山东省青州市2018-2019学年上学期期末考试九年级数学试题
(完整word版)2018九年级上学期末考试数学试题
![(完整word版)2018九年级上学期末考试数学试题](https://img.taocdn.com/s3/m/d40f756c51e79b896902266a.png)
2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )MN 上移动时,矩形PAOB 勺形状、大小随之变化,贝U AB 的长度()A 变大B 变小C 不变D 不能确定&如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,0),对称轴为直线x = - 1, 下列结论:① b 2>4ac :②2a + b = 0 ; @ a + b + c>0 ;④若 B (- 5,y 1 )、C (- 1,y ) 为函数图象上的两点,贝U %<y 2 •其中正确结论是( )A ②④B ①③④C ①④D ②③9、 如图,已知AB 是O O 的直径,AD 切O O 于点A ,点C 是EB 的中点,则下列结论: ①OC/ AE ②EC = BC ③/ DAE=Z ABE ④ACLOE 其中正确的有() A 1 个B 2 个C 3 个D 4 个10、 某种药品零售价经过两次降价后的价格为降价前的 81%则平均每场降价( )A 10%B 19%C 9.5%D 20%11、 如图,I 是厶ABC 的内心,AI 的延长线和△ ABC 的外接圆相交于点 连接BI ,BD DC 下列说法中错误的一项是( ) A 线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B 线段DB 绕点D 顺时针旋转一定能与线段 DI 重合 C / CAD 绕点A 顺时针旋转一定能与/ DAB 重合A B C D 32、 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔 芯,则拿出黑色笔芯的概率为2 1 2 A -B1 C-3553、 用配方法解一元二次方程X 2-6X +6 = 0时,配方后得到的方程是()A (X - 3)2=6B (X +3)2=3C (X - 3)2 =3D (X - 3)2 =-34、 抛物线y 二a (x • 1)(x —3)(a = 0)的对称轴是直线(A X = 1B 5、 如图,四边形) x = -1 C x = 3 DABCD 是O O 的内接四边形,若/第5题 6、 已知:如图,则/ BPC 的度数是( 7、 如图,四边形PAOB 是扇形OMN 勺内接矩形,顶点P 在MN ,且不与M N 重合,当P 点在 四边形 第6题 ABCD 是O O 的内接正方形,点 第8题P 是劣弧上不同于点C 的任意一点, C 75° D 90° 尸x = -3B=110°,则/ ADE 的度数为( )D线段ID绕点I顺时针旋转一定能与线段IB重合(11题)12、用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()1 3A 丄B 1C -D 、2二、细心填一填(每小题3分,共15分)13、把抛物线y = -2(x-1)2+3向右平移2个单位再向下平移5个单位,得到抛物线解析式为_____________________ 。
青岛版九年级2018--2019学年度第一学期期末考试数学试卷
![青岛版九年级2018--2019学年度第一学期期末考试数学试卷](https://img.taocdn.com/s3/m/6a1f3fcd0975f46527d3e1a9.png)
绝密★启用前青岛版九年级2018--2019学年度第一学期期末考试数学试卷分望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计40分)1.(本题4分)在Rt △ABC 中,∠C =90°,a =3,c =5,则sin A 的值是( )A .B .C .D .2.(本题4分)方程3x 2+4x -5=0的根的情况是( ) A . 有两个相等的实数根 B . 只有一个实数根 C . 没有实数根 D . 有两个不相等的实数根3.(本题4分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF 的值为( )A .45 B . 35 C . 56 D . 674.(本题4分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是( ) A . 0.8 B . 0.75 C . 0.6 D . 0.48 5.(本题4分)二次函数的图象如图所示,则下列关系式不正确的是( )A . a <0B . abc >0C . a+b+c >0D .6.(本题4分)如图,点F 是▱ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A . 18B . 22C . 24D . 467.(本题4分)如图,两建筑物的水平距离为32 m ,从点A 测得点C 的俯角为30°,点D 的俯角为45°,则建筑物CD 的高约为( )A . 14 mB . 17 mC . 20 mD . 22 m8.(本题4分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .9.(本题4分)在Rt △ABC 中,斜边AB=5,而直角边BC ,AC 之长是一元二次方程x 2-(2m-1)x+4(m-1)=0的两根,则m 的值是( ) A . 4 B . -1 C . 4或-1 D . -4或110.(本题4分)如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O对称,则AB 的最小值为( )A . 3B . 4C . 6D . 8 二、填空题(计20分)11.(本题5分)已知扇形的圆心角为120°,弧长为2π,则它的半径为 _____ 12.(本题5分)已知α,β是关于x 的一元二次方程()22x 2m 3x m 0+++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是 .13.(本题5分)如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.14.(本题5分)函数y=x 的图象与函数4y x=的图象在第一象限内交于点B ,点C 是函数4y x=在第一象限图象上的一个动点,当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(计90分)15.(本题8分)解下列方程:(1)x2+6x+5=0;(2)2(x﹣1)2=3x﹣3;16.(本题8分)计算:4cos45°﹣8+(π+3)0+(﹣1)217.(本题8分)某商场销售一种名牌衬衣,每天可售出件,每件盈利元,为扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降低措施,经调查发现,如果每件衬衣每降元,商场平均每天可多售出件,若商场平均每天要盈利元,每件衬衣应降价多少元?18.(本题8分)已知D 、E 分别是△ABC 的AB 、AC 上的点,∠ADE=∠C,AB=9,AD=3,AC=6.求EC 的长.19.(本题10分)如图,在平面直角坐标系xOy 中,若点A (﹣2,n ),B (1,﹣2)是一次函数y=kx+b 的图象和反比例函数y=mx的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标; (3)求点O 到直线AB 的距离.20.(本题10分)己知:矩形ABCD的两边AB,BC的长是关于x的方程x2﹣mx+1 24m=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?21.(本题12分)如图,CD 为⊙O 的直径,弦AB 交CD 于点E ,连接BD 、OB . (1)求证:△AEC ∽△DEB ;(2)若CD ⊥AB ,AB =8,DE =2,求⊙O 的半径.22.(本题12分)如图,在甲建筑物上从A 到E 悬挂一条条幅,在乙建筑物顶部D 点测得条幅顶端A 点的仰角为30º,测得条幅底端E 点的俯角为45º,若甲、乙两建筑物之间的水平距离为30米,求条幅AE 的长。
2018—2019学年第一学期九年级数学期末试题(含答案)
![2018—2019学年第一学期九年级数学期末试题(含答案)](https://img.taocdn.com/s3/m/1863ac78f01dc281e53af0e6.png)
2018—2019学年度第一学期期末考试九年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.关于x的方程ax2-3x+2=0是一元二次方程,则A.a>0 B.a≠0 C.a=1 D.a≥02.用配方法解方程3x2-6x+1=0,则方程可变形为A.(x-3)2=13B.3(x-1)2=13C.(x-1)2=23D.(3x-1)2=13.在平面直角坐标系中,将抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是A.(-2,6)B.(2,-6)C.(-2,8)D.(2,-8)4.下列事件中,是必然事件的是A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.掷一枚质地均匀的硬币,一定正面向上D.如果a2=b2,那么a=b5.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以A.20 B.25 C.30 D.356.下列两个图形一定相似的是A.两个矩形B.两个等腰三角形 C .两个正方形 D .两个菱形 7.下列每张方格纸上都有一个三角形,只用圆规就能作出这个三角形的外接圆的是A .①②B .①③C .②④D .③④ 8.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是 A.∠ADC =12∠AEC B.∠ADC =∠ABC C .AE >BE D .AD =BC9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =65°,则∠EFD 的度数是 A .15° B .20° C .25° D .30° 10.如图,在平面直角坐标系中,已知点A (-3,6)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是 A .(-3,-1)B .(-1,2)C .(-9,1)或(9,-1)D .(-3,-1)或(3,1)11.在函数21a y x--=(a 为常数)的图象上有三点(-3,y 1),(1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是 A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 3<y 1<y 2D .y 1<y 2<y 312.2则下面对于该函数性质的判断①该二次函数有最大值; ②不等式y >-1的解集是x <0或x >2;(第8题图) (第9题图) (第10题图)③方程ax 2+bx +c =0的两个实数根分别位于12-<x <0之间和2<x <52之间; ④当x >0时,函数值y 随x 的增大而增大.其中正确的是 A .②③ B .②④ C .①③D .③④第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点M (a,N (2,b )关于原点对称,则ab = . 14.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是 . 15.关于x 的方程x 2-2x +3=0的根的情况是 . 16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数.如果设它的个位数字是x ,则列得方程为 . 17.两个相似三角形的面积比为4∶25,则它们的相似比为 .18.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口时都是绿灯,但实际这样的概率是 .19.若75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 cm . 20.如图,在Rt △ABC 中,∠A =60°,AB =2,以点B 为圆心,BC 为半径的弧交AB 于点D ,以点A 为圆心,AC 为半径的弧交AB 于点E ,则图中阴影部分的面积为 . 21.如图,某水渠的横截面呈抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m .22.如图,在反比例函数10y x=(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,n S ,则123n S S S S ++++ = (用含n 的代数式表示)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.如图,有一段15m 长的旧围墙AB ,现打算利用 该围墙的一部分(或全部)为一边,再用32m 长 的篱笆围成一块长方形场地CDEF .(1)怎样围成一个面积为126m 2的长方形场地?(第22题图)(第21题图) (第20题图)(第23题图)(2)长方形场地面积能达到130m 2吗?如果能,请给出方案,如果不能,请说明理由. 24.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y ,以先后记下的两个数字(x ,y )作为点P 的坐标. (1)求点P 的横坐标与纵坐标的和为4的概率;(2)求点P25.如图,□ABCD 中,E 为BC 边上一点,连接DE ,F 为线段DE 上一点,∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD=AF=DE 的长.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?27.如图,点E 在x 轴正半轴上,以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,直线AB 与⊙E 相切于点D ,已知点A 的坐标为(3,0),点B 的坐标为(0,4). (1)求线段AD 的长;(2)连接BE 、CD ,求证:BE ‖CD .28.如图,过点A (-1,0)、B (3,0)的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E . (1)求抛物线解析式; (2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCBPOC SS=,求此时DP 的长.(第25题图)(第26题图)(第28题图) (第27题图)2018—2019学年第一学期九年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.13; 14 15.无实数根 ; 16.210(3)x x x =-+;17.2∶5; 18. 18; 19.6; 20;21. 22.1010n -.三、解答题:(共74分)23. 解:(1)设CD =x m ,则DE =(32﹣2x )m ,依题意得:x (32﹣2x )=126,…………………………………………………2分 整理得 x 2﹣16x +63=0,解得 x 1=9,x 2=7, …………………………………………………4分 当x 1=9时,(32﹣2x )=14当x 2=7时 (32﹣2x )=18>15 (不合题意舍去)∴能围成一个长14m ,宽9m 的长方形场地. ………………………5分 (2)设CD =y m ,则DE =(32﹣2y )m ,依题意得 y (32﹣2y )=130 …………………………………………………7分 整理得 y 2﹣16y +65=0△=(﹣16)2﹣4×1×65=﹣4<0故方程没有实数根, …………………………………………………9分 ∴长方形场地面积不能达到130m 2.…………………………………………10分 24. 解:(1…………………5分则点M 坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有(1,3)、(2,2)、(3,1)这3种, ……………………………………7分故P (和为4)=31=93. ……………………………………8分(2)∵点M∴x 2+y 2<10,这样的点M 有4种形式(1,1)、(1,2)、(2,1)、(2,2), ……………………………………10分∴点M P =49.……………………………………12分25. (1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DC ,AD ‖BC , ……………………………………2分∴∠C +∠B =180°,∠ADF =∠DEC .……………………………………4分 ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C , ………………………………………………………6分 ∴△ADF ∽△DEC .………………………………………………………7分 (2)∵四边形ABCD 是平行四边形,AB =8,∴CD =AB =8, ………………………………………………………8分 ∵△ADF ∽△DEC , ∴AD DEAF DC =, ………………………………………………………10分又CD =8,AD =AF =∴=12AD CD DE AF ⋅==. ………………………………………12分 26.解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B (3,2), ………………………………………………………2分 ∵F 为AB 的中点,∴F (3,1), ………………………………………………………3分∵点F 在反比例函数ky x=的图象上, ∴k =3, ………………………………………………………5分∴该函数的解析式为3y x=; ………………………………………6分(2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),………7分∴111(3)2232EFA kS AF BE k ∆==⨯- ………………………………9分=2133)124k --+( ………………………………11分 当k =3时,△EF A 的面积最大,最大面积是34. ………………13分27.(1)解:∵A 的坐标为(3,0),点B 的坐标为(0,4),∴OA =3,OB =4,…………………………………………………………2分∴AB ,………………………………………………………3分 ∵以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,且BO ⊥OC , ∴OB 与⊙E 相切于点O ,………………………………………………4分 又直线AB 与⊙E 相切于点D ,∴DB =OB = 4, ………………………………………………………6分 ∴AD =5-4=1. ………………………………………………………7分(2)证明:连接ED 、OD . ∵AB 与⊙E 相切于点D , OB 切⊙E 于点O ,∴OB =BD ,∠OBE =∠DBE ,………9分 ∴BE ⊥OD , ………………………10分 ∵OC 为直径,∴∠ODC =90°,……………………11分 ∴CD ⊥OD ,………………………12分 ∴BE ‖CD . …………………………13分28. 解:(1)将A (﹣1,0),B (3,0)代入2y x bx c =-++得10930b c b c --+=⎧⎨-++=⎩, ………………………………2分解得 b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3. ………………………………4分 (2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4). ………………………………6分 (3)设BC 与抛物线的对称轴交于点F ,如图所示:则点F 的横坐标为1, ∵y =﹣x 2+2x +3当x =0时,y =3,∴OC =3, ……………………………………………7分∴△POC 的面积=12×3×1=32,……8分又△PCB 的面积=△PCF 的面积+△PBF 的面积=12PF (1+2)=32PF , ∴32PF =3×32, 解得 PF =3, ………………………………9分设直线BC 的解析式为y =kx +a ,则 330a k a =⎧⎨+=⎩, ………………………………10分 解得 a =3,k =-1,∴直线BC 的解析式为y =-x +3, ……………………………11分 当x =1时,y =2, ∴F 的坐标为(1,2),∴EF =2, ……………………………………12分 当点P 在F 的上方时,PE =PF +EF =5,∴DP =5-4=1; ……………………………………13分 当点P 在F 的下方时,PE =PF -EF =3-2=1, ∴DP =4+1=5;(第28题答案图)综上所述,DP的长为1或5.…………………………………14分。
2018-2019学年九年级(上)期末数学试卷5套及答案解析
![2018-2019学年九年级(上)期末数学试卷5套及答案解析](https://img.taocdn.com/s3/m/30a0dd63336c1eb91a375df1.png)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。
2018-2019学年最新青岛版九年级数学上学期期末考试模拟检测卷及答案解析-精编试题
![2018-2019学年最新青岛版九年级数学上学期期末考试模拟检测卷及答案解析-精编试题](https://img.taocdn.com/s3/m/748b6d210912a2161579290b.png)
期末检测题(本检测题满分:120分,时间:120分钟) 一、选择题(每小题3分,共36分)1.(2014·山东泰安中考)在△ABC 和△A 1B 1C 1中,下列四个命题: (1)若AB=A 1B 1,AC=A 1C 1,∠A=∠A 1,则△ABC ≌△A 1B 1C 1; (2)若AB=A 1B 1,AC=A 1C 1,∠B=∠B 1,则△ABC ≌△A 1B 1C 1; (3)若∠A=∠A 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1;(4)若AC ∶A 1C 1=CB ∶C 1B 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1. 其中真命题的个数为() A.4B.3C.2D.12.一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是() A.相离B.相交C.外切D.内切3.两个等圆⊙O 1和⊙O 2相交于A ,B 两点,且⊙O 1经过点O 2,则四边形O 1AO 2B 是() A.两条邻边不相等的平行四边形B.菱形C.矩形D.正方形4.(2014·四川毕节中考)右图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D.已知cos ∠ACD=35,BC=4,则AC 的长为()第4题图 A.1B.203C.3D.1635.以3、4为两边的三角形的第三边长是方程040132=+-x x 的根,则这个三角形的周长为()A.15或12B.12C.15D.以上都不对6.若 为方程 的解,则 的值为() A.12B.6C.9D.167.(2014·湖北襄阳中考)用一条长40cm 的绳子围成一个面积为64cm 2的长方形.设长方形的长为xcm ,则可列方程为() A.x(20+x)=64B.x(20-x)=64C.x(40+x)=64D.x(40-x)=648.根据下列表格对应值:x3.24 3.25 3.26 2ax bx c ++-0.020.010.03判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是() A.x <3.24B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.289.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,则O 1O 2的长是() A.1cmB.5cmC.1cm 或5cmD.0.5cm 或2.5cm10.如图, 的直径 过弦 的中点 ,∠ °,则∠ 等于() A.80°B.50°C.40°D.20°11.(2014·甘肃天水中考改编)如图,PA 、PB 分别切⊙O 于点A 、B ,点C 在⊙O 上,且∠ACB =50°,则∠P =() A.60°B.80°C.90°D.120°D E FG第11题图第12题图12.(2014·湖北宜昌中考)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB 的长为() A.πB.6πC.3πD.1.5π二、填空题(每小题3分,共24分)13.(2014·湖北襄阳中考)如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5m ,则大树的高度为m.(结果保留根号)14.已知x 满足=+=+-xx x x 1,0152则_____. 15.关于x 的一元二次方程0322=+++m m x mx 有一个根为零,则m 的值等于.第13题图16.已知关于 的方程 - + + - = 是一元二次方程,则 =.17.一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为. 18.已知 与 的半径1r 、2r 分别是方程2680x x -+=的两实根,若 与 的圆心距d =5,则 与 的位置关系是______.19.如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,当点A 的对应点 ′落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为__________.20.如图,直径 为6的半圆,绕点逆时针旋转 ,此时点 到了点 ′,则图中阴影部分的面积为_________. 三、解答题(共60分)21.(8分)(2014·安徽中考)如图,在同一平面内,两条平行高速公路l 1和l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB ,CD 段都垂直,长为10km ;CD 段长为30km ,求两高速公路间的距离(结果保留根号).A CD第22题图第21题图BD//,22.(8分)已知:如图,是⊙O的弦,∠,是优弧上的一点,OA交延长线于点,连接(1)求证:是⊙O的切线;(2)若,∠,求⊙O的半径23.(8分)(2014·广东梅州中考)已知关于x的方程x2+ax+a-2=0.(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.24.(8分)某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低,第二个月比第一个月提高,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?25.(8分)某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(10分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?27.(10分)如图,ABC △是 的内接三角形,AC BC =,D 为 中弧 上一点,延长DA 至点E ,使C E CD =.(1)求证:AE BD =;(2)若AC BC ⊥,求证:2AD BD CD +=.期末检测题参考答案1.B 解析:(1)若AB=A 1B 1,AC=A 1C 1,∠A=∠A 1,能用SAS 判定△ABC ≌△A 1B 1C 1,真命题;(2)若AB=A 1B 1,AC=A 1C 1,∠B=∠B 1,不能判定△ABC ≌△A 1B 1C 1,假命题; (3)若∠A=∠A 1,∠C=∠C 1,能判定△ABC ∽△A 1B 1C 1,真命题;(4)若AC ∶A 1C 1=CB ∶C 1B 1,∠C=∠C 1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC ∽△A 1B 1C 1,真命题.故选B. 2.C 解析:高等于上下底和的一半,等于两圆半径之和. 3.B 解析:由题意知,所以四边形O 1AO 2B 是菱形.4.D 解析:∵AB 为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°. ∵CD ⊥AB ,∴∠BCD+∠B=90°,∴∠B=∠ACD.∵cos ∠ACD=35,∴cosB=35,∴tanB=43.∵BC=4,tanB=A C BC =4A C =43,∴AC =163. 5.B 解析:解方程040132=+-x x 得125,8x x ==.又∵3、4、8不能构成三角形,故舍去,∴这个三角形的三边是3、4、5,∴周长为12.6.B 解析:因为,所以,所以,所以.7.B 解析:长方形周长为40cm ,则邻边的和为20cm ,当长方形的长为xcm 时,宽为(20-x )cm ,由长方形的面积为64cm 2可得方程x (20-x )=64.8.B 解析:当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解,故选B.9.C 解析:当两圆外切时,O 1O 2的长是5cm;当两圆内切时,O 1O 2的长是1cm.10.D 解析:由垂径定理知,弧弧,所以∠∠,所以∠11.B 解析:如图,连接OA,OB,则∠AOB=2∠ACB =100°,根据切线的性质得到∠OAP =∠OBP =90°,所以∠P =360°-2×90°-100°=80°. 12.D 解析:根据弧长公式得AB 的长=903180p ´=1.5π.13.(5+53)解析:如图,作CE ⊥AB 于点E ,则△BCE 和△BCD 都是直角三角形,即可求得CE ,BE 的长,然后在Rt △ACE 中利用锐角三角函数关系式求得AE 的长,进而求得AB 的长,即为大树的高度. 作CE ⊥AB 于点E ,在Rt △BCE 中,BE=CD=5m ,CE=tan 30BE°=53m.在Rt △ACE 中,AE=CE ·tan45°=53m ,AB=BE+AE=(5+53)m.点拨:本题考查了仰角、俯角问题的应用,要求能借助仰角或俯角构造直角三角形,并通过解直角三角形求解.14.5解析:因为0x ≠,所以将方程2510x x -+=两边同除以x 得150x x-+=,所以 15x x+=. 15.解析:把代入,得解得又由已知知16.4解析:由题意知17.25或36解析:设这个两位数的十位数字为x ,则个位数字为3x +.依题意,得2103(3)x x x ++=+,解得122,3x x ==.∴这个两位数为.18.相交解析:解方程19.解析:注意正确应用弧长的计算公式.20.解析:由旋转的性质知半圆的面积等于半圆的面积,所以阴影部分的面积等于扇形的面积,所以21.分析:可通过含有30°的角和已知条件及图形中数量关系构造直角三角形求解,在已知AB ,BC 的长度且AB ⊥BC,CD ⊥BC 的情况下,可过点A 作AE ⊥AB 交DC 的延长线于点E ,然后过点E 作HF ⊥l 1,分别在Rt △DEF 与Rt △AEH 中求出EF 与EH 的长. 解:如图,过点A 作AB 的垂线交DC 的延长线于点E ,过点E 作l 1的垂线与l 1,l 2分别交于点H ,F ,则HF ⊥l 2.由题意,知AB⊥BC,BC⊥CD.又AE⊥AB,∴四边形ABCE为矩形,∴AE=BC,AB=EC.∴DE=DC+CE=DC+AB=30+20=50(km).又AB与l1成30°角,∴∠EDF=30°,∠EAH=60°.在Rt△DEF中,EF=DEsin30°=50×12=25(km),在Rt△AEH中,EH=AEsin60°=10×32=53(km),∴HF=EF+HE=25+53(km),即两高速公路间的距离为(25+53)km.22.(1)证明:连接则∠∠.因为∥,所以∠∠,所以∠,所以是⊙O的切线(2)解:因为∠,∠,所以∠.延长,交于点连接∠在Rt△,∠,所以所以⊙O的半径为23.分析:(1)将x=1代入方程x2+ax+a-2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.(1)解:将x=1代入方程x2+ax+a-2=0,得1+a+a-2=0,解得a=12.原方程即为x2+12x-32=0,即2x2+x-3=0,设另一根为x1,则1·x1=-32,∴x1=-32.(2)证明:∵Δ=a2-4(a-2)=a2-4a+8=a2-4a+4+4=(a-2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.点拨:本题利用了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=-ba ,x1·x2=ca,解题时要记牢公式,灵活运用.24.解:设该产品的成本价平均每月应降低的百分比为.,整理,得,解得(舍去),.答:该产品的成本价平均每月应降低的百分比为. 25.解:设每张贺年卡应降价x 元.则依题意得,整理,得21002030x x +-=,解得120.1,0.3x x ==-(不合题意,舍去).∴0.1x =. 答:每张贺年卡应降价0.1元.26.解:(1)设平均每次下调的百分率为,则6000(1-)2=4860, 解得.∴平均每次下调的百分率为.(2)方案①可优惠:(元),方案②可优惠:(元), ∴方案①更优惠.27.证明:(1)由同弧所对的圆周角相等,知∠∠.∵,,∴∠∠∠∠,∴∠∠,∴∠∠.又∵,,∴△≌△.∴.(2)∵,∴.∵,∴∠,∴∠∠.由勾股定理,得又∵,∴,∴,∴.。
2018-2019学年 鲁教版(五四制)九年级上册期末考试数学试卷及答案
![2018-2019学年 鲁教版(五四制)九年级上册期末考试数学试卷及答案](https://img.taocdn.com/s3/m/ce71b55969eae009581bec99.png)
2018-2019学年度第一学期期末考试九年级数学试题(考试时间:120分钟分值:120分)一、选择题:本题共10小题,共30分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
1. 已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣52. △ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球4. 如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°5. 对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似6. 反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是()A.x1>x2 B.x1=x2 C.x1<x2 D.不确定7. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7 8.下列四个函数图象中,当x>0时,y随x的增大而减小的是()9. 如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .45C .3+πD .8﹣π10. 如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE =BF ;②AE ⊥BF ;③sin ∠BQP =;④S 四边形ECFG =2S △BGE . A .4 B .3 C .2 D .1二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28A .B .C .D .(第4题图)(第9题图)(第10题图)分.只要求填写最后结果.11. 在Rt △ABC 中,∠C =90°,若sinA =53,则cosB 的值是 . 12. 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是 .13. 一个圆锥的底面半径是6cm ,其侧面展开图为半圆,则圆锥的母线长为 . 14. 一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是 .15. 如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 .16. 如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是 .17. 如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =经过斜边OA的中点C ,与另一直角边交于点D .若S △OCD =9,则S △OBD 的值为.(第15题图) (第16题图)(第17题图)18. 在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1、…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分) (1)计算:3311260sin 2)14.3()20181(01-+-︒--+-π; (2)先化简,再求值:(1+)÷,其中x =4﹣tan45°.20. (本题满分8分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.21. (本题满分8分) 某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB(第18题图)行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,求大树CD 的高度?(参考数据:sin36°≈0.59,cos36°≈0.81, tan36°≈0.73)22. (本题满分9分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF的值.23. (本题满分10分)如图,直线221+=x y 与双曲线相交于点A (m ,3),与x 轴交于点C .(1)求双曲线解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.24. (本题满分10分) 2016年2月,某市首条绿道免费公共自行车租赁系统正式启用.市政府在2016年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,(第21题图)(第22题图)(第23题图)新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.25. (本题满分10分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.(第25题图)2018-2019学年第一学期期末考试九年级数学答案与评分标准一.1. B 2. C 3. A 4. C 5. D 6. A 7. D 8. B 9. D 10. B二.11.53 12. 41 13. 12cm 14. m ≤1 15. 0 16. (2,10)或(﹣2,0) 17. 6 18. (2n ﹣1,2n ﹣1)三.19. 解:(1)20181-3332-3-12018=++=原式.……………………3分(2)解:原式=•=,………………………………………………………2分当x=4﹣tan45°=4﹣1=3时,…………………………………3分 原式==.……………………………………………4分20. 解:(1)树状图如下:…………………………………………………………………………5分 (2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,…………………………………7分 即P (两个数字之和能被3整除)=. …………………………………8分21. 解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,…………………………………1分∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,…………………………………3分设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,…………………………………5分∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AEtan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;…………………………………8分22. (1)证明:连接OC,则OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠CAD=∠OCA,…………………………………2分又OA=OC,∴∠OCA=∠OAC,∴∠CAD=∠CAO,∴AC平分∠DAB.…………………………………4分(2)解:连接BE交OC于点H,易证OC⊥BE,可知∠OCA=∠CAD,……………………………5分∴COS∠HCF=45,设HC=4,FC=5,则FH=3.又△AEF∽△CHF,设EF=3x,则AF=5x,AE=4x,∴OH=2x∴BH=HE=3x+3 OB=OC=2x+4在△OBH中,(2x)2+(3x+3)2=(2x+4)2 ……………………………8分化简得:9x2+2x-7=0,解得:x=79(另一负值舍去).∴5759AF xFC==.……………………………9分23. 解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A (2,3),……………………………2分 把A 坐标代入y=,得k=6,则双曲线解析式为y=;……………………………4分(2)对于直线221+=x y ,令y=0,得到x=﹣4,即C (﹣4,0),设P (x ,0),可得PC=|x+4|,∵△ACP 面积为3,∴|x+4|3=3,即|x+4|=2,……………………………8分 解得:x=﹣2或x=﹣6,……………………………9分则P 坐标为(﹣2,0)或(﹣6,0).……………………………10分24. 解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得:……………………………3分解得:……………………………4分答:每个站点造价为1万元,自行车单价为0.1万元.……………………………5分 (2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a . 根据题意可得:720(1+a )2=2205……………………………7分 解此方程:(1+a )2=,……………………………8分即:,(不符合题意,舍去)……………………………9分答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.………10分25. 解:(1)∵平行四边形ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,且点A 的坐标是(0,4), ∴点A ′的坐标为:(4,0),……………………………1分 ∵点A 、C 的坐标分别是(0,4)、(﹣1,0),抛物线经过点C 、A 、A ′, 设抛物线的解析式为:y=ax 2+bx+c ,∴,……………………………2分解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;……………………………3分(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,……………………………5分设点M的坐标为:(x,﹣x2+3x+4),=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,则S△AMA′=8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′∴M的坐标为:(2,6);……………………………6分(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);……………………………7分当﹣x2+3x+4=﹣4时,解得:x3=,x2=,∴P3(,﹣4),P4(,﹣4);……………………………8分②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);……………………………9分如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).……………………………10分九年级数学试题第11页(共6页)。
2018—2019学年上期期末考试九年级数学参考答案
![2018—2019学年上期期末考试九年级数学参考答案](https://img.taocdn.com/s3/m/3e4f6982ad02de80d4d840d2.png)
2018—2019学年上期期末考试九年级数学 参考答案一、选择题(每小题3分,共30分)1.A2.B3.D4.B5.C6.B7.D8.C9.C 10.A二、填空题(每小题3分,共15分) 11.43; 12.15°; 13.k >0且k ≠1; 14.39; 15.178817或三、解答题(75分)16.解:(1﹣)÷=•=• =, ……………………………………………………4分a (a +1)=0的解为120, 1.a a ==- ……………………………………………………6分因为0,a ≠所以 当a =﹣1时,原式==. ………………………………………………8分17.解:(1)80, 0.2;…………………………………………………………4分(2)“D”对应扇形的圆心角的度数为:36° ; ……………………………6分(3)2000×0.25=500(人);答:估计该校2000名学生中最喜欢“数学编程”创客课程的人数为500人.… 9分18. (1)证明:∵AG ∥BC ,∴∠EAD=∠DCF ,∠AED=∠DFC . ………………………………1分 ∵D 为AC 的中点,∴AD=CD . ………………………………………………………2分 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF (AAS ).∴DE=DF .∴四边形AFCE 是平行四边形; …………………………………5分(2)① 8; …………………………………7分② t =165或163. …………………………………………………9分 19.解:(1)设DF 的延长线交AB 于点G , BG=x 米,因为∠BFG =45°,所以FG=BG=x 米, ……………………………………2分∵∠BDG =40°,∴DG =tan 0.84BG x BDG =∠. ………3分 ∵DG ﹣FG=DF , ∴0.84x ﹣x =53.…………5分 解得,x =278.25.…………7分278.25+1.5=279.75 280(米).………8分答: 郑州会展宾馆的高度约为280米.………………………9分20.解:(1)过点B 作BF ⊥x 轴于点F .∵∠BCA =90°,∴∠BCF +∠ACO =90°.又∵∠CAO +∠ACO =90°,∴∠BCF =∠CAO .∵90BFC COA ∠=∠=,BC=AC .∴BFC ∆≌COA ∆.∴CF=OA=2, BF=OC=1.∴点B 的坐标为(﹣3,1).…………………………………………4分 将点B 的坐标代入反比例函数解析式可得:1=3-k , 解得:k =﹣3, 故可得反比例函数解析式为y =x3-; …………………………6分 (2) 结合点B 的坐标及图象,可得当x <0时,kx +b xm -<0的解集为:﹣3<x <0. ………………………9分21.解:(1)设甲种笔记本的进价为m 元/本,则乙种笔记本的进价为n 元/本,根据题意得10,4(2)3(1)47.m n m n +=⎧⎨+++=⎩…………………2分 解得6,4.m n =⎧⎨=⎩ 答:甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.………4分(2)设购入甲种笔记本a 本,则购入乙种笔记本(60﹣a )本.根据题意得:64(60)296a a +-≤.解得28a ≤.设利润为y 元,则2(60)y a a =+- , y 60a =+.因为k =1,所以y 随a 的增大而增大,所以当a =28时利润最大.………………………………7分(3)设把两种笔记本的价格都提高x 元的总利润为w 元,根据题意得:w =(2+x )(350﹣50x )+(1+x )(150﹣40x )=﹣90(x ﹣2)2+1210,…………………………8分∵在w =﹣90(x ﹣2)2+1210中,a =﹣90<0,∴当x =2时,w 取最大值,最大值为1210.答:当x 定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为1210元. ……………………………………10分22. (1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC =∠DAE =90°, ∴AB=AC =3,AD=AE =2,∠DAB =∠CAE .∴△ADB ≌△AEC .∴∠ABD =∠ACE . …………………………………4分(2)(1)中结论成立,理由:在Rt △ABC 中,∠ABC =30°,∴AB =3AC .在Rt △ADE 中,∠ADE =30°,∴AD=3AE , ∴ACAE AB AD =. ∵∠BAC=∠DAE =90°,∴∠BAD=∠CAE .∴△ADB ∽△AEC .∴∠ABD=∠ACE . ……………………………8分(3)PB 的长为13或13. ………………………………10分23.(1)将A (-2,0)、C (-4,4)代入y =﹣21x 2+bx +c 中, 得:220844b c b c --+=⎧⎨--+=⎩,解得:58b c =-⎧⎨=-⎩, ∴二次函数的解析式为y =﹣21x 2﹣5x ﹣8.……………………………4分 (2) 当y =0时,有﹣21x 2-5x ﹣8=0, 解得:x 1=-2,x 2=-8,∴点B 的坐标为(-8,0).设BC 的解析式为y=kx +a (k ≠0),将B (-8,0)、C (-4,4)代入y =kx +a 中,得:44,80.k a k a -+=⎧⎨-+=⎩解得:1,8.k a =⎧⎨=⎩ ∴直线BC 的解析式为y =x +8.…………………………6分设点E 的坐标为(m ,m +8),则点D 的坐标为(m +2, m +10),点G 的坐标为[m+2,﹣21(m+2)2-5(m+2)﹣8],点F 的坐标为(m ,﹣21m 2-5m ﹣8). ∵四边形DEFG 为平行四边形, ∴DG=EF ,即﹣21(m+2)2-5(m+2)﹣8﹣(m +10)=﹣21m 2-5m ﹣8-(m +8). 解得:7,m =- m +8=1 . ………………… 8分∴点E 的坐标为(7-,1).当图中四边形DEFG 是平行四边形时,此时直尺左边边缘与直线BC的交点E的刻度是1 .……………9分(3)(-4,6)或(-4,﹣6).…………………………11分。
2018-2019学年上学期期末考试 九年级数学试题(含答案)
![2018-2019学年上学期期末考试 九年级数学试题(含答案)](https://img.taocdn.com/s3/m/724c385a0a1c59eef8c75fbfc77da26925c596ca.png)
2018-2019学年上学期期末考试九年级数学试题(含答案)2018-201年第一学期期末考试九年级数学注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名,再用2B铅笔把对应的卡号的标号涂黑。
2.选择题和判断题的每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,不能答在试卷上。
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔和签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡,题目指定区域内的相应位置上改动,原来的答案也不能超出指定的区域,不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生可以使用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。
)1.下列图形是中心对称而不是轴对称的图形是( )。
2.下列事件是必然事件的是()。
A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是()。
A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.若函数的图像y=x经过点(2,3),则该函数的图像一定不经过()。
A.(1,6)B.(-1,6)C.(2,-3)D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )。
A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是()。
A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()。
2018-2019学年度第一学期期末考试九年级数学试题
![2018-2019学年度第一学期期末考试九年级数学试题](https://img.taocdn.com/s3/m/136a501c5727a5e9856a614c.png)
2018—2019学年度第一学期期末考试九年级数学试题一、选择题(每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .2.一元二次方程0182=--x x 配方后可变形为( )A. 17)4(2=+x B. 15)4(2=+x C. 17)4(2=-x D. 15)4(2=-x3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖,B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.设1x ,2x 是方程2530x x +-=的两个根,则2212x x +的值是( )A .19B .25C .31D .305.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A .15°B .20°C .25°D .30°6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( )A .πB .6πC .3πD .1.5π7.如图,平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( ) A .1 B .1或5 C .3 D .5(第5题图) (第6题图) (第7题图) (第8题图) 8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB ′C ′,点B 经过的路径为弧BB ′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )ADA .B .C .D .π 9.若A (),B (),C ()是二次函数的图象上的三点,则的大小关系是A .B .C .D .10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( ) A .①②B . 只有①C .③④D . ①④(第10题图) (第14题图) (第15题图)二、填空题(每小题3分,共24分)11.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.已知整数k <5,若△ABC 的边长均满足关于x 的方程2380x kx -+=,则△ABC 的周长是 .14.如图,二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图象相交于点A (-2,4),B (8,2),则能使y 1>y 2成立的x 的取值范围是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm . 16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 .17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为18.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2014A 2015B 2015的顶点A 2015的坐标是 .三、解答题(共7小题,66分) 19.(本题满分8分)解下列方程:(1)03)3(=-+-x x x ; (2)0142=+-x x .20.(本题满分8分)如图,在平面直角坐标系中,A (0,1),B (-3,5),C (-3,1). (1)在图中画出△ABC 以A 为旋转中心,沿顺时针 方向旋转90°后的图形△AB 1C 1,并写出B 1、C 1 两点的坐标;(2)在图中画出与△ABC 关于原点对称的图形△A 2B 2C 2, 并写出B 2、C 2两点的坐标.21.(本题满分8分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;(3分)⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.(5分)22.(本题满分10分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2.求抛物线的解析式第17题图23.(本题满分10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(本题满分10分) AB 是⊙O 的切线,B 为切点,圆心在AC 上,∠A=30°,D 为的中点.(1)求证:AB=BC ;(2)求证:四边形BOCD 是菱形.25.(本题满分12分)如图,抛物线22y ax ax c =-+(a ≠0)与y 轴相交于点C (0,4),与x 轴相交于A 、B 两点,点A 的坐标为(4,0). (1)求此抛物线的解析式;(2)抛物线在x 轴上方的部分有一动点Q ,当△QAB 的面积等于12时,求点Q 的坐标; (3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2015—2016学年度上学期期末考试21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)24.(本题满分10分)。
2018—2019学年度九年级数学第一学期期末质量检测试卷及答案
![2018—2019学年度九年级数学第一学期期末质量检测试卷及答案](https://img.taocdn.com/s3/m/cf32d6d0fab069dc50220183.png)
2018—2019学年度九年级数学第一学期期末质量检测试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .522D EC BA第6题图第8题图 第2题图第4题图第5题图A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 .14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a bb+.18.计算:2cos30-4sin 45︒︒211题图13题图CB A(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P , 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ;E DCBA ABC④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);⑤连接线段AD交BC于点P.所以点P就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明: ∵CD=AC,∴CD= .∴∠=∠.又∵∠=∠,∴△P AC∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.24. 如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.(1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.B25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y,y与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........) A BDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个9.下10.3411. m712.32π13.sin∠BAC>sin∠DAE14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:∵53ab=,∴1a b ab b+=+=53+1=83.………………………5分=22⨯18.解:原式………………………3分4分5分19.解:(1)y=x2-2x-3=x2-2x+1-1-3……………………………2分=(x-1)2-4.……………………3分(2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵sin2B=∴∠B=∠BAD=45°.………………2分∵AB=∴AD=BD=3.…………………………3分∵BC=7,∴DC=4.∴在Rt△ACD中,5AC=.…………………………5分21.(1)证明:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分∵AD=1,AE=2,BC=3,BE=1.5,∴121.53=.∴AD AEBE BC=∴△ADE∽△BEC.∴∠3=∠2.………………3分∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC=90°.………………5分22.(1)补全图形如图所示:………………2分B(2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分∴(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:A BCDP HQa.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y= x的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
2018-2019学年九年级第一学期数学期末考试卷与答案详解
![2018-2019学年九年级第一学期数学期末考试卷与答案详解](https://img.taocdn.com/s3/m/190aa945a76e58fafbb00348.png)
2018-2019学年度第一学期期末教学质量监测九年级数学试卷一、选择题(每小题3分,共30分)1.如图的几何体是由六个同样大小的正方体搭成的,2.其左视图是( )A .B .C .D .2.关于x 的一元二次方程0102=-+bx x 的一个根为2,则b 的值为( )A.1B.2C.3D.73.点(4,﹣3)是反比例函数x k y =的图象上的一点,则k=( ) A .-12 B .12 C . D .14.下列关于x 的一元二次方程有实数根的是( )A . x 2+2=0B .2x 2+x+1=0C .x 2﹣x+3=0D . x 2﹣2x ﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是( )A .B .C .D .6.顺次连结下列四边形的四边中点所得图形一定是菱形的是( )A . 平行四边形B .菱形C .矩形D . 梯形 7.反比例函数xk y =与一次函数k kx y +=,其中0≠k ,则他们的图象可能是( ) A . B . C . D .8.下列命题中,假命题的是( )A .分别有一个角是 110的两个等腰三角形相似B .如果两个三角形相似,则他们的面积比等于相似比C .若5x=8y ,则58=y x D .有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,( )A .小刚的影子比小红的长B .小刚的影子比小红的影子短C .小刚跟小红的影子一样长D .不能够确定谁的影子长10.如图,在□ABCD 中,BE 平分∠ABC ,CF 平分∠BCD ,E 、F 在AD 上,BE 与CF 相交于点G ,若AB=7,BC=10,则△EFG 与△BCG 的面积之比为( )A .4:25B .49:100C .7:10D .2:5二.填空题:(每小题4分,共24分)11.如果x:y=2:3,那么yy x + .12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原来每斤20元下调到每斤13元,设平均每个月下调的百分率为x ,则根据题意可列方程为 .13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼 条. 14.函数422)1(--+=m m x m y 是y 关于x 的反比例函数,则m= .15.在矩形ABCD 中,AB =6,BC=8,△ABD 绕B 点顺时针旋转 90到△BEF ,连接DF ,则DF= .16. 如图,菱形ABCD 中,AB=4,∠A BC=60°,点E 、F 、G分别为线段BC ,CD ,BD 上的任意一点,则EG+FG 的最小值为 .三、解答题(一)(每小题6分,共18分)17.解方程:x 2+8x ﹣9=018.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.19.在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.四、解答题(二)(每小题7分,共21分)20.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE∥BD,过点D 作DE∥AC,CE 与DE 相交于点E .(1)求证:四边形CODE 是矩形.(2)若AB=5,AC=6,求四边形CODE 的周长.22.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价。
2018-2019学年度九年级(上)期末数学试卷(含答案)
![2018-2019学年度九年级(上)期末数学试卷(含答案)](https://img.taocdn.com/s3/m/d776fc66336c1eb91a375d2c.png)
2018—2019学年度九年级第一学期期末教学质量检测数 学 试 卷考试时间:120分钟;满分:120分.选择题答题卡一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元二次方程的是( ) A .x 2﹣y =1 B .x 2+2x ﹣3=0 C .x 2+x1=3 D .x ﹣5y =6 2.方程x 2-2x -3=0经过配方法化为(x +a )2=b 的形式,正确的是( ) A .()412=-xB .()412=+xC .()1612=-xD .()1612=+x3.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是( ) A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件4.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A .15B .25C .35D .455.下列关系式中,属于二次函数的是(x 是自变量)( ) A .y =31x 2B .y =12-xC .y =21xD .y =ax 2+bx +c6.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( )A .1个B .2个C .3个D .4个7.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =08.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O的位置关系是( )A .相离B .相交C .相切D .外切9.已知:如图,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于 ( )A .40°B .60°C .80°D .120°10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .r B .C D .3r 11.已知反比例函数y =x6-,下列结论中不正确的是() A .图象必经过点(-3,2) B .图象位于第二、四象限 C .若x <-2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 12.如图所示,反比例函数y =xk(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( ) A .2 B .22 C .23 D .25AOBEDC (9题图) (10题图)13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c>0;③4a +2b +c >0;④2a+b =0;⑤b 2>4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个14.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点的个数是( )A .1个B .2个C .3个D .4个(13题图) 15.如图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 216.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =43,BC 的中点为D .将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG .在旋转过程中,DG 的最大值是 ( )A .4 3B .6C .2+2 3D .8二、填空题(本大题共有3个小题,共12分,17~18小题各3分,19小题有2个空,每空3分.把答案写在题中横线上)17.关于x 的一元二次方程ax 2+bx +1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a = ,b = .18.如图,已知⊙P 的半径为2,圆心P 在抛物线y =21x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .19.如图,P A ,PB 分别切⊙O 于A ,B ,并与⊙O 的切线,分别相交于C ,D ,已知△PCD 的周长等于8cm ,则P A =__________ cm ;已知⊙O 的直径是6cm ,PO =______cm .三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分10分) 选择适当的方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x21.(本小题满分8分)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2-bx +a =0的根的情况.22.(本小题满分9分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是83. (1)试写出y 与x 的函数解析式;(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为21,求x 与y 的值.ABCD E F(14题图)(15题图)ABCD EF G(16题图) (18题图)(19题图)(22题图)(26题图)(23题图)ADE23.(本小题满分9分)如图,一次函数y =kx +b 与反比例函数y =xm(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A (-1,3)和点B (-3,n ).(1)填空:m =_________,n =__________. (2)求一次函数的解析式和△AOB 的面积. (3)根据图象回答:当x 为何值时,kx +b ≥xm(请直接写出答案)____________24.(本小题满分9分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.25.(本小题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.26.(本小题满分11分) 如图,已知抛物线y =41x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (-2,0). (1)求抛物线的解析式及它的对称轴;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.ABCDOE(25题图)18—19学年度九年级(上)期末考试数学答案二、填空题17.1 2; 18.(6,2)或(﹣6,2); 19.4,5. 三、解答题20.解:∵2☆a 的值小于0,∴22·a +a =5a <0.解得a <0. ………………………3分在方程2x 2-bx +a =0中,Δ=(-b )2-8a ≥-8a >0,………………………6分 ∴方程2x 2-bx +a =0有两个不相等的实数根.………………………………8分 21.解:(1)由题意得x x +y =38,得y =53x …………………………………………4分(2)由题意得x +10x +y +10=12,结合y =53x ,联立方程组可求得⎩⎪⎨⎪⎧x =15,y =25………9分22.解:(1)∵反比例函数y =xm过点A (﹣1,3),B (﹣3,n ) ∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1…………………………………………………………………………………2分 故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴⎩⎨⎧+-=+-=b k b k 31,3解得:⎩⎨⎧==41b k ∴解析式y =x +4………………………………………………………………………5分 ∵一次函数图象与x 轴交点为C∴0=x +4 ∴x =﹣4 ∴C (﹣4,0) ∵S △AOB =S △AOC ﹣S △BOC ∴S △AOB =21×4×3﹣21×4×1=4…………………………………………………………7分 (3)∵kx +b ≥xm∴一次函数图象在反比例函数图象上方 ∴﹣3≤x ≤﹣1…………………………………………………………………………9分 故答案为﹣3≤x ≤﹣123.解:(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°. ……………………………………2分 ∵AB ⊥BC ,∴∠ABC =90°.∴∠DBE =∠CBE =30°. ……………………………3分在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (SAS ).……………………………………………………………5分 (2)四边形ABED 为菱形.……………………………………………………………6分 理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BE C. ∴BA =BE ,AD =EC =E D. 又∵BE =CE ,∴BA =BE =AD =E D.∴四边形ABED 为菱形.……………………………………………………………9分 24.25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B =∠D =60°. ……2分(2)∵AB 是⊙O 的直径,∴∠ACB =90°.又∠B =60°∴∠BAC =30°. ∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA ⊥AE .∴AE 是⊙O 的切线. ……………………………………………6分 (3)如图,连接OC ,∵∠ABC =60°,∴∠AOC =120°.∴劣弧AC 的长为1804120⋅π=38π.……………………………10分 26.解:(1)因为抛物线过点A ,所以将A (-2,0)代入 y =41-x 2+bx +4得:0=41-×(-2)2+b ×(-2)+4,解得b =23,所以,抛物线解析式为:y =-41x 2+23x +4,……………………………………2分由上得:y =-41 (x -3)2+425,对称轴是x =3;………4分 (2)C (0,4);………………………………………5分 由A 点坐标和对称轴可求出B 点坐标为:B (8,0) 由B 、C 两点的坐标可求出:y =−21x +4.……………7分 (3)Q 1(3,0),Q 2(3,4+11),Q 3(3,4-11).………………………11分 如求Q 2,由A ,C 两点的坐标,可求出AC =25, (由于5>2,25>4)以C 为圆心,AC 为半径画弧交对称轴于E ,过C 点 作CD ⊥对称轴于点D ,CE = AC =25,CD =3, 则DE =11,所以,E 点的坐标为(3,4+11)。
2018-2019学年上学期期末考试九年级数学试题(含答案 )
![2018-2019学年上学期期末考试九年级数学试题(含答案 )](https://img.taocdn.com/s3/m/9d26a453f242336c1eb95e2a.png)
2018-2019学年九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x3﹣2x﹣3=0 D.xy+1=03.(3分)下列事件中,是必然事件的是()A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯4.(3分)如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.145°D.70°5.(3分)抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1 B.直线y=1 C.直线y=﹣1 D.直线x=﹣16.(3分)在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)7.(3分)下列说法正确的是()A.三点确定一个圆B.三角形的外心到三角形各顶点的距离相等C.相等的圆心角所对的弧相等D.圆内接四边形的对角互余8.(3分)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.89.(3分)在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.610.(3分)关于x的方程x2﹣2x+m=0有两个相等的实数根,则实数m的取值范围为()A.m≥1 B.m<1 C.m=1 D.m<﹣111.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1012.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列四个结论:①AC <0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③b=2a;④函数的最大值是c﹣a.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)抛物线y=x2+5x﹣1的开口方向是.14.(3分)掷一个质地均匀的正方体骰子,向上一面的点数为奇数的概率是.15.(3分)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是.16.(3分)如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB 上,连接BB′,则∠B′BC′=.17.(3分)某工程一月份的产值为600万元,三月份的产值达到了726万元,设每月产值的增长率x相同,则可列出方程为.18.(3分)如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是.三、解答题(本大题共8小题,满分66分,解答应写出文字说明,证明过程或演算步骤)19.(6分)解关于x的方程:x2﹣4x=0.20.(6分)如图,在⊙O中,弦AB与DC相交于E,且BE=DE,求证:=.21.(8分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.22.(8分)如图,在方格纸上,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′、B′、C′).(1)画出旋转后的△A′B′C′;(2)求点A在旋转过程中所经过的路线的长.(结果保留π)23.(8分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4出现的次数16 20 14 10(1)求上述试验中“2朝下”的频率;(2)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于5的概率.24.(10分)某商品的进货价为每件30元,为了合理定价,先投放市场试销.据市场调查,销售价为每件40元时,每周的销售量是180件,而销售价每上涨1元,则每周的销售量就会减少5件,设每件商品的销售价上涨x元,每周的销售利润为y元.(1)用含x的代数式表示:每件商品的销售价为元,每件商品的利润为元,每周的商品销售量为件;(2)求y关于x的函数关系式(不要求写出x的取值范围);(3)应怎样确定销售价,使该商品的每周销售利润最大?最大利润是多少?25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.26.(10分)如图,直线y=x+3与两坐标轴交于A,B两点,抛物线y=﹣x2+bx+c过A、B 两点,且交x轴的正半轴于点C.(1)直接写出A、B两点的坐标;(2)求抛物线的解析式和顶点D的坐标;(3)在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.2.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x3﹣2x﹣3=0 D.xy+1=0【解答】解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.3.(3分)下列事件中,是必然事件的是()A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯【解答】解:A、明天太阳从东方升起是必然事件,故A符合题意;B、打开电视机,正在播放体育新闻是随机事件,故B不符合题意;C、射击运动员射击一次,命中靶心是随机事件,故C不符合题意;D、经过有交通信号灯的路灯,遇到红灯是随机事件,故D不符合题意;故选:A.4.(3分)如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.145°D.70°【解答】解:∵∠C=35°,∴∠AOB=2∠C=70°.故选:D.5.(3分)抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1 B.直线y=1 C.直线y=﹣1 D.直线x=﹣1【解答】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1,故选:A.6.(3分)在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)【解答】解:∵P(1,2),∴点P关于原点对称的点的坐标是:(﹣1,﹣2),故选:A.7.(3分)下列说法正确的是()A.三点确定一个圆B.三角形的外心到三角形各顶点的距离相等C.相等的圆心角所对的弧相等D.圆内接四边形的对角互余【解答】解:不在同一直线上的三点确定一个圆,A错误;三角形的外心到三角形各顶点的距离相等,B正确;在同圆或等圆中,相等的圆心角所对的弧相等,C错误;圆内接四边形的对角互补,D错误;故选:B.8.(3分)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【解答】解:袋中球的总个数是:2÷=8(个).故选:D.9.(3分)在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.6【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为3.故选:A.10.(3分)关于x的方程x2﹣2x+m=0有两个相等的实数根,则实数m的取值范围为()A.m≥1 B.m<1 C.m=1 D.m<﹣1【解答】解:∵关于x的方程x2﹣2x+m=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4m=0,解得m=1,故选:C.11.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.10【解答】解:∵PA、PB为圆的两条相交切线,∴PA=PB,同理可得:CA=CE,DE=DB.∵△PCD的周长=PC+CE+ED+PD,∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,∴△PCD的周长=10,故选:D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列四个结论:①AC <0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③b=2a;④函数的最大值是c﹣a.其中正确的是()A.①②③B.①②④C.②③④D.①②③④【解答】解:∵图象与x轴有两个交点,则方程有两个不相等的实数根,两根是x1=﹣1,x2=3,故②正确;∵函数图象开口向下,故a<0,有﹣>0,则b>0,故①正确;对称轴为x=1=﹣,则2a+b=0,故③错误;又∵当x=1时,y=a+b+c=a﹣2a+c=c﹣a,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)抛物线y=x2+5x﹣1的开口方向是向上.【解答】解:在y=x2+5x﹣1中,∵a=1>0,∴抛物线开口向上,故答案为:向上.14.(3分)掷一个质地均匀的正方体骰子,向上一面的点数为奇数的概率是.【解答】解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为:.故答案为:.15.(3分)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣x2﹣4x ﹣4.【解答】解:由“左加右减”的原则可知,抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣(x+2)2,即y=﹣x2﹣4x﹣4.故答案为:y=﹣x2﹣4x﹣4.16.(3分)如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB 上,连接BB′,则∠B′BC′=68°.【解答】解:∵把△ABC绕点A逆时针旋转44°,得到△AB′C′,点C′恰好落在边AB上,∴∠BAB′=44°,AB=AB′.∴∠AB′B=∠ABB′.∴∠B′BC′=(180°﹣44°)=68°.故答案为:68°.17.(3分)某工程一月份的产值为600万元,三月份的产值达到了726万元,设每月产值的增长率x相同,则可列出方程为600(1+x)2=726.【解答】解:设平均每月增长率是x,由题意得:600(1+x)2=726,故答案为600(1+x)2=726.18.(3分)如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是.【解答】解:如图,连接AO,∠BAC=120°,∵BC=2,∠OAC=60°,∴OC=,∴AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故答案是:.三、解答题(本大题共8小题,满分66分,解答应写出文字说明,证明过程或演算步骤)19.(6分)解关于x的方程:x2﹣4x=0.【解答】解:x2﹣4x=0,x(x﹣4)=0,则x=0,x﹣4=0,解得x1=0,x2=4.20.(6分)如图,在⊙O中,弦AB与DC相交于E,且BE=DE,求证:=.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(AAS).∴AD=BC,∴=.21.(8分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.【解答】解:(1)把x=2代入方程得4﹣4m+3m=0,解得m=4;(2)当m=4时,原方程变为x2﹣8x+12=0,解得x1=2,x2=6,∵该方程的两个根恰好是等腰△ABC的两条边长,且不存在三边为2,2,6的等腰三角形∴△ABC的腰为6,底边为2,∴△ABC的周长为6+6+2=14.22.(8分)如图,在方格纸上,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′、B′、C′).(1)画出旋转后的△A′B′C′;(2)求点A在旋转过程中所经过的路线的长.(结果保留π)【解答】解:(1)△A′B′C′如图所示:(2)由勾股定理得:OA==2,∴点A在旋转过程中所经过的路线的长为=π.23.(8分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4出现的次数16 20 14 10(1)求上述试验中“2朝下”的频率;(2)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于5的概率.【解答】解:(1)“2朝下”的频率:=,(2)根据题意列表如下:1 2 3 4第一次第二次1 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于5的结果有6种.则P(两次朝下的数字之和大于5)==.24.(10分)某商品的进货价为每件30元,为了合理定价,先投放市场试销.据市场调查,销售价为每件40元时,每周的销售量是180件,而销售价每上涨1元,则每周的销售量就会减少5件,设每件商品的销售价上涨x元,每周的销售利润为y元.(1)用含x的代数式表示:每件商品的销售价为x+40元,每件商品的利润为x+10元,每周的商品销售量为180﹣5x件;(2)求y关于x的函数关系式(不要求写出x的取值范围);(3)应怎样确定销售价,使该商品的每周销售利润最大?最大利润是多少?【解答】解:(1)每件商品的销售价为:(x+40)元,每件商品的利润为:(x+10)元,每周的商品销售量为:(180﹣5x)件;故答案为:x+40,x+10,180﹣5x;(2)所求函数关系式为:y=(x+10)(18﹣5x)即y=﹣5x2+130x+1800;(3)∵在y=﹣5x2+130x+1800中,a=﹣5<0,b=130,x=1800,∴当x=﹣=﹣=13时,x+40=13+40=53,y有最大值且最大值为:=1800﹣=2645(元),∴当售价为53元时,可获得最大利润2645元.25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△AED中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.26.(10分)如图,直线y=x+3与两坐标轴交于A,B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.(1)直接写出A、B两点的坐标;(2)求抛物线的解析式和顶点D的坐标;(3)在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【解答】解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0);…(2分)(2)把A(﹣3,0),B(0,3)分别代入y=﹣x2+bx+c得:,解得:,∴抛物线解析式为:y=﹣x2﹣2x+3;…(5分)顶点D坐标为(﹣1,4)…(6分)(3)存在.设点P的坐标为(t,﹣t2﹣2t+3).∵A(﹣3,0),B(0,3),∴AB2=32+32=18,AP2=(t+3)2+(﹣t2﹣2t+3)2,BP2=t2+(﹣t2﹣2t)2.…(8分)[来源:学科网]当△PAB是以AB为直角边的直角三角形时,可分两种情况:①如图1,如果点B为直角顶点,那么AB2+BP2=AP2(事实这里的点P与点D 重合)即18+t2+(﹣t2﹣2t)2=(t+3)2+(﹣t2﹣2t+3)2,整理得t2+t=0,解得t1=﹣1,t2=0(不合题意舍去),则点P的坐标为(﹣1,4);…(9分)②如图2,如果点A为直角顶点,那么AP2+AB2=BP2,即18+(t+3)2+(﹣t2﹣2t+3)2=t2+(﹣t2﹣2t)2,整理得t2+t﹣6=0,解得t1=2,t2=﹣3(不合题意舍去),则点P的坐标为(2,﹣5);综上所述,所有符合条件的点P的坐标为(﹣1,4)或(2,﹣5).…(10分)另解:如图3,作DE⊥y轴于点E,发现∠ABO=∠DBE=45°可知顶点D满足△DAB是直角三角形,这时点P的坐标为(﹣1,4);作PA⊥AB交抛物线于点P,作PF⊥x轴于点F,发现∠PAF=∠APF=45°,由PF=AF求出另一点P为(2,﹣5).说明:不同解法,请参照评分说明给分.。
山东省青州市上学期期末考试九年级数学试题
![山东省青州市上学期期末考试九年级数学试题](https://img.taocdn.com/s3/m/be23086f650e52ea551898d0.png)
第一学期期末学业质量监测九年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分, 多选、不选、错选均记0分.)1. 如图,在△ABC 中,D,E 分别是边AB,AC 上的点,DE∥BC,AD:DB=2:1,下列结论中错误的是( )A.94=∆∆ABC ADE S S B. 32=BC DE C.CEAEBD AD =D.AC AE AB AD ⋅=⋅ 2. 某种商品经过两次大的降价后,售价仅为原售价的49%,则平均每次的降价率为( )A. 30%B. 40%C. 50%D. 51% 3. 计算︒⋅︒+︒+︒30cos 60tan 45sin 2260cos 的结果等于( ) A. 2 B.325 C. 25 D. 23 4. 从一个装有2个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球.两次摸到的都是红球的概率是( ) A.21 B. 41 C. 61 D. 1215. 已知二次函数c bx ax y ++=2的图象如图所示,那么这个函数的顶点坐标是( ) A. (1,34-) B. (1,34) C. (1,35-) D. (1,32-)6.下列方程中,满足两个实数根的和等于3的方程是( )A. 05622=-+x x B. 05322=--x x C. 05622=+-x x D. 05622=--x x7. 下列关于圆的叙述正确的有( )①对角互补的四边形是圆内接四边形;②圆的切线垂直于圆的半径;③正多边形中心角的度数等于这个正多边形一个外角的度数;④过圆外一点所画的圆的两条切线长相等. A. 1个 B. 2个 C. 3个 D. 4个 8. 在反比例函数xy 4=的图象中,阴影部分的面积不等于4的是( )9. 如图,点O 为正五边形ABCDE 的中心,五边形ABCDE 的对角线分别相交于点P,Q,R,M,N.若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有( )个黄金三角形. A. 5 B. 10 C. 15 D. 2010. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积为( )A. 1-πB. 12-πC. π214-D. 1+π 11. 已知△ABC 中,∠B=60°,AB=6,BC=8,则△ABC 的面积为( ) A. 212 B. 24 C. 324 D. 31212. 如图,在⊙O 中,AB 是⊙O 的直径,点D 是⊙O 上一点,点C 是弧AD 的中点,弦CE ⊥AB 于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF 、BC 于点P 、Q ,连接AC .给出下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心;④AP •AD =CQ •CB .其中正确的是( ). A. ①②③ B. ②③④ C. ①③④ D. ①②③④第Ⅱ卷(非选择题 84分)二、填空题(本题共6小题,共18分,只填写最后结果,每小题填对得3分.)13. 如图,在△ABC 中,D 为AB 边上一点,△CBD∽△ACD,AD=6,BD=9,那么AC 的长等于 .14. 关于x 的方程62)1(2=++x x 的解是 .15. 小明同学沿坡度为33:1=i 的山路向上行走了100米,则小明上升的高度是 米. 16.经过(1,2.6),(4,5),(2,3)三点的二次函数的表达式是 .17.设x 为非负实数,将x“四舍五入”到整数的值记为<x>(可读作尖括号x ),即当非负实数x 满足21-n ≤x<21+n 时,其中n 为整数,则<x>=n.如<0.48>=0,<5.5>=6,<3.49>=3.如果<x-2.2>=5,那么x 的取值范围是 .18. 二次函数63)1(2-+-=x x a y 的图象与x 轴的交点为A 和B ,若点B 一定在坐标原点和(1,0)之间,且B 点不与原点和(1,0)点重合,那么a 的取值范围是 .三、解答题(本题共6小题,共66分.)19. (本题满分10分) 在大课间活动中,体育老师随机抽取了九年级甲、乙两班部分女生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和频数直方图,请你根据图表中的信息完成下列问题:(1)频数分布表中a= ,b= ; (2)将频数直方图补充完整;(3)如果该校九年级共有女生360人,估计仰卧起坐能够一分钟完成30次或30次以上的女学生有多少人?(4)已知第一组有两名甲班学生,第四组中只有一名乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?20. (本题满分9分)为了预防“流感”,某学校对教室采用药熏法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克/立方米)与药物点燃后的时间x (分钟)成正比例,药物燃尽后,y 与x 成反比例(如图所示).已知药物点燃后4分钟燃尽,此时室内每立方米空气中含药量为8毫克.(1)求药物燃烧时,y 与x 之间函数的表达式; (2)求药物燃尽后,y 与x 之间函数的表达式;(3)研究表明,当空气中每立方米的含药量不低于2毫克时,才能有效杀灭空气中的病菌,那么此次消毒有效时间有多长?21. (本题满分10分)已知关于x 的一元二次方程.0122=-+-m x x (1)当m 取何值时,这个方程有两个不相等的实根? (2)若方程的两根都是正数,求m 的取值范围;(3)设21,x x 是这个方程的两个实根,且22211x x x =-,求m 的值.22. (本题满分12分)某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)求y与x的函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润不低于8000元?23. (本题满分12分)如图,AB是⊙O的弦,半径OC⊥AB交AB于点D,点P是⊙O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.(1)设∠A=α,当圆心O在∠APB内部时,写出α的取值范围;(2)求证:CM是⊙O的切线;4,求PC的长.(3)若OC=4,PB=224. (本题满分13分)如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为(,)(用含x的代数式表示);(2)求△NPC面积的表达式,并求出面积S的最大值及相应的x值;(3)设四边形OMPC的面积为S1,四边形ABNP的面积为S2,请你就x的取值范围讨论S1与S2的大小关系并说明理由;(4)当x为何值时,△NPC是一个等腰三角形?九年级数学参考答案一、选择题(本大题共12小题,共36分.每小题选对得3分. 错选、不选或多选均记0分.)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13.103; 14.5,121-==x x ; 15.350 ; 16.6.22.02.02+-=x x y ; 17. 6.7≤x <7.7; 18.a >4三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分10分)解:(1)a=0.3 b=4 ----------------------------------------------------------------------------2分(2)--------------------------------------------------------------------4分(3)360×(0.35+0.20)=198(人)------------------------------------------------------------6分 (4)列表得: -----------------------------9分∵共有12种等可能的结果,所选两人正好都是甲班学生有6种情况, ∴所选两人正好都是甲班学生的概率是:21126= ----------------------------------------10分 20.(本题满分9分)解:(1)由图象可知,当药物燃烧时,y 是x 的正比例函数,设正比例函数的表达式为y=k 1x (k ≠0)(0≤x ≤4)将(4,8)代入上式,得8=4k 1,解得k 1=2所以,药物燃烧时,y 与x 之间的函数表达式为:y=2x ,0≤x ≤4. ---------3分 (2)当药物燃尽后,y 是x 的反比例函数,设它的表达式是xk y 2=(x >4)将(4,8)代入上式,得482k =,解得k 2=32. 所以,药物燃尽后,y 与x 之间的函数表达式为:xy 32=,x >4 ----------6分 (3)把y=2分别代入y=2x 和xy 32=,分别得x 1=1和x 2=16 --------------8分 16-1=15所以,此次消毒的有效时间为15分钟. ----------------------------------------9分 21. (本题满分10分) 解:(1)∵方程有两个不相等的实根∴)1(4)2(422---=-=∆m ac b >0 --------------------------------------------2分解得m <2 -------------------------------------------------------------------------------3分(2)若方程的两根都是正数,设21,x x 是这个方程的两个实根则)1(4)2(422---=-=∆m ac b ≥0且21x x +=2>0且21x x ⋅=m-1>0 -------5分 解得1<m ≤2 --------------------------------------------------------------------------------6分 (3)由一元二次方程的根与系数的关系,得21x x +=2,21x x ⋅=m-1∵22211x x x =-,∴以1=2212221)(x x x x x x +=+ 即1=22x ,212=x ,--------------------------------------------------------------------------8分 将212=x 代入21x x +=2得231=x --------------------------------------------------------9分将212=x ,231=x 代入21x x ⋅=m-1得,47=m -----------------------------------10分22. (本题满分12分)解:(1)设函数关系式为y=kx+b (k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点 ∴,解得, ∴y=﹣10x+800 ----------------------------------------2分经检验,(50,300)和(60,200)满足关系式y=﹣10x+800∴函数关系式是:y=﹣10x+800;-----------------------------------------------------------------4分 (2)由题意可得,(x ﹣20)(﹣10x+800)=8000,------------------------------------------------------------------6分解得,x 1=40或x 2=60,即当销售单价定为40或60元时,工艺厂试销该工艺品每天获得的利润为8000元;--8分 (3)设工艺厂试销该工艺品每天获得的利润是W 元, 依题意得 W=(x ﹣20)(﹣10x+800) =﹣10x 2+1000x ﹣16000 =﹣10(x ﹣50)2+9000,∴当x=50时,W 有最大值9000,∴当销售单价定为50元/件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元, -----------------------------------------------------------------------------------------------------10分 当﹣10(x ﹣50)2+9000≥8000时,得40≤x≤60,∵当地物价部门规定,该工艺品销售单价最高不能超过45元/件,∴那么销售单价定为40到45元时,工艺厂试销该工艺品每天获得的利润不低于8000元. ------------------------------------------------------------------------------------------------------12分 23.(本题满分12分) 解:(1)30°<α<90° ------------------------------------------------------------------------2分 (2)证明:连接OB.∵OC ⊥AB ∴弧AC=弧BC ∴∠APB=∠BOC∵∠APB=60°∴∠BOC=60°∴△OBC 为等边三角形 ∴∠OCB=60° -----4分 ∵∠OCB=2∠BCM ∴∠BCM=30° -------------6分 ∴∠OCM=∠OCB+∠BCM=90° ∴OC ⊥MC∴CM 是⊙O 的切线 ------------------------------------7分(3)如图,作BE ⊥PC 于点E.在Rt △PBE 中,∠BPE=21∠BOC=30°,PB=24 ∴BE=21PB=22,PE=BE ⋅tan60°= 62322=⨯-9分 ∵△OBC 为等边三角形 ∴BC=OC=4 在Rt △BEC 中,CE=22)22(42222=-=-BE BC ----------------11分∴PC=PE+CE=2262+ ---------------------------------------------------------12分 24.(本题满分13分) 解:(1)由题意可知,C (0,3),M (x ,0),N (4-x ,3)∴点P 的坐标为(x ,x 433-)-----------------------------------------------------2分(2)设△NPC 的面积为S ,在△NPC 中,NC=4-x ,NC 边上的高x43,其中,0<x <4∴S=23)2(8343)4(212+--=⨯-x x x , --------4分 ∴S 的最大值为23,此时x=2 ----------------------5分(3)由图可知,x x OM MP OC S ⋅-+=⋅+=)4333(21)(211 (0<x <4)x x S S S PCN ABC 43)4(2134212⨯--⨯⨯=-=∆∆(0<x <4)---------------------7分令S 1=S 2,可解得x=2所以:当0<x <2时,S 1<S 2;当x=2时,S 1=S 2;当2<x <4时,S 1>S 2 -----9分 (4)延长MP 交CB 于点Q ,则有PQ ⊥BC.①若NP=CP ,∵PQ ⊥BC ,∴NQ=CQ=x ,∴3x=4 ,∴34=x ---------------------10分 ②若CP=CN ,则CN=4-x ,PQ=43x ,CP=45x ,那么4-x=45x ,∴916=x -----------11分③若CN=NP ,则CN=4-x ,PQ=43x ,NQ=2x-4,在Rt △PQN 中PN 2=NQ 2+PQ 2∴222)43()42()4(x x x +-=-,解得57128=x --------------------------------------------12分综上所述,34=x ,或916=x ,或57128=x 时,△NPC 是一个等腰三角形.----------13分。
九年级(上)期末考试数学试题【答案】
![九年级(上)期末考试数学试题【答案】](https://img.taocdn.com/s3/m/e76ed195f524ccbff12184af.png)
九年级(上)期末考试数学试题【答案】一.选择题(满分48 分,每小题 4 分)1.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.2.已知x1、x2 是关于x的方程x2﹣ax﹣2=0 的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0 3.将△ABC 绕点A逆时针旋转100°,得到△ADE.若点D在线段B C 的延长线上,如图,则∠EDP 的大小为()A.80°B.100°C.120°D.不能确定4.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D,过点B作PD 的垂线交PD 的延长线于点C,若⊙O 的半径为4,BC=6,则P A 的长为()A.4 B.2 C.3 D.2.55.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.B.C.D.6.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.7.如图,已知DE∥BC,CD 和BE 相交于点O,S△DOE:S△COB=9:16,则DE:BC 为()A.2:3 B.3:4 C.9:16 D.1:28.下列计算错误的个数是()①sin60°﹣sin30°=sin30°②sin245°+cos245°=1③(tan60°)2=④tan30°=A.1个B.2 个C.3 个D.4 个9.函数y=(x+1)2﹣2 的最小值是()A.1 B.﹣1 C.2 D.﹣210.如图,线段A B两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)11.无人机在A处测得正前方河流两岸B、C 的俯角分别为α=70°、β=40°,此时无人机的高度是h,则河流的宽度B C 为()A.h(tan50°﹣tan20°)B.h(tan50°+tan20°)C.D.12.在⊙O 中,弦A B 的长为2cm,圆心O到A B 的距离为1cm,则⊙O 的半径是()A.2B.3 C.D.二.填空题(满分24 分,每小题4 分)13.计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=.14.已知x=1 是方程x2+bx﹣2=0 的一个根,则方程的另一个根是.15.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k 的值为.16.如图,AB 是⊙O 的直径,点C 是半径OA 的中点,过点C 作DE⊥AB,交⊙O 于D,E两点,过点D作直径D F,连结A F,则∠DF A=.17.若方程x2﹣ax+6=0 的两根中,一根大于2,另一根小于2,则a的取值范围是.18.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.测得DE=0.5 米,EF =0.25 米,目测点D到地面的距离D G=1.5 米,到旗杆的水平距离D C=20 米.按此方法,请计算旗杆的高度为米.三.解答题(共7 小题,满分78 分)19.(10分)(1)在图①中画出△ABC绕点O顺时针旋转90°后的图形;(2)在图②中画出四边形ABCD 关于点O 对称的图形.20.(10分)在△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交A B,AC于D、E 两点,连接CD,如果AD=2,求tan∠BCD 的值.21.(10分)如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x 的值.22.(12分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x 轴交于点B,平行于x 轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m 的值和反比例函数的表达式;(2)观察图象,直接写出当x>0 时不等式2x+6﹣<0 的解集;(3)直线y=n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?最大值是多少?23.(12分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交A E于点M,经过B、M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径.(1)判断AE 与⊙O 的位置关系,并说明理由;(2)若BC=6,AC=4CE 时,求⊙O 的半径.24.(12分)如图,在▱ABCD中,E是B C边上一点.且B E=EC,BD,AE相交于点F.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S△BEF=6cm2.求△AFD 的面积S△AFD.25.(12分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低 1 元,其销量可增加10 件.(1)若商场经营该商品一天要获利润2160 元,则每件商品应降价多少元?(2)设后来该商品每件降价x 元,商场一天可获利润y 元.求出y 与x 之间的函数关系式,并求当x 取何值时,商场获利润最大?参考答案一.选择题1.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.2.已知x1、x2 是关于x的方程x2﹣ax﹣2=0 的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A 正确;B、根据根与系数的关系可得出x1+x2=a,结合a 的值不确定,可得出B 结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C 错误;D、由x1•x2=﹣2,可得出x1、x2 异号,结论D 错误.综上即可得出结论.解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A 正确;B、∵x1、x2 是关于x 的方程x2﹣ax﹣2=0 的两根,∴x1+x2=a,∵a 的值不确定,∴B 结论不一定正确;C、∵x1、x2 是关于x 的方程x2﹣ax﹣2=0 的两根,∴x1•x2=﹣2,结论C 错误;D、∵x1•x2=﹣2,∴x1、x2 异号,结论 D 错误.故选:A.【点评】本题考查了根的判别式以及根与系数的关系,牢记“当△>0 时,方程有两个不相等的实数根”是解题的关键.3.将△ABC 绕点A逆时针旋转100°,得到△ADE.若点D在线段B C 的延长线上,如图,则∠EDP 的大小为()A.80°B.100°C.120°D.不能确定【分析】根据旋转的性质得到∠BAD=100°,AB=AD,根据三角形内角和定理得到∠B=∠ADB=40°,计算即可.解:由旋转的性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.【点评】本题考查的是旋转变换的性质,掌握旋转方向、旋转角以及旋转的性质是解题的关键.4.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D,过点B作P D 的垂线交P D 的延长线于点C,若⊙O 的半径为4,BC=6,则P A 的长为()A.4 B.2 C.3 D.2.5【分析】直接利用切线的性质得出∠PDO=90°,再利用相似三角形的判定与性质分析得出答案.解:连接DO,∵PD 与⊙O 相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故P A=4.故选:A.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质,正确得出△PDO∽△PCB 是解题关键.5.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.B.C.D.【分析】令3 件上衣分别为A、B、C,对应的裤子分别为a、b、c,画树状图列出所有等可能结果,再根据概率公式求解可得.解:令3 件上衣分别为A、B、C,对应的裤子分别为a、b、c,画树状图如下:由树状图可知,共有9 种等可能结果,其中取自同一套的有3 种可能,所以取自同一套的概率为=,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.【分析】根据一次函数及反比例函数的图象与系数的关系作答.解:A、由函数y=的图象可知k>0 与y=kx+3 的图象k>0 一致,故A选项正确;B、因为y=kx+3 的图象交y 轴于正半轴,故B 选项错误;C、因为y=kx+3 的图象交y 轴于正半轴,故C 选项错误;D、由函数y=的图象可知k>0 与y=kx+3 的图象k<0 矛盾,故D选项错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.如图,已知DE∥BC,CD 和BE 相交于点O,S△DOE:S△COB=9:16,则DE:BC 为()A.2:3 B.3:4 C.9:16 D.1:2【分析】根据相似三角形的面积比即可求出答案.解:∵DE∥BC,∴△DOE∽△BOC,∴=()2∴故选:B.【点评】本题考查相似三角形的性质,解题的关键是熟练运用相似三角形的性质,本题属于基础题型.8.下列计算错误的个数是()①sin60°﹣sin30°=sin30°②sin245°+cos245°=1③(tan60°)2=④tan30°=A.1个B.2 个C.3 个D.4 个【分析】根据特殊锐角的三角函数值分别计算等式的左右两边,据此即可对每个等式作出判断.解:①sin60°﹣sin30°=﹣,sin30°=,错误;②sin245°+cos245°=()2+()2=+ =1,正确;③(tan60°)2=()2=,错误;④tan30°=,==,错误;故选:C.【点评】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.9.函数y=(x+1)2﹣2 的最小值是()A.1 B.﹣1 C.2 D.﹣2【分析】抛物线y=(x+1)2﹣2开口向上,有最小值,顶点坐标为(﹣1,﹣2),顶点的纵坐标﹣2 即为函数的最小值.解:根据二次函数的性质,当x=﹣1 时,二次函数y=(x﹣1)2﹣2 的最小值是﹣2.故选:D.【点评】本题考查对二次函数最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.如图,线段A B两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.解:∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的 2 倍后得到线段CD,∴A 点与C 点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选:A.【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.11.无人机在A处测得正前方河流两岸B、C 的俯角分别为α=70°、β=40°,此时无人机的高度是h,则河流的宽度B C 为()A.h(tan50°﹣tan20°)B.h(tan50°+tan20°)C.D.【分析】利用角的三角函数定义求出CD,BD,从而可得BC.解:过A 作CB 延长线的高,垂足为D,由题意可知∠ABD=α,∠ACB=β,AD=h,∴BD=h•tan20°,CD=h•tan50°,∴BC=CD﹣BD=h(tan50°﹣tan20°).故选:A.【点评】本题考查了解三角形的应用,关键是利用角的三角函数定义求出CD,BD.12.在⊙O 中,弦A B 的长为2cm,圆心O到A B 的距离为1cm,则⊙O 的半径是()A.2B.3 C.D.【分析】过点O 作OD⊥AB 于点D,连接OA,根据垂径定理求出AD,根据勾股定理计算即可.解:过点O 作OD⊥AB 于点D,连接OA,∵AB=2 cm,OD⊥AB,∴AD=AB=×2 =cm,在R t△AOD中,OA==2(cm),故选:A.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键二.填空题(共6 小题,满分24 分,每小题 4 分)13.计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=.【分析】直接利用绝对值的性质以及零指数幂的性质、绝对值的性质分别化简,进而计算得出答案.解:原式=()2+ ﹣1﹣2×+1=+ ﹣1﹣+1=.故答案为:.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.已知x=1 是方程x2+bx﹣2=0 的一个根,则方程的另一个根是﹣2 .【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.解:∵x=1 是方程x2+bx﹣2=0 的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键.15.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k 的值为12 .【分析】根据题意和旋转的性质,可以得到点C 的坐标,由点C 在反比例函数y=的图象上,从而可以得到k 的值,本题得以解决.解:∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,∴点C的坐标为(6,2),∴2=,解得,k=12,故答案为:12.【点评】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化﹣旋转,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,AB 是⊙O 的直径,点C 是半径OA 的中点,过点C 作DE⊥AB,交⊙O 于D,E两点,过点D作直径D F,连结A F,则∠DF A=30°.【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.解:∵点C 是半径OA 的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°【点评】此题考查圆周角定理,关键是利用垂径定理和三角函数得出∠CDO=30°.17.若方程x2﹣ax+6=0 的两根中,一根大于2,另一根小于2,则a 的取值范围是a>5 .【分析】由当x=2 时y<0 结合根的判别式△>0,即可得出关于a 的不等式组,解之即可得出结论.解:依照题意,画出图形,如图所示.根据题意得:,解得:a>5.故答案为:a>5.【点评】本题考查了抛物线与x 轴的交点,依照题意画出图形,利用数形结合解决问题是解题的关键.18.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.测得DE=0.5 米,EF =0.25 米,目测点D到地面的距离D G=1.5 米,到旗杆的水平距离D C=20 米.按此方法,请计算旗杆的高度为11.5 米.【分析】根据题意证出△DEF∽△DCA,进而利用相似三角形的性质得出AC 的长,即可得出答案.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故A B=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5 米;故答案为:11.5.【点评】此题主要考查了相似三角形的应用;由三角形相似得出对应边成比例是解题关键.三.解答题(共7 小题,满分78 分)19.(10分)(1)在图①中画出△ABC绕点O顺时针旋转90°后的图形;(2)在图②中画出四边形ABCD 关于点O 对称的图形.【分析】(1)利用网格特点和旋转的性质分别画出点A、B、C 的对应点D、E、F,从而得到△ABC 绕点O 顺时针旋转90°的图形△DEF;(2)分别作出四顶点关于点O 的对称点,再顺次连接可得.解:(1)画出的图形如图①所示,△DEF即为所求:(2)画出的图形如图②所示,四边形A′B′C′D′即为所求.【点评】此题考查了作图﹣旋转变换,熟练掌握旋转的定义和性质是解本题的关键.20.(10分)在△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交A B,AC于D、E 两点,连接CD,如果AD=2,求tan∠BCD 的值.【分析】首先利用线段垂直平分线的性质得出∠A=∠ACD,求出AD=DC=2;根据AB=AC 求出BD 长即可求解.解:∵DE 垂直平分AC,∴AD=CD,∴∠A=∠ACD=45°,∴∠ADC=∠BDC=90°,∵AD=CD=2,∴AC=AB==2 ,∴BD=2 ﹣2,在R t△BCD 中,tan∠BCD===﹣1.【点评】本题考查的是等腰三角形的性质以及线段垂直平分线的性质,同时考生需要注意三角函数的运用.21.(10分)如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x 的值.【分析】考查立体图形和平面图形的转换,展开与折叠,代数式的求值.解:正方体的左面、右面标注的代数式分别为x2、3x﹣2,(2分)(3分)解由题意,x2=3x﹣2.得x1=1,x2=2.(5分)【点评】注意图形的展开与折叠的转换;代数式的求值.22.(12分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x 轴交于点B,平行于x 轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m 的值和反比例函数的表达式;(2)观察图象,直接写出当x>0 时不等式2x+6﹣<0 的解集;(3)直线y=n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?最大值是多少?【分析】(1)求出点 A 的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x 的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题;解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=.(2)不等式2x+6﹣<0 的解集为0<x<1.(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN=|MN|×|y M|=×(﹣)×n=﹣(n﹣3)2+ ,∴n=3 时,△BMN 的面积最大,最大值为.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.23.(12分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交A E于点M,经过B、M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径.(1)判断AE 与⊙O 的位置关系,并说明理由;(2)若BC=6,AC=4CE 时,求⊙O 的半径.【分析】(1)AE 与⊙O 相切,利用圆的性质和平行线的性质证明∠AMO=90°,即OM⊥AE 即可;(2)设⊙O 的半径为r,则AO=12﹣r 利用等腰三角形的性质和解直角三角形的有关知识以及利用平行线判定三角形相似和相似三角形的性质即可求出r 的值.解:(1)AE与⊙O相切.理由如下:连接OM,则OM=OB,∴∠OMB=∠OBM.∵BM 平分∠ABC,∴∠OBM=∠EBM.∴∠OMB=∠EBM.∴OM∥BC.∴∠AMO=∠AEB.在△ABC 中,AB=AC,AE 是角平分线,∴AE⊥BC.∴∠AEB=90°.∴∠AMO=90°.∴OM⊥AE.∴AE 与⊙O 相切;(2)在△ABC 中,AB=AC,AE 是角平分线,∴BE=BC,∠ABC=∠C.∵BC=6,cos C=,∴BE=3,cos∠ABC=.在△ABE 中,∠AEB=90°,∴AB===12.设⊙O 的半径为r,则AO=12﹣r.∵OM∥BC,∴△AOM∽△ABE.∴=.∴=.解得:r=2.4∴⊙O 的半径为2.4.【点评】此题综合运用了等腰三角形的性质、平行线的判定及性质、切线的判定、相似三角形的判定和性质以及解直角三角形的知识.连接过切点的半径是圆中常见的辅助线之一.24.(12分)如图,在▱ABCD中,E是B C边上一点.且B E=EC,BD,AE相交于点F.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S△BEF=6cm2.求△AFD 的面积S△AFD.【分析】(1)先利用平行四边形的性质得A D=BC,AD∥BC,再利用B E=EC 得到B E =AD,接着证明△BEF∽△DAF,然后利用相似三角形的性质可得到△BEF 的周长与△AFD 的周长之比;(2)根据相似三角形的性质计算△AFD 的面积.解:(1)∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∵BE=EC,∴BE=BC,∴BE=AD,∵AD∥BE,∴△BEF∽△DAF,∴△BEF 的周长:△AFD 的周长=BE:AD=1:3;(2)∵△BEF∽△DAF,∴△BEF 的面积:△AFD 的面积=12:32;∴S△AFD=9S△BEF=9×6=54(cm2).【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在利用相似三角形的性质时主要利用相似比进行几何计算.也考查了平行四边形的性质.25.(12分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低 1 元,其销量可增加10 件.(1)若商场经营该商品一天要获利润2160 元,则每件商品应降价多少元?(2)设后来该商品每件降价x 元,商场一天可获利润y 元.求出y 与x 之间的函数关系式,并求当x 取何值时,商场获利润最大?【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,答:商店经营该商品一天要获利润2160 元,则每件商品应降价 2 元或8 元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5 时,y 取得最大值为2250 元.答:y=﹣10x2+100x+2000,当x=5 时,商场获取最大利润为2250 元.【点评】本题主要考查二次函数的应用和一元二次方程的应用,由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.九年级(上)期末考试数学试题(答案)一、选择题(1--10小题每题3分,11--16每题2分共42分)1.下列生态环保标志中,是中心对称图形的是()A.B.C.D.2.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅度增加退休人员退休金.企业退休职工刘师傅2017年月退休金为2500元,2019年月退休金达到了3280元.设刘师傅的月退休金从2017年到2019年平均增长率设为x,可列方程为()A.2500(1﹣x)2=3280B.2500(1+x)2=3280C.3280(1﹣x)2=2500D.2500+2500(1+x)+2500(1+x)2=32804.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a 的值是()A.B.﹣C.4D.﹣15.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y26.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55°C.75•tan55°D.7.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.58.如图,正方形ABCD的对角线相交于点O,正方形EFGO绕点旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积()A.由小变大B.由大变小C.始终不变D.先由大变小,然后又由小变大9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.10.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°11.如图,是由几个相同的小正方体组合而成的立体图形的三视图,则这个几何体的小正方体的个数是()A.5B.6C.7D.812.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.2213.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 14.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24D.2715.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为()A.1B.2C.4D.无法计算16.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(没空2分共12分)17.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则迎水坡面AB的长度是:.18.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是.19.请你根据已有的学习经验和策略,试着研究函数y=,并提出这个函数的两条性质①②20.如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD可以看作是正边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是边形的边长.三、解答题21.(12分)基本计算:(1)计算:2sin30°﹣4sin45°•cos45°+tan260°.(2)解方程(x﹣1)(x﹣3)=8(3)若==,求的值22.(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;并写出A1、B1、C1三点的坐标.(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留π).23.(7分)一个不透明的口袋里装有分别标有汉字“道”、“德”、“青”、“县”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“德”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“道德”或“青县”的概率.24.(8分)在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).(1)求反比例函数的表达式;(2)过点A 的直线与反比例函数y =图象的另一个交点为B ,与y 轴交于点P ,若AP =3PB ,求点B 的坐标.25.(10分)如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ;(2)连接BF ,若AD =,AF =6,tan ∠AED =,求BF 的长.26.(11分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y 与x 的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?27.(12分)如图,已知∠MON=120°,点A,B分別在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°,且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD.(1)求证:AD=CD;(2)如图1,当0°<α<60°时,试证明∠ACD的大小是一个定值;(3)当60°<α<120°时,(2)中的结论还成立吗?请补全图形并说明理由;(4)△ACD面积的最大值为.(直接写出结果)2018-2019学年河北省沧州市青县九年级(上)期末数学试卷参考答案与试题解析一、选择题(1--10小题每题3分,11--16每题2分共42分)1.下列生态环保标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.3.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅度增加退休人员退休金.企业退休职工刘师傅2017年月退休金为2500元,2019年月退休金达到了3280元.设刘师傅的月退休金从2017年到2019年平均增长率设为x,可列方程为()A.2500(1﹣x)2=3280B.2500(1+x)2=3280C.3280(1﹣x)2=2500D.2500+2500(1+x)+2500(1+x)2=3280【分析】设刘师傅的月退休金从2017年到2019年平均增长率设为x,根据刘师傅2017年及2019年的月退休金,即可得出关于x的一元二次方程,此题得解.【解答】解:设刘师傅的月退休金从2017年到2019年平均增长率设为x,根据题意得:2500(1+x)2=3280.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a 的值是()A.B.﹣C.4D.﹣1【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,。
青岛版九年级2018--2019学年度第一学期期末考试数学试卷
![青岛版九年级2018--2019学年度第一学期期末考试数学试卷](https://img.taocdn.com/s3/m/62580c3da300a6c30c229f54.png)
绝密★启用前 青岛版九年级2018--2019学年度第一学期期末考试 数学试卷 你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,一、单选题(计30分) 1.(本题3分)若x 1,x 2是方程x =24的两根,则12x x +的值是( ) A .8 B .4 C .2 D .0 2.(本题3分)在半径为3的圆中,150°的圆心角所对的弧长是( ) A . 154π B . 152π C . 54π D . 52π 3.(本题3分)如图,在宽度为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m 2 , 求道路的宽.如果设小路宽为xm ,根据题意,所列方程正确的是( ) A . (20+x )(32﹣x )=540 B . (20﹣x )(32﹣x )=100 C . (20﹣x )(32﹣x )=540 D . (20+x )(32﹣x )=540 4.(本题3分)如图,甲、乙两盏路灯相距30米,一天晚上,当小刚从路灯甲底部向路灯乙底部直行25米时,发现自己的身影顶部正好接触到路灯乙的底部,已知小刚的身高为1.5米,那么路灯甲的高为( ) A . 9米 B . 8米 C . 7米 D . 6米5.(本题3分)如图,用一个半径为30cm ,面积为300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( ) A . 5cm B . 10cm C . 20cm D . 5πcm6.(本题3分)在Rt △ABC 中,∠C=90°,sinA=23,则∠A 的度数是( )A . 30°B . 45°C . 60°D . 90°7.(本题3分)已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ).A . -5或1B . 5C . 1D . 5或-18.(本题3分)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD ,BD ,若∠CAB=35°,则∠ADC 的度数为A .35°B .55°C .65°D .70°9.(本题3分)已知实数a ,b 分别满足a 2-6a+4=0,b 2-6b+4=0,且a≠b ,则的值是( )A . 7B . -7C . 11D . -1110.(本题3分)如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为( )A . 815 B . 1 C . 43 D . 85二、填空题(计32分) 11.(本题4分)若△ABC ∽△A′B′C′,且△ABC 与△A′B′C′的面积之比为1:3,则相似比为_____. 12.(本题4分)如图,PA 与⊙O 相切于点A ,PC 经过⊙O 的圆心且与该圆相交于两点B 、C ,若PA=4,PB=2,则sin ∠P= .13.(本题4分)如图,在平行四边形ABCD 中,AE⊥BC,垂足为E ,如果AB=5,BC=8, 4sin 5B ,那么EC=_________. 14.(本题4分)如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD=2OA=6,AD :AB=3:1.则点B 的坐标是_______. 15.(本题4分)设a 、b 是方程x 2+x-2017=0的两个实数根,则a 2+2a+b 的值为_______. 16.(本题4分)已知关于的一元二次方程的一个根为,则此方程的另一个根为________. 17.(本题4分)如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =2米, cos ∠BAC =32,则梯子长AB =________米. C18.(本题4分)如图,△ABC 是⊙O 的内接三角形,∠C=50°,则∠OAB=三、解答题(计58分)19.(本题8分)计算:︒︒+︒60c -330cos 45s os in -sin60°(1-sin30°).20.(本题8分)解方程(1)(x -2)2—121=0 (2)2x 2+6x-10=0(配方法)21.(本题8分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?22.(本题8分)已知:如图,矩形ABCD 的一条边AB=10,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,折痕为AO . (1)求证:△OCP ∽△PDA ; (2)若△OCP 与△PDA 的面积比为1:4,求边AD 的长.23.(本题8分)如图,浦西对岸的高楼AB ,在C 处测得楼顶A 的仰角为30°,向高楼前进100米到达D 处,在D 处测得A 的仰角为45°,求高楼AB 的高. A B C D24.(本题9分)已知关于x 的一元二次方程()2220x k x k -++=.(1)试说明无论k 取何值时,这个方程一定有实数根;(2)已知等腰ABC ∆的底边1a =,若两腰b 、c 恰好是这个方程的两个根,求ABC ∆的周长.25.(本题9分)如图所示,在平面直角坐标系中,正方形与正方形是以原点为位似中心的位似图形,且相似比为,点,,在轴上. 若点的坐标为,直接写出点和点的坐标; 若正方形的边长为,求点的坐标.参考答案1.D .【解析】试题分析:原方程可化为:240x -=;∴b x x a +=-=120;故选D . 考点:根与系数的关系.2.D【解析】试题分析:根据弧长公式: 150351801802n r l πππ⨯⨯===.故选D . 考点:弧长的计算.3.C【解析】解:利用平移,原图可转化为下图,设小路宽为x 米.根据题意得:(20﹣x )(32﹣x )=540.故选C .点睛:此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.4.A【解析】试题解析:如图,∵AB ⊥OB ,CD ⊥OB ,∴△ABO ∽△CDO , ∴,,解得AB=9,故选A.5.B【解析】试题分析:圆锥的底面周长=扇形的弧长,据此列等式求出r的值.3002230rππ⨯=⨯,解得r=10cm.故答案为:10cm.考点:圆锥的有关计算.视频6.C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.7.C【解析】【分析】把x2+y2看作一个字母,设t=x2+y2,则有t(t+3)-8=0即可求得x2+y2的值.【详解】设t=x2+y2,则(t+1)(t+3)=8解得t=1或-5,∵t=x2+y2≥0,∴t=x2+y2=1,故选C.【点睛】本题考查的是一元二次方程的解法,熟练掌握解一元二次方程的方法及平方的非负数的性质是解题的关键.8.B.【解析】试题分析:先求出∠CDB,由∠ADB=90°,可得∠ADC.试题解析:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠CDB=∠CAB=35°,∴∠ADC=90°-35°=55°.故选B.考点:圆周角定理.9.A【解析】根据已知两等式得到a与b为方程x2-6x+4=0的两根,利用根与系数的关系求出a+b 与ab的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab的值代入计算即可求出值.解:根据题意得:a与b为方程x2-6x+4=0的两根,∴a+b=6,ab=4,则原式===7.故选A.“点睛”此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10.C【解析】试题解析:如图,∵BC⊥AD,DE⊥AD,∴BC∥DE,∴△ABC∽△ADE,∵10= 0.86 h∴h=100.84=63故选C.11.1:【解析】【分析】根据相似三角形面积的比等于相似比的平方解答.【详解】∵△ABC∽△A′B′C′,△ABC与△A′B′C′的面积之比为1:3,∴△ABC与△A′B′C′的相似比为1:.故答案是:1:.【点睛】考查了相似三角形的性质,解题的关键是运用了相似三角形的性质(相似三角形面积的比等于相似比的平方).12.0.6【解析】试题分析:连接OA,设⊙O的半径为r,则OP=OB+BP=r+2,因为PA与⊙O相切于点A,所以OA⊥AP,根据勾股定理得,OP2=OA2+AP2,即(r+2)2=r2+42,解得,r=3,故sinP===.考点: 1.切线的性质;2.锐角三角函数的定义13.5 ;【解析】试题解析:在△ABE中,AE⊥BC,AB=5,sinB=45,∴AE=4,∴,∴EC=BC-BE=8-3=5.故答案为:5.14.(5,1)【解析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB,∵OD=2OA=6,∴OA=3.∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1).点睛:本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.15.2016【解析】解:∵a是方程x2+x﹣2017=0的根,∴a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b,∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2017﹣1=2016.16.【解析】【分析】根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程x2-6x+m2-3m-5=0=0,求得(m2-3m-5)的值;然后将其代入原方程,通过因式分解法求得方程的另一根即可.【详解】∵关于x的一元二次方程x2-6x+m2-3m-5=0的一个根为-1,∴x=-1满足关于x的一元二次方程x2-6x+m2-3m-5=0,∴1+6+m2-3m-5=0,∴m2-3m-5=-7,∴原方程为x2-6x-7=0,即(x-7)(x+1)=0,∴x-7=0或x+1=0,解得,x=7或x=-1,∴该方程的另一根是x=7,故答案为:7.【点睛】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.17.3【解析】分析:根据余弦的定义求解.详解:∵cos∠BAC=,∴,∴AB===3(米).故答案为:3.点睛:本题主要考查了余弦的定义.掌握余弦的定义是解题的关键.18.40°.【解析】试题解析:连接OB,∵△ABC 是⊙O 的内接三角形,∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB ,∴∠OAB=∠OBA=1802AOB ︒-∠=40°. 考点:圆周角定理.19..【解析】试题分析:把对应的特殊角的函数值分别代入后,再化简计算即可.试题解析: 原式=-×=+-+=.20.(1)1213,9x x ==- (2)123322x x =-=-【解析】试题分析:第(1)小题用直接开方法;第(2)小题用配方法;试题解析: ()()2121210,x --= ()22121,x -=211,x -=±12139.x x ∴==-,()2226100,x x +-=2350,x x +-=235,x x +=2223335,22x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 2329,24x ⎛⎫+= ⎪⎝⎭32x +=123322x x ∴=-=- 点睛:一元二次方程的常用解法:直接开方法,公式法,配方法,因式分解法.要根据题目的要求做题,没有要求的选择适当的方法.21.(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2016年收到微信红包金额400(1+x )万元,在2016年的基础上再增长x ,就是2017年收到微信红包金额400(1+x )(1+x ),由此可列出方程400(1+x )2=484,求解即可.(2)设甜甜在2017年六一收到微信红包为y 元,则她妹妹收到微信红包为(2y+34)元,根据她们共收到微信红包484元列出方程并解答.试题解析:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x ,依题意得:400(1+x )2=484,解得x 1=0.1=10%,x 2=﹣2.1(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在2017年六一收到微信红包为y 元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元. 考点:一元一次方程的应用;一元二次方程的应用;增长率问题.22.(1)证明见解析(2)8【解析】【分析】(1)根据两角对应相等的两个三角形相似即可判定.(2)根据相似三角形的性质面积比等于相似比的平方,得到AD=2PC,设PC=x,则AD=2x,在RT△ADP 中利用勾股定理即可解决问题.【详解】(1)证明:∵四边形ABCD 是矩形,∴AD =BC ,DC=AB ,∠DAB=∠B=∠C=∠D=90°,由折叠可得:AP=AB ,PO=BO ,∠PAO=∠BAO,∠APO=∠B,∴∠APO=90°,∴∠APD=90°﹣∠CPO=∠POC,∵∠D=∠C,∠APD=∠POC,∴△OCP∽△PDA.(2)解:∵△OCP 与△PDA 的面积比为1:4,∴==,∴DA=2CP.设PC=x ,则AD=2x ,PD=10﹣x ,AP=AB=10,在Rt△PDA 中,∵∠D=90°,PD 2+AD 2=AP 2,∴(10﹣x )2+(2x )2=102,解得:x=4,∴AD=2x=8.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、翻折变换及勾股定理的知识,解题的关键是会用方程的思想来解决问题.23.50+.【解析】试题分析:设楼高AB 为x ,应用锐角三角函数定义,把DB 和BC 用x 来表示,根据CD=BD -BC 列式求解即可.试题解析:设楼高AB 为x .在Rt△ADB 中有:x DB tan30==︒,在Rt△ACB 中有:x BC x tan45==︒,∴CD=BD-BC=1-)x=100,解得x 50=+。