设法,我们还可以用方程来解决鸡兔同笼问题。
题目三:笼子里鸡兔共有 20 只,脚有 56 只,求鸡兔各有几只?设鸡有 x 只,那么兔就有 20 x 只。
因为每只鸡有 2 只脚,每只兔有 4 只脚,所以可以列出方程 2x + 4×(20 x) = 56 。
展开括号得到 2x + 80 4x = 56 ,移项得到 2x 4x = 56 80 ,合并同类项得到-2x =-24 ,解得 x = 12 。
所以鸡有 12 只,兔有 20 12 = 8 只。
我们再来看一个变化形式的题目。
题目四:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?这道题我们可以设兔有 x 只,那么鸡就有 x + 10 只。
小学奥数“鸡兔同笼”例题13种讲解方法.docx
鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题。
WOW,还是个古董呢~好啦,废话少说,请听题……题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『方法六:最常用的假设法』分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
(完整版)小学奥数-鸡兔同笼问题(教师版)
鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。
数清脚共九十四双,各有多少鸡和兔。
翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。
问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。
这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。
【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
【例2】★面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?【解析】这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
小学奥数“鸡兔同笼”例题13种讲解方法
鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题。
WOW,还是个古董呢~好啦,废话少说,请听题……题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!鸡 0 3 5 79...兔1411 9 7 5...腿5650464238...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
a小学数学奥赛6-1-23鸡兔同笼问题(三).教师版
6-1-9. 鸡兔同笼问题(三)教课目的1.熟习鸡兔同笼的“砍足法”和“假定法”.2.利用鸡兔同笼的方法解决一些实质问题,需要把多个对象进行适合组合以转变为两个对象.知识精讲一、鸡兔同笼这个问题,是我国古代有名趣题之一.大概在 1500年前,《孙子算经》中就记录了这个风趣的问题.书中是这样表达的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上边数,有35个头;从下边数,有94 只脚.求笼中各有几个鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是怎样解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:若是砍去每只鸡、每只兔一半的脚,则每只鸡就变为了“独脚鸡”,每只兔就变为了“双脚兔”.这样,鸡和兔的脚的总数就由94只变为了 47 只;假如笼子里有一只兔子,则脚的总数就比头的总数多 1 .所以,脚的总只数47与总头数 35 的差,就是兔子的只数,即47 35 12(只).明显,鸡的只数就是35 12 23 (只)了。
这一思路新奇而奇异,其“砍足法”也令古今中外数学家赞美不已.除此以外,“鸡兔同笼”问题的经典思路“假定法”.假定法顺口溜:鸡兔同笼很奇妙,用假定法能做到,假定里面所有是鸡,算出共有几个脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:假如假定所有是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实质脚数)÷(每只兔子脚数-每只鸡的脚数)兔数 =鸡兔总数 -鸡数假如假定所有是鸡,那么就有:兔数=(实质脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数 =鸡兔总数 -兔数当头数同样时,脚的关系:兔子是鸡的 2 倍当脚数同样时,头的关系:鸡是兔子的 2 倍在学习的过程中,着重假定法的运用,浸透假定法的重要性,在此后的专题中,如工程,行程,方程等专题中也都会接触到假定法例题精讲模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例 1】有蜘蛛、蜻蜓、蝉三种动物共18 只,共有腿118 条,翅膀 20 对 (蜘蛛 8 条腿;蜻蜓 6 条腿,两对翅膀;蝉 6 条腿,一对翅膀),求蜻蜓有多少只?【考点】鸡兔同笼问题【难度】 4 星【题型】解答【重点词】假定思想方法【分析】这是在鸡兔同笼基础上发展变化的问题.察看数字特色,蜻蜓、蝉都是 6 条腿,只有蜘蛛8 条腿 .所以,可先从腿数下手,求出蜘蛛的只数.我们假定三种动物都是 6 条腿,则总腿数为 6 18108(条),所差 118 108 10(条),必定是因为少算了蜘蛛的腿数而造成的.所以,应有(118 108) (8 6) 5 (只 )蜘蛛 .这样剩下的18 5 13 (只)即是蜻蜓和蝉的只数.再从翅膀数下手,假定13 只都是蝉,则总翅膀数1 13 13 (对),比实质数少 20 13 7 (对),这是因为蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求 7 (2 1) 7 (只 ).【答案】7 只11 只,它们共有74 条腿, 10 对翅膀,由图7 知该标【稳固】希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共本室里有只蜘蛛。
小学数学教资面试真题及答案 鸡兔同笼
请根据上述材料完成下列任务:(1)简述应用意识的意义?在教学中如何培养学生的应用意识?(2)如指导中学段小学生学习,试拟定教学目标。
(3)依据拟定的教学目标,设计新授环节的教学活动并说明理由。
27 (1)应用意识有两个方面的含义,一方面,有意识地利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
在教学中可考虑从以下几方面培养学生的应用意识:①注重数学知识的来龙去脉。
数学知识的形成源于实际的需要,义务教育阶段学生学习的大量知识均来源于实际生活,这就为我们努力从学生的生活实际入手引入新知识提供了大量的背景材料。
2面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先将《孙子算经》中的“鸡兔同笼”问题数据变小编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。
3面对新的数学知识时,能主动地寻找其背景,并探求其应用价值。
配合“鸡兔同笼”问题。
可以安排一些类似的习题,比如“龟鹤”问题,生活中的一些实际问题,如购物、租船等。
让学生进一步体会到这类问题在日常生活中的应用,并巩固用列表法、假设法等解题的策略。
4搜集数学应用的事例,加课对数学应用的理解和体会。
(2)教学目标知识与技能目标:了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法解决问题,初步形成解决此类问题的一般性策略。
过程与方法目标:经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,养成有情感态度与价值观目标:在解决问题的过程中,进一步加强迁移思维的能力。
感受古代数学问题的趣味性。
小学奥数鸡兔同笼教案
小学奥数鸡兔同笼教案小学奥数鸡兔同笼教案【篇1】一、古语鸡兔同笼题,揭示课题。
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?生模仿古人读题,说说自己的理解。
2、揭示课题二、自主探索,解决问题1、简化鸡兔同笼。
笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?2、探究方法(1)列表法鸡876543210兔012345678(2)画图假设用圆圈来表示鸡兔的头。
那么,不管鸡兔具体有几只,我们首先要画几个圆圈?现在,我想请一位同学来说说看,接下来该怎么办了?师根据学生的述说添画脚,并适时地提问、板书:少了几只脚?2只2只地添,得添几个这样的2只?94-70=2424÷2=1235-12=23小结:看来,画图确实挺形象、直观的,同学们也容易理解。
三、推广应用,形成技能“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。
比方说我们的.邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。
出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。
龟、鹤各有几只?师:请你们用今天这节课学到的方法来解决这道题。
四、全总课总结今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。
其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。
本节亮点:1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。
2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。
小学奥数鸡兔同笼教案【篇2】时间:12月3日地点:大会议室主备人:崔__参加人员:六年级全体数学教师教研内容:“鸡兔同笼”问题教学目标:1、初步认识鸡兔同笼的数学趣题,了解有关的数学史。
能用列表法和画图法解决相关的实际问题。
2、结合图解法理解假设的方法解决鸡兔同笼问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、两个量的“鸡兔同笼”问题——鸡兔同笼问题【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼问题 【难度】1星 【题型】解答【关键词】假设思想方法【解析】 假设46只都是兔,一共应有446184⨯=只脚,这和已知的128只脚相比多了18412856-=只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【答案】鸡28只,兔18只例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(一)【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,-=(只)鸡.473512-=(只),所以有12只兔子,有351223方法二:假设35只都是兔子,那么就有354140-=(只).每只⨯=(只)脚,比94只脚多了1409446鸡比兔子少422÷=(只)-=(只)脚,那么共有鸡46223方法三:还可以假设35只都是鸡,那么共有脚23570⨯=(只),比94只脚少了947024-=(只)脚,每只鸡比兔子少422÷=(只).-=(只)脚,那么共有兔子24212方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【答案】鸡23只,兔12只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算÷=(只)鸡被当作了-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240 18010080兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有÷=(条)腿,比头数多100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250-=,所以有5只兔子,另外40只是鸡.50455【答案】鸡40只,兔5只【巩固】老虎和鸡共l0只,脚共26只.鸡()只.【考点】鸡兔同笼问题【难度】1星【题型】填空【关键词】走美杯,3年级,初赛【解析】这属于鸡兔同笼问题,每只老虎有4只腿,每只鸡有2只腿。
假设10只都是鸡,那么老虎的只数是:(26-2×10)÷(4-2)=3只,鸡有10-3=7(只)。
【答案】鸡7只【例 2】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=,假设鸵鸟和大象一样也有4只脚,则应该有(418)72-=只脚,由假设引起的差值:422⨯=只脚,多了(7252)20-=,则鸵鸟数为20210-=(头).÷=(只),大象数为18108【答案】鸵鸟10只,大象8头【例 3】一队猎手一队狗,两队并着一起走。
数头一共一百六,数脚一共三百九,则有名猎手,只狗。
【考点】鸡兔同笼问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 如果全是猎手则有脚320个,多出的390-320=70个脚是狗多出来的,所以狗有70÷2=35条,猎手有160-35=125个.【答案】125个【例 4】 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【考点】鸡兔同笼问题 【难度】2星 【题型】解答【关键词】假设思想方法,整体思想【解析】 假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:208202168-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628÷=(只),从而鸵鸟的只数是:282048+=(只) (本题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组时有倍数关系得到的)【答案】梅花鹿28只,鸵鸟48只【巩固】 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【考点】鸡兔同笼问题 【难度】2星 【题型】解答【关键词】假设思想方法,整体思想【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).【答案】兔有120只,鸡有156只。
【巩固】 鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?【考点】鸡兔同笼问题 【难度】2星 【题型】解答【关键词】假设思想方法,整体思想【解析】 这道例题是已知鸡、兔的脚数和,鸡比兔多的只数,求鸡、兔各几只.我们假设鸡与兔只数一样多,那么现在它们的足数一共有:274226222-⨯=(只),每一对鸡、兔共有足:246+=(只),鸡兔共有对数(也就是兔子的只数):222637÷=(只),则鸡有 372663+=(只).【答案】兔子37只,鸡有63只【例 5】 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【考点】鸡兔同笼问题 【难度】2星 【题型】解答【关键词】假设思想方法,整体思想【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只),鸡有:135452862--=(只)或者1074562-=(只)(方法二)不妨假设107只都是兔,没有鸡,那么就有兔脚:1074428⨯=(只),而鸡的脚数为零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)【答案】兔有45只,鸡有62只。
【巩固】 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【考点】鸡兔同笼问题 【难度】2星 【题型】解答【关键词】假设思想方法,整体思想【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而180630÷=,因此有兔子30只,鸡1003070-=(只).【答案】兔子30只,鸡70只.【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?【考点】鸡兔同笼问题【难度】2星【题型】解答【关键词】假设思想方法,整体思想【解析】假设60只都是鸡,没有兔,那么就有鸡脚120只,而兔的脚数为零.这样鸡脚比兔脚多120只,而实际上只多60只,这说明假设的鸡脚比兔脚多的数比实际上多1206060-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而÷=,因此有兔子10只,鸡601050-=(只).60610【答案】兔子10只,鸡50只.【巩固】鸡、兔共有27只,兔的脚比鸡的脚多18只。