混凝土结构设计原理-受弯构件
《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆
否
是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1
《混凝土结构设计原理》第5章 钢筋混凝土受弯构件斜截面承载力
斜拉破坏则是由于梁内配置的腹筋数量过少而引起的,因 此用配置一定数量的箍筋和保证必要的箍筋间距来防止这种破 坏的发生;
对于常见的剪压破坏,通过受剪承载力计算给予保证。
《混凝土结构设计规范》的受剪承载力计算公式就是依据剪 压破坏特征建立的。
5.3.1 计算原则
采用半理论半经验方法建立受剪承载力计算公式
F
5.2.2 有腹筋简支梁的受剪性能
梁沿斜截面破坏的主要形态
剪压破坏的特点
弯剪段下边缘先出现初始垂直 裂缝;
F
随着荷载的增加,这些初始垂直 裂缝将大体上沿着主压应力轨迹 向集中荷载作用点延伸;
临界斜裂缝
在几条斜裂缝中会形成一条主要的斜裂缝,这一斜裂缝被称为临界 斜裂缝; 最后,与临界斜裂缝相交的箍筋应力达到屈服强度,斜裂缝宽度增 大,导致剩余截面减小,剪压区混凝土在剪压复合应力作用下达到混 凝土复合受力强度而破坏,梁丧失受剪承载力。
斜裂缝的形成
矩形截面梁
P
P
弯剪斜裂缝
垂直裂缝
P
I字形截面梁
P
主拉应力超过混 凝土的抗拉强度时, 将出现斜裂缝。 弯剪区段截面下 边缘的主拉应力仍为 水平,在这些区段一 般先出现垂直裂缝, 随着荷载的增大,垂 直裂缝将斜向发展, 形成弯剪斜裂缝。
腹剪斜裂缝
由于腹板很薄,且该处剪应力较大,故斜裂缝首 先在梁腹部中和轴附近出现,随后向梁底和梁顶斜 向发展,这种斜裂缝称为腹剪斜裂缝。
VC
斜截面的受剪承载力的组成
s Va
Vd
DC
Vu = Vc + Vsv + Vsb + Vd + Va
钢筋混凝土结构设计原理第四章 受弯构件正截面承载力
第四章 受弯构件正截面承载力计 算 题1. 已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25,f c =11.9N/mm 2,2/27.1mm N f t =, 钢筋采用HRB335,2/300mmN f y =截面弯矩设计值M=165KN.m 。
环境类别为一类。
求:受拉钢筋截面面积;2.已知一单跨简支板,计算跨度l =2.34m ,承受均布荷载q k =3KN/m 2(不包括板的自重),如图所示;混凝土等级C30,2/3.14mm N f c =;钢筋等级采用HPB235钢筋,即Ⅰ级钢筋,2/210mm N f y =。
可变荷载分项系数γQ =1.4,永久荷载分项系数γG =1.2,环境类别为一级,钢筋混凝土重度为25KN/m 3。
求:板厚及受拉钢筋截面面积A s3.某矩形截面简支梁,弯矩设计值M=270KN.m ,混凝土强度等级为C70,22/8.31,/14.2mm N f mm N f c t ==;钢筋为HRB400,即Ⅲ级钢筋,2/360mmN f y =。
环境类别为一级。
求:梁截面尺寸b ×h 及所需的受拉钢筋截面面积A s4. 已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25,22/9.11,/27.1mm N f mm N f c t ==,截面弯矩设计值M=125KN.m 。
环境类别为一类。
求:(1)当采用钢筋HRB335级2/300mm N f y =时,受拉钢筋截面面积;(2)当采用钢筋HPB235级2/210mmN f y =时,受拉钢筋截面面积;(3)截面弯矩设计值M=225KN.m ,当采用钢筋HRB335级mm N f y /300=2时,受拉钢筋截面面积;5.已知梁的截面尺寸为b ×h=250mm ×450mm;受拉钢筋为4根直径为16mm 的HRB335钢筋,即Ⅱ级钢筋,2/300mmN f y =,A s =804mm 2;混凝土强度等级为C40,22/1.19,/71.1mm N f mm N f c t ==;承受的弯矩M=89KN.m 。
结构设计原理第四章-受弯构件承载力计算
结构设计原理第四章-受弯构件承载力计算第一节概述一、斜截面强度计算原因:在弯曲正应力和剪应力(shearing stress)的共同作用下,受弯构件中会产生与纵轴斜交的主拉应力(tensile principal stress)与主压应力(com stress)。
因为混凝土材料的抗压强度高而抗拉强度较低,当主拉应力达到其抗拉极限强度时,就会出现垂直于主拉应力方向的斜向裂缝,并导致沿斜戴筋混凝土受弯构件除应进行正截面强度计算外,尚需对弯矩和剪力同时作用的区段,进行斜截面强度计算。
二、措施:在梁内设置箍筋和弯起钢筋箍筋(stirrups)、弯起钢筋统称为腹筋(web reinforcement)或剪力钢筋。
三、斜截面承载力计算内容斜截面抗剪承载力计算与斜截面抗弯承载力计算。
第二节受力分析一、影响斜截面抗剪强度(shearing strength)的主要因素1、剪跨比(shear span to effective depth ratio);2、砼标号;3、箍筋及纵向钢筋(longitudinal reinforcement)的配筋率(reinforcemen剪跨比m是指梁承受集中荷载作用时,集中力的作用点到支点的距离与梁的有效高度之比。
剪跨截面的弯矩和剪力的数值比例关系。
试验研究表明,剪跨比越大,抗剪能力越小,当剪跨比m>3以后,抗剪能力基本二、受剪破坏的主要形态1、斜拉破坏a、发生场合无腹筋梁或腹筋配的很少的梁,且m>3;b、破坏情况斜裂缝一出现,很快形成临界斜裂缝,并迅速伸展到手压区边缘,使构件沿斜向被拉断成两部分而是脆性破坏。
c、防止措施:设置一定数量的箍筋,且箍筋面积不大,箍筋配筋率大于最小配箍率。
2、斜压破坏a、发生场合当剪跨比较小(m<1),或者腹筋配置过多,腹板(web plate)很薄时,都会由于主压应力过大b、破坏情况随着荷载的增加,梁腹板被一系列平行的斜裂缝分割成许多倾斜的受压短柱。
混凝土结构设计原理-05章-受弯构件的斜截面承载力
第5章 受弯构件的斜截面承载力
主要内容
● ● ● ●
重点
斜裂缝、剪跨比及斜截面受剪破坏形态 简支梁斜截面受剪机理 斜截面受剪承载力计算公式及设计计算 保证斜截面受剪承载力的构造措施
● 斜裂缝、剪跨比及斜截面受剪破坏形态 ● 简支梁斜截面受剪机理 ● 斜截面受剪承载力的设计计算 ● 保证斜截面受剪承载力的构造措施
图形。 材料抵抗弯矩图:按实际配置的受力钢筋计算的各个
正截面受弯承载力 Mu 所绘制的图形。
5.5 保证斜截面受弯承载力的构造措施
第5章 受弯构件的斜截面承载力
对承受均布荷载的单筋矩形截面简支梁:
Mu
As
fsd (h0
fsd As ) 2 fcdb
每根纵筋所承担的
M ui可近似按钢筋面积分配, M ui
5.4 斜截面受剪承载力计算
第5章 受弯构件的斜截面承载力
公式的适用范围 ■ 截面的最小尺寸(上限值) 为防止斜压破坏,要求:
0Vd (0.51 103 ) fcu,k bh0
否则,应加大截面尺寸或提高混凝土强度等级。 ■ 构造配箍条件(下限值)
0Vd (0.5 103 ) 2 f tdbh0
而略有降低。 T形截面梁的受剪承载力高于矩形截面梁。
5.4 斜截面受剪承载力计算
第5章 受弯构件的斜截面承载力
2. 斜截面受剪承载力计算公式
由于抗剪机理和影响因素的复杂性,目前各国规范的斜
截面受剪承载力计算公式均为半理论半经验的实用公式。
《公路桥规》中的斜截面受剪承载力计算公式以剪压破
坏为建立依据,假定梁的斜截面受剪承载力Vu由剪压区混凝 土的抗剪能力Vc、与斜裂缝相交的箍筋的抗剪能力Vsv 和与斜 裂缝相交的弯起钢筋的抗剪能力Vsb 三部分所组成。
混凝土结构设计原理第五章 受弯构件斜截面
s
s
Asv . . h0 .... b
架立筋
箍筋 纵筋
· · · ·
弯起点 as 弯起筋
箍筋及弯起钢筋 有腹筋梁:箍筋、弯起钢筋(斜筋)、纵筋 无腹筋梁:纵筋
第5章 钢筋混凝土受弯构件斜截面承载力计算
2 无腹筋梁的受力及破坏分析 梁斜裂缝中受力状态图: 现将梁沿斜裂缝AAB切开,取出斜裂缝顶点左边部分脱离体。
第5章 钢筋混凝土受弯构件斜截面承载力计算
拱形桁架模型 此模型把开裂后的有腹筋梁看成为拱形桁架,其拱体是上弦
杆,裂缝间的齿块是受压的斜腹杆,箍筋则是受拉腹杆。如 图所示;与梳形拱模型的主要区别:1)考虑了箍筋的受拉作 用; 2)考虑了斜裂缝间混凝土的受压作用。
拱形桁架模型
第5章 钢筋混凝土受弯构件斜截面承载力计算
当弯剪区的主拉应力tp>ft时,即产生与主拉应力迹线大致垂直 的斜裂缝,故其破坏面与梁轴斜交-称斜截面破坏。
弯剪斜裂缝:裂缝下宽上窄 斜裂缝的类型 腹剪斜裂缝:中间宽两头窄
(a) 腹剪斜裂缝
(b) 弯剪斜裂缝
第5章 钢筋混凝土受弯构件斜截面承载力计算
为了抵抗主拉应力的钢筋: 弯起钢筋,箍筋
梁中设置纵向钢筋承担开裂后的拉力,箍筋、弯筋、纵筋、架 立筋 ––– 形成钢筋骨架,如图所示。
B A Vc D c A
P
D C B A A
P
D C VA
Va Vd Ts B C a MB
(a)
MA
梁中斜裂缝的受力变化
第5章 钢筋混凝土受弯构件斜截面承载力计算
D
C
B
A Vc D c
应力状态变化分析:
VA
Va T B Vd s C a MB
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理
第四章钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M和剪力V共同作用,而轴力N可以忽略的构件(图4-1)。
梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
图4-3 受弯构件的破坏特性§4-2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s与截面有效面积的百分比。
sAbh式中sA——纵向受力钢筋截面面积。
b——截面宽度,h——截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式:1、少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4-4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用。
破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
受拉区钢筋不屈服。
破坏前有一定变形和裂缝预兆,但不明显,。
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
混凝土结构设计原理-受弯构件正截面承载力精选全文
2.已知:矩形截面钢筋混凝土简支梁,计算跨度为6000mm, as=35mm, 作用均布荷载25 kN/m,混凝土强度等级C20,钢筋HRB335级。 ( fc =9.6 N/mm2 , ft =1.1 N/mm2 , fy =300 N/mm2 )
试设计此梁
3.已知:矩形截面梁尺寸b=200mm、h=450mm,as=35mm。混凝土 强度等级C70,钢筋HRB335级,实配4根20mm的钢筋。 ( fc =31.8 N/mm2 , ft =2.14 N/mm2 , fy =300 N/mm2 )
b
max
b
1 fc
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
m in
As bh
0.45
ft fy
且同时不应小于0.2%
受弯构件正截面承载力计算
造价
总造价
混凝土
钢
经济配筋率
经济配筋率 板:0.4~0.8%
矩形梁:0.6~1.5% T形梁:0.9~1.8%
受弯构件正截面承载力计算
小相等; 2. 等效矩形应力图形与实际抛物线应力图形的形心位置相同,即合
力作用点不变。
受弯构件正截面承载力计算
表 5.1 混凝土受压区等效矩形应力图系数
≤C50 C55
C60
C65
C
0.8
0.99 0.98 0.97 0.96 0.95 0.94 0.79 0.78 0.77 0.76 0.73 0.74
钢筋与混凝土的材料强度比,是反映构件中两种材料配比的本质参数。
基本方程改为:
N 0, M 0,
1 fcb h0 s As M u 1 fcbh02 (1 0.5 )
混凝土结构设计原理受弯构件斜截面承载力
配筋率
合理的配筋率可以提高斜截面承载力, 特别是在斜截面的上边缘和下边缘, 配置适量的受力钢筋和构造钢筋可以 有效提高其承载能力。
剪跨比
剪跨比对斜截面承载力的影响较大, 适中的剪跨比可以优化斜截面的应力 分布,提高其承载能力。
CHAPTER 04
受弯构件的破坏模式
适筋破坏
总结词
理想的破坏模式,具有较大的承载力和延性。
使用预应力技术
总结词
预应力技术通过预先施加压力,可以改善受 弯构件的受力状态,提高斜截面承载力。
详细描述
通过在混凝土受弯构件中施加预应力,可以 抵消部分或全部外荷载产生的拉应力,从而
提高斜截面承载力。
CHAPTER 06
工程实例分析
实际工程中的受弯构件设计
受弯构件是混凝土结构中常见的受力形式,其 设计需满足承载力和正常使用的要求。
改进措施包括优化截面形状、调整配筋方式、加强构造措施等,实施后需 对改进效果进行评估。
效果评估的方法包括试验验证、数值模拟和工程实践等,通过综合分析改 进前后的性能表现,可以得出改进措施的有效性和优越性。
THANKS
[ 感谢观看 ]
斜截面承载力的计算方法
承载力计算公式
根据混凝土结构设计原理,斜截面承载力可以通过计算公式进 行计算,该公式综合考虑了混凝土的抗压强度、剪切强度以及
钢筋的抗拉强度等因素。
计算步骤
计算斜截面承载力时,需要先确定混凝土和钢筋的应力分布, 然后根据相应的强度标准值和设计值,代入计算公式进行计算
。
计算注意事项
增加配筋率
总结词
通过增加受弯构件斜截面的配筋 率,可以有效提高其承载力。
详细描述
增加配筋率可以提供更多的钢筋 约束,增强混凝土的抗压强度, 从而提升受弯构件的斜截面承载 力。
混凝土受弯构件设计原理
混凝土受弯构件设计原理一、引言混凝土结构是现代建筑中常见的一种结构形式,混凝土受弯构件是混凝土结构中最常见的构件之一。
混凝土受弯构件的设计原理是混凝土结构设计的基础,它关系到混凝土结构的承载能力、安全性和经济性。
本文将介绍混凝土受弯构件设计的原理。
二、混凝土受弯构件的基本原理混凝土受弯构件的基本原理是受弯构件的受力特点。
当混凝土受弯构件受到弯矩作用时,构件上方的混凝土受到压力,下方的混凝土受到拉力,同时混凝土内部还会发生剪切力和挤压力的作用。
这些力的大小和方向受到混凝土的材料性质和构件几何形状的影响。
三、混凝土受弯构件的受力分析混凝土受弯构件的受力分析是设计的基础。
在受力分析中,需要分析构件所受的弯矩、剪力和轴力等。
根据弯矩的大小和方向,可以确定构件上下表面混凝土受力的大小和方向。
根据剪力的大小和方向,可以确定混凝土内部产生的剪切力大小和方向。
根据轴力的大小和方向,可以确定混凝土内部的挤压力和拉力大小和方向。
四、混凝土受弯构件的截面设计混凝土受弯构件的截面设计是混凝土结构设计中重要的一环。
截面设计包括混凝土的尺寸、配筋和受力状态等方面。
根据混凝土受力的特点,设计出合理的截面,可以保证混凝土受弯构件的承载能力和安全性。
根据构件的受力状态,可以将截面设计分为正截面和反截面两种。
1.正截面设计正截面是指混凝土受弯构件在正常工作状态下的截面形状。
正截面设计的目的是使混凝土受弯构件在正常工作状态下的承载能力达到设计要求。
正截面设计的基本原则是:在满足弯矩和剪力要求的情况下,最大限度地利用混凝土的抗拉性能,使截面的混凝土面积最小化。
2.反截面设计反截面是指混凝土受弯构件在极限状态下的截面形状。
反截面设计的目的是使混凝土受弯构件在极限状态下的承载能力达到设计要求。
反截面设计的基本原则是:在满足弯矩和剪力要求的情况下,最大限度地利用混凝土的抗压性能,使截面的混凝土面积最大化。
五、混凝土受弯构件的配筋设计混凝土受弯构件的配筋设计是指在混凝土受力的情况下,将钢筋放置在混凝土内部,以提高构件的抗弯强度和抗剪强度。
混凝土结构设计原理-04章-受弯构件的正截面受弯承载力
fsd
即:
截面应力图
截面等效应力图
fcdb x k1 fcdb xc
x 2 xc yc 2 1 k2 xc
令:x xc ,可求出 21 k2 ,
k1
21 k2
对 C50 及以下混凝土, 1.0 , 0.8 ;C80时, 0.94
0.74 ,中间内插值。《公路桥规》直接取 1.0。
k2 xc
cu c c d c
0
式中k1、k2与混凝土的 强度等级有关,对C50 及以下混凝土,积分 可得 k1=0.797
k2=0.588
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
3.等效矩形应力图
fcd
等效原则:
合力大小C 相等
合力点位置 yc不变
fsd
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
4.适筋梁与超筋梁的界限及界限配筋率 (1)界限破坏
适筋破坏:受拉钢筋先屈服,
然后混凝土受压区边缘达到极限压
应变。
超筋破坏:受拉钢筋不屈服,
混凝土受压区边缘达到极限压应变。
界限破坏:受拉钢筋屈服的同 时混凝土受压区边缘达到极限压应
适筋、超筋、界限破坏时的截面应变
4.1 梁、板的一般构造
第4章 受弯构件的正截面受弯承载力
常用直径为8mm、10mm、12mm和14mm。 ■ 板内钢筋: 受力钢筋宜采用HPB300、HRB400和HRBF400钢筋。 常用直径为8mm、10mm、12mm和14mm。 分布钢筋宜采用HPB300、HRB335钢筋。 常用直径为6mm、8mm。 ■ 钢筋净距、保护层及有效高度 截面有效高度h0为受拉钢筋合力点至受压区边缘的距离。 h0 h as
混凝土结构设计原理 第四章 受弯构件斜截面承载力计算
免,而剪压破坏则通过计算来防止。
2、有腹筋梁的斜截面受剪破坏形态
与无腹筋梁类似,有腹筋梁的斜截面受剪破坏形态主要 有三种:斜压破坏、剪压破坏和斜拉破坏。
1)当λ>3,且箍筋配置的数量过少,将发生斜拉破坏;
2)如果λ>3,箍筋的配置数量适当,则可避免斜拉破坏,而 发生剪压破坏;斜裂缝产生后,与斜裂缝相交的箍筋不会立 即屈服,能限值斜裂缝的发展。箍筋屈服后,斜裂缝迅速发 展,使剪压区截面减小,剪压区的混凝土σ和τ在共同作用下 发生剪压破坏
面受剪承载力计算。对于厚板其斜截面的受剪承载力应按下 列公式计算
V 0.7h ftbh0
h
(
800
)
1 4
h0
h ——截面高度影响系数,当h0小于800mm时,取
h0 等 于 800mm ; 当 h0 大 于 2000mm 时 , 取 h0 等 于 2000mm。
⑷计算公式的适用范围 1).上限值—最小截面尺寸
正截面受弯承载力图(或称材料图),简称Mu图。
③ 根据实际配筋量AS,求Mu
Mu
As
f y (h0
f y As )
21 fcb
④ 任一纵向受拉钢筋所承担的Mui
Mui
Mu
As i As
⑤ 配弯起钢筋的正截面受弯承载力图
截面1、2、3分别称为③ 、②、 ①钢筋的充分利 用截面。
斜截面受剪承载力的两公式都使用于矩形、T形和工字 形截面说明截面截面形状对受剪承载力影响不大。
⑶.设有弯起钢筋时,梁的斜截面受剪承载力计算 公式:
Vsb 0.8 f y Asb sin
Vu Vcs 0.8 f y Asb sin
受弯构件正截面承载力计算混凝土结构设计原理
受弯构件正截面承载力计算混凝土结构设计原理受弯构件正截面承载力计算是混凝土结构设计中的关键内容之一、正截面承载力的计算原理主要涉及构件截面几何参数、混凝土材料特性、受力分析以及一系列的假设和假定条件。
下面对受弯构件正截面承载力计算的原理进行详细介绍。
一、截面几何参数受弯构件的承载力计算首先需要确定截面的几何参数,包括截面尺寸、形状和面积等。
常见的截面形状有矩形、T形、L形等,不同形状的截面在计算时需要根据其特点分别考虑。
截面的面积可以直接根据几何关系计算得到。
二、混凝土材料特性混凝土材料的特性对受弯构件的承载力计算有着重要影响。
主要包括混凝土的抗压强度、抗拉强度、弹性模量以及裂缝宽度等。
这些参数可以通过试验或经验公式得到。
三、受力分析受弯构件一般由弯矩和剪力共同作用,承载力计算需要分析受力状况,确定弯矩和剪力的大小和分布。
在受弯构件中,弯矩是主要的受力,承载力计算主要围绕弯矩展开。
四、假设和假定条件在受弯构件的承载力计算中,通常会做一系列的假设和假定条件来简化计算。
这些假设和假定条件包括:假定构件截面尺寸保持不变;假定混凝土是线弹性材料;假定受力状况是弯矩作用下的受弯构件等。
五、弯矩与应力的关系在混凝土结构中,弯矩与混凝土截面的应力分布之间存在紧密的关系。
一般情况下,在受弯构件的顶部和底部会产生最大应力,而截面中部应力较小。
通过应力分布的分析,可以确定截面中混凝土各个位置的应力大小。
六、受弯构件正截面承载力计算公式根据上述原理,可以推导出受弯构件正截面承载力计算的公式。
常用的计算公式有弯矩和应力的平衡条件公式、极限平衡条件公式和受拉区有效高度的计算公式等。
七、受弯构件正截面破坏模式根据受弯构件的截面形状和具体受力情况,破坏模式可以分为混凝土破坏和钢筋屈服。
混凝土破坏是指混凝土达到其抗拉极限后发生脆性断裂;钢筋屈服是指钢筋试件发生屈服破坏。
总之,受弯构件正截面承载力计算是混凝土结构设计中的重要环节。
结构设计原理-第三章-受弯构件-习题及答案
第三章 受弯构件正截面承载力一、填空题1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= ,cu ε= 。
2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- ;两排钢筋时,0h h =- 。
3、梁下部钢筋的最小净距为 mm 及≥d 上部钢筋的最小净距为 mm 及≥1.5d 。
4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。
①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计算以 阶段为依据;③承载能力计算以 阶段为依据。
5、受弯构件min ρρ≥是为了 ;max ρρ≤是为了 。
6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是 及 。
7、T 形截面连续梁,跨中按 截面,而支座边按 截面计算。
8、界限相对受压区高度b ζ需要根据 等假定求出。
9、单筋矩形截面梁所能承受的最大弯矩为 ,否则应 。
10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 。
内力臂 ,因而可 受拉钢筋截面面积。
11、受弯构件正截面破坏形态有 、 、 3种。
12、板内分布筋的作用是:(1) ;(2) ;(3) 。
13、防止少筋破坏的条件是 ,防止超筋破坏的条件是 。
14、受弯构件的最小配筋率是 构件与 构件的界限配筋率,是根据 确定的。
15、双筋矩形截面梁正截面承载力计算公式的适用条件是:(1) 保证;(2) 保证 。
当<2s a χ'时,求s A 的公式为 ,还应与不考虑s A '而按单筋梁计算的s A 相比,取 (大、小)值。
16、双筋梁截面设计时,s A 、s A '均未知,应假设一个条件为 ,原因是 ;承载力校核时如出现0>b h χξ时,说明 ,此时u M = ,如u M M ≤外,则此构件 。
结构设计原理——第二节(受弯构件强度计算)
试验研究表明:钢筋混凝土受弯构件的破 (a)
P
P
坏性质与配筋率ρ、钢筋强度等级、混凝
土强度等级有关。对常用的热轧钢筋和普
通强度混凝土,破坏形态主要受到配筋率 (b)
P
P
ρ的影响。正截面破坏的三种形态:
(a)少筋梁破坏 (b)适筋梁破坏
P
P
(c)
(c)超筋梁破坏
受弯构件正截面承载力计算
根据弯矩组合设计值Md来确定钢筋混凝土梁和板截面上纵向受力钢筋的所需 面积并进行钢筋的布置。
2、第二类T形截面 ( x hf )
计算图式
γ
基本计算公式:
C1 C2 T fcdbx fcdh'f b'f b fsd As
(3-43)
M 0
0 M d
Mu
f cd bx(h0
x) 2
f cd
b
' f
b
h
' f
(h0
h
' f
2
)
(3-44)
适用条件: (1)x≤ b;h0(2) ≥ 。 m in
单筋矩形截面受弯构件正截面承载力计算图式
基本公式(基本方程)
∑X=0
fcdbx fsd As
(3-13)
∑MT=0
0Md
Mu
f cd bx(h0
x) 2
(3-14)
∑MC=0
0Md
Mu
f sd
As (h0
x) 2
(3-15)
两个独立的基本方程:公式(3-13)、(3-14)或者(3-15)。
适用条件:
(1)为防止出现超筋梁情况,计算受压区高度 x 应满足:
混凝土结构设计原理PPT课件第3章 受弯构件正截面承载力计算
3.5.3计算方法 1)截面计算
情况1:已知截面尺寸、材料的强度类别,弯 矩计算值,求 As和As 。
(1)假设 as和as ,求得h0 has。
(2)验算是否需要双筋截面。
M M ufcb d02 hb(1.5b)
(3)补充条件xbh0 ,求得 As和As 。
(4)分别选择受压及受拉钢筋的直径和根数,进 行截面布置。
第三章
受弯构件正截面承载力计算
受弯构件的主要破坏形态:
3.1受弯构件的截面形式与构造 3.1.1截面的形式和尺寸
板
受压区
现浇板宽度 比较大,计算 时可取单位宽 度的矩形截面 计算。
b 整体式板
受拉钢筋
钢筋混凝土简支板的标准跨径不宜大于13m,连 续板桥的标准跨径不宜大于25m,预应力连续板桥 的标准跨径不宜大于30m。
As
M fsd(h0 as)
(4)当 xbh0且 x2as时,由基本公式求 A s 。
(5)选择钢筋的直径和根数,布置截面钢筋。
2)截面复核 (1)检查钢筋布置是否符合要求。 (2)按双筋截面求受压区高度x。
(3)当 xbh0且 x2as时,由下式求受拉钢筋面积。
As
M fsd(h0 as)
箍筋直径不小于8mm或受压钢筋直径的1/4倍。
受压钢筋的应力 由图可得:
cu 0.0033
x c xc as s
a s
cs uxcx cas (1a xc s)(10.8 xas)
A s
As
s
0.00(1303.8as) x
取 x 2as
C0bx0bxc 0bch0 yc 2x12xc 12ch0
x = βxc
混凝土结构设计原理 第四章 受弯构件正截面承载力的计算
3.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
分布钢筋的作用:
抵抗混凝土收缩和温度变化所引起的内力; 浇捣混凝土时,固定受力钢筋的位置; 将板上作用的局部荷载分散在较大的宽度上,以便 使更多的受力钢筋参与工作; 对四边支撑的单向板,可承受在计算中没有考虑的 长跨方向上实际存在的弯矩。
板中单位长度上的分布钢筋,其截面面积不应小于 单位长度上受力钢筋截面面积的15%,且配筋率不宜小于 0.15%。间距不应大于250mm,直径不宜小于6mm。
4.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
弯起钢筋 架立钢筋
腰筋
箍筋
纵向钢筋
梁的钢筋构造
梁中钢筋由纵向受力钢筋、弯起钢筋、箍筋和架立钢筋组 成,纵向受力钢筋的作用是承受由弯矩在梁内产生的拉力。 常用直径:10~32mm。 当h ≥ 300mm,直径不小于10mm;当h<300mm,直径 不小于8mm。
第4章 受弯构件正截面承载力
梁的配筋率ρ 很小,梁拉区开裂后,钢筋 应力趋近于屈服强度,即开裂弯矩Mcr趋近于拉 区钢筋屈服时的弯矩 My,这意味着第Ⅱ阶段的 缩短,当ρ 减少到当 Mcr=My 时,裂缝一旦出现,
钢筋应力立即达到屈服强度,这时的配筋百分
率ρ 称为最小配筋率ρ
min。
min b max
h0
h
第4章 受弯构件正截面承载力
正截面受弯的三种破坏形态
(1) 适筋破坏形态——破坏始自受拉区 钢筋的屈服
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“塑性破坏”。
(2) 超筋破坏形态——破坏始自受压混 凝土的压碎
受压区混凝土先压碎,钢筋不屈服, 破坏前没有明显预兆,为“脆性破坏”。 钢筋的抗拉强度没有被充分利用。
混凝土结构基本原理_第3章_受弯构件的正截面受弯承载力讲解
•
一般取2.0~4.0
•
梁宽度多为150、200、250、300、350mm等
b. 板
a) 设计时通常取单位宽度(b=1000mm)进行计算
b) 板厚除应满足各项功能要求外,尚应满足最小厚度要求
4.1.2 材料选择与一般构造
① 混凝土强度等级
•
工程中常用的梁、板混凝土强度等级是:C20、C25、C30、C35、
Mu的计算、应用是本章的中心问题
截面破坏形式 • 破坏通常有正截面和斜截面
两种形式
V V
•M
受弯构件设计的内容
正截面受弯承载力计算(按已知弯矩设计值M确定截 面尺寸和纵向受力钢筋);
斜截面受剪承载力计算(按剪力设计值V计算确定箍 筋和弯起钢筋的数量);
钢筋布置(为保证钢筋与混凝土的粘结,并使钢筋充 分发挥作用,根据荷载产生的弯矩图和剪力图确定钢 筋沿构件轴线的布置);
梁的截面尺寸主要应根据所承受的外部作用决
定,同时也需考虑模板尺寸、构件的截面尺寸符合模数、
方便施工。
现浇梁、板的截面尺寸可参考下述原则 选a. 取梁:
a) 高度h
•
较为常见的取值为:300、350、400、450、500、
550、600、650、700、750、800、900、1000mm等
b) 梁的高宽比(h/b)
根数:不少于2根,同时应满足图4-2所示对纵筋净距的要求(便于 浇注混凝土,保证钢筋周围混凝土的密实性)
b) 梁内箍筋
强度等级:常采用HPB300级、HRB400级 直径:常采用6mm、8mm、10mm和12mm等
c) 梁内纵向构造钢筋
架立钢筋:梁上部无受压计算钢筋时,仍需配置2根架立筋,以便与 箍筋和梁底部纵筋形成钢筋骨架,直径一般不小于10mm 纵向构造(腰筋): 梁的腹板高度hw≥450mm时,在梁的两个侧面 应沿高度配置纵向构造钢筋以减小梁腹部的裂缝宽度。每侧纵向构 造钢筋(不包括梁上、下部受力钢筋及架立钢筋)的截面面积不应 小于腹板截面面积bhw的0.1%,且其间距不宜大于200mm 梁的腹板高度hw:对矩形截面,取有效高度h0;对T形截面,取有效 高度h0减去翼缘高度;对I形截面,取腹板净高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fyAs III
各阶段正截面应力、应变分布
fyAs=Z IIIa
二、受弯构件正截面破坏形态
适筋梁的破坏特征:
破坏始于受拉钢筋屈服( s y ),
终止于混凝土压碎( c cu )。
钢筋屈服后,要经历裂缝和变形急剧发展的过程后, 压区砼压碎梁告破坏。梁破坏前有明显的预兆(裂缝宽 、挠度大),可归属于“延性破坏”。
至关重要的,它是使构件能安全承载和具有适用性及 耐久性的可靠保证!
• 此外,合理的构造要求也兼顾了施工上的方便。
3.1.1 截面形式及尺寸
中小跨径,多采用矩形及T形截面 大跨径,多采用工字形或箱形截面
主梁的高度,一般根据梁的刚度要求初选 b:12cm,15,18,20,22,25,30按5cm增加 h:30cm,35,40,……75,80超过80cm以10cm增加
在第II阶段,随M 增大,裂缝宽度也增大,开裂截面钢筋拉应力增大,
s 增大至屈服。M f 曲线出现第二个转折点,记为II a 状态。
第III阶段——破坏阶段
钢筋屈服后,进入第III阶段。裂缝迅速开展,中和轴迅速上移,刚度
急剧下降,挠度 f 明显增大,最后发展至受压区边缘砼达到极限压应变,
梁破坏。破坏时记为IIIa状态。
按单向板计算
双向板:荷载向两个互相垂直的方向传递
——两相邻边、三边、四边支承的板,当长短边之比l2 / l1<2时
薄板:钢筋直径6~12mm; 厚板:钢筋直径12~25mm.
在同一板带宽范围内通常是按等间距均匀布置。
单向板应设分布钢筋。
分布钢筋的作用: ①将板面上的荷载更均匀地传递给受力钢筋; ②固定受力钢筋的位置; ③抵抗温度应力和砼收缩应力; ④承受沿长边传递的荷载。
第三章 受弯构件正截面承载力计算
Cross-Section Carrying Capacity of Flexural Members
注:通过学习前两章的基础知识,进而开始讨论 钢筋混凝土构件的设计。受弯构件是所有构件中 最基本的一种,掌握了它的计算,以后各章的内 容就是举一反三。所以我们要详细讨论,并且熟 练掌握本章内容。
受弯构件—承受弯矩M、剪力V、扭矩MT的作用
设计要求
一、承载能力极限状态
•M
正截面破坏
• M+V
斜截面破坏
• MT
受扭破坏
正截面承载力计算 斜截面承载力计算
抗扭承载力计算
二、正常使用极限状态
• 应力验算
• 变形验算 w w
• 裂缝宽度验算
三、构造要求
矩形截面梁 经济配筋率 T形截面梁
板
0.5% ~ 1.5% 2.0% ~ 3.5% 0.4% ~ 1.0%
上下对齐
布置原则—— 下粗上细
左右对称
*第三层及以上钢筋水平间距增大一倍
3.1.5 板的钢筋构造
单向板:荷载只向一个方向传递
——单边或两对边支承的板一定是单向板 两相邻边、三边、四边支承的板,当长短边之比l2 / l1≥2时,可
一、试验研究
受拉钢筋合力作用点(实际上就是受拉钢筋截面形心)
至受压边缘的距离 h0 ,称为有效高度。
定义 配筋率 As
bh0
试验梁的配筋率 0.0097 0.97%
试验梁的外观破坏过程——VCD
How many stages a RC beaginning of loading to its failure?
分布钢筋的设置要求:
位置:与受力钢筋垂直,布置在受力钢筋内侧
用量:每米板宽内的截面面积≥受力钢筋截面面积的15%
直径≥6mm
间距≤250mm(薄板) 间距≤200mm(薄板,集中荷载较大)
直径=10~16mm 间距=200~400mm(厚板,分布荷载)
3-2 受弯构件正截面受力过程和破坏形态
随着 M 增加,受拉区砼拉应力达到抗拉强度 f t ,受拉边缘砼应变增 至极限拉应变 t ma,x 砼即将开裂,M f 曲线出现第一个转折点,记为
I a 状态 。
第II阶段——带裂缝工作阶段
砼开裂后,受压区高度明显减小,中和轴明显上移。开裂砼退出工作,
拉应力转卸给钢筋承担。开裂后,刚度降低,挠度 f 增加的速度较快。
钢筋开始屈服 受拉区混凝土出现裂缝
破坏
IIIa 破坏阶段 III
IIa
II
开裂阶段
(工作阶段)
Ia I 抗裂阶段
W 挠度
钢筋适度的钢筋混凝土试验梁荷载—挠度曲线图
根据 M f 曲线将梁工作分为三个阶段,具有两个明显转折点
第I阶段——整体工作阶段
M 很小,M f 基本上呈直线,拉区应力较小,梁未开裂,截面整体受 力。
•
平截面假定示意图
正截面
ε1
ε2
ε cu
应变片
梁正面图
荷载增大时截面应 变ε 的变化
受压区
钢筋混凝土梁纯弯段
混凝土压应变
εc
εcu
截面中性轴
受拉区
θ
偏转了的正截面 正截面
夸张了的梁的挠曲和正截面偏转 混凝土拉应变
σ ε
回忆混凝土σ ~ε 选定模型 σ
ε
原位图形:应变在水平方向。 逆时针旋转900,应变在铅垂 方向,与梁高方向一致。
3-1 受弯构件的截面形式与构造
Section Geometry and Configuration of Flexural Members
• 受弯构件的某些细部处理和做法是无法通过计算来确 定的,比如构件中钢筋的布置方式、钢筋的锚固,以 及节点和支座的做法等。
• 对这些构造处理不当是导致工程事故的一个很大原因。 • 因此,在结构和构件设计中,采取合理的构造措施是
3.1.3 混凝土保护层厚度
混凝土保护层厚度≮d, ≮粗骨料最大粒径的1.25倍和表中数值
3.1.4 梁内钢筋骨架的构造
单筋截面 仅在拉区配受力钢筋,压区配架立筋 双筋截面 拉压区均配受力钢筋
受力主钢筋:直径14~28mm, 特殊时(如构件特别大),可用32~40mm 采用不同直径时,两种钢筋的直径差应≥2mm,便于识别。
压应变
σc
1
1
2
2
3
3
4
4
5
5
Asσs
拉应变
把所得应变根据规定的本构
关系曲线转换为应力。
y y
应变图
s s Es s y
0
[2(
0
)(
0
)2 ]
cu
应力图 M
tu
Mcr
M
y
My
M
xc D
Mu Z
sAs
I
ft sAs
Ia
sAs
II
fyAs IIa