电动汽车中英文文献

合集下载

新能源汽车外文文献翻译

新能源汽车外文文献翻译

文献出处:Moriarty P, Honnery D. The prospects for global green car mobility[J]. Journal of Cleaner Production, 2008, 16(16): 1717-1726.原文The prospects for global green car mobilityPatrick Moriarty, Damon HonneryAbstractThe quest for green car mobility faces two major challenges: air pollution from exhaust emissions and global climate change from greenhouse gas emissions. Vehicle air pollution emissions are being successfully tackled in many countries by technical solutions such as low-sulphur fuels, unleaded petrol and three-way catalytic converters. Many researchers advocate a similar approach for overcoming transport's climate change impacts. This study argues that finding a technical solution for this problem is not possible. Instead, the world will have to move to an alternative surface transport system involving far lower levels of motorised travel.Keywords:Green mobility; Fuel efficiency; Alternative fuels; Global climate change; air pollution1. IntroductionProvision of environmentally sustainable (or green) private transport throughout the world faces two main challenges. The first is urban and even regional air pollution, particularly in the rapidly growing cities of the industrialising world. The second is global climate change, caused mainly by rising concentrations of greenhouse gases (GHGs) in the atmosphere. These two barriers to green car mobility differ in several important ways. First, road traffic air pollution problems are more localised, because of the short atmospheric lifetimes of most vehicle pollutants and . Thus regional solutions are often not only possible, but also essential – Australian cities, for example, can (and must) solve their air pollution problems themselves. Matters are very different for global climate change. Except possibly for geo-engineering measuressuch as placing large quantities of sulphate aerosols in the lower stratosphere or erecting huge reflecting mirrors in space, one country cannot solve this problem alone. Climate change is a global problem. Nevertheless, it is possible for some countries to ‘freeload’ if the majority of nations that are important GHG emitter。

汽车新能源论文中英文版

汽车新能源论文中英文版

new energy automobileIn 1839, Robert Anderson of Scotland to a carriage mounted on the battery and the electric motor, its successful transformation of the world's first a vehicle driven by electricity, which opened the curtain for the development of electric vehicles.Works flow route of electric vehicles: battery - current - power regulator - motor - drivetrain - drive the vehicle, power drive Move and control system is the core of the electric car is different from different points of the internal combustion engine vehicle;From a global point of view, the development of electric vehicles in China and developed countries almost stand on the same starting line,the vehicle has been initially formed products development system supporting the management mechanism and team composition, pure electric vehicles, hybrid vehicles, fuel cell vehicles, like cars have been achieved, key components, the fuel cell engine is the formation of the system, high-power nickel-hydrogen batteries, lithium-ion battery performance has been greatly enhanced, multi-energy control system initially formed.The main purpose of this writing is to deepen their own understanding of electric vehicles, so that more people understand the new energy and electric vehicles, and the majority of their prime comrades of electric vehicles are interested ability, can also be for our country or for The world automobile Energy to contribute their value.Even China's electric car industry has made a lot of progress, but today such a grim situation, before the dual crisis of energy and the environment has not been resolved, still need to continue to work hard, especially shoulder motherland in the future development of the important task of contemporary college students should the burdens of this great mission and responsibility.新能源汽车1839年,苏格兰的罗伯特·安德森给四轮马车装上了电池和电动机,将其成功改造为世界上第一辆靠电力驱动的车辆由此拉开了电动汽车发展的帷幕。

关于新能源汽车的英语文章

关于新能源汽车的英语文章

New Energy Vehicles: Driving the Future of Sustainable TransportationIn the contemporary era of rapid technological advancements, the automotive industry is undergoing a paradigm shift. The emergence of new energy vehicles (NEVs) represents a significant milestone in this transition, heralding a new era of sustainable transportation. These vehicles, powered by alternative sources of energy such as electricity, hydrogen, and solar, are revolutionizing the way we travel, reducing our dependency on fossil fuels and mitigating the environmental impacts of traditional automobiles.The rise of NEVs is not just a technological trend;it's a societal imperative. With the escalating concerns over climate change and air pollution, the need for eco-friendly modes of transportation has become increasingly urgent. NEVs offer a viable solution, offering reduced emissions, improved fuel efficiency, and quieter operation. This shift towards sustainability is not only beneficialfor the environment but also presents economicopportunities, driving innovation and job creation in the automotive sector.One of the most prominent types of NEVs is electric vehicles (EVs). These vehicles are powered by batteries, eliminating the need for internal combustion engines and the associated emissions. The popularity of EVs has grown significantly in recent years, with an increasing number of manufacturers offering a diverse range of models, from compact cars to heavy-duty trucks. The development of advanced battery technology has been a key driver in the widespread adoption of EVs, enabling longer driving ranges and faster charging times.Another noteworthy area in the NEV landscape is hydrogen fuel cell vehicles. These vehicles use hydrogen as a fuel source, converting it into electricity through a chemical reaction. This process produces only water as a byproduct, making hydrogen fuel cell vehicles truly zero-emission. While the infrastructure for hydrogen fueling stations is still in its infancy, the potential of this technology is immense, offering a clean and efficient alternative to fossil fuels.Moreover, the integration of renewable energy sources such as solar power into NEVs is gaining momentum. Solar-powered vehicles harness the sun's energy to charge their batteries, further reducing their carbon footprint. While solar-powered vehicles may not yet be suitable for all types of transportation, they represent a promising direction for future development.However, the widespread adoption of NEVs faces several challenges. One of the primary concerns is the cost of these vehicles, which is often higher than traditional gasoline-powered cars. Government incentives and subsidies can help offset these costs and encourage consumers to make the switch. Additionally, the infrastructure for charging stations and hydrogen fueling facilities needs to be expanded to support the growing number of NEVs on the road. Another challenge is the need for standardized charging and fueling protocols. Different manufacturers often use proprietary systems, which can create inconveniences for consumers. Establishing universal standards would greatly enhance the usability and adoption of NEVs.Despite these challenges, the future of NEVs looks bright. As technology continues to evolve and costs come down, these vehicles are expected to become more accessible and widespread. Innovations in battery technology, charging infrastructure, and renewable energy integration willfurther enhance the performance and sustainability of NEVs. Moreover, the automotive industry is collaborating with governments, research institutions, and other stakeholdersto address the challenges facing NEVs. These collaborations are focused on developing new technologies, improving infrastructure, and creating policies that support the widespread adoption of sustainable transportation solutions. In conclusion, new energy vehicles represent a pivotal shift in the automotive industry, ushering in a new era of sustainable transportation. While challenges remain, the potential benefits of NEVs are immense, offering reduced emissions, improved fuel efficiency, and economic opportunities. As technology and infrastructure continue to evolve, we can expect to see a growing number of NEVs onour roads, driving us towards a more sustainable future.**新能源汽车:驱动可持续交通的未来**在当今科技飞速发展的时代,汽车行业正经历着范式转变。

国外关于新能源汽车的文献

国外关于新能源汽车的文献

国外关于新能源汽车的文献
1.'TheFutureofElectricVehicles:OpportunitiesandChallenges'(英国)-这篇文献讨论了电动汽车的未来发展趋势、机遇和挑战,探讨了政策、技术和市场等方面的影响因素。

2. 'Electric Vehicle Policies and Market Development in China' (中国) - 这篇文献主要介绍了中国的新能源汽车政策和市场发展情况,分析了政策实施效果和未来发展趋势。

3. 'The Impact of Electric Vehicles on the Power Grid' (美国) - 这篇文献探讨了电动汽车对电网的影响,包括充电需求、电网负荷和能源管理等方面的问题。

4. 'Battery Technology for Electric Vehicles' (日本) - 这篇文献介绍了电动汽车用电池技术的发展历程,讨论了不同类型电池的优缺点和应用范围。

5. 'The Economics of Electric Vehicles' (德国) - 这篇文献分析了电动汽车的经济学特征,包括成本结构、市场需求和政策支持等方面的因素。

6. 'The Role of Renewable Energy in Electric Vehicle Charging' (丹麦) - 这篇文献讨论了可再生能源在电动汽车充电方面的应用和前景,探讨了能源转型和环保需求等方面的关联。

- 1 -。

电动汽车电子技术中英文对照外文翻译文献

电动汽车电子技术中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文资料外文翻译原文:As the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress ofthe society, people invented the electric car. Electric cars will become the most ideal of transportation.In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system,electronic control suspension system, electronic control power steering system, vehicle dynamic control system, the airbag systems, active belt system, electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response, the use function of quick car, high reliability, guarantees of engine power and reduce fuel consumption and emission regulations meet standards.The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example, automatic transmission in road, can not on the clutch, can achieve automatic shift and engine flameout, not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter, gear transmission, pump, hydraulic control system, electronic control system and oil cooling system, etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going andstability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height, low set to gas or oil cylinder filling or oil. If is opposite, gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state, so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car, car motions of state and optimum control performance, and increased automobile adhesion, controlling and stability. Besides these, appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passenger's safety, and greatly reduce automobile in collision of drivers and passengers in the buffer, to protect the safety of life.Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emission in the aspects ofsuperior internal-combustion vehicles.Along with the computer and electronic product constantly upgrading electric car, open class in mature technology and perfected, that drive more safe, convenient and flexible, comfortable. Now, the electric car from ordinary consumers distance is still very far away, only a few people in bandwagon. Electric cars with traditional to compete in the market, the carwill was electric cars and intelligent car replaced. This is the question that day after timing will come. ABS, GPS, and various new 4WD 4WS, electronic products and the modern era, excellent performance auto tacit understanding is tie-in, bring us unparalleled precision driving comfort and safety of driving.译文:随着世界能源危机的持续,以及战争和能源-----石油的消耗及汽车饱有量的增加,能源在一天一天下降,终有一天它会消失的无影无踪。

新能源汽车外文翻译文献

新能源汽车外文翻译文献

新能源汽车外文翻译文献Electric Cars: XXX?As the XXX crises。

wars。

and increasing oil n。

the need for alternative XXX not a renewable resource。

and we must find a replacement before XXX and social progress。

the n of electric cars XXX.Faced with high XXX costs。

growing XXX。

XXX and American automakers。

XXX Prius has e the world's best-selling hybrid car。

Tesla Motors。

a new American automaker。

has launched its first battery-powered car。

the Tesla Roadster。

As of the end of 2010.XXX hybrid car。

and XXX a similar plan is underway.Currently。

XXX vehicles。

XXX。

key components。

and system n。

They have established a research institute with "three verticals" of hybrid electric vehicles。

pure electric vehicles。

and fuel cell vehicles。

and "three horizontals" of vehicle controlsystems。

motor drive systems。

and power XXX industry。

电动汽车中英文文献

电动汽车中英文文献

China Hybrid Electric Vehicle Development With the depletion of oil resources, increase awareness of environmental protection, hybrid vehicles and electric vehicles will become the first decades of the new century, the development of mainstream cars and automobile industry become the consensus of all of the industry. The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical " To vehicle control systems, motor drive systems, power battery / fuel cell for the "three horizontal" distribution of R & D, through close links between production cooperation, China's independent innovation of hybrid cars has made significant progress. With completely independent intellectual property rights form the power system technology platform, established a hybrid electric vehicle technology development. Is the core of hybrid vehicles batteries (including battery management system) technology. In addition, also include engine technology, motor control, vehicle control technology, engine and electrical interface between the power conversion and is also the key. From the current situation, China has established a hybrid electric vehicle power system through Cooperative R & D technology platforms and systems, made a series of breakthroughs for vehicle development has laid a solid foundation. As of January 31, 2009, Technology in hybrid vehicles, China Intellectual Property Office to receive and open for the 1116 patent applications in China. In 1116 patent applications, invention 782 (authority for the 107), utility model for the 334. Mastered the entire vehicle key development, the formation of a capability to develop various types of electric vehicles. Hybrid cars in China in systems integration, reliability, fuel economy and other aspects of the marked progress in achieving fuel economy of different technical solutions can be 10% -40%. Meanwhile, the hybrid vehicle automotive enterprises and industrial R & D investment significantly enhanced, accelerating the pace of industrialization. Currently, domestic automakers have hybrid vehicles as the next major competitive products in the strategic high priority, FAW, Dongfeng, SAIC Motor, Changan, Chery, BYD, etc. have put a lot of manpower, material resources, Hybrid prototyping has been completed, and some models have achieved low-volume market. FAW Group Development Goal: By 2012, the Group plans to build an annual capacity of 11,000 hybrid cars, hybrid bus production base of 1000. FAW Group since 1999 and a new energy vehicles for theoretical research and development work, and the development of a red car performance hybrid sample. "15" period, the FAW Group is committed to the national "863" major project in the "red card in series hybrid electric vehicle research and development" mission, officially began the research and development of new energy vehicles. Beginning in 2006, FAW B70 in the Besturn, based on the technology for hybrid-based research, the original longitudinal into transverse engine assembly engine assembly, using a transverse engine and dual-motor hybrid technology. At the same time, FAW also pay close attention to the engine, mechanicaland electrical integration, transmission, vehicle control networks, vehicle control systems development, the current FAW hybrid electric car has achieved 42% fuel saving effect, reached the international advanced level. Jiefang CA6100HEV Hybrid Electric Bus FAW "Liberation brand CA6100HEV Hybrid Electric Bus" project is a national "863" electric vehicle major projects funded project, with pure electric drive, the engine alone drives (and charge), the joint drive motor starts the engine, and sliding regenerative braking 5 kinds of basic operation. The power hybrid electric bus and economy to the leading level, 38% fuel economy than traditional buses, emissions reduced by 30%. Red Flag CA7180AE hybrid cars Red Flag hybrid cars CA7180AE according to the national "863 Plan" is the first in complete with industrial prospects of the car, it is built on the basis of red car with good performance and operational smoothness. Series which is a hybrid sedan, the luxury car ,0-100km acceleration time of 14s, fuel-effic ient than traditional cars by about 50%, Euro Ⅲ emission standard. Besturn B70 hybrid cars Besturn B70 Hybrid cars using petrol - electric hybrid approach. Dual motor power system programs, mixed degree of 40/103, is all mixed (Full-Hybrid, also known as re-mixed) configurations. Besturn B70 Hybrid cars are petrol version costs two to three times Besturn models, mass production will be gradually reduced after the costs, even if this hybrid version Besturn market, the price certainly higher than the existing Besturn models, but high the price of petrol will not exceed 30% version of Besturn models. SAIC Development Goals: 2010 launch in the mixed hybrid cars, plug-in 2012, SAIC strong mix of cars and pure electric cars will be on the market. In the R & D on new energy vehicles, SAIC made clear to focus on hybrid, fuel cell for the direction, and speed up the development of alternative products. Hybrid vehicles, fuel cell vehicles, alternative fuel vehicles as a new energy strategy SAIC three key. 2010 SAIC Roewe 750 hybrid cars in the mix will be put on the market, during the World Expo in Shanghai, SAIC will put 150 hybrid cars in the Expo Line on the River Run. 2012 Roewe 550 plug-in hybrid cars will be strong market, the current car's power system has been launched early development and progress. Apply the new hybrid bus moving on the 1st Apply the new hybrid bus moving on the 1st Academy of Engineering by the SAIC and Shanghai Jiaotong University and other units jointly developed with independent intellectual property rights. Existing cities in the Sunwin Bus Power platform, "the new dynamic application No. 1" uses a parallel hybrid electric vehicle drive program, so that hybrid electric vehicle operating conditions in the electric air-conditioning, steering, braking and other accessories still able to work without additional electric system, while use of super capacitors, to improve starting power, braking energy recovery efficiency, thereby enhancing vehicle dynamic performance, reduce fuel consumption. Car length 10m, width 2.5m, high-3.2m, can accommodate 76 people. Roewe 750 hybrid cars Roewe 750 hybrid cars in the mixed system with BSG (Belt drive start generating one machine), with "smart stop zero-emission" and "environmental protection and the power of both the" two prominent features of a top speed of 205 km / h, the maximum added driving range of up to 500 km. As for the industrialization of SAIC's first own-brand hybrid car, the Roewe 750 hybrid integrated hybrid fuel-efficient cars can achieve rates of around 20%. Dongfeng Motor GroupDevelopment Goals: Plans move into 33 billion in 10 years to develop a range of environmentally friendly hybrid vehicles, including cars. EQ7200HEV hybrid cars EQ7200HEV hybrid cars are "863" project of major projects and major strategic projects of Dongfeng Motor Corporation. The car is EQ7200-Ⅱ model (Fengshen Bluebird cars) is based on an electronically controlled automatic transmission with innovative electromechanical coupling in parallel programs, configure DC brushless motor and nickel-hydrogen batteries, plans to "10 5 "during the industrialization. Industrialization, the vehicle cost more than EQ7200 cars increase in costs ≤ 30%. EQ61100HEV Hybrid Electric Bus EQ61100HEV electric hybrid bus by Dongfeng Vehicle Company Limited Joint Beijing Jiaotong University, Beijing, China Textile Co., Ltd. and Hunan sharp Electromechanical Technology Co., Ltd. jointly developed Shenzhou. EQ61100HEV hybrid electric bus with switched reluctance motor, Cummins ISBe1504 cylinder common rail electronic injection diesel engine, new chassis design of the system, electronically controlled automatic transmission and innovative electromechanical coupling parallel program. In the annual output reached 200, the vehicle cost more than the in crease in automobile engine equipped with 6CT ≤ 30%. China Changan Development Goals: the next three years, the formation of different grades, different purposes, carry a different system of mixed platforms, weak mix of scale, strong mixed industrial R & D capabilities, covering commercial, A grade, B grade, C grade products. 2014 will achieve sales of new energy vehicles 150 000 2020 sales of new energy vehicles for more than 500,000. "Eleventh Five-Year Plan" period, Chang-an increased investment in clean energy vehicles, a diversified energy technologies to carry out exploratory research. Environmental protection through energy-saving models continues to introduce new technology to lead the industry to upgrade and fully utilize and mobilize global resources, Chang'an in the middle hybrid cars, hybrid cars and other technological strength of the field are explored. Chang's first hybrid car long Anjie Xun HEV was successfully listed in June 2009; the first batch of 20 hybrid taxis Long An Zhixiang in January of this year officially put into operation in Chongqing. Chery Development Goals: after 2010, more than half of Chery's products carry different levels of hybrid systems. From 2003 to 2008, mainly mixed with moderate Chery hybrid cars and energy saving system development, and industrialization; Chery in Wuhu, a taxi has been carried out on probation, fuel consumption will be reduced by 10% to 30% to reach Europe Ⅳ Standard. Since 2004, Chery hybrid cars mainly for the development of strong and industrialization. Chery hybrid car fuel consumption target to reach 100 km 3 liters, to reach Europe and the United States emissions regulations. Chery A5BSG Chery A5BSG is a weak parallel hybrid electric car, using fuel engines, electric engines complementary mode, the two different power sources in the car while driving to work together or separately, through this combination to achieve the least fuel consumption and exhaust emissions, in order to achieve fuel efficiency and environmental protection purposes. Compared with the conventional car, the car in urban conditions can save 10% -15% of fuel and reduce carbon dioxide emissions by about 12%, while costs increased by only about 25% -30%. Chery A5ISG Chery A5 ISG hybrid power system consists of "1.3L gasoline engine + 5-speed manual transmission +10 kW motor +144 V Ni-MH battery," thecomposition of the battery system used by the Johnson Controls developed "plug-in" nickel metal hydride (Ni-MH), motor with permanent magnet synchronous motor and with the motor control system, inverter and DC / DC converters. The system enables the vehicle power to 1.6L displacement level and rate of 30% fuel savings and significantly reduce the emissions of Euro V standards. Cherry A3ISG Chery A3 ISG has 1.3L473F gasoline engine and equipped with 10KW motor. By gasoline engines and electric motors with torque overlay approach to dynamic mixed to provide the best vehicle power operating efficiency and energy saving environmental protection goals. Chery A3 ISG also has Stop_Restart the idling stop function such as flame start to start (BSG function), to reduce red light in the vehicle stopped or suspended when the fuel consumption and emissions expenses. FY 2BSG FY 2 BSG carry 1.5LSQR477F inline four-cylinder engine configuration BSG start / stop and so one electric motor, red light in the vehicle stopped the driver into the gap, it will automatically enter standby mode to turn off the engine, starting moments after the entry block automatically start the engine. FY 2 BSG vehicle average fuel consumption than the 1.5L petrol cars reduce about 5-10%, average fuel consumption can be reduced up to 15%. BYD Auto Development Goal: to electric cars as a transitional mode, the electric car as the ultimate goal, the development of new energy cars BYD. BYD follow the "independent research and development, independent production, independent brand" development path, and the "core technology, vertical integration" development strategy, as the transition to dual-mode electric vehicles, electric vehicles as the ultimate goal, the development of BYD new energy vehicles.国混合动力汽车发展随着石油资源的枯竭、人们环保意识的提高,混合动力汽车及电动汽车将成为新世纪前几十年汽车发展的主流,并成为我国汽车界所有业人士的共识。

电动汽车文章(中英翻译)

电动汽车文章(中英翻译)

The electric car — a green transport revolution in the making?As the world's continuing energy crisis, and war and oil consumption and energy ----- car full with the amount of increase, decrease energy day by day, one day it will disappear without a trace. Oil is not living resources. Oil consumption in the net must be to find a substitute before. With the development of technology and social progress, the invention of the electric vehicles will be effective help ease the financial difficulty. Electric cars will become the ideal means of transport.Faced with high energy costs and rising consumer and government concern over the fate of the environment, the world's automakers are stepping up investment in the development of alternative power train technologies that promise to substantially cut fuel consumption and reduce greenhouse gas emissions.Much attention to-date has focused on advances by Japanese and American automakers in the development of hybrid and battery electric vehicles. Toyota's,Prius has emerged as the best-selling hybrid car in the world. TesIa Motors, a US-based start-up, has launched its first battery electric vehicle, the Tesla Roadster. By the end of 2010, GM plans to launch its much-touted Volt hybrid, while Chrysler has recently announced similar plans.The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical "Several European countries as well as U.S,Japan,China and others, have recently announced bold plans for the introduction of electric vehicles. These include fiscal incentives, funding research on batteries and electric vehicles and plans for the deployment of a charging infrastructure. Major cities such as London and Paris have announced electric car-sharing systems, while public administrations and companies using large captive fleets are purchasing electric vehicles.At the same time, utilities, car manufacturers, battery producers and academics are joining forces on initiatives such as the EURELECTRIC Task Force on Electric Vehicles and EpoSS, the European Technology Platform on Smart Systems Integration. Together with the European Investment Bank the European Commission has launched the European Green Cars Initiative, with EUR 5 billion partly dedicated to the research, development and manufacturing of batteries and electric cars and to demonstration projects.This flurry of activity seems to indicate that the electric car is heading for a major breakthrough at last - but is it here to stay this time? History calls for caution. The production of electric vehicles began as far back as 1838 – 52 years before combustion engine vehicles. However, after 1913 the mass commercialization of the combustion engine led to a rapid decline in electric vehicles. Attempts to reintroduce electric vehicles in past decades have for the most part been unsuccessful and they still represent a very small, niche market.One of the biggest issues facing the potential take-up of electric vehicles is the rate of improvement in the performance of electric vehicle batteries.The biggest drag on electric vehicle performance comes from the lithium-ion battery, which can add another 220 kilograms to the total weight of a car, versus an ICE-powered vehicle.Since most passenger vehicles in China today are driven in urban areas, where shorter distances and slower speeds are the norm, this may not prove to be as vexing an issue as it is in other markets such as the US or Europe, where the average driving distance and top speed are considerably longer and higher. Continued research and development into electric battery technology is generating promising improvements in performance. US-based A123Systems,one of the world's largest producers of high-power lithium-ion batteries, Announced a battery capable of powering a car for 200 kilometersbetween charges. Toshiba recently announced the commercial launch of its Super Charge battery, which can be charged to 90 percent capacity in less than five minutes.Yet today the future looks brighter. A great deal of progress has been made in battery technology and electric vehicles are expected to re-enter the market on a large scale within the next couple of years. Based on a moderate growth scenario, by 2050, electric vehicles could represent more than 60%of new sales and constitute up to 25% of the global car fleet. However, estimates of the extent of future deployment vary greatly, as there is still some uncertainty in relation to the development of technology and future consumer behavior.One of the primary benefits of electric vehicles is, of course, the reduction of Green house gases emitted into the atmosphere. Our calculation of the total carbon abatement potential of alternative power train technologies counted not only the CO2 emissions that vehicles produce, but also emissions produced through out their entire life-cycle, from the CO2 emitted during the generation of electric power through to the transportation of fuel.Over a period of 8 months in 2008, a global McKinsey team studied the passenger vehicle industries in North America, Europe, China, and India. The team examined four power train technology alternatives, chosen on the basis of existing technologies and their near-term commercial feasibility. They contrasted them to conventional internalcombustion engine (ICE) vehicles that run on gasoline or diesel.Full hybrid vehicles: Running primarily on gasoline, full hybrids are powered by a battery during acceleration of the vehicle, but draw most of their power from an internal combustion engine. Full hybrids, equipped with ICE improvement technologies mentioned above, have a life-cycle carbon abatement potential of 56 percent.Compressed natural gas (CNG) vehicles: CNG vehicles are normally perceived to be a source of clean energy, but their life cycle carbon abatement potential depends wholly on the source of the gas一the greater the distance the gas needs to be transported, the higher this power train's "well-to-tank" emissions. CNG cars rank close to hybrids in their life-cycle carbon abatement potential at 55 percent, assuming the gas comes from local sources.Electric vehicles: Electric vehicles include plug-in hybrid vehicles (PHEV) and battery electric vehicles (BEV). Compared with full hybrids, plug-in hybrid vehicles contain a much bigger battery that can power the vehicle for a longer distance without the aid of an internal combustion engine, can be recharged by plugging them into standard electric sockets, and derive a smaller proportion of their propulsion from the internal combustion engine. Can be recharged by plugging them into standard electric sockets, and derive a smaller proportion of their propulsion from the internal combustion engine. Battery electric vehicles run solely on battery power without the aid of any internalcombustion mechanism. Given reliance on coal-fired plants for electricity.electric vehicles today only have a 19 percent carbon abatement potential over current internal combustion engine technologies; however, this can be increased to as much as 49 percent if diversifies its energy mix towards alternative energy sources for its supply of electric power.Electric vehicles have zero tailpipe emissions, but there are, of course, emissions involved in the production of electricity. As an example,with no concerted action to adopt new power train technologies, the level ofCO2 emissions from passenger cars in China could reach nearly 1.2 billion tons in 2030. However, our research showed that by adopting a mix of various alternative power train technologies, China could cut emissions from passenger vehicles by up to 45 percent. Relative to other power train technologies, electric vehicles demonstrate a some what weaker carbon abatement potential. While full hybrid cars have an abatement potential of 56 percent, electric vehicles' potential stands at 19 percent. This can be explained by the fact that China still relies on coal-fired plants for as much as 85 percent of its electricity supply. This can be explained by the fact that China still relies on coal-fired plants for as much as 85 percent of its electricity supply.It also can blossom into another electric car benefits of electricvehicles is th e “displacement “of harmful air pollutants from urban to rural areas, where population exposure is lower. Noise levels are also lower, particularly in urban driving conditions.Another major advantage of electric vehicles is their energy efficiency. With a tank-to-wheel efficiency in the range of 60 to 80 %, they outperform conventional cars four-fold. Generally, electric vehicles show greatest energy savings at low speeds and in situations involving frequently-changing driving dynamics, which is another reason why cities are a prime target market.Electric vehicles will also create opportunities for software developers. Electric vehicles require an electronic interface that informs the driver of the status of the car's vital statistics, from fuel and battery usage, to split-second updates in GPS navigation systems. Venture-backed start-up Better Place is developing a comprehensive information management system it calls AutOS.that will, among other things, inform the driver of the nearest battery-charging stations.While other technologies such as fuel cells hold great promise in reducing CO2 emissions, its commercial application remains years away. Investing in electric vehicles, however, does not mean Chinese OEMs and suppliers should stop their research into other technologies. Rather, they should maintain a balanced technology portfolio, with electric vehicles being a near-term solution, while viewing other technologiessuch as fuel cells as a potential long-term solution that could yield returns once the technology becomes commercially viable.Thanks to their energy efficiency, and assuming that electricity generation will be even greener in the future, electric vehicles could contribute to a considerable reduction in greenhouse gases. Given the ongoing debate on climate change, this could prove to be an important factor. Indeed, transport is responsible for more than a fifth of the EU’s greenhouse gas emissions and it is the only sector with growing emissions. While the improvement of internal combustion engines still offers considerable potential for reducing emissions per kilometer driven, reductions in greenhouse gas emissions over and above 50 % will require new technological solutions, such as the electric vehicle.Compared to conventional vehicles, and based on the current average European electricity supply, electric vehicles have 50 % less emissions. Further benefits can be achieved if the carbon intensity of power generation continues to decrease with further greener and renewable energy sources.The electric car finally seems to be on the verge of breaking through, offering significant environmental benefits, especially in urban areas. There are, however, still some obstacles related to green electricity supply, the as yet expensive battery technology, the limited driving range and the need for a dense network of electric chargingfacilities. To overcome these obstacles, innovative business models are being developed to help transform automotive transport.电动车:正在进行的绿色交通革命?随着世界上持续的能源危机,战争和石油消费以及汽车数量的增加,能源日益减少,有一天它会消失得无影无踪。

电动汽车车英语作文

电动汽车车英语作文

电动汽车车英语作文Title: The Rise of Electric Vehicles: A Sustainable Future。

In recent years, the automotive industry has witnessed a significant shift towards electric vehicles (EVs), marking a pivotal moment in the quest for sustainable transportation solutions. This essay explores the key factors driving the adoption of electric cars and their implications for the future.Firstly, environmental concerns have played a central role in the growing popularity of electric vehicles. Traditional internal combustion engine vehicles contribute to air pollution and greenhouse gas emissions, exacerbating climate change and posing health risks to populations worldwide. Electric vehicles, on the other hand, produce zero tailpipe emissions, making them a cleaner alternative for urban mobility. By reducing reliance on fossil fuels, EVs offer a promising pathway towards mitigatingenvironmental degradation and combating climate change.Secondly, advancements in technology have significantly improved the performance and affordability of electric vehicles. Innovations in battery technology have extended the driving range of EVs while reducing charging times, addressing one of the major barriers to widespread adoption. Moreover, the declining cost of batteries has made electric vehicles more economically viable, narrowing the price gap with conventional vehicles. As a result, consumers are increasingly drawn to the prospect of owning an electriccar that offers both environmental benefits and long-term cost savings.Furthermore, government policies and incentives have played a crucial role in promoting the adoption of electric vehicles. Many countries have implemented subsidies, tax credits, and other incentives to encourage consumers to purchase EVs and support the development of charging infrastructure. These measures not only make electric vehicles more accessible to consumers but also stimulate investment and innovation in the electric vehicle industry.Additionally, regulatory initiatives aimed at phasing out internal combustion engine vehicles further drive the transition towards electric mobility, signaling a fundamental shift in the automotive landscape.Moreover, the automotive industry itself is undergoinga transformation as automakers invest heavily in electric vehicle development. Established manufacturers are rolling out electric models across their product lines, while new players emerge to capitalize on the growing demand for EVs. This influx of competition is driving innovation andpushing the boundaries of electric vehicle technology, leading to more diverse options for consumers. Additionally, collaborations between automakers and technology companies are paving the way for innovations such as autonomousdriving and vehicle-to-grid integration, further enhancing the appeal of electric vehicles.Despite the progress made, challenges remain on thepath to widespread adoption of electric vehicles. Range anxiety, limited charging infrastructure, and upfront costs continue to deter some consumers from making the switch toelectric mobility. Addressing these challenges will require continued investment in charging infrastructure, technological innovation, and consumer education. Additionally, collaborative efforts between governments, industry stakeholders, and the public are essential to overcoming barriers and accelerating the transition to electric transportation.In conclusion, electric vehicles represent a paradigm shift in the automotive industry towards sustainable and environmentally friendly mobility solutions. With advancements in technology, supportive policies, andgrowing consumer demand, electric vehicles are poised to play a pivotal role in shaping the future of transportation. By embracing electric mobility, we can pave the way for a cleaner, healthier, and more sustainable world for future generations.。

新能源汽车 英语作文

新能源汽车 英语作文

New Energy Vehicles NEVs have been a hot topic in recent years,as the world is increasingly concerned about environmental protection and sustainable development.The development of NEVs is seen as a key step towards reducing greenhouse gas emissions and decreasing dependence on fossil fuels.The Rise of New Energy VehiclesThe concept of NEVs is not new,but the technology has advanced significantly in the past decade.Early models were limited by range and performance,but todays NEVs are competitive in terms of both.They come in various forms,including electric vehicles EVs,plugin hybrid electric vehicles PHEVs,and fuel cell vehicles FCVs,each with its own advantages and challenges.Advantages of New Energy Vehicles1.Environmental Impact:The most significant advantage of NEVs is their reduced environmental impact.By using electricity or hydrogen as a power source,they emit fewer pollutants and contribute less to global warming.2.Energy Efficiency:NEVs are generally more energyefficient than traditional internal combustion engine vehicles.They convert a higher percentage of the energy from the fuel source into motion,leading to lower operating costs for consumers.3.Technological Innovation:The development of NEVs has spurred innovation in related technologies,such as battery storage,charging infrastructure,and vehicletogrid V2G systems,which have applications beyond just transportation.Challenges Faced by New Energy VehiclesDespite their benefits,NEVs face several challenges:1.Infrastructure:The lack of widespread charging infrastructure is a barrier to the adoption of EVs.While this is improving,it remains a concern for potential buyers who worry about the availability of charging stations during long trips.2.Cost:Although the cost of NEVs is decreasing,they are still often more expensive than their conventional counterparts.This is partly due to the high cost of batteries,which are a significant component of the vehicles price.3.Range Anxiety:Many consumers are hesitant to purchase NEVs due to concerns aboutthe limited range compared to gasolinepowered vehicles.This is particularly true for longdistance travel.Government Policies and IncentivesGovernments around the world are recognizing the importance of NEVs and are implementing policies to encourage their adoption.These include tax incentives, subsidies for manufacturers,and requirements for a certain percentage of new vehicles sold to be zeroemission.The Future of New Energy VehiclesThe future of NEVs looks promising.As technology continues to advance,we can expect to see improvements in battery life,charging speed,and overall vehicle performance. Additionally,as the demand for sustainable transportation grows,it is likely that the infrastructure needed to support NEVs will continue to expand.In conclusion,New Energy Vehicles represent a significant shift in the automotive industry.They offer a cleaner,more efficient mode of transportation that aligns with global efforts to combat climate change.As the technology matures and becomes more accessible,NEVs are poised to play an increasingly important role in our societys transition to a more sustainable future.。

电动汽车英语作文

电动汽车英语作文

电动汽车英语作文Title: The Future of Electric Vehicles。

Electric vehicles (EVs) have emerged as a promising solution to mitigate environmental issues and reduce dependence on fossil fuels. In recent years, the automotive industry has witnessed a significant shift towards electrification, with EVs becoming increasingly popular among consumers worldwide. This essay explores the various aspects of electric vehicles and their implications for the future.Firstly, one of the primary advantages of electric vehicles is their environmental friendliness. Unlike traditional internal combustion engine vehicles, EVs produce zero tailpipe emissions, thus helping to combat air pollution and reduce greenhouse gas emissions. This is particularly crucial in the face of climate change concerns and the need to transition towards cleaner transportation alternatives.Furthermore, the advancement of battery technology has significantly enhanced the performance and range ofelectric vehicles. Modern EVs can now travel hundreds of miles on a single charge, making them practical for everyday use and long-distance travel. Moreover, ongoing research and development efforts continue to improve battery efficiency, charging speed, and overall lifespan, addressing some of the key concerns associated withelectric vehicle adoption.Another compelling aspect of electric vehicles is their potential to revolutionize the energy sector. With the widespread adoption of EVs, there is a growing emphasis on renewable energy sources such as solar and wind to power these vehicles. This integration of clean energy sources with electric transportation offers a more sustainable and resilient energy ecosystem, reducing reliance on finite fossil fuels and minimizing environmental impact.Additionally, electric vehicles present economic opportunities for various stakeholders, includingautomakers, technology firms, and governments. The growing demand for EVs has spurred innovation and investment in electric vehicle manufacturing, infrastructure development, and related industries. Governments around the world are also incentivizing electric vehicle adoption through subsidies, tax credits, and infrastructure investments, aiming to accelerate the transition towards a greener transportation system.However, despite the numerous benefits of electric vehicles, several challenges remain to be addressed. One major concern is the availability and accessibility of charging infrastructure. While significant progress has been made in expanding charging networks, especially in urban areas, more investment is needed to ensure widespread coverage and convenience for EV owners. Additionally, the high initial cost of electric vehicles remains a barrierfor many consumers, although declining battery prices and government incentives are helping to alleviate this issue.Moreover, the environmental impact of battery production and disposal is a topic of debate. Whileelectric vehicles produce fewer emissions during operation, the manufacturing process of lithium-ion batteries involves resource extraction and energy-intensive production methods. Additionally, the recycling and disposal of used batteries raise concerns about potential environmental contaminationif not managed properly. Addressing these challengesrequires collaboration between industry stakeholders, policymakers, and environmental advocates to develop sustainable practices and technologies throughout theelectric vehicle lifecycle.In conclusion, electric vehicles represent a transformative solution towards a cleaner, more sustainable future for transportation. With ongoing advancements in technology, supportive policies, and increased consumer acceptance, electric vehicles are poised to play asignificant role in reducing emissions, enhancing energy security, and driving economic growth. However, addressing the remaining challenges associated with electric vehicle adoption will require concerted efforts and innovation from all stakeholders involved. By working together, we can accelerate the transition towards a greener and moreresilient transportation system powered by electric vehicles.。

电动车的发展英文文献

电动车的发展英文文献

英文原文:The History of the Electric CarIntroduced more than 100 years ago, electric cars are seeing a rise in popularity today for many of the same reasons they were first popular.Whether it’s a hybrid, plug-in hybrid or all-electric, the demand for electric drive vehicles will continue to climb as prices drop and consumers look for ways to save money at the pump. Currently more than 3 percent of new vehicle sales, electric vehicles sales could to grow to nearly 7 percent -- or 6.6 million per year -- worldwide by 2020, according to a report by Navigant Research.With this growing interest in electric vehicles, we are taking a look at where this technology has been and where it’s going. Travel back in time with us as we explore the history of the electric car.THE BIRTH OF THE ELECTRIC VEHICLEIt’s hard to pinpoint the invention of the electric car to one inventor or country. Instead it was a series of breakthroughs -- from the battery to the electric motor -- in the 1800s that led to the first electric vehicle on the road.In the early part of the century, innovators in Hungary, the Netherlands and the United States -- including a blacksmith from Vermont -- began toying with the concept of a battery-powered vehicle and created some of the first small-scale electric cars. And while Robert Anderson, a British inventor, developed the first crude electric carriage around this same time, it wasn’t until the second half of the 19th century that French and English inventors built some of the first practical electric cars.Here in the U.S., the first successful electric car made its debut around 1890 thanks to William Morrison, a chemist who lived in Des Moines, Iowa. His six-passenger vehicle capable of a top speed of 14 miles per hour was little more than an electrified wagon, but it helped spark interest in electric vehicles.Over the next few years, electric vehicles from different automakers began popping up across the U.S. New York City even had a fleet of more than 60 electric taxis. By 1900, electric cars were at their heyday, accounting for around a third of all vehicles on the road. During the next 10 years, they continued to show strong sales.THE EARLY RISE AND FALL OF THE ELECTRIC CARTo understand the popularity of electric vehicles circa 1900, it is also important to understand the development of the personal vehicle and the other options available. At the turn of the 20th century, the horse was still the primary mode of transportation. But as Americans became more prosperous, they turned to the newly invented motor vehicle -- available in steam, gasoline or electric versions -- to get around.Steam was a tried and true energy source, having proved reliable for powering factories and trains. Some of the first self-propelled vehicles in the late 1700s relied on steam; yet it took until the 1870s for the technology to take hold in cars. Part of this is because steam wasn’t very practical for personal vehicles. Steam vehicles required long startup times -- sometimes up to 45 minutes in the cold -- and would need to be refilled with water, limiting their range.As electric vehicles came onto the market, so did a new type of vehicle -- the gasoline-powered car -- thanks to improvements to the internal combustion engine in th e 1800s. While gasoline cars had promise, they weren’t without their faults. They required a lot of manual effort to drive -- changing gears was no easy task and they needed to be started with a hand crank, making them difficult for some to operate. They were also noisy, and their exhaust was unpleasant.Electric cars didn’t have any of the issues associated with steam or gasoline. They were quiet, easy to drive and didn’t emit a smelly pollutant like the other cars of the time. Electric cars quickly became popular with urban residents -- especially women. They were perfect for short trips around the city, and poor road conditions outside cities meant few cars of any type could venture farther. As more people gained access toelectricity in the 1910s, it became easier to charge electric cars, adding to their popularity with all walks of life (including some of the “best known and prominent makers of gasoline cars” as a 1911 New York Times article pointed out).Many innovators at the time took note o f the electric vehicle’s high demand, exploring ways to improve the technology. For example, Ferdinand Porsche, founder of the sports car company by the same name, developed an electric car called the P1 in 1898. Around the same time, he created the world’s first hybrid electric car -- a vehicle that is powered by electricity and a gas engine. Thomas Edison, one of the world’s most prolific inventors, thought electric vehicles were the superior technology and worked to build a better electric vehicle battery. Even Henry Ford, who was friends with Edison, partnered with Edison to explore options for a low-cost electric car in 1914, according to Wired.Yet, it was Henry Ford’s mass-produced Model T that dealt a blow to the electric car. Introduced in 1908, the Model T made gasoline-powered cars widely available and affordable. By 1912, the gasoline car cost only $650, while an electric roadster sold for $1,750. That same year, Charles Kettering introduced the electric starter, eliminating the need for the hand crank and giving rise to more gasoline-powered vehicle sales.Other developments also contributed to the decline of the electric vehicle. By the 1920s, the U.S. had a better system of roads connecting cities, and Americans wanted to get out and explore. With the discovery of Texas crude oil, gas became cheap and readily available for rural Americans, and filling stations began popping up across the country. In comparison, very few Americans outside of cities had electricity at that time. In the end, electric vehicles all but disappeared by 1935.GAS SHORTAGES SPARK INTEREST IN ELECTRIC VEHICLES Over the next 30 years or so, electric vehicles entered a sort of dark ages with little advancement in the technology. Cheap, abundant gasoline and continued improvement in the internal combustion engine hampered demand for alternative fuel vehicles.Fast forward to the late 1960s and early 1970s. Soaring oil prices and gasoline shortages -- peaking with the 1973 Arab Oil Embargo -- created a growing interest in lowering the U.S.’s dependence on foreign oil and finding homegrown sources of fuel. Congress took note and passed the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976, authorizing the Energy Department to support research and development in electric and hybrid vehicles.Around this same time, many big and small automakers began exploring options for alternative fuel vehicles, including electric cars. For example, General Motors developed a prototype for an urban electric car that it displayed at the Environmental Protection Agency’s First Symposium on Low Pollution Power Systems Development in 1973, and the American Motor Company produced electric delivery jeeps that the United States Postal Service used in a 1975 test program. Even NASA helped raise the profile of the electric vehicle when its electric Lunar rover became the first manned vehicle to drive on the moon in 1971.Yet, the vehicles developed and produced in the 1970s still suffered from drawbacks compared to gasoline-powered cars. Electric vehicles during this time had limited performance -- usually topping at speeds of 45 miles per hour -- and their typical range was limited to 40 miles before needing to be recharged.ENVIRONMENTAL CONCERN DRIVES ELECTRIC VEHICLES FORWARD Fast forward again -- this time to the 1990s. In the 20 years since the long gas lines of the 1970s, interest in electric vehicles had mostly died down. But new federal and state regulations begin to change things. The passage of the 1990 Clean Air Act Amendment and the 1992 Energy Policy Act -- plus new transportation emissions regulations issued by the California Air Resources Board -- helped create a renewed interest in electric vehicles in the U.S.During this time, automakers began modifying some of their popular vehicle modelsinto electric vehicles. This meant that electric vehicles now achieved speeds and performance much closer to gasoline-powered vehicles, and many of them had a range of 60 miles.One of the most well-known electric cars during this time was GM’s EV1, a car that was heavily featured in the 2006 documentary Who Killed the Electric Car? Instead of modifying an existing vehicle, GM designed and developed the EV1 from the ground up. With a range of 80 miles and the ability to accelerate from 0 to 50 miles per hour in just seven seconds, the EV1 quickly gained a cult following. But because of high production costs, the EV1 was never commercially viable, and GM discontinued it in 2001.With a booming economy, a growing middle class and low gas prices in the late 1990s, many consumers didn’t worry about fuel-efficient vehicles. Even though there wasn’t much public attention to electric vehicles at this time, behind the scenes, scientists and engineers -- supported by the Energy Department -- were working to improve electric vehicle technology, including batteries.A NEW BEGINNING FOR ELECTRIC CARSWhile all the starts and stops of the electric vehicle industry in the second half of the 20th century helped show the world the promise of the technology, the true revival of the electric vehicle didn’t happen until around the start of the 21st century. Depending on whom you ask, it was one of two events that sparked the interest we see today in electric vehicles.The first turning point many have suggested was the introduction of the Toyota Prius. Released in Japan in 1997, the Prius became the world’s first mass-produced hybrid electric vehicle. In 2000, the Prius was released worldwide, and it became an instant success with celebrities, helping to raise the profile of the car. To make the Prius a reality, Toyota used a nickel metal hydride battery -- a technology that was supported by the Energy Department’s research. Since then, rising gasoline p rices and growingconcern about carbon pollution have helped make the Prius the best-selling hybrid worldwide during the past decade.(Historical footnote: Before the Prius could be introduced in the U.S., Honda released the Insight hybrid in 1999, making it the first hybrid sold in the U.S. since the early 1900s.)The other event that helped reshape electric vehicles was the announcement in 2006 that a small Silicon Valley startup, Tesla Motors, would start producing a luxury electric sports car that could go more than 200 miles on a single charge. In 2010, Tesla received at $465 million loan from the Department of Energy’s Loan Programs Office -- a loan that Tesla repaid a full nine years early -- to establish a manufacturing facility in California. In the short time since then, Tesla has won wide acclaim for its cars and has become the largest auto industry employer in California.Tesla’s announcement and subsequent success spurred many big automakers to accelerate work on their own electric vehicles. In late 2010, the Chevy V olt and the Nissan LEAF were released in the U.S. market. The first commercially available plug-in hybrid, the V olt has a gasoline engine that supplements its electric drive once the battery is depleted, allowing consumers to drive on electric for most trips and gasoline to extend the vehicle’s range. In comparison, the LEAF is an all-electric vehicle (often called a battery-electric vehicle, an electric vehicle or just an EV for short), meaning it is only powered by an electric motor.Over the next few years, other automakers began rolling out electric vehicles in the U.S.; yet, consumers were still faced with one of the early problems of the electric vehicle -- where to charge their vehicles on the go. Through the Recovery Act, the Energy Department invested more than $115 million to help build a nation-wide charging infrastructure, installing more than 18,000 residential, commercial and public chargers across the country. Automakers and other private businesses also installed their own chargers at key locations in the U.S., bringing today’s total of public electricvehicle chargers to more than 8,000 different locations with more than 20,000 charging outlets.At the same time, new battery technology -- supported by the Energy Department’s Vehicle Technologies Office -- began hitting the market, helping to improve a plug-in electric vehicle’s range. In addition to the battery technology in nearly all of the first generation hybrids, the Department’s research also helpe d develop the lithium-ion battery technology used in the V olt. More recently, the Department’s investment in battery research and development has helped cut electric vehicle battery costs by 50 percent in the last four years, while simultaneously improving the vehicle batteries' performance (meaning their power, energy and durability). This in turn has helped lower the costs of electric vehicles, making them more affordable for consumers.Consumers now have more choices than ever when it comes to buying an electric vehicle. Today, there are 23 plug-in electric and 36 hybrid models available in a variety of sizes -- from the two-passenger Smart ED to the midsized Ford C-Max Energi to the BMW i3 luxury SUV. As gasoline prices continue to rise and the prices on electric vehicles continue to drop, electric vehicles are gaining in popularity -- with more than 234,000 plug-in electric vehicles and 3.3 million hybrids on the road in the U.S. today.THE FUTURE OF ELECTRIC CARSIt’s hard to tell where the future will take electric vehicles, but it’s clear they hold a lot of potential for creating a more sustainable future. If we transitioned all the light-duty vehicles in the U.S. to hybrids or plug-in electric vehicles using our current technology mix, we could reduce our dependence on foreign oil by 30-60 percent, while lowering the carbon pollution from the transportation sector by as much as 20 percent.To help reach these emissions savings, in 2012 President Obama launched the EV Everywhere Grand Challenge -- an Energy Department initiative that brings together America’s best and brightest scientists, engineers and businesses to make plug-in electric vehicles more as affordable as today’s gasoline-powered vehicles by 2022. Onthe battery front, the Depar tment’s Joint Center for Energy Storage Research at Argonne National Laboratory is working to overcome the biggest scientific and technical barriers that prevent large-scale improvements of batteries.And the Department’s Advanced Research Projects Age ncy-Energy (ARPA-E) is advancing game-changing technologies that could alter how we think of electric vehicles. From investing in new types of batteries that could go further on a single charge to cost-effective alternatives to materials critical to electric motors, ARPA-E’s projects could transform electric vehicles.In the end, only time will tell what road electric vehicles will take in the future.中文译文:电动车的历史介绍了100多年前,电动汽车的第一次流行在今天看来有越来越多的相同的原因。

电动汽车英文文献

电动汽车英文文献

Electric patrol carElectric patrol car is a kind of for security, peacekeepers special design and development of car. The car is especially suitable for the public security patrol, pedestrian street, golf courses, tourist attractions, real estate (garden district), the large enterprises, departments and units, park, places of entertainment, sports venues, colleges and universities, hospitals, nursing homes, railway stations, airports, docks and other areas of traffic tools. Electric patrol car general can take two to eight, for four-wheel direction disc electric car, install a caution light, horn and propaganda device.This kind of car can be roughly divided into open door car, patrol cars, minibuses and other patrol.An electric patrol car is a car powered by an electric motor rather than a gasoline engine.From the outside,you would probably have no idea that a car is electric.In most cases,converting a gasoline-powered car creates electrics cars,and in that case it is impossible to tell.When you drive an electric car,often the only thing that clues you in toits true nature is the fact it is nearly silent.Under the hood,there are a lot of differences between gasoline and electric cars:The gasoline engine is replaced by an electric motor.The electric motor gets its power from a controller. The controller gets its power from an arry of echargeable batteries.The electric car battery drive, not only is the first choice of police patrol motor vehicle, and at the same time, urban management and law enforcement good helper. May many consumers hope electric car's endurance mileage as long as possible, so can more convenient, can and car comparable, if that's the case but to follow the endurance mileage long electric car "value" is also very high, and the high price is also not necessarily can buy endurance mileage longer electric car, electric endurance mileage is China the whole new energy electric car facing technical problem, so I want to have a long endurance mileage need new energy technology development.。

新能源汽车中英文对照外文翻译文献

新能源汽车中英文对照外文翻译文献

中英文对照外文翻译The Investigation Of Car new energy'S PresentCondition And DevelopmentAs the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society, people invented the electric car. Electric cars will become the most ideal of transportation.In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generallyused in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system, electronic control suspension system, electronic control power steering system, vehicle dynamic control system, the airbag systems, active belt system, electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response, the use function of quick car, high reliability, guarantees of engine power and reduce fuel consumption and emission regulations meet standards.The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example, automatic transmission in road, can not on the clutch, can achieve automatic shift and engine flameout, not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter, gear transmission, pump, hydraulic control system, electronic control system and oil cooling system, etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going andstability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height, low set to gas or oil cylinder filling or oil. If is opposite, gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state, so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car,car motions of state and optimum control performance, and increased automobile adhesion, controlling and stability. Besides these, appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passenger's safety, and greatly reduce automobile in collision of drivers and passengers in the buffer, to protect the safety of life.Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emission in the aspects of superior internal-combustion vehicles.Along with the computer and electronic product constantly upgrading electric car, open class in mature technology and perfected, that drive more safe, convenientand flexible, comfortable. Now, the electric car from ordinary consumers distance is still very far away, only a few people in bandwagon. Electric cars with traditional to compete in the market, the carwill was electric cars and intelligent car replaced. This is the question that day after timing will come. ABS, GPS, and various new 4WD 4WS, electronic products and the modern era, excellent performance auto tacit understanding is tie-in, bring us unparalleled precision driving comfort and safety of driving.First, the development of natural gas vehicleReduce pollution to protect the environment, many countries have issued a series of government regulations and the introduction of a number of incentive policies to promote the development of gas vehicle, such as the development of more stringent vehicle emission standards, in the natural gas supply, car purchase taxes and fees, equipment supply, gas station construction grant funds, tax incentives. or the purchase of alternative fuel vehicles and the construction of stations in detail the provisions of the tax relief, but also enacted a tax cut that the use of natural gas and natural gas companies exempt from motor vehicle fuel sales tax. There are more than 40 states in accordance with the policy of the federal government, law, drawn up on the mandatory state and encourage the use of clean fuel CNG vehicles, such as policies and measures to promote the CNG filling station development and construction of motor vehicles. At present, more than 40 countries around the world have a gas car, mainly in the rich natural gas resources in Italy, New Zealand, Argentina, Brazil and other countries and stricter environmental regulations the United States, Japan and other countries.Second, natural gas vehicle (CNG) fuel and other environmental and economic benefits comparedCompressed natural gas vehicles:20MPa compressed natural gas in the car to compressed natural gas cylinders in use by the supply of internal combustion engine after the pressure reducer.To CNG fuel for vehicles compared with gasoline has the following advantages: l, reduce pollution and improve the atmospheric environment: natural gas is a clean energy, with a high calorific value, high efficiency, pollution, etc., the comparison is totally burned, not carbon deposition, CO, NOx and particulate emissions than gasoline, significantly reduced exhaust pollution. Motor vehicle exhaust is the major source of urban air pollution, one of which is carbon monoxide harmful ingredients (C0), hydrocarbons (HC), nitric oxide (N0) and nitrogen dioxide (NO2) and so on. According to the data, the use of gas as a motor fuel and gasoline as fuel can reduce emissions compared to 90% CO, 90% S02, 72% HC, 39% NOx, 24% CO2, non-dust emissions, to improve the urban environment has a significant role in .A typical diesel engine and gasoline engine emissions and gas machine is shown in table l.2, CNG vehicle for a higher securityCompared with gasoline, compressed natural gas is a relatively safe fuel. (1) natural gas explosion limit is 5% higher than gasoline (lower explosion limit for the l%) high, methane ignition for 645 ℃, ignition than gasoline high 218 ℃, compared to not ignite. Low density of methane, the relative density of about 0.55, resulting in leakage of gas will soon be distributed in the air, in the case of the natural environment it is difficult to form a hot combustion conditions, once the compressed natural gas from the tank or pipe leaks, leak immediately surrounding the formation of low-temperature zone, so that the difficulties of natural gas combustion. Therefore is a fairly safe CNG motor fuel. Natural gas and fuel properties of gasoline is shown in table 2(2) Department of natural gas vehicle cylinder pressure vessel(20MPa), its materials and manufacture and testing in order that all States have strict control, in China there are "compressed natural gas cylinder vehicle standards)) (GBl7258-1998).Cylinders fitted with explosion-proof facilities, pressure reducer, valves and other equipment, strict standards high, and gas supply system is safe and reliable and will not tip over due to vehicle collision or cause fire or explosion, and the petrol tank of motor vehicles department of non-pressure vessels, fire easily after the explosion.3, will help ease the contradiction between energy supply and demand tension. China's economy is in a stage of rapid development, the number of vehicles to 1 million / year above the rate of increase of a substantial increase in gasoline demand of resources, our need to import large quantities of crude oil per year, refined oil and LPG. Optimize the use of gas carsMotor fuel supply structure has changed only motor fuel gasoline, diesel patterns, not only eased the problem of shortage of petrol and transport services to meet the needs of the development.4, extend engine life. The spread of natural gas to the gas entering the engine, the engine easily and uniformly mixed air, burning the comparison is totally clean; can improve the thermal cycle efficiency, speed up the burning speed, full use of combustion heat; CNG octane number at the same time high performance uprising, when agents do not need to add the uprising will not dilute the lubricating oil, making the parts inside the engine cylinder greatly reduce wear and tear, so that the engine oil life and increase the use of the period. All of these vehicles will reduce maintenance and operating costs, thereby enhancing the economy of the use of vehicles. 5, have a higher economic efficiency. At present, domestic gasolineprices continued to rise, the price system and the world has been the use of CNG vehicle will be able to save nearly 40% of fuel costs, as shown in table 3. Third, CNG cars and filling stations to explore the development of countermeasures In order to speed up the use of natural gas as a clean fuel vehicle development, makes the following recommendations:1, the Government has introduced policies to encourage and support: the development of all countries in the world experience shows that government support is a necessary condition for accelerated development, the impact of its economic policy is an important factor in their development should be guaranteed in law, in the gas automobile production, modification, parts and components production, station construction, vehicle purchase and use of gas, maintenance and other aspects of pricing, taxation, investment, subsidies and other aspects of the preferential policies supporting. Gas prices affect gas vehicle development is an important factor, only the gas prices and gasoline prices when the difference is large enough to form, gas car before the development of an economic foundation and driving force. 2, strengthen leadership, the implementation of unified management.The development of CNG vehicles to the construction of high-quality, convenient filling stations, the need for planning, public security, fire safety, labor, technical support supervisor and other departments.3, in the municipal plan, filling stations and gas stations should be considered co-ordination, rational distribution and coordinated development. To make full use of existing land resources and in ensuring the environmental safety of oil and gas under the premise of building one station.4, followed by motor cars and CNG filling stations in the simultaneous development of the principles, only in the stations into a network under the conditions, CNGvehicle can really develop. At the same time scale of only CNG car to a certain number, the normal operation of filling stations in order to achieve profitability. 5, the strict legal system: the development of stringent vehicle emissions regulations, and make sure that standards are not road vehicles are determined not to be on the qualifications of CNG vehicle Modify-Factroy critical examination, certification. First of all, the city should the city bus, taxi, as the focus of the development of CNG vehicle, bus stop some of the phenomenon of black smoke pollution of the environment.6, step up publicity. At present, natural gas car is still at the initial stage, the public nature of its environmental protection, safety, economy, reliability, do not fully understand, so, it is necessary to carry out a wide range of social advocacy, efforts to increase awareness of the dangers of automobile exhaust, to make people aware of CNG is a clean, safe and economical fuel, so that the development of natural gas vehicles have been recognized by all sectors of society and support.Compressed natural gas vehicles because of its remarkable economic and social benefits the development of the natural gas market will become a new field of applications. More and more importance in the environmental protection situation, along with natural gas resources in the area of the development and application of the widening, which will reduce the environmental pressure is to ease the oil shortage and achieve sustainable development of a reliable guarantee.汽车新能源现状与发展的探究随着世界能源危机的持续,以及战争和能源-----石油的消耗及汽车饱有量的增加,能源在一天一天下降,终有一天它会消失的无影无踪。

电动汽车英语作文150

电动汽车英语作文150

电动汽车英语作文150Title: The Future of Electric Vehicles。

Electric vehicles (EVs) have emerged as a promising solution to combat environmental degradation and reduce our dependency on fossil fuels. In recent years, the automotive industry has witnessed a significant shift towards electric propulsion systems. This trend is not merely a fleeting fad but rather a pivotal transformation shaping the future of transportation. Let's delve into the multifaceted aspectsof electric vehicles and explore their impact on society.Firstly, the environmental benefits of electricvehicles cannot be overstated. Unlike conventional internal combustion engine vehicles, EVs produce zero tailpipe emissions, thereby mitigating air pollution and greenhouse gas emissions. By transitioning to electric mobility, wecan alleviate the detrimental effects of climate change and safeguard the health of both present and future generations.Moreover, electric vehicles contribute to energy efficiency and resource conservation. The utilization of renewable energy sources such as solar and wind power for charging EV batteries further enhances their eco-friendliness. Additionally, advancements in battery technology have led to increased energy storage capacity and improved longevity, making EVs a viable long-term solution for sustainable transportation.From a socio-economic perspective, the widespread adoption of electric vehicles presents numerous opportunities and challenges. On one hand, the growing EV market fosters innovation and job creation in sectors such as renewable energy, battery manufacturing, and automotive engineering. Governments and industries worldwide are investing heavily in research and development to accelerate the transition towards electric mobility.On the other hand, the transition to electric vehicles poses challenges such as the establishment of adequate charging infrastructure, battery recycling, andaffordability concerns. Addressing these challengesrequires collaborative efforts from policymakers, industry stakeholders, and the general public to ensure a smooth and equitable transition to electric transportation.Furthermore, electric vehicles offer a paradigm shiftin terms of driving experience and vehicle design. With instant torque delivery and smooth acceleration, EVs provide a silent and exhilarating driving experience unparalleled by conventional vehicles. The integration of smart technologies and autonomous driving features further enhances the safety and convenience of electric vehicles.In addition to personal transportation, electric vehicles hold immense potential for revolutionizing public transit systems and commercial fleets. Electric buses, trucks, and delivery vehicles not only reduce emissions but also lower operating costs and enhance urban air quality. By electrifying various modes of transportation, we can create more sustainable and resilient cities for future generations.In conclusion, electric vehicles represent atransformative force that is reshaping the automotive industry and the way we perceive transportation. With their environmental, economic, and societal benefits, EVs are poised to play a pivotal role in building a greener and more sustainable future. As we continue to embrace electric mobility, let us strive towards creating a world where clean, efficient, and accessible transportation is the norm rather than the exception.。

新能源汽车外文参考文献

新能源汽车外文参考文献

新能源汽车外文参考文献随着全球对环境污染和气候变化的日益关注,新能源汽车已经逐渐成为了生活中不可或缺的一部分。

新能源汽车主要指以电池、燃料电池或太阳能等为能源的电动或混合动力汽车。

本文将通过以下步骤阐述新能源汽车的外文参考文献。

第一步:新能源汽车的发展历程Cao, Y et al. (2018) 在论文《New energy vehicle industry development in China: A review》中详细介绍了新能源汽车在中国的发展历程。

文章指出,新能源汽车的发展受到政策的直接影响,中国政府从2009年开始提出了新能源汽车产业的发展计划,通过资金补贴、减少税收等一系列措施来推动新能源汽车的快速发展。

第二步:新能源汽车的技术特点Xu, J et al. (2019) 在论文《Power management strategy of parallel-connected hybrid electric vehicles based on torque driver》中介绍了混合动力汽车的技术特点。

文章指出,混合动力汽车由燃油发动机和电动机组成,通过动力管理系统将两种能源进行协同控制,达到节能减排的效果,同时提高了动力输出和驾驶体验。

第三步:新能源汽车的市场现状Li, X et al. (2020) 在论文《Quantitative analysis of the development of the new energy vehicle industry in China through text mining》中分析了新能源汽车的市场现状。

文章指出,中国新能源汽车市场规模已经逐年扩大,同时新能源汽车的销售量也在逐年增加。

当前,中国已经成为全球最大的新能源汽车市场。

第四步:新能源汽车的未来发展Kou, X et al. (2018) 在论文《Future prospects for electric vehicles in China based on a lifecycle assessment analysis》中探讨了新能源汽车的未来发展。

电动汽车中英文文献

电动汽车中英文文献

China Hybrid Electric Vehicle Development With the depletion of oil resources, increase awareness of environmental protection, hybrid vehicles and electric vehicles will become the first decades of the new century, the development of mainstream cars and automobile industry become the consensus of all of the industry. The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical " To vehicle control systems, motor drive systems, power battery / fuel cell for the "three horizontal" distribution of R & D, through close links between production cooperation, China's independent innovation of hybrid cars has made significant progress. With completely independent intellectual property rights form the power system technology platform, established a hybrid electric vehicle technology development. Is the core of hybrid vehicles batteries (including battery management system) technology. In addition, also include engine technology, motor control, vehicle control technology, engine and electrical interface between the power conversion and is also the key. From the current situation, Chinahas established a hybrid electric vehicle power system through Cooperative R & D technology platforms and systems, made a series of breakthroughs for vehicle development has laid a solid foundation. As of January 31, 2009, Technology in hybrid vehicles, China Intellectual Property Office to receive and open for the 1116 patent applications in China. In 1116 patent applications, invention 782 (authority for the 107), utility model for the 334. Mastered the entire vehicle key development, the formation of a capability to develop various types of electric vehicles. Hybrid cars in China in systems integration, reliability, fuel economy and other aspects of the marked progress in achieving fuel economy of different technical solutions can be 10% -40%. Meanwhile, the hybrid vehicle automotive enterprises and industrial R & D investment significantly enhanced, accelerating the pace of industrialization. Currently, domestic automakers have hybrid vehicles as the next major competitive products in the strategic high priority, FAW, Dongfeng, SAIC Motor, Changan, Chery, BYD, etc. have put a lot of manpower, material resources, Hybrid prototyping has been completed, and some models have achieved low-volume market. FAW Group Development Goal: By 2012, the Group plans to build an annual capacity of 11,000 hybrid cars, hybrid bus production base of 1000. FAW Group since 1999 and a new energy vehicles for theoretical research and development work, and the development of a red car performance hybrid sample. "15" period, the FAW Group is committed to the national "863" major project in the "red card in series hybrid electric vehicle research and development" mission, officially began the research and development of new energy vehicles. Beginning in 2006, FAW B70 in the Besturn, based on the technology for hybrid-based research, the original longitudinal into transverse engine assembly engine assembly, using a transverse engine and dual-motor hybrid technology. At the same time, FAW also pay close attention to the engine, mechanicaland electrical integration, transmission, vehicle control networks, vehicle control systems development, the current FAW hybrid electric car has achieved 42% fuel saving effect, reached the international advanced level. Jiefang CA6100HEV Hybrid Electric Bus FAW "Liberation brand CA6100HEV Hybrid Electric Bus" project is a national "863" electric vehicle major projects funded project, with pure electric drive, the engine alone drives (and charge), the joint drive motor starts the engine, and sliding regenerative braking 5 kinds of basic operation. The power hybrid electric bus and economy to the leading level, 38% fuel economy than traditional buses, emissions reduced by 30%. Red Flag CA7180AE hybrid cars Red Flag hybrid cars CA7180AE according to the national "863 Plan" is the first in complete with industrial prospects of the car, it is built on the basis of red car with good performance and operational smoothness. Series which is a hybrid sedan, the luxury car ,0-100km acceleration time of 14s, fuel-effici ent than traditional cars by about 50%, Euro Ⅲ emission standard. Besturn B70 hybrid cars Besturn B70 Hybrid cars using petrol - electric hybrid approach. Dual motor power system programs, mixed degree of 40/103, is all mixed (Full-Hybrid, also known as re-mixed) configurations. Besturn B70 Hybrid cars are petrol version costs two to three times Besturn models, mass production will be gradually reduced after the costs, even if this hybrid version Besturn market, the price certainly higher than the existing Besturn models, but high the price of petrol will not exceed 30% version of Besturn models. SAIC Development Goals: 2010 launch in the mixed hybrid cars, plug-in 2012, SAIC strong mix of cars and pure electric cars will be on the market. In the R & D on new energy vehicles, SAIC made clear to focus on hybrid, fuel cell for the direction, and speed up the development of alternative products. Hybrid vehicles, fuel cell vehicles, alternative fuel vehicles as a new energy strategy SAIC three key. 2010 SAIC Roewe 750 hybrid cars in the mix will be put on the market, during the World Expo in Shanghai, SAIC will put 150 hybrid cars in the Expo Line on the River Run. 2012 Roewe 550 plug-in hybrid cars will be strong market, the current car's power system has been launched early development and progress. Apply the new hybrid bus moving on the 1st Apply the new hybrid bus moving on the 1st Academy of Engineering by the SAIC and ShanghaiJiaotongUniversity and other units jointly developed with independent intellectual property rights. Existing cities in the Sunwin Bus Power platform, "the new dynamic application No. 1" uses a parallel hybrid electric vehicle drive program, so that hybrid electric vehicle operating conditions in the electric air-conditioning, steering, braking and other accessories still able to work without additional electric system, while use of super capacitors, to improve starting power, braking energy recovery efficiency, thereby enhancing vehicle dynamic performance, reduce fuel consumption. Car length 10m, width 2.5m, high-3.2m, can accommodate 76 people. Roewe 750 hybrid cars Roewe 750 hybrid cars in the mixed system with BSG (Belt drive start generating one machine), with "smart stop zero-emission" and "environmental protection and the power of both the" two prominent features of a top speed of 205 km / h, the maximum added driving range of up to 500 km. As for the industrialization of SAIC's first own-brand hybrid car, the Roewe 750 hybrid integrated hybrid fuel-efficient cars can achieve rates of around 20%. DongfengMotor Group Development Goals: Plans move into 33 billion in 10 years to develop a range of environmentally friendly hybrid vehicles, including cars. EQ7200HEV hybrid cars EQ7200HEV hybrid cars are "863" project of major projects and major strategic projects of Dongfeng Motor Corporation. The car is EQ7200-Ⅱ model (Fengshen Bluebird cars) is based on an electronically controlled automatic transmission with innovative electromechanical coupling in parallel programs, configure DC brushless motor and nickel-hydrogen batteries, plans to "10 5 "during the industrialization. Industrialization, the vehicle cost more than EQ7200 cars increase in costs ≤ 30%. EQ61100HEV Hybrid Electric Bus EQ61100HEV electric hybrid bus by Dongfeng Vehicle Company Limited Joint Beijing Jiaotong University, Beijing, China Textile Co., Ltd. and Hunan sharp Electromechanical Technology Co., Ltd. jointly developed Shenzhou. EQ61100HEV hybrid electric bus with switched reluctance motor, Cummins ISBe1504 cylinder common rail electronic injection diesel engine, new chassis design of the system, electronically controlled automatic transmission and innovative electromechanical coupling parallel program. In the annual output reached 200, the vehicle cost more than the increase in automobile engine equipped with 6CT ≤ 30%. China Changan Development Goals: the next three years, the formation of different grades, different purposes, carry a different system of mixed platforms, weak mix of scale, strong mixed industrial R & D capabilities, covering commercial, A grade, B grade, C grade products. 2014 will achieve sales of new energy vehicles 150 000 2020 sales of new energy vehicles for more than 500,000. "Eleventh Five-Year Plan" period, Chang-an increased investment in clean energy vehicles, a diversified energy technologies to carry out exploratory research. Environmental protection through energy-saving models continues to introduce new technology to lead the industry to upgrade and fully utilize and mobilize global resources, Chang'an in the middle hybrid cars, hybrid cars and other technological strength of the field are explored. Chang's first hybrid car long Anjie Xun HEV was successfully listed in June 2009; the first batch of 20 hybrid taxis Long An Zhixiang in January of this year officially put into operation in Chongqing. Chery Development Goals: after 2010, more than half of Chery's products carry different levels of hybrid systems. From 2003 to 2008, mainly mixed with moderate Chery hybrid cars and energy saving system development, and industrialization; Chery in Wuhu, a taxi has been carried out on probation, fuel consumption will be reduced by 10% to 30% to reach Europe Ⅳ Standard. Since 2004, Chery hybrid cars mainly for the development of strong and industrialization. Chery hybrid car fuel consumption target to reach 100 km 3 liters, to reach Europe and the United States emissions regulations. Chery A5BSG Chery A5BSG is a weak parallel hybrid electric car, using fuel engines, electric engines complementary mode, the two different power sources in the car while driving to work together or separately, through this combination to achieve the least fuel consumption and exhaust emissions, in order to achieve fuel efficiency and environmental protection purposes. Compared with the conventional car, the car in urban conditions can save 10% -15% of fuel and reduce carbon dioxide emissions by about 12%, while costs increased by only about 25% -30%. Chery A5ISG Chery A5 ISG hybrid power system consists of "1.3L gasoline engine + 5-speed manual transmission+10 kW motor +144 V Ni-MH battery," the composition of the battery system used by the Johnson Controls developed "plug-in" nickel metal hydride (Ni-MH), motor with permanent magnet synchronous motor and with the motor control system, inverter and DC / DC converters. The system enables the vehicle power to 1.6L displacement level and rate of 30% fuel savings and significantly reduce the emissions of Euro V standards. Cherry A3ISG Chery A3 ISG has 1.3L473F gasoline engine and equipped with 10KW motor. By gasoline engines and electric motors with torque overlay approach to dynamic mixed to provide the best vehicle power operating efficiency and energy saving environmental protection goals. Chery A3 ISG also has Stop_Restart the idling stop function such as flame start to start (BSG function), to reduce red light in the vehicle stopped or suspended when the fuel consumption and emissions expenses. FY 2BSG FY 2 BSG carry 1.5LSQR477F inline four-cylinder engine configuration BSG start / stop and so one electric motor, red light in the vehicle stopped the driver into the gap, it will automatically enter standby mode to turn off the engine, starting moments after the entry block automatically start the engine. FY 2 BSG vehicle average fuel consumption than the 1.5L petrol cars reduce about 5-10%, average fuel consumption can be reduced up to 15%. BYD Auto Development Goal: to electric cars as a transitional mode, the electric car as the ultimate goal, the development of new energy cars BYD. BYD follow the "independent research and development, independent production, independent brand" development path, and the "core technology, vertical integration" development strategy, as the transition to dual-mode electric vehicles, electric vehicles as the ultimate goal, the development of BYD new energy vehicles.国混合动力汽车开展随着石油资源的枯竭、人们环保意识的提高,混合动力汽车及电动汽车将成为新世纪前几十年汽车开展的主流,并成为我国汽车界所有业人士的共识。

电动汽车发展:过去、现在与未来外文文献翻译、中英文翻译、外文翻译

电动汽车发展:过去、现在与未来外文文献翻译、中英文翻译、外文翻译
至于汽车行业,汽油价格大幅上涨至超过2美元水平和市场对此类汽车的需求后,无声的绿色解决方案将经历重大转型。该行业推出更多的燃油高效HEV和较少污染的车辆进入市场。随着过去几年油价急剧上涨,这一现象推动了纯电动汽车的发展,重新吸引了汽车制造商和政府。
消费市场在替代燃料车辆以及HEV和电动车辆方面带来了显着的增长。 Polk&Company进行的HEV研究表明,美国和西欧的HEV销售市场份额呈上升趋势。事实上,OEM厂商的HEV模型选择从2000年的两倍(Insight&Prius)增长到今天的二十多岁。 2007年,HEV的销售量已经超过了30万辆HEV。来自OEM的HEV和电动车辆的进一步已知承诺将进一步改善HEV生产。增加插电式和电动汽车,将加强和加快目前的电气化趋势。
D.现代HEV发展
然而,在1999年至21世纪初期,纯电动汽车出现了一种新型的电动汽车。本田向美国市场推出首款HEV,本田Insight,为汽车行业带来了另一个里程碑。随着市场的接受和普锐斯的成功,HEV技术显示出成熟和潜力。福特在“曼哈顿坦克”活动期间推出了第一款美国混合动力电动汽车Escape SUV HEV,并在充气城市交通中注册了600英里/坦克,开启了HEV中美国新时代的竞争。截至2008年,HEV销售总额达到2.5%以上。深刻的是,丰田,本田和福特的下一代HEV已经在2009年引入了更新技术的进一步细化。燃油效率也有所提高。
三,结论
像许多新兴技术一样,电动汽车的开发和应用已经存在了很长时间,但直到最近,技术还没有真正起飞。尽管HEV是汽油车的良好替代品,并被媒体广泛宣传,但它只是作为中间步骤或近期解决方案的代表。政府法规和环境前景,特别是推动运输电气化的采用。电动车将是最终目标。事实上,随着OEM到2012年为终端消费者推出更多的电动汽车模型,电动汽车的展示将被广泛认可和认可。随着新型电动汽车的发展,同时也将引进电力电子技术相关技术的巨大机遇。利用这个机会,为绿色发展做出贡献。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

China Hybrid Electric Vehicle Development With the depletion of oil resources, increase awareness of environmental protection, hybrid vehicles and electric vehicles will become the first decades of the new century, the development of mainstream cars and automobile industry become the consensus of all of the industry. The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical " To vehicle control systems, motor drive systems, power battery / fuel cell for the "three horizontal" distribution of R & D, through close links between production cooperation, China's independent innovation of hybrid cars has made significant progress. With completely independent intellectual property rights form the power system technology platform, established a hybrid electric vehicle technology development. Is the core of hybrid vehicles batteries (including battery management system) technology. In addition, also include engine technology, motor control, vehicle control technology, engine and electrical interface between the power conversion and is also the key. From the current situation, China has established a hybrid electric vehicle power system through Cooperative R & D technology platforms and systems, made a series of breakthroughs for vehicle development has laid a solid foundation. As of January 31, 2009, Technology in hybrid vehicles, China Intellectual Property Office to receive and open for the 1116 patent applications in China. In 1116 patent applications, invention 782 (authority for the 107), utility model for the 334. Mastered the entire vehicle key development, the formation of a capability to develop various types of electric vehicles. Hybrid cars in China in systems integration, reliability, fuel economy and other aspects of the marked progress in achieving fuel economy of different technical solutions can be 10% -40%. Meanwhile, the hybrid vehicle automotive enterprises and industrial R & D investment significantly enhanced, accelerating the pace of industrialization. Currently, domestic automakers have hybrid vehicles as the next major competitive products in the strategic high priority, FAW, Dongfeng, SAIC Motor, Changan, Chery, BYD, etc. have put a lot of manpower, material resources, Hybrid prototyping has been completed, and some models have achieved low-volume market. FAW Group Development Goal: By 2012, the Group plans to build an annual capacity of 11,000 hybrid cars, hybrid bus production base of 1000. FAW Group since 1999 and a new energy vehicles for theoretical research and development work, and the development of a red car performance hybrid sample. "15" period, the FAW Group is committed to the national "863" major project in the "red card in series hybrid electric vehicle research and development" mission, officially began the research and development of new energy vehicles. Beginning in 2006, FAW B70 in the Besturn, based on the technology for hybrid-based research, the original longitudinal into transverse engine assembly engine assembly, using a transverse engine and dual-motor hybrid technology. At the same time, FAW also pay close attention to the engine, mechanical and electrical integration, transmission, vehicle control networks, vehicle control systems development, the current FAW hybrid electric car has achieved 42% fuel saving effect, reached the international advanced level. Jiefang CA6100HEV Hybrid Electric Bus FAW "Liberation brand CA6100HEV Hybrid Electric Bus" project is a national "863" electric vehicle major projects funded project, with pure electric drive, the engine alone drives (and charge), the joint drive motor starts the engine, and sliding regenerative braking 5 kinds of basic operation. The power hybrid electric busand economy to the leading level, 38% fuel economy than traditional buses, emissions reduced by 30%. Red Flag CA7180AE hybrid cars Red Flag hybrid cars CA7180AE according to the national "863 Plan" is the first in complete with industrial prospects of the car, it is built on the basis of red car with good performance and operational smoothness. Series which is a hybrid sedan, the luxury car ,0-100km acceleration time of 14s, fuel-efficient than traditional cars by about 50%, Euro Ⅲemission standard. Besturn B70 hybrid cars Besturn B70 Hybrid cars using petrol - electric hybrid approach. Dual motor power system programs, mixed degree of 40/103, is all mixed (Full-Hybrid, also known as re-mixed) configurations. Besturn B70 Hybrid cars are petrol version costs two to three times Besturn models, mass production will be gradually reduced after the costs, even if this hybrid version Besturn market, the price certainly higher than the existing Besturn models, but high the price of petrol will not exceed 30% version of Besturn models. SAIC Development Goals: 2010 launch in the mixed hybrid cars, plug-in 2012, SAIC strong mix of cars and pure electric cars will be on the market. In the R & D on new energy vehicles, SAIC made clear to focus on hybrid, fuel cell for the direction, and speed up the development of alternative products. Hybrid vehicles, fuel cell vehicles, alternative fuel vehicles as a new energy strategy SAIC three key. 2010 SAIC Roewe 750 hybrid cars in the mix will be put on the market, during the World Expo in Shanghai, SAIC will put 150 hybrid cars in the Expo Line on the River Run. 2012 Roewe 550 plug-in hybrid cars will be strong market, the current car's power system has been launched early development and progress. Apply the new hybrid bus moving on the 1st Apply the new hybrid bus moving on the 1st Academy of Engineering by the SAIC and Shanghai Jiaotong University and other units jointly developed with independent intellectual property rights. Existing cities in the Sunwin Bus Power platform, "the new dynamic application No. 1" uses a parallel hybrid electric vehicle drive program, so that hybrid electric vehicle operating conditions in the electric air-conditioning, steering, braking and other accessories still able to work without additional electric system, while use of super capacitors, to improve starting power, braking energy recovery efficiency, thereby enhancing vehicle dynamic performance, reduce fuel consumption. Car length 10m, width 2.5m, high-3.2m, can accommodate 76 people. Roewe 750 hybrid cars Roewe 750 hybrid cars in the mixed system with BSG (Belt drive start generating one machine), with "smart stop zero-emission" and "environmental protection and the power of both the" two prominent features of a top speed of 205 km / h, the maximum added driving range of up to 500 km. As for the industrialization of SAIC's first own-brand hybrid car, the Roewe 750 hybrid integrated hybrid fuel-efficient cars can achieve rates of around 20%. Dongfeng Motor Group Development Goals: Plans move into 33 billion in 10 years to develop a range of environmentally friendly hybrid vehicles, including cars. EQ7200HEV hybrid cars EQ7200HEV hybrid cars are "863" project of major projects and major strategic projects of Dongfeng Motor Corporation. The car is EQ7200-Ⅱmodel (Fengshen Bluebird cars) is based on an electronically controlled automatic transmission with innovative electromechanical coupling in parallel programs, configure DC brushless motor and nickel-hydrogen batteries, plans to "10 5 "during the industrialization. Industrialization, the vehicle cost more than EQ7200 cars increase in costs ≤ 30%. EQ61100HEV Hybrid Electric Bus EQ61100HEV electric hybrid bus by Dongfeng Vehicle Company Limited Joint Beijing Jiaotong University, Beijing, China Textile Co., Ltd. and Hunan sharp Electromechanical Technology Co., Ltd. jointly developed Shenzhou. EQ61100HEV hybrid electric bus with switched reluctance motor, Cummins ISBe1504 cylinder common rail electronic injection diesel engine, new chassis design of the system, electronically controlled automatictransmission and innovative electromechanical coupling parallel program. In the annual output reached 200, the vehicle cost more than the in crease in automobile engine equipped with 6CT ≤ 30%. China Changan Development Goals: the next three years, the formation of different grades, different purposes, carry a different system of mixed platforms, weak mix of scale, strong mixed industrial R & D capabilities, covering commercial, A grade, B grade, C grade products. 2014 will achieve sales of new energy vehicles 150 000 2020 sales of new energy vehicles for more than 500,000. "Eleventh Five-Year Plan" period, Chang-an increased investment in clean energy vehicles, a diversified energy technologies to carry out exploratory research. Environmental protection through energy-saving models continues to introduce new technology to lead the industry to upgrade and fully utilize and mobilize global resources, Chang'an in the middle hybrid cars, hybrid cars and other technological strength of the field are explored. Chang's first hybrid car long Anjie Xun HEV was successfully listed in June 2009; the first batch of 20 hybrid taxis Long An Zhixiang in January of this year officially put into operation in Chongqing. Chery Development Goals: after 2010, more than half of Chery's products carry different levels of hybrid systems. From 2003 to 2008, mainly mixed with moderate Chery hybrid cars and energy saving system development, and industrialization; Chery in Wuhu, a taxi has been carried out on probation, fuel consumption will be reduced by 10% to 30% to reach Europe Ⅳ Standard. Since 2004, Chery hybrid cars mainly for the development of strong and industrialization. Chery hybrid car fuel consumption target to reach 100 km 3 liters, to reach Europe and the United States emissions regulations. Chery A5BSG Chery A5BSG is a weak parallel hybrid electric car, using fuel engines, electric engines complementary mode, the two different power sources in the car while driving to work together or separately, through this combination to achieve the least fuel consumption and exhaust emissions, in order to achieve fuel efficiency and environmental protection purposes. Compared with the conventional car, the car in urban conditions can save 10% -15% of fuel and reduce carbon dioxide emissions by about 12%, while costs increased by only about 25% -30%. Chery A5ISG Chery A5 ISG hybrid power system consists of "1.3L gasoline engine + 5-speed manual transmission +10 kW motor +144 V Ni-MH battery," the composition of the battery system used by the Johnson Controls developed "plug-in" nickel metal hydride (Ni-MH), motor with permanent magnet synchronous motor and with the motor control system, inverter and DC / DC converters. The system enables the vehicle power to 1.6L displacement level and rate of 30% fuel savings and significantly reduce the emissions of Euro V standards. Cherry A3ISG Chery A3 ISG has 1.3L473F gasoline engine and equipped with 10KW motor. By gasoline engines and electric motors with torque overlay approach to dynamic mixed to provide the best vehicle power operating efficiency and energy saving environmental protection goals. Chery A3 ISG also has Stop_Restart the idling stop function such as flame start to start (BSG function), to reduce red light in the vehicle stopped or suspended when the fuel consumption and emissions expenses. FY 2BSG FY 2 BSG carry 1.5LSQR477F inline four-cylinder engine configuration BSG start / stop and so one electric motor, red light in the vehicle stopped the driver into the gap, it will automatically enter standby mode to turn off the engine, starting moments after the entry block automatically start the engine. FY 2 BSG vehicle average fuel consumption than the 1.5L petrol cars reduce about 5-10%, average fuel consumption can be reduced up to 15%. BYD Auto Development Goal: to electric cars as a transitional mode, the electric car as the ultimate goal, the development of new energy cars BYD. BYD follow the "independent research and development, independent production, independent brand"development path, and the "core technology, vertical integration" development strategy, as the transition to dual-mode electric vehicles, electric vehicles as the ultimate goal, the development of BYD new energy vehicles.国内混合动力汽车发展随着石油资源的枯竭、人们环保意识的提高,混合动力汽车及电动汽车将成为新世纪前几十年汽车发展的主流,并成为我国汽车界所有业内人士的共识。

相关文档
最新文档