小学数学“鸡兔同笼”问题解题技巧
小学数学“鸡兔同笼”例题13种讲解方法
![小学数学“鸡兔同笼”例题13种讲解方法](https://img.taocdn.com/s3/m/815e9a9ac67da26925c52cc58bd63186bceb92ee.png)
小学数学“鸡兔同笼”例题13种讲解方法题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
图片14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
图片『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
六年级下册鸡兔同笼解题方法(一)
![六年级下册鸡兔同笼解题方法(一)](https://img.taocdn.com/s3/m/6535dcd36394dd88d0d233d4b14e852459fb394f.png)
六年级下册鸡兔同笼解题方法(一)六年级下册鸡兔同笼解题引言鸡兔同笼问题是一个有趣的数学问题,它可以锻炼孩子的逻辑思维能力。
在六年级下册中,我们将学习多种解决鸡兔同笼问题的方法。
方法一:逻辑法1.假设鸡的数量为x,兔的数量为y。
2.由题目条件可知,鸡和兔的总数量为z,所以我们有方程式:x +y = z。
3.根据题目条件可以得到另一个方程式:2x + 4y = z。
4.解这个方程组,可以得到x和y的值,即鸡和兔的数量。
方法二:穷举法1.首先,我们从鸡的数量为0,兔的数量为z的情况开始。
2.不断增加鸡的数量,同时减少兔的数量,直到满足鸡和兔的总数量为z的条件。
3.在每个情况下都验证鸡和兔的腿的总数量是否为z。
4.若满足条件,则找到了一组可能的鸡和兔的数量。
方法三:数学公式法1.根据题目可知,鸡和兔的总数量为z,总腿的数量为2z。
2.所以,我们可以列出一个方程:2x + 4y = 2z。
3.化简这个方程,可以得到:x + 2y = z。
4.解这个方程,可以得到x和y的值,即鸡和兔的数量。
方法四:二元一次方程法1.鸡和兔的数量可以表示为二元一次方程的解。
2.假设鸡的数量为x,兔的数量为y。
3.根据题目条件可以得到方程组:x + y = z,2x + 4y = 2z。
4.解这个方程组,可以得到x和y的值,即鸡和兔的数量。
方法五:问题转化法1.将鸡兔同笼问题转化为一个关于鸡和兔腿的问题。
2.假设鸡的数量为x,兔的数量为y。
3.根据题目条件可以得到方程组:2x + 4y = z,2x + 2y = z。
4.解这个方程组,可以得到x和y的值,即鸡和兔的数量。
结论通过以上多种方法,我们可以解决六年级下册鸡兔同笼问题。
逻辑法、穷举法、数学公式法、二元一次方程法和问题转化法都是有效的解题方法,可以根据具体情境选择合适的方法解决问题。
希望同学们通过这个问题的练习,提高自己的数学思维能力和解决问题的能力。
方法六:图像法1.可以用图像的方式来解决鸡兔同笼问题。
鸡兔同笼五种解题方法
![鸡兔同笼五种解题方法](https://img.taocdn.com/s3/m/ce00cd4f30b765ce0508763231126edb6f1a7616.png)
鸡兔同笼五种解题方法
鸡兔同笼,又称孰胜孰劣问题,是一个著名的古老问题,也可以用来考察学生的数学思维能力。
它被认为是一个古老又怪异的数学题目,有几种不同的解法,下面就详细介绍五种解题方法:
一、直接算法:
这是最常用的解题方法,即直接找出兔子与鸡的个数,用数学方法计算出来最精准的答案。
需要用到兔子加鸡等于总数,鸡的脚数也等于总数的概念。
二、迭代算法:
迭代算法是一种重复应用重复运算结果,以解决问题的解法,也就是说,先根据问题给出一个初始猜想,然后根据当前猜想推出下一个猜想,以此类推,直至找出最优解。
三、动态规划法:
动态规划法是根据问题求解步骤,它的特点是分析问题求解过程,建立模型,然后用模型解决问题,通过建立正确的递推关系,把复杂问题分解成一个个小问题,从而达到解决复杂问题的目的。
四、回溯法:
通过后向查找的方式,不断尝试可行的解决方案,通过回溯可以快速求出满足一定要求的解,但是这种方法如果不能提前给出限制条件,就会产生大量的岔路,影响解题效率。
五、枚举法:
枚举法的思想是将问题的所有可能情况一一枚举出来,然后判断
哪个解符合要求,从而找出最佳解。
枚举法的优点是简单易行,但是由于枚举出来的可能解太多,难以确定哪个解是最佳解,因此需要对可能的解进行优化,以节省解题时间。
小学奥数“鸡兔同笼”问题的五种常见解题思路
![小学奥数“鸡兔同笼”问题的五种常见解题思路](https://img.taocdn.com/s3/m/492ea9cddc88d0d233d4b14e852458fb760b384e.png)
三、要解决的问题:鸡、兔各有的只数
…… =50 …… =120
三、方法一:画图法
1.先画出50个圆圈代表50只动物 2.然后,每个圆圈划2只脚,总共
100只脚
三、方法一:画图法
3.依次给每个动物添2只脚,直 到添够120只,就不再添加,数
一数有多少只兔,多少只鸡
4只脚的是兔
10只兔
2只脚的是鸡
40只鸡
兔有多少只?
50×4=200 因为所有的动物地上都只站着4只脚
200-120=80 80÷2=40 因为每只鸡补了两只脚 50-40=10
谢谢聆听!
小学奥数
目录 一、例题 二、题目解析 三、画图法 四、试算法
五、假设法 六、抬脚法 七、补脚法
一、例 题
鸡兔同笼,共50只,120只脚, 鸡、免各有多少只?
二、题目解析
一、已知的数量关系: 1. 鸡和免共有50只; 2. 脚一共有120只。
…… + …… +
二、隐含的数量关系: 一只鸡有2只脚,一只兔有4脚。
四、方法二:试算法
猜的次数 第一次
鸡的只数
10兔的只数Fra bibliotek40脚的总数
180
与120相比 多60
第二次 20 30 160 多40
第三次 25 25 150 多30
第四次 30 20 140 多20
第五次 45 5 110 少10
第六次 42 8 116 少4
第七次 40 10 120 正好
猜的过程中发现的规律:兔子的只数越少,脚的总数就越少, 然后逐渐缩小猜的范围,最后,试算 出,鸡40只,兔10只。
鸡有多少只?
50-10=40
六、方法四:抬脚法2
鸡兔同笼9种解题方法(完整版)
![鸡兔同笼9种解题方法(完整版)](https://img.taocdn.com/s3/m/b9f3633b590216fc700abb68a98271fe910eaf25.png)
鸡兔同笼9种解题方法鸡兔同笼问题是我国古代著名趣题之一,同时也是是小学阶段一个重要的奥数问题。
让我们看看这道大约在1500年前就存在的有趣的问题都有哪些方法可以解决吧!题目:现有一笼子,里面有鸡和兔子若干,数一数,共有头14个,腿38条,求鸡和兔子各有多少只?[方法一:列表法]列表法直观、易理解、不易出错,一起来看一下①鸡有2只脚,比兔子少2只脚。
但是鸡有2只翅膀,兔子没有。
假设鸡有特异功能,把2只翅膀变成2条腿,那么鸡也有4只脚。
此时脚的总数是14×4=56只,但实际上只有38只,为什么呢?因为我们把鸡的翅膀当做脚来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔子就是14-9=5只。
②假设每只鸡都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔子的,它的脚数就是38-14×2=10只,因此兔的只数有10÷2=5只,鸡有14-5=9只。
③假如每只兔子又长出一个头来,然后魔术师说“劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目。
鸡就有14-5=9只。
[方法七:砍足法]假如把每只鸡砍掉一只脚,每只兔子砍掉一只脚,则每只鸡就变成了“独脚鸡”,每只兔子就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由38变成了19;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。
所以,鸡的只数就是14-5=9(只)了。
[方法八:耍兔法]假如训兔师喊口令:“兔子,站起来!”此时兔子们都把两只前脚高高抬起来,两只后脚着地。
此时鸡兔都是两只脚着地的。
在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只脚。
为什么会多出来呢?因为兔子们把他们的2只前脚抬了起来,所以兔的只数是10÷2=5只,则鸡是14-5=9只。
鸡兔同笼解题方法(范文9篇)
![鸡兔同笼解题方法(范文9篇)](https://img.taocdn.com/s3/m/41ac794776232f60ddccda38376baf1ffc4fe38d.png)
鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。
鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。
鸡兔同笼问题的13种解决方法
![鸡兔同笼问题的13种解决方法](https://img.taocdn.com/s3/m/2ab907c885868762caaedd3383c4bb4cf6ecb751.png)
鸡兔同笼问题的13种解决方法鸡兔同笼问题是一道经典的数学问题,许多人在学习数学的初级阶段都会遇到。
此问题的目标是根据给定的头数和脚数,计算出鸡和兔的数量。
在本文中,我们将介绍鸡兔同笼问题的13种解决方法,从简单到复杂,帮助你更全面地理解这个问题。
方法一:穷举法最简单的方法是使用穷举法来解决鸡兔同笼问题。
我们从给定的头数和脚数开始,逐个尝试鸡和兔的组合数量,直到找到满足条件的解。
这种方法的缺点是计算量大,尤其是当给定的头数和脚数较大时。
方法二:代数方程法我们可以将鸡和兔的数量表示为变量,使用代数方程组来解决鸡兔同笼问题。
假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
通过解这个方程组,我们可以得到鸡和兔的具体数量。
方法三:二次方程法如果给定的头数和脚数是完全平方数,我们可以使用二次方程来解决鸡兔同笼问题。
首先,我们假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
将第一个方程代入第二个方程,得到一个只包含鸡或兔数量的二次方程。
通过解这个二次方程,我们可以得到鸡和兔的具体数量。
方法四:列方程法我们可以通过列方程的方法来解决鸡兔同笼问题。
假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。
通过解这个方程组,我们可以得到鸡和兔的具体数量。
方法五:二进制法我们可以使用二进制法来解决鸡兔同笼问题。
将鸡和兔的数量用二进制表示,每个头对应一个二进制位,每个脚对应一个二进制位。
通过遍历所有可能的二进制组合,找到满足条件的解。
这种方法适用于给定的头数和脚数较小的情况。
方法六:因式分解法如果给定的头数和脚数是正整数且具有公因式,我们可以使用因式分解法来解决鸡兔同笼问题。
将头数和脚数分别进行因式分解,找到它们的公因式,然后通过计算得到鸡和兔的具体数量。
鸡兔同笼的解题方法
![鸡兔同笼的解题方法](https://img.taocdn.com/s3/m/4962992903768e9951e79b89680203d8ce2f6a9b.png)
鸡兔同笼的解题方法鸡兔同笼问题,是我国古代著名趣题之一,大约在 1500 年前的《孙子算经》中就有记载。
这个问题看似简单,却蕴含着丰富的数学思维和解题技巧。
接下来,咱们就一起探讨一下鸡兔同笼问题的各种解题方法。
咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。
问鸡和兔各有多少只?方法一:假设法假设全是鸡,那么一共有脚 2×35 = 70 只。
但实际上有 94 只脚,多出来的脚就是因为把兔当成鸡来算少算的。
每把一只兔当成鸡,就会少算 4 2 = 2 只脚。
总共少算了 94 70 = 24 只脚,所以兔的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
假设全是兔,那么一共有脚 4×35 = 140 只。
实际上只有 94 只脚,多出来的就是因为把鸡当成兔多算的。
每把一只鸡当成兔,就会多算 4 2 = 2 只脚。
总共多算了 140 94 = 46 只脚,所以鸡的数量就是 46÷2 = 23 只。
兔的数量就是 35 23 = 12 只。
方法二:方程法咱们设鸡有 x 只,兔有 y 只。
因为鸡和兔一共有 35 个头,所以 x + y = 35。
又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以2x + 4y = 94。
由第一个方程可得 x = 35 y,把它代入第二个方程,得到 2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。
再把 y = 12 代入 x = 35 y,得到 x = 23。
方法三:抬腿法让鸡和兔都抬起两只脚,此时笼子里一共少了 2×35 = 70 只脚。
剩下的脚都是兔的,而且每只兔还剩下 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
鸡兔同笼问题解题方法
![鸡兔同笼问题解题方法](https://img.taocdn.com/s3/m/bd1232e7a0c7aa00b52acfc789eb172ded6399c7.png)
鸡兔同笼问题解题方法
鸡兔同笼问题解法如下:
方法一、假设法
在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。
常用的假设有:假设笼子里都是兔或者都是鸡,比如:笼子里有30只头,68只脚,兔多少?鸡多少?
解题方法是假设笼子里都是兔子,这样就可以得到鸡的只数(4×30-68)÷(4-2)=26(只),那么兔子就是30-26=4(只)
方法二、砍腿法
顾名思义,砍腿法就是把多余的腿给去掉,即把兔子的腿变为两条,那么笼子里还剩下的腿的数量应该是:30×2=60,而原来应该是有68只脚,那么这里应该减少了68-60=8(只)脚,当兔子去掉了2条腿,笼子里腿的数量就会减2,那么就是有8÷2=4(只)兔子,得出兔子的只数,鸡的数量也就可以得到了。
方法三、抬腿法
与砍腿法一样,抬腿法的方法也是与名字一样。
这个方法的步骤是让鸡抬起一只腿,兔子抬起两只腿,这样的话,笼子里腿的数量就会变成原来数量的一半,即68÷2=34。
然后让鸡和兔子抬起的腿落地,这样兔子的脚就会比兔子的数多1,而鸡的脚就是鸡的只数。
因此就可以推出,兔子的只数就是腿的数减去头的数,即34-30=4(只),而鸡的数量也就是30-4=26只。
四年级奥数鸡兔同笼问题
![四年级奥数鸡兔同笼问题](https://img.taocdn.com/s3/m/18beb9ab541810a6f524ccbff121dd36a32dc4a3.png)
鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。
这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。
一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。
如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。
鸡兔同笼问题的 种解法
![鸡兔同笼问题的 种解法](https://img.taocdn.com/s3/m/a8c7bfabfab069dc502201ff.png)
鸡兔同笼的13种解法方法一:人见人爱的方法“列表法”分析:如果二年级小朋友做这道题,可以用列表法!列表法容易理解,同时也是数学中一个重要的方法,学会后,为以后的学习打一个坚实的基础!好啦,我们来看一下!鸡0 3 5 7 9 …兔14 11 9 7 5 …腿56 50 46 42 38 …根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最快乐的方法“画图法”分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
方法三:最酷的方法“金鸡独立法”分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
方法四:最逗的方法“吹哨法”分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
方法五:最常用的方法“假设法”分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
(奥数)鸡兔同笼问题五种解题思路
![(奥数)鸡兔同笼问题五种解题思路](https://img.taocdn.com/s3/m/a7bfba51011ca300a6c390c2.png)
鸡兔同笼问题五种形式的解题思路(1)已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数。
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(总头数-脚数之差/一只鸡的脚数)÷(2+1)=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只兔:(40-32/2)÷(2+1)=8 只;鸡:40-8=3只(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(4) 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数。
274-(26×2)÷(2+4)=37(只) 兔(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),思路:根据互换前后的脚数相加除以(鸡的脚数加兔的脚数之和)为头数,再根据1求解。
鸡兔同笼的五种解法
![鸡兔同笼的五种解法](https://img.taocdn.com/s3/m/b9c5894603768e9951e79b89680203d8ce2f6aac.png)
鸡兔同笼的五种解法鸡兔同笼问题是一个经典的数学问题。
在这个问题里,给定了笼子里的动物的总数和腿的总数,需要求出鸡和兔的数量。
这个问题可以用多种方法解决。
在这里,我们将介绍五种解题方法。
方法一:列方程假设鸡的数量是x,兔的数量是y,根据题意,我们可以得到以下方程组:x + y = 总数2x + 4y = 腿的总数根据这个方程组,我们可以解出x和y的值,从而得到鸡和兔的数量。
方法二:画图法我们可以画出一张鸡和兔的图,用数字表示每只鸡和兔的数量和腿的数量,然后用这张图来解题。
这种方法比较直观,适合孩子或初学者使用。
方法三:数学归纳法我们可以观察鸡兔同笼问题的特征,发现每增加一只动物,会增加两条腿。
因此,我们可以将问题转化为:有n 个动物,它们共有m条腿,求鸡和兔的数量。
然后使用数学归纳法来解决这个问题。
方法四:递归算法我们可以将问题分解为小问题,再利用递归算法来解决。
具体地,假设有n只动物,其中m只是鸡,n-m只是兔。
如果这些动物共有k条腿,我们可以先考虑只有一只动物的情况,然后逐步增加动物的数量,直到n只为止。
方法五:运用数学知识我们可以运用一些数学知识,如组合数学和二元一次方程等,来解决这个问题。
具体地,我们可以用组合数学的方法计算出在给定腿的数量下,鸡的数量和兔的数量的所有可能组合,然后用二元一次方程来验证哪种组合符合题意。
以上五种方法各有特点。
对于初学者来说,列方程和画图法比较易懂;对于高中学生或数学专业学生来说,数学归纳法和递归算法可能更加适合;而对于数学专业研究生或数学爱好者来说,运用数学知识的方法可能更为有趣和有挑战性。
不管采用哪种方法,解决鸡兔同笼问题都可以让人在玩乐中学习,锻炼数学思维能力。
鸡兔同笼13种解题方法
![鸡兔同笼13种解题方法](https://img.taocdn.com/s3/m/1e80d112657d27284b73f242336c1eb91a373317.png)
鸡兔同笼13种解题方法1. 题目分析鸡兔同笼问题是一个经典的数学问题,常用于培养逻辑思维和解决实际问题的能力。
题目要求在已知鸡和兔的总数量以及总腿数的情况下,计算出鸡和兔的具体数量。
2. 解题思路根据题目要求,我们可以得到以下两个方程:•鸡 + 兔 = 总数量• 2 * 鸡 + 4 * 兔 = 总腿数通过解这个二元一次方程组,可以得到鸡和兔的具体数量。
3. 解题方法方法一:穷举法穷举法是最简单直观的解题方法之一。
我们可以从0开始依次尝试每种可能性,直到找到符合条件的答案为止。
def solve_chicken_rabbit(total_number, total_legs):for chicken in range(total_number + 1):rabbit = total_number - chickenif 2 * chicken + 4 * rabbit == total_legs:return chicken, rabbitreturn Nonetotal_number = 13total_legs = 32result = solve_chicken_rabbit(total_number, total_legs)if result:print("鸡的数量为", result[0])print("兔的数量为", result[1])else:print("无解")方法二:代数法代数法是通过代数运算解题的方法。
我们可以将鸡和兔的数量表示为变量,并根据已知条件列出方程,然后求解方程得到答案。
def solve_chicken_rabbit(total_number, total_legs):from sympy import symbols, Eq, solvechicken = symbols('chicken')rabbit = total_number - chickenequation1 = Eq(chicken + rabbit, total_number)equation2 = Eq(2 * chicken + 4 * rabbit, total_legs)result = solve((equation1, equation2), (chicken, rabbit))if result:return result[chicken], result[rabbit]else:return Nonetotal_number = 13total_legs = 32result = solve_chicken_rabbit(total_number, total_legs)if result:print("鸡的数量为", result[0])print("兔的数量为", result[1])else:print("无解")方法三:二分法二分法是一种高效的搜索算法,可以在有序列表中快速找到目标元素。
鸡兔同笼解题技巧全集
![鸡兔同笼解题技巧全集](https://img.taocdn.com/s3/m/cb176c47a200a6c30c22590102020740be1ecd8a.png)
鸡兔同笼解题技巧全集鸡兔同笼问题是中国古代著名的数学趣题,也是小学数学中常见的一类应用题。
它具有一定的趣味性和挑战性,能够锻炼我们的逻辑思维和数学运算能力。
接下来,我将为您详细介绍鸡兔同笼问题的各种解题技巧。
一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全部都是鸡或者全部都是兔,然后根据实际的脚数与假设情况下的脚数差异来进行计算。
假设笼子里全部都是鸡,那么每只鸡有 2 只脚。
如果笼子里有 n 个头,那么脚的总数就是 2n 只。
但实际上的脚数比假设的要多,这是因为把兔当成鸡来计算时,每只兔少算了 2 只脚。
用实际脚数减去假设的脚数,再除以每只兔少算的 2 只脚,就可以得到兔的数量。
例如,笼子里有 35 个头,94 只脚。
假设全部都是鸡,那么脚的总数就是 35×2 = 70 只。
实际有 94 只脚,多出来的 94 70 = 24 只脚就是因为把兔当成鸡计算少算的。
每只兔少算 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
同样,如果假设笼子里全部都是兔,那么每只兔有 4 只脚。
如果笼子里有 n 个头,脚的总数就是 4n 只。
实际脚数比假设的少,这是因为把鸡当成兔来计算时,每只鸡多算了 2 只脚。
用假设的脚数减去实际的脚数,再除以每只鸡多算的 2 只脚,就可以得到鸡的数量。
二、方程法方程法是一种比较直接和通用的方法。
我们可以设鸡的数量为x 只,兔的数量为 y 只。
根据题目中的条件,可以列出两个方程:方程一:x + y =头的总数方程二:2x + 4y =脚的总数然后通过解方程组来求出 x 和 y 的值。
比如,还是上面那个例子,有 35 个头,94 只脚。
设鸡有 x 只,兔有 y 只,可列出方程组:x + y = 35 (1)2x + 4y = 94 (2)由(1)式得 x = 35 y,将其代入(2)式:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入(1)式,可得 x = 23所以,鸡有 23 只,兔有 12 只。
鸡兔同笼问题4种解题方法
![鸡兔同笼问题4种解题方法](https://img.taocdn.com/s3/m/7d25da7ba36925c52cc58bd63186bceb19e8edf1.png)
鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。
总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。
2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。
用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。
每多1个头就是1只兔。
因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。
3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。
前面 抬起2只脚,现在每只兔还剩下2只脚。
所以用总脚数--总头数×2的差再÷2就是兔的只数。
4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只? 60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50 只验算:50×2=100(25+15)x4=160160--100=60 只5,方程法可用一元一次和二元一次方程直接解题。
等量关系:(1)设鸡为X,则兔为总头数--X2Ⅹ+4(总头数--X)=总脚数(2)X+y=总头数2X+4y=总脚数。
小学数学鸡兔同笼问题常见类型及方法大全
![小学数学鸡兔同笼问题常见类型及方法大全](https://img.taocdn.com/s3/m/4be537dfd5bbfd0a79567345.png)
鸡兔同笼问题常见类型及解题方法大全类型一:基本类型,已知总头数和总脚数,求鸡、兔各多少例1、有鸡、兔共20只,它们共有脚68只,鸡、兔各是多少只?方法一:列表法——简单,但麻烦,适合数量较小时使用所以:鸡有6只,兔子有14只。
总结:1.列表法比较适合数字较小的鸡兔同笼问题;2.尝试时鸡兔只数可先从中间开始,若脚的数量比已知多,就减少兔子数量,反之增加兔子数量;3.脚的数量和已知中脚的数量一致时,对应的鸡兔数量即为所求。
练习:鸡兔同笼,共10只头,32只脚,鸡兔各几只?(用列表法)方法二:口哨法——简单,快速假设鸡和兔会听口哨,每吹一次口哨,鸡和兔都抬起一只脚,吹两次口稍后,鸡的脚都抬起来了,剩下的都是兔子的脚,每只兔子剩两只脚,所以除以2就可以得到兔子的数量;列式:兔子:(68-20-20)÷2=14(只)鸡:20-14=6(只)练习:鸡兔同笼,共15只头,40只脚,鸡兔各几只?(用口哨法)方法三:砍腿法——类似口哨法假设里面的动物都砍去2条腿,那剩下的腿都是兔子的了,每只兔子剩2只腿,所以除以2就算出了兔子数量。
列式:兔子:(68-20×2)÷2=14(只)鸡:20-14=6(只)练习:鸡兔同笼,共16只头,44只脚,鸡兔各几只?(用砍腿法)方法四:假设法——重要,必须掌握假设20只都是鸡:先得出的是兔的数量则共有脚:20×2=40(只)比已知少:68-40=28(只)——为什么会少28只脚?要想明白。
兔的只数:28÷2=14(只)(因为每把1只兔子看成鸡少算了两只脚)鸡的只数:20-14=6(只)假设20只都是兔:先得出的是鸡的数量则共有脚:20×4=80(只)比已知多:80-68=12(只)——为什么会多28只脚?要想明白。
鸡的只数:12÷2=6(只)(因为每把1只鸡看成兔子多算了2只脚)兔的只数:20-6=14(只)方法五:方程法解:设兔子有x只,则鸡有20-x只,列方程:4x+2×(20-x)=68解方程:4x+40-2x=682x+40=682x=28x=1420-14=6(只)答:兔子有14只,鸡有6只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学“鸡兔同笼”问题解题技巧
基本题型已知鸡兔的总只数和总腿数。
求鸡和兔各多少只。
解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。
解题规律:方法1、假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数);方法2、假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例1:有鸡兔共20只,脚44只,鸡兔各几只?解:方法1、假设全是鸡( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。
兔的只数(总腿数-总只数× 2)÷(每只兔的脚数-每只鸡的脚数)20-2=18(只)。
鸡的只数方法2、假设全是兔( 20 ×4-44) ÷( 4 - 2 )=18(只)。
鸡的只数(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例 2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:方法1、假设都是小船大船:(6×15+22)÷(6+10)=7(只); 小船:15-7=8(只)方法2、假设都是大船小船:(10×15-22)÷(6+10)=8(只) 大船:15-8=7(只) 20-18=2 (只)。
兔的只数常见题型1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,方法1:(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法2:(每只兔脚数×总头数+鸡兔
脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
方法3:列方程解答根据鸡兔脚数的差数,找出鸡与兔的只数关系例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解法1:兔数:(2×30+60)÷(2+4)=20(只); 鸡数:30-20=10(只)解法2:鸡数:(4×30+60)÷(2+4)=10(只)兔数:30-10=20(只)解法3:根据“兔脚比鸡脚多60只也就是“鸡脚比兔脚少60只,那么鸡的只数比兔的2倍少(60÷2=)30(只)解:设兔有X只,那么鸡有2X-60÷2(只)即:2X-30(只)2X-60÷2+X=303X-30=303X=60X=20 30-20=10(只)(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;2、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
3、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例题例3. 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?解:鸡数:〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)兔数:〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)解析:首先用鸡兔互换的数相加,大家想想,那出来的结果是什么,是不是鸡兔的数都变成鸡兔的总数,已经是变成鸡兔总数只的六条腿的小怪物,所以(52+44)÷(4+2),得出鸡兔的和,这时其实就变成一道普通的鸡兔同笼问题,但如果我们再看看用鸡兔互换的数相减得到的是什么数,为什么交换会有差呢?因为兔子4条腿,鸡2条腿,所以每把一只鸡换成一只兔子就会多出两条腿,所以(52-44)÷(4-2),得出鸡兔的差。
那么这就变成和差问题,下面大家就能很容易解答。
例4. 小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?解:小船:〔(130-20+130)÷(10+6)+20÷(10-6)〕÷2=20÷2=10(只)大船:〔(130-20+130)÷(10+6)-20÷(10-6)〕÷2=10÷2=5(只)例5. 有鸡兔共30只,鸡脚比兔脚多30只,问鸡兔各多少只?解:兔数:(2×30-30)÷(2+4)=5(只);鸡数:30-5=25(只)解析:首先假设都是鸡,那么有60只脚,然后再减去鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数。
例6. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘小船的人比乘大船的人多42人,问大船几
只,小船几只?解:大船:(6×15-42)÷(6+10)=3(只);小船:15-3=12(只)或者小船:(10×15+42)÷(6+10)=12(只)大船:15-12=3(只)总头数-鸡数=兔数。
例7. 灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(得失问题也称运玻璃器皿问题,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……它的解法显然可套用上述公式。
)
问:小梅家的鸡与兔各有多少只?解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
2. 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
3. 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304—280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8(元),所以买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。
4. 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100—30=70(只)。
解:有兔(2×100—20)÷(2+4)=30(只),有鸡100—30=70(只)。
答:有鸡70只,兔30只。