高考数学一轮复习专题5_4平面向量应用测
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用
§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
2022届高考一轮复习第5章平面向量第2节平面向量基本定理及坐标表示课时跟踪检测理含解
第五章 平面向量第二节 平面向量基本定理及坐标表示A 级·基础过关 |固根基|1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2;④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②④解析:选B 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .2.设向量a =(1,-3),b =(-2,4),若表示向量4a ,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解析:选D 4a =(4,-12),3b -2a =(-6,12)-(2,-6)=(-8,18),由题意得,4a +(3b -2a)+c =0,所以c =(4,-6),故选D .3.设a =(x ,-4),b =(1,-x).若a 与b 同向,则x 等于( ) A .-2 B .2 C .±2D .0解析:选B 由题意得-x 2=-4, 所以x =±2.又因为a 与b 同向,若x =-2,则a =(-2,-4),b =(1,2),a 与b 反向,故舍去,所以x =2.故选B .4.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b)∥c,则x等于( )A .-2B .-4C .-3D .-1解析:选D 因为a -12b =(3,1),a =(1,2),所以b =(-4,2).所以2a +b =2(1,2)+(-4,2)=(-2,6). 又(2a +b)∥c,所以-6=6x ,解得x =-1.故选D .5.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →等于( ) A .12AC →+13AB → B .12AC →+16AB →C .16AC →+12AB → D .16AC →+32AB → 解析:选C 如图,因为EC →=2AE →,点M 是BC 的中点, 所以EC →=23AC →,CM →=12CB →,所以EM →=EC →+CM →=23AC →+12CB → =23AC →+12(AB →-AC →) =12AB →+16AC →.故选C . 6.(2019届河南洛阳模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →(λ,μ∈R),则λ+μ的值为( )A .85B .58C .1D .-1解析:选A 设正方形的边长为2,以点A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立平面直角坐标系(图略),则A(0,0),B(2,0),C(2,2),M(2,1),N(1,2),所以AC →=(2,2),AM →=(2,1),BN →=(-1,2).因为AC →=λAM →+μBN →,即(2,2)=λ(2,1)+μ(-1,2),所以⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,所以λ+μ=85,故选A .7.已知向量AB →与向量a =(1,-2)反向共线,|AB →|=25,点A 的坐标为(3,-4),则点B 的坐标为( )A .(1,0)B .(0,1)C .(5,-8)D .(-8,5)解析:选A 依题意,设AB →=λa,其中λ<0,则有|AB →|=|λa|=-λ|a|,即25=-5λ,∴λ=-2,∴AB →=-2a =(-2,4).又点A 的坐标为(3,-4),∴点B 的坐标是(-2,4)+(3,-4)=(1,0).故选A .8.(2019届南昌二模)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,若OP 3→=λOP 1→+(1-λ)OP 2→(λ∈R),则λ等于( )A .-3B .3C .1D .-1解析:选D 设OP 3→=(x ,y),则由OP 3→∥a ,得x +y =0,于是OP 3→=(x ,-x).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x)=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0, 解得λ=-1,故选D .9.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线. 因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k+1)-2k≠0,解得k≠1. 答案:k≠110.(2019届河北联盟二模)已知点A(1,0),B(1,3),点C 在第二象限,且∠AOC=150°,OC →=-4OA →+λOB →,则λ=________.解析:因为点A(1,0),B(1,3),OC →=-4OA →+λOB →,所以C(λ-4,3λ). 因为点C 在第二象限,∠AOC=150°, 所以tan 150°=3λλ-4=-33,解得λ=1.答案:111.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b.(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为mb +nc =(-6m +n ,-3m +8n)=a =(5,-5),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M(0,20). 又CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N(9,2).所以MN →=(9,-18).B 级·素养提升 |练能力|12.在平面直角坐标系xOy 中,已知点A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2 B . 2 C .2D .4 2解析:选A 因为|OC|=2,∠AOC=π4,所以C(2,2).又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=2,μ=2,所以λ+μ=2 2.13.(2019届枣庄模拟)在平面直角坐标系中,O 为坐标原点,且满足OC →=23OA →+13OB →,则|AC →||AB →|的值为( )A .12B .13C .14D .25解析:选B 由已知得,3OC →=2OA →+OB →,即OC →-OB →=2(OA →-OC →),即BC →=2CA →,如图所示,故C 为BA 的靠近A 点的三等分点, 因而|AC →||AB →|=13.故选B .14.(2019届石家庄模拟)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D(点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0)解析:选B 由题意可设OC →=mOD →,则m>1.因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA→+μm OB →.又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B . 15.(2019届长沙一模)在矩形ABCD 中,AB =3,AD =2,P 为矩形内部一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的取值范围是________.解析:设点P 在AB 上的射影为Q ,∠PAQ=θ, 则AP →=AQ →+QP →,且|AQ →|=cos θ,|QP →|=sin θ. 又AQ →与AB →共线,QP →与AD →共线, 故AQ →=cos θ3AB →,QP →=sin θ2AD →,从而AP →=cos θ3AB →+sin θ2AD →.又AP →=xAB →+yAD →,故x =cos θ3,y =sin θ2,因此3x +2y =cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π4.又θ∈⎝ ⎛⎭⎪⎫0,π2,θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,故3x +2y 的取值范围是(1,2].答案:(1,2]16.在△OAB 中,OA →=3OC →,OB →=2OD →,AD 与BC 的交点为M ,过M 作动直线l 交线段AC ,BD 于E ,F 两点,若OE →=λOA →,OF →=μOB →(λ,μ>0),则λ+μ的最小值为________.解析:由A ,M ,D 三点共线,可得存在实数t ,使得OM →=tOA →+(1-t)OD →=tOA →+12(1-t)OB →.同理,由C ,M ,B 三点共线,可得存在实数m ,使得OM →=mOB →+(1-m)OC →=mOB →+13(1-m)OA →.∴⎩⎪⎨⎪⎧t =13(1-m ),12(1-t )=m ,解得⎩⎪⎨⎪⎧m =25,t =15,∴OM →=25OB →+15OA →.由E ,M ,F 三点共线,可设OM →=xOE →+(1-x)OF →.又OE →=λOA →,OF =μOB →,∴OM →=xλOA →+(1-x)μOB →,∴⎩⎪⎨⎪⎧x λ=15,(1-x )μ=25,可得1λ+2μ=5.∴λ+μ=15(λ+μ)⎝ ⎛⎭⎪⎫1λ+2μ=15⎝ ⎛⎭⎪⎫1+2+μλ+2λμ≥3+225,当且仅当μλ=2λμ时取等号,∴λ+μ的最小值为3+225.答案:3+225。
2020版高考数学一轮总复习专题5平面向量与解三角形5.1平面向量的概念及线性运算平面向量基本定理检测
5.1 平面向量的概念及线性运算、平面向量基本定理【真题典例】挖命题【考情探究】分析解读 1.向量的线性运算及其几何意义、向量的坐标表示是高考的重点考查对象(例:2017浙江10题).2.向量与其他知识的交汇成为高考命题的趋势,向量与平面几何、解析几何、三角函数、解三角形等的结合成为高考命题的亮点.3.预计2020年高考中平面向量的线性运算会重点考查,复习时应加以重视.破考点【考点集训】考点一平面向量的线性运算及几何意义1.(2018浙江杭州地区重点中学第一学期期中,10)在△ABC中,已知∠C=,||<||,=λ+(1-λ)(0<λ<1),则||取最小值时( )A.||>||>||B.||>||>||C.||>||>||D.||>||>||答案 B2.(2017浙江镇海中学模拟练习(二),9)在△ABC中,+=4,||=2,记h(λ)=,则{h(λ)}的最大值为( )A.1B.C.D.答案 B考点二平面向量基本定理及坐标表示1.(2018浙江“七彩阳光”联盟期中,6)已知两向量a=(cos α,sin α),b=(cos β,sin β),其中0<β<α<,则|a+b|+|a-b|的取值范围是( )A.(2,2)B.(2,2)C.(2,4)D.(2,4)答案 A2.(2017浙江金华十校调研,16)设单位向量a,b的夹角为α,且α∈,若对任意的(x,y)∈{(x,y)||xa+yb|=1,x,y≥0},都有|x+2y|≤成立,则a·b的最小值为.答案炼技法【方法集训】方法1 平面向量线性运算的解题方法1.(2018浙江高考模拟训练冲刺卷一,10)已知菱形ABCD的边长为2,∠BAD=120°.动点P在以C为圆心,1为半径的圆上,且=λ+μ,λ,μ∈R,则λ+μ的最大值是( )A. B.C.2D.3答案 D2.(2017浙江镇海中学模拟卷(六),16)已知向量a,b,|a|=2, |b|=1,向量c=xa+2(1-x)b(x∈R),若|c|取最小值时,向量m满足(a-m)·(c-m)=0,则|m|的取值范围是.答案方法2 平面向量的坐标运算的解题方法1.(2018浙江镇海中学期中,9)在平面内,·=·=·=6,动点P,M满足||=2,=,则||的最大值是( )A.3B.4C.8D.16答案 B2.(2017浙江名校(衢州二中)交流卷五,16)在平面内,已知向量a=(1,3),b=(4,-3),c=(6,5),若非负实数x,y,z满足x+y+z=1,则向量p=xa+yb+zc的模的取值范围是.答案[,]过专题【五年高考】统一命题、省(区、市)卷题组考点一平面向量的线性运算及几何意义1.(2017课标全国Ⅱ文,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案 A2.(2017北京理,6,5分)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A3.(2015课标Ⅰ,7,5分)设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-答案 A4.(2015陕西,7,5分)对任意向量a,b,下列关系式中的是( )A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案 B5.(2014福建,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案 B6.(2017天津文,14,5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为.答案考点二平面向量基本定理及坐标表示1.(2017课标全国Ⅲ理,12,5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ的最大值为( )A.3B. 2C.D.2答案 A2.(2018课标全国Ⅲ理,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案3.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=.答案-34.(2015北京,13,5分)在△ABC中,点M,N满足=2,=.若=x+y,则x=,y=.答案;-5.(2015江苏,6,5分)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为.答案-36.(2014北京,10,5分)已知向量a,b满足|a|=1,b=(2,1),且λa+b=0(λ∈R),则|λ|=. 答案教师专用题组考点一平面向量的线性运算及几何意义1.(2015四川,7,5分)设四边形ABCD为平行四边形,||=6,||=4.若点M,N满足=3,=2,则·=( )A.20B.15C.9D.6答案 C2.(2014课标Ⅰ,15,5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.答案90°考点二平面向量基本定理及坐标表示1.(2015课标Ⅱ,13,5分)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=.答案2.(2014陕西,13,5分)设0<θ<,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a∥b,则tan θ=.答案3.(2014湖南,16,5分)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值是.答案+1【三年模拟】一、选择题(每小题4分,共4分)1.(2019届浙江温州高三适应性测试,4)在△ABC中,D是线段BC上一点(不包括端点),=λ+(1-λ),则( )A.λ<-1B.-1<λ<0C.0<λ<1D.λ>1答案 C二、填空题(单空题4分,多空题6分,共36分)2.(2019届金丽衢十二校高三第一次联考,15)若等边△ABC的边长为2,平面内一点M满足:=+,则·=.答案-23.(2019届浙江嘉兴9月基础测试,14)已知向量a,b的夹角为60°,|a|=1,|b|=2,若(a+λb)∥(2a+b),则λ=.若(a+μb)⊥(2a+b),则μ=.答案;-4.(2018浙江嘉兴第一学期期末,14)在直角△ABC中,AB=AC=2,D为AB边上的点,且=2,则·=;若=x+y,则xy=.答案4;5.(2018浙江重点中学12月联考,15)已知矩形ABCD,AB=2,BC=1,点E是AB的中点,点P是对角线BD上的动点,若=x+y,则·的最小值为,x+y的最大值是.答案1;56.(2018浙江新高考调研卷三(杭州二中),12)已知平行四边形ABCD,||=2||=2,且·=1,=,=2,则·=; 若DE和AF交于点M,且=x+y,则x+y=.答案;7.(2018浙江稽阳联谊学校高三联考(4月),17)在△ABC中,AB=4,AC=3,BC=2,点H为三角形的垂心,若=x+y,则的值是.答案-8.(2018浙江湖州、衢州、丽水第一学期质检,17)设点P是△AB C所在平面内一动点,满足=λ+μ,3λ+4μ=2(λ,μ∈R,λμ≠0),||=||=||.若|AB|=3,则△ABC面积的最大值是.答案9。
近年高考数学一轮总复习第八章立体几何题组训练54空间向量的应用(一)平行与垂直理(2021年整理)
2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理的全部内容。
题组训练54 空间向量的应用(一)平行与垂直1.已知点O,A,B,C为空间不共面的四点,且向量a=错误!+错误!+错误!,向量b=错误!+错误!-错误!,则与a,b不能构成空间基底的向量是() A.错误!B。
错误!C.错误!D.错误!或错误!答案C解析根据题意得错误!=错误!(a-b),∴错误!,a,b共面.2.有4个命题:①若p=x a+y b,则p与a,b共面;②若p与a,b共面,则p=x a+y b;③若错误!=x错误!+y错误!,则P,M,A,B共面;④若P,M,A,B共面,则错误!=x错误!+y错误!.其中真命题的个数是( )A.1 B.2C.3 D.4答案B解析①正确,②中若a,b共线,p与a不共线,则p=x a+y b就不成立.③正确.④中若M,A,B共线,点P不在此直线上,则错误!=x错误!+y错误!不正确.3.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长|AB|=34,则B点坐标为( )A.(18,17,-17)B.(-14,-19,17)C.(6,错误!,1)D.(-2,-错误!,13)答案A解析设B点坐标为(x,y,z),则错误!=λa(λ>0),即(x-2,y+1,z-7)=λ(8,9,-12).由|错误!|=34,即错误!=34,得λ=2。
高考数学一轮总复习 52平面向量基本定理及向量的坐标表示课后强化作业 新人教B版
高考数学一轮总复习 52平面向量基本定理及向量的坐标表示课后强化作业 新人教B 版基础巩固强化一、选择题1.(文)已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3 D .4 [答案] D[解析] ∵a =(1,k ),b =(2,2), ∴a +b =(3,k +2), ∵(a +b )∥a ,∴1·(k +2)=3k ,∴k =1,∴a =(1,1), ∴a ·b =2+2=4.(理)(2013·荆州质检)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n =( )A .-2B .2C .-12D.12[答案] C[解析] 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.2.(文)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( ) A .-2 B .-1 C .1 D .2 [答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.(理)(2013·广州综合测试二)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(m ,m +1),若AB →∥OC →,则实数m 的值为( )A .-32B .-14C.12D.32[答案] A[解析] 依题意得,AB →=(3,1),由AB →∥OC →得3(m +1)-m =0,m =-32,选A.3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] ∵AD →=AB →+BC →+CD →=-8a -2b =2BC →, ∴四边形ABCD 为梯形.4.(文)(2012·天津文,8)在△ABC 中,∠A =90°,AB =1,AC =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-2,则λ=( )A.13B.23C.43 D .2 [答案] B[解析] 由题意,BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=CA →+AP →=-AC →+λAB →,BQ →·CP →=(λ-1)AC →2-λAB →2=3λ-4=-2,∴λ=23.用模与夹角都已知的AC →,AB →来表示BQ →,CP →是解题关键,(AC →,AB →看作一组基底).另外本题可以将向量坐标化去解答.(理)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A.12B.13C.14 D .1[答案] A[解析] 本题考查向量的线性运算.据已知N 为AM 的中点,可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由于点M 在直线BC 上,故有2λ+2μ=1,即λ+μ=12.5.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则“0≤x ≤12,0≤y ≤23”的概率是( )A.13 B.23 C.14 D.12[答案] A [解析]根据平面向量基本定理,点P 只要在如图所示的区域AB 1C 1D 1内即可,这个区域的面积是整个四边形面积的12×23=13,故所求的概率是13.6.(文)(2013·安庆二模)已知a ,b 是不共线的两个向量,AB →=x a +b ,AC →=a +y b (x ,y∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆[答案] B[解析] ∵A ,B ,C 三点共线,∴存在实数λ,使AB →=λAC →.则x a +b =λ(a +y b )⇒⎩⎪⎨⎪⎧x =λ,1=λy⇒xy =1,故选B.(理)如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝⎛⎭⎫12,12 B.⎝⎛⎭⎫23,23 C.⎝⎛⎭⎫13,13 D.⎝⎛⎭⎫23,12[答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎫12a -b =13a +13b ,故x =13,y =13. 二、填空题7.(文)(2014·金山中学月考)已知向量a =(sin x,1),b =(cos x ,-3),且a ∥b ,则tan x =________.[答案] -13[解析] ∵a ∥b ,∴sin x cos x =1-3,∴tan x =-13.(理)已知a =(2,-3),b =(sin α,cos 2α),α∈⎝⎛⎭⎫-π2,π2,若a ∥b ,则tan α=________. [答案] -33[解析] ∵a ∥b ,∴sin α2=cos 2α-3,∴2cos 2α=-3sin α,∴2sin 2α-3sin α-2=0, ∵|sin α|≤1,∴sin α=-12,∵α∈⎝⎛⎭⎫-π2,π2,∴cos α=32,∴tan α=-33. 8.已知G 是△ABC 的重心,直线EF 过点G 且与边AB 、AC 分别交于点E 、F ,AE →=αAB →,AF →=βAC →,则1α+1β=________.[答案] 3[解析] 连结AG 并延长交BC 于D ,∵G 是△ABC 的重心,∴AG →=23AD →=13(AB →+AC →),设EG →=λGF →,∴AG →-AE →=λ(AF →-AG →),∴AG →=11+λAE →+λ1+λAF →,∴13AB →+13AC →=α1+λAB →+λβ1+λAC →, ∴⎩⎪⎨⎪⎧ α1+λ=13,λβ1+λ=13,∴⎩⎪⎨⎪⎧1α=31+λ,1β=3λ1+λ,∴1α+1β=3. 9.(文)(2013·烟台调研)在等腰直角三角形ABC 中,D 是斜边BC 的中点,如果AB 的长为2,则(AB →+AC →)·AD →的值为________.[答案] 4[解析] 由题意可知,AD =12BC =222=2,(AB →+AC →)·AD →=2AD →·AD →=2|AD →|2=4.(理)在△ABC 中,过中线AD 的中点E 任作一条直线分别交AB 、AC 于M 、N 两点,若AM →=xAB →,AN →=yAC →,则4x +y 的最小值为________.[答案] 94[解析]如图所示,由题意知AD →=12(AB →+AC →),AE →=12AD →,又M ,E ,N 三点共线,所以AE →=λAM →+(1-λ)AN →(其中0<λ<1), 又AM →=xAB →,AN →=yAC →,所以14(AB →+AC →)=λx AB →+(1-λ)yAC →,因此有⎩⎪⎨⎪⎧4λx =1,4(1-λ)y =1,解得x =14λ,y =14(1-λ),令1λ=t ,∴t >1, 则4x +y =1λ+14(1-λ)=t +t4(t -1)=(t -1)+14(t -1)+54≥94,当且仅当t =32,即λ=23时取得等号.三、解答题10.(文)已知O (0,0)、A (2,-1)、B (1,3)、OP →=OA →+tOB →,求 (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第四象限? (2)四点O 、A 、B 、P 能否成为平行四边形的四个顶点,说明你的理由.[解析] (1)OP →=OA →+tOB →=(t +2,3t -1). 若点P 在x 轴上,则3t -1=0,∴t =13;若点P 在y 轴上,则t +2=0,∴t =-2;若点P 在第四象限,则⎩⎪⎨⎪⎧t +2>03t -1<0,∴-2<t <13.(2)OA →=(2,-1),PB →=(-t -1,-3t +4).若四边形OABP 为平行四边形,则OA →=PB →.∴⎩⎪⎨⎪⎧-t -1=2-3t +4=-1无解. ∴ 四边形OABP 不可能为平行四边形.同理可知,当t =1时,四边形OAPB 为平行四边形,当t =-1时,四边形OP AB 为平行四边形.(理)已知向量a =(1,2),b =(cos α,sin α),设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.[解析] (1)∵α=π4,∴b =(22,22),a ·b =322,∴|m |=(a +t b )2=5+t 2+2t a ·b =t 2+32t +5=(t +322)2+12, ∴当t =-322时,|m |取到最小值,最小值为22.(2)由条件得cos π4=(a -b )·(a +t b )|a -b ||a +t b |,∵|a -b |=(a -b )2=6,|a +t b |=(a +t b )2=5+t 2,(a -b )·(a +t b )=5-t ,∴5-t 65+t 2=22,且t <5, ∴t 2+5t -5=0,∴存在t =-5±352满足条件.能力拓展提升一、选择题11.平面上有四个互异的点A 、B 、C 、D ,满足(AB →-BC →)·(AD →-CD →)=0,则三角形ABC是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] (AB →-BC →)·(AD →-CD →) =(AB →-BC →)·(AD →+DC →) =(AB →-BC →)·AC →=(AB →-BC →)·(AB →+BC →) =|AB →|2-|BC →|2=0, 故|AB →|=|BC →|,即△ABC 是等腰三角形.12.如图,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB →=a ,AC →=b ,则AD →=( )A.2a -(1+22)b B .-2a +(1+22)b C .-2a +(1-22)b D.2a +(1-22)b [答案] B [解析]根据题意可得△ABC 为等腰直角三角形,由∠BCD =135°,得∠ACD =135°-45°=90°,以B 为原点,AB 所在直线为x 轴,BC 所在直线为y 轴建立如图所示的直角坐标系,并作DE ⊥y 轴于点E ,则△CDE 也为等腰直角三角形,由CD =1,得CE =ED =22,则A (1,0),B (0,0),C (0,1),D (22,1+22),∴AB →=(-1,0),AC →=(-1,1),AD →=(22-1,1+22),令AD →=λAB →+μAC →,则有⎩⎨⎧-λ-μ=22-1,μ=1+22,得⎩⎪⎨⎪⎧λ=-2,μ=1+22.∴AD →=-2a +(1+22)b . 13.(2013·济宁模拟)给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B. 2C. 3 D .2[答案] B[解析] 方法一:以O 为原点,向量OA →,OB →所在直线分别为x 轴,y 轴建立直角坐标系,设〈OA →,OC →〉=θ,θ∈[0,π2],则OA →=(1,0),OB →=(0,1),OC →=(cos θ,sin θ).∵OC →=xOA →+yOB →,∴⎩⎪⎨⎪⎧x =cos θ,y =sin θ.∴x +y =cos θ+sin θ=2sin(θ+π4),又θ+π4∈[π4,3π4],∴x +y 的最大值为 2.方法二:因为点C 在以O 为圆心的圆弧AB 上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2=1≥(x +y )22.所以x +y ≤2,当且仅当x =y =22时等号成立. 二、填空题14.(2013·广东江门质检)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a-2b ,若A 、B 、D 三点共线,则实数p 的值是________.[答案] -1[解析] ∵A 、B 、D 三点共线,∴AB →与BD →共线, ∵AB →=2a +p b ,BD →=BC →+CD →=2a -b , ∴存在实数λ,使2a +p b =λ(2a -b ), ∵a 与b 不共线,∴λ=1,p =-1. 三、解答题 15.(2013·天津一模)如图所示,P 是△ABC 内一点,且满足P A →+2PB →+3PC →=0,设Q 为CP 延长线与AB 的交点.令CP →=p ,试用p 表示PQ →.[解析] 设P A →=a ,PB →=b ,由已知条件得3CP →=P A →+2PB →,即3p =a +2b , 设PQ →=λCP →(λ为实数),则PQ →=λ3(a +2b ).设AQ →=μAB →(μ为实数), 又PQ →=P A →+AQ →=P A →+μAB →=P A →+μ(PB →-P A →) =(1-μ)a +μb ,由平面向量基本定理知⎩⎨⎧λ3=1-μ,2λ3=μ.解得λ=1,因此PQ →=λCP →=p .16.(文)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知c =2b ,向量m =⎝⎛⎭⎫sin A ,32,n =(1,sin A +3cos A ),且m 与n 共线.(1)求角A 的大小; (2)求ac的值.[解析] (1)∵m ∥n ,∴sin A (sin A +3cos A )-32=0,即sin ⎝⎛⎭⎫2A -π6=1.∵A ∈(0,π),∴2A -π6∈⎝⎛⎭⎫-π6,11π6. ∴2A -π6=π2.∴A =π3.(2)由余弦定理及c =2b 、A =π3得,a 2=⎝⎛⎭⎫c 22+c 2-2·c 2·c cos π3, a 2=34c 2,∴a c =32.(理)设a 、b 是不共线的两个非零向量,(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;(3)设OM →=m a ,ON →=n b ,OP →=αa +βb ,其中m 、n 、α、β均为实数,m ≠0,n ≠0,若M 、P 、N 三点共线,求证:αm +βn=1.[解析] (1)∵AB →=(3a +b )-(2a -b )=a +2b . 而BC →=(a -3b )-(3a +b )=-2a -4b =-2AB →,∴AB →与BC →共线,且有公共端点B ,∴A 、B 、C 三点共线. (2)∵8a +k b 与k a +2b 共线,∴存在实数λ使得 (8a +k b )=λ(k a +2b )⇒(8-λk )a +(k -2λ)b =0,∵a 与b 不共线,∴⎩⎪⎨⎪⎧8-λk =0,k -2λ=0.⇒8=2λ2⇒λ=±2,∴k =2λ=±4.(3)证法1:∵M 、P 、N 三点共线,∴存在实数λ,使得MP →=λPN →,∴OP →=OM →+λON →1+λ=m1+λa +λn1+λb , ∵a 、b 不共线,∴⎩⎪⎨⎪⎧α=m1+λ,β=λn1+λ∴αm +βn =11+λ+λ1+λ=1. 证法2:∵M 、P 、N 三点共线,∴OP →=xOM →+yON →且x +y =1, 由已知可得:xm a +yn b =αa +βb , ∴x =αm ,y =βn ,∴αm +βn=1.考纲要求了解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示.会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.补充材料1.证明共线(或平行)问题的主要依据:(1)对于向量a ,b ,若存在实数λ,使得b =λa ,则向量a 与b 共线(平行). (2)a =(x 1,y 1),b =(x 2,y 2),若x 1y 2-x 2y 1=0,则向量a ∥b . (3)对于向量a ,b ,若|a ·b |=|a |·|b |,则a 与b 共线. 要注意向量平行与直线平行是有区别的.2.用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.3.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 备选习题1.已知两不共线向量a =(cos α,sin α),b =(cos β,sin β),则下列说法不正确的是( ) A .(a +b )⊥(a -b ) B .a 与b 的夹角等于α-β C .|a +b |+|a -b |>2D .a 与b 在a +b 方向上的射影相等 [答案] B[解析] 注意到|a |=|b |=1,因此(a +b )·(a -b )=a 2-b 2=0,所以(a +b )⊥(a -b );注意到α-β未必属于(0,π),因此a ,b 的夹角未必等于α-β;由三角形法则可知,|a +b |+|a -b |2>1,于是有|a +b |+|a -b |>2;结合三角形法则及一个向量在另一个向量上的射影的意义可知,a ,b 在a +b 方向上的射影相等.综上所述,其中不正确的说法是B ,选B.2.在平面直角坐标系中,O 为原点,设向量OA →=a ,OB →=b ,其中a =(3,1),b =(1,3).若OC →=λa +μb ,且0≤λ≤μ≤1,C 点的所有可能位置区域用阴影表示正确的是( )[答案] A[解析] OC →=λa +μb =(3λ+μ,λ+3μ), 令OC →=(x ,y ),则x -y =(3λ+μ)-(λ+3μ) =2(λ-μ)≤0,∴点C 对应区域在直线y =x 的上方,故选A.3.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .10[答案] C[解析] ∵AC →·BD →=(1,2)·(-4,2)=0,∴AC ⊥BD , 又|AC →|=5,|BD →|=25, ∴S =12×5×25=5.4.(2013·哈尔滨质检)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A.1027B .2 2 C.52 D.52或2 2 [答案] B[解析] 据题意a ∥b 则m (2m +1)-3×2=0,解得m =-2或m =32,当m =32时a =(4,3),b =(2,32),则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=2 2.5.(2013·铜陵一模)如图,菱形ABCD 的边长为2,∠A =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9[答案] D[解析] 以A 为坐标原点,AB 所在直线为x 轴建立直角坐标系,如图所示,因为∠A =60°,菱形的边长为2,所以D (1,3),B (2,0),C (3,3).因为M 为DC 的中点,所以M (2,3),设N (x ,y ),则N 点的活动区域为四边形ABCD 内(含边界),则AM →·AN →=(2,3)·(x ,y )=2x +3y ,令z =2x +3y ,得y =-23x +z3,由线性规划知识可知,当直线经过点C 时,直线y =-23x +z3的截距最大,此时z 最大,所以最大值为z =2x +3y =2×3+3×3=6+3=9.故选D.6.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -1),若A 、B 、C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =2[答案] D[解析] ∵A 、B 、C 三点构不成三角形, ∴A 、B 、C 三点在同一条直线上,∴存在实数λ,使OC →=λOA →+(1-λ)OB →, ∴(k +1,k -1)=(2-λ,-2λ-1),∴⎩⎪⎨⎪⎧k +1=2-λ,k -1=-2λ-1,解之得k =2. [点评] 由于三点A 、B 、C 构不成三角形,∴A 、B 、C 共线,∴AB →与AC →共线,∴存在λ,使AC →=λAB →,解λ、k 的方程可得k 值.。
2023年高考数学一轮复习(新高考地区专用)5-3 平面向量的应用(精讲)(解析版)
5.3 平面向量的应用(精讲)(基础版)考点一 证线段垂直【例1-1】(2022·山西运城)在平面四边形ABCD 中,()2,3AC =-,()6,4BD =,则该四边形的面积为( )A .52B .252C .13D .26【答案】C【解析】∵12120AC BD ⋅=-+=,∵AC ∵BD ,所以四边形ABCD 面积为:114936161322AC BD ⋅=⨯+⨯+=.故选:C. 【例1-2】(2022·广东)如图,在正方形ABCD 中,P 为对角线AC 上任意一点(异于A 、C 两点),PE AB ⊥,PF BC ⊥,垂足分别为E 、F ,连接DP 、EF ,求证:DP EF ⊥.【答案】见解析【解析】设正方形ABCD 的边长为1,()01AE a a =<<,则EP AE a ==,1PF EB a ==-,2AP a =.,()()DP EF DA AP EP PF DA EP DA PF AP EP AP PF∴⋅=+⋅+=⋅+⋅+⋅+⋅考点呈现例题剖析()()1cos18011cos902cos4521cos45a a a a a a =⨯⨯+⨯-⨯+⨯⨯+⨯-⨯()210a a a a =-++-=,DP EF ∴⊥,即DP EF ⊥.【一隅三反】1.(2022·四川省峨眉)若平面四边形ABCD 满足:0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是( ) A .平行四边形 B .菱形 C .矩形 D .正方形【答案】B 【解析】0AB CD +=,AB DC ∴=,所以四边形ABCD 为平行四边形,()0AB AD AC -⋅=, 0DB AC ∴⋅=,所以BD 垂直AC ,所以四边形ABCD 为菱形.故选:B2.(2022·福建·漳州三中)若O 为ABC 所在平面内一点,且满足|||2|OB OC OB OC OA -=+-,则ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】B【解析】ABC 中,|||2||||()()|OB OC OB OC OA CB OB OA OC OA -=+-⇔=-+- 22||||()()AB AC AB AC AB AC AB AC ⇔-=+⇔-=+22222240AB AB AC AC AB AB AC AC AB AC ⇔-⋅+=+⋅+⇔⋅=因AB 与AC 均为非零向量,则AB AC ⊥,即90BAC ∠=,ABC 是直角三角形.故选:B3.(2022·上海)在Rt ABC 中,90,BAC AB AC ︒∠==,,E F 分别为边,AB BC 上的点,且,2AE EB BF FC ==.求证:CE AF ⊥.【答案】证明见解析.【解析】因为12CE CA AE AC AB =+=-+,()1133AF AB BF AB BC AB AC AB =+=+=+-=2133AB AC +.由0AB AC ⋅=且AB AC =,得121233CE AF AC AB AB AC ⎛⎫⎛⎫⋅=-+⋅+= ⎪ ⎪⎝⎭⎝⎭221110332AB AC AB AC --⋅=,所以CE AF ⊥.考点二 夹角问题【例2】(2022·全国·模拟预测)已知H 为ABC 的垂心,若1235AH AB AC =+,则sin BAC ∠=( )A BC D 【答案】C【解析】依题意,2235BH BA AH AB AC =+=-+,同理1335CH CA AH AB AC =+=-.由H 为△ABC 的垂心,得0BH AC ⋅=,即22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭,可知222cos 53AC AC AB BAC =∠,即3cos 5AC BAC AB∠=.同理有0CH AB ⋅=, 即13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭,可知213cos 35AB AC AB BAC =∠,即5cos 9AB BAC AC ∠=,解得21cos 3BAC ∠=,2231cos 2sin 113∠∠=-=-=BAC BAC ,又()0,πBAC ∠∈,所以sin BAC ∠=.故选:C .【一隅三反】1.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D【解析】建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M ,得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ D.2.(2022·河南·南阳中学)直角三角形ABC 中,斜边BC 长为a ,A 是线段PE 的中点,PE 长为2a ,当⋅B C P E 最大时,PE 与BC 的夹角是( )A .0B .30C .60D .90【答案】A【解析】如图所示,设PE 与BC 的夹角为[]()0,θθπ∈,AB AC ⊥,所以0AB AC ⋅=, 因为A 是线段PE 的中点,PE 长为2a ,所以=AP AE ,==AP AE a , 又因为,==--BP AP AB CE AE AC ,所以()()⋅-⋅-=⋅-⋅-⋅+=⋅BP CE AP AB AE AC AP AE AP AC AB AE AB AC22a AP AC AB AE a AE AC AB AE =--⋅-⋅=-+⋅-⋅()22=-+⋅-=-+⋅a AE AC AB a AE BC222211cos cos 22a PE BC a PE BC a a θθ=-+⋅=-+⋅=-+, 因为0,θπ⎡⎤∈⎣⎦,所以[]cos 1,1θ∈-,所以当cos 1θ=时⋅B C P E 最大,此时0θ=,⋅B C P E 最大的值为0.故选:A.3.(2022·福建省同安第一中学)在OAB 中,2OA OB ==,AB =P 位于直线OA 上,当PA PB →→⋅取得最小值时,PBA ∠的正弦值为( )A B C D 【答案】C【解析】建立如图所示平面直角坐标系:则(3,0),(3,0),(0,1)A B O-,设(,)P x y,因为动点P位于直线OA上,直线OA的方程为:1y=+,所以22(,),)3PA PB x y x y x y→→⋅=-⋅-=-+222244931)2(334x x x x x=-++=-=-,当x=PA PB→→⋅取得最小值94-,此时3()4P,3(),(4BP BA→→==-,所以15cosBP BAPBABP BA→→→→⋅∠====⋅又因为(0,)PBAπ∠∈,所以sin14PBA∠=,故选:C.考点三线段长度【例3-1】(2022·福建·福州三中)在平行四边形ABCD中,(2,1,2,AB AD AC===,则BD=()A.1B C.2D.3【答案】B【解析】由题意得|7AC=∣,由平行四边形的两条对角线的平方和等于四边的平方和,得:()()222222222,22110,BD AC AB AD BD BD+=+∴+=+=∴=B【例3-2】(2022·云南)已知ABC120C∠=︒,2cosc b B=,则AC边的中线的长为()A B.3C D.4【答案】C【解析】根据正弦定理由2cos sin2sin cos sin sin2c b B C B B C B=⇒=⇒=,因为,(0,180)B C∈︒,所以2C B=,或2180C B+=︒,当2C B=时,60B∠=︒,不符合三角形内角和定理,当2180C B+=︒时,30B∠=︒,因此30A∠=︒,因此a b=,因为ABC所以有122a a a⋅==,负值舍去,即2a b==,由余弦定理可知:AB ==设AC 边的中点为D ,所以有1()2BD BC BA =+,因此222111()24222BD BC BA BC BA BC BA =+=++⋅=故选:C 【一隅三反】1.(2022·云南师大附中)ABC 中,60A ∠=︒,∠A 的平分线AD 交边BC 于D ,已知3AB =,且1233AD AC AB =+,则AD 的长为( )AB .3C .D .【答案】C【解析】如图,过D 作//DE AC 交AB 于E ,作//DF AB 交AC 于F ,则AD AE AF =+,又1233AD AC AB =+, 所以23AE AB =,13AF AC =,所以13BD AF BC AC ==,即12BD DC =, 又AD 是BAC ∠的平分线,所以12AB BD AC CD ==,而3AB =,所以6AC =, cos 36cos609AB AC AB AC BAC ⋅=∠=⨯⨯︒=,222212144()33999AD AC AB AC AC AB AB=+=+⋅+2214469312999=⨯+⨯+⨯=,所以23AD =C . 2.(2022·全国·高三专题练习)在ABC 中,2AB AC ==,点M 满足20BM CM +=,若23BC AM ⋅=,则BC 的值为( ) A .1 B .32C .2D .3【答案】C【解析】取BC 中点O ,连接AO ,20BM CM +=,即2BM MC =,∴M 为BC 边上靠近C 的三等分点,()BC AM BC AO OM BC AO BC OM ⋅=⋅+=⋅+⋅,AB AC =,AO BC ∴⊥,0BC AO ∴⋅=,又16OM BC =,21263BC AM BC OM BC ∴⋅=⋅==,2BC ∴=.故选:C .3.(2022·重庆南开中学)如图所示在四边形ABCD 中,ABD △是边长为4的等边三角形,213AC =,(2)CA tCB t CD =+-,(1)t >,则OD =( )A .52B .C .3D 【答案】C【解析】取AC 的中点为M ,因为(2)CA tCB t CD =+-,故2CA CD tDB -=即22CM CD tDB -=,故2DM tDB =,所以,,D M B 三点共线,故M 与O 重合,所以AO =故21316+24cos3OD OD π=-⨯⨯,解得1OD =或3OD =,因为1t >且2DO tDB =,故OD OB >,故3OD =,故选:C.4.(2023·全国·高三专题练习)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且60C =︒,3a =,1534ABC S =△,则AB 边上的中线长为( ) A .49 B .7C .494 D .72【答案】D【解析】因为ABCS11sin 322ab C b ==⨯⨯=5b =,根据余弦定理可得2222cos 19c a b ab C =+-=,故c =AB 中点为M ,故()12CM CA CB =+,故22172cos 22CM CA CB CA CB C =++==. 即AB 边上的中线长为72.故选:D .考点四 几何中的最值【例4】(2022·海南·模拟预测)在直角梯形ABCD 中,AB CD ,AD AB ⊥,且6AB =,3AD =.若线段CD 上存在唯一的点E 满足4AE BE ⋅=,则线段CD 的长的取值范围是( ) A .[1,2) B .[1,5)C .[1,)+∞D .[5,)+∞【答案】B【解析】 如图所示,以A 为坐标原点,AB 和AD 分别为x 轴和y 轴正方向建立直角坐标系.则(0,0),(6,0)A B , 设DE 的长为x ,则(,3)E x ,则(,3)AE x =,(6,3)BE x =-,所以(6)94AE BE x x ⋅=-+=,解得1x =或5x =,由题意知:DC x ≥ ,且点E 存在于CD 上且唯一,知CD 的长的取值范围是[1,5),故选:B. 【一隅三反】1.(2022·安徽安庆)设点P 是ABC 的中线AM 上一个动点,()PA PB PC ⋅+的最小值是92-,则中线AM 的长是___________. 【答案】3【解析】设PM x =,,AM m =则.PA m x =-因为M 为BC 边中点,所以1()2PM PB PC =+,即2PB PC PM +=.于是222()22()222()22m m PA PB PC PA PM x m x x mx x ⋅+=⋅=--=-=--. 当2m x =,即点P 是中线AM 的中点时,()PA PB PC ⋅+取得最小值2,2m -即29,22m -=-因此 3.m =故答案为:32.(2022·江苏·无锡市教育科学研究院)点P 是边长为2的正三角形ABC 的三条边上任意一点,则||PA PB PC ++的最小值为___________.【解析】不妨假设P 在AB 上且(1,0),(1,0)A B C -,如下图示,所以,P 在3(1)y x =+且10x -≤≤,设(,3(1))P x x +,则(,)PA x =-,(1,1))PB x x =--+,(1,1))PC x x =-+,所以(3,PA PB PC x ++=---,故||9PA PB PC x ++=,当12x =-时,||PA PB PC ++3.(2022·上海市晋元高级中学)“燕山雪花大如席”,北京冬奥会开幕式将传统诗歌文化和现代奥林匹克运动联系在一起,天衣无缝,让人们再次领略了中国悠久的历史积淀和优秀传统文化恒久不息的魅力.顺次连接图中各顶点可近似得到正六边ABCDEF .若正六边形的边长为1,点P 是其内部一点(包含边界),则AP AC ⋅的取值范围为___________.【答案】[0,3]【解析】过点C 作CM AB ⊥于,M 所以,AC AM MC =+且33==,=22AM MC AP AQ QP AM MC λμ=++,,其中1123λμ-≤≤≤≤,0,()()()()22=3=34=A A AM MCAM MC MAM M M P AC C C λμλλμμλμ++++++⋅当P 点与C 点重合时,AP 在AC 方向上的投影最大,此时1,1λμ==,·AP AC 取得最大值为3;当P 点与F 点重合时,此时1,13λμ=-=,即AP AC ⊥,故0AP AC =,取得的最小值为∴·AP AC 的取值范围是[0,3].故答案为:[0,3].4.(2022·四川省内江市第六中学)如图,在等腰ABC 中,已知1AB AC ==,120A ∠=︒,E 、F 分别是边AB 、AC 的点,且AE AB λ=,AF AC μ=,其中(),0,1λμ∈且21λμ+=,若线段EF 、BC 的中点分别为M 、N ,则MN 的最小值是________.【解析】在等腰ABC 中,∵||||1AB AC ==,120o A ∠=, ∴1||||cos 2AB AC AB AC A ⋅==-; ∵E 、F 分别是边AB 、AC 的点,∴11()()22AM AE AF AC AB μλ=+=+,1()2AN AB AC =+,∵1[(1)(1)]2MN AN AM AB AC λμ=-=-+-,∴222222211[(1)2(1)(1)(1)]44MN AB AB AC AC λμλμλμλλμμ+---+=-+--⋅+-=,∵21λμ+=,∴12λμ=-, ∴()()()22222237()121212174177444MN μμμμμμμμμ-+-+-----+-+===, 其中λ,(0,1)μ∈,即1(0,)2μ∈,∴当27μ=时,2MN 取得最小值328,∴||MN . 考点五 三角形的四心【例5】(2022·甘肃·兰州一中)(多选)点O 在ABC 所在的平面内,则以下说法正确的有( ) A .若0OA OB OC ++=,则点O 为ABC 的重心 B .若222OA OB OC ==,则点O 为ABC 的垂心C .若()()()0OA OB AB OB OC BC OC OA CA +⋅=+⋅=+⋅=,则点O 为ABC 的外心 D .若OA OB OB OC OC OA ⋅=⋅=⋅,则点O 为ABC 的内心 【答案】AC【解析】对于A ,设边BC 、AC 、AB 的中点分别为D 、E 、F 2OB OC OD +=,则20OA OD +=,所以2OA OD =-所以A 、O 、D 三点共线,即点O 在中线AD 上,同理点O 在中线,BE CF 上,则O 是ABC 的重心.故A 正确对于B ,若222OA OB OC ==,则222OA OB OC ==,所以OA OB OC == 所以O 为ABC 的外心,故B 错误对于C ,设边AB 、BC 、CA 的中点分别为点D 、E 、F , 则()20OA OB AB OD AB +⋅=⋅=,所以OD 为线段AB 的中垂线,同理OE 、OF 分别为线段BC 、CA 的中垂线,所以O 是ABC 的外心,故C 正确 对于D ,由已知,()0OA OB OB OC OB OA OC OB CA ⋅-⋅=⋅-=⋅=,即OB 垂直CA ,也即点O 在边AC 的高上;同理,点O 也在边AB BC 、的高上, 所以则O 是ABC 的垂心,故D 错误.故选:AC 【一隅三反】1.(2022·全国·)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半,”这就是著名的欧拉线定理.设ABC 中,点O 、H 、G 分别是外心、垂心和重心,下列四个选项中结论正确的是( )A .2GH OG =B .0GA GB GC ++= C .OH OA OB OC =++D .OA OB OC ==【答案】ABC 【解析】如图:根据欧拉线定理可知,点O 、H 、G 共线,且2GH OG =.对于A ,∵2GH OG =,∵2GH OG =,故A 正确;对于B ,G 是重心,则延长AG 与BC 的交点D 为BC 中点,且AG =2GD ,则2GA GB GC GA GD ++=+0=,故B 正确;对于C ,33()OH OG AG AO ==-23()3AD AO =-23AD AO =-2()3AO OD AO =+-2OD AO=-OB OC OA =++,故C 正确;对于D ,OA OB OC ==显然不正确.故选:ABC.2.(2022·广东·广州市第二中学)(多选)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知∵ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+【答案】BCD【解析】由G 是三角形ABC 的重心可得23AG AM =211()322AB AC =+1133AB AC =+,所以1()()3AG BC AB AC AC AB ⋅=+⋅-221(||)3AC AB =-=4-,故A 项错误;过三角形ABC 的外心O 分别作AB 、AC 的垂线,垂足为D 、E ,如图(1),易知D 、E 分别是AB 、AC 的中点,则()AO BC AO AC AB ⋅=⋅-AO AC AO AB =⋅-⋅cos cos AO AC OAE AO AB OAD =∠-∠AE AC AD AB =-2211||622AC AB =-=-,故B 项正确;因为G 是三角形ABC 的重心,所以有0GA GB GC ++=,故OA OB OC ++()()()OG GA OG GB OG GC =+++++3OG GA GB GC =+++3OG =,由欧拉线定理可得3OH OG =,故C 项正确; 如图(2),由3OH OG =可得2133MG MO MH =+,即2133GM OM HM =+,则有26AB AC AM GM +==216()33OM HM =+42OM HM =+,D 项正确,故选:BCD.3.(2022·全国·课时练习)(多选题)已知O 是四边形ABCD 内一点,若0OA OB OC OD +++=,则下列结论错误的是( )A .四边形ABCD 为正方形,点O 是正方形ABCD 的中心 B .四边形ABCD 为一般四边形,点O 是四边形ABCD 的对角线交点 C .四边形ABCD 为一般四边形,点O 是四边形ABCD 的外接圆的圆心 D .四边形ABCD 为一般四边形,点O 是四边形ABCD 对边中点连线的交点 【答案】ABC【解析】对于A ,若四边形ABCD 为正方形,点O 是正方形ABCD 的中心,则必有0OA OB OC OD +++=, 但反过来,由0OA OB OC OD +++=推不出四边形ABCD 为正方形,故A 错误; 对于BCD ,如图所示,O 是四边形ABCD 内一点,且0OA OB OC OD +++=设AB ,CD 的中点分别为E ,F ,由向量加法的平行四边形法则知2OA OB OE =+,2OC OD OF +=,0OE OF ∴=+,即O 是EF 的中点;同理,设AD ,BC 的中点分别为M ,N ,由向量加法的平行四边形法则知2OA OD OM +=,2OC OB ON =+,即O 是MN 的中点;所以O 是EF ,MN 的交点,故BC 错误,D 正确; 故选:ABC4.(2022·山东省平邑县第一中学)(多选)在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是( )A .满足||||||OA OB OC ==,则点O 是ABC 的外心 B .满足0NA NB NC ++=,则点N 是ABC 的重心 C .满足PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC 的垂心D .满足()0||||AB AC BC AB AC +⋅=,且12||||AB AC AB AC ⋅=,则ABC 为等边三角形 【答案】ABCD 【解析】对于A ,因为||||||OA OB OC ==,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC ++=得:2ND NA =-,所以||:||2:1AN ND =,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC ⋅=⋅得:()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥;同理可得:AB PC ⊥,所以点P 是ABC 的垂心,故C 正确; 对于D ,由()0||||AB ACBC AB AC +⋅=得:角A 的平分线垂直于BC ,所以AB AC =; 由12||||AB AC AB AC ⋅=得:1cos 2A =,所以3A π=,所以ABC 为等边三角形,故D 正确.故选:ABCD .考点六 三角的面积【例6-1】(2022·全国·高三)点P 菱形ABCD 内部一点,若230PA PB PC ++=,则菱形ABCD 的面积与PBC 的面积的比为( ) A .4 B .6 C .8 D .12【答案】B【解析】如图,设AB 中点为E ,BC 中点为F ,因为230PA PB PC ++=,即220PA PB PB PC +=++,则420PE PF +=,即2PF PE =-, 则24111122334326PBCPBFBEFABCABCD ABCD SSSS S S ==⨯=⨯=⨯=, 所以ABCD 的面积与PBC 的面积的比值是6.故选:B.【例6-2】(2022·全国·高三专题练习)已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( )A .12 B .13C .2D .3【答案】B【解析】(1)0OA OB OC λλ+++=, ()0OA OC OB OC λ→∴+++=.如图,D ,E 分别是对应边的中点,由平行四边形法则知2OA OC OE +=,()2OB OC OD λλ+=,故OE OD λ=-,在正三角形ABC 中,11114428COAAOBABCABCSS S S ==⨯=,113828COB ACBABCABCABCS SS S S =--=,且三角形AOC 与三角形COB 的底边相等,面积之比为13,所以13OE OD =,得13λ=.故选:B 【一隅三反】1.(2022·上海交大附中)设O 为OAB 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与OAB 的面积的比值为( ) A .6 B .83C .127D .4【答案】A【解析】设1112,7,3===OA OA OB OB OC OC ,因为2730OA OB OC ++=,所以1110OA OB OC ++=,所以O 为111A B C △的重心, 设111111===OA B OA C OB C SSSk ,所以111111*********,,21146⋅⋅⋅======⋅⋅⋅OBC OAB OAC OB C OA B OA C S S S OB OC OA OB OA OC S OB OC S OA OB S OA OC ,则111,,21146===OBCOABOACSk S k S k ,所以27=++=ABCOBCOAB OACS SSSk ,所以276121==ABC BOCk S Sk , 故选:A2.(2022·全国·高三)P 是ABC 所在平面内一点,若3CB PA PB =+,则:ABP ABC S S =△△( ) A .1:4 B .1:3C .2:3D .2:1【答案】A【解析】由题设,3PA CB BP CP =+=,故,,C P A 共线且3CP PA =,如下图示:所以:1:4ABPABCSS=.故选:A3.(2022·四川凉山)已知P 为ABC 内任意一点,若满足()0,,0xPA yPB zPC x y z ++=>,则称P 为ABC 的一个“优美点”.则下列结论中正确的有( ) ∵若1x y z ===,则点P 为ABC 的重心; ∵若1x =,2y =,3z =,则16PBCABCSS =;∵若PA PB PB PC PA PC ⋅=⋅=⋅,则点P 为ABC 的垂心; ∵若1x =,3y =,1z =且D 为AC 边中点,则25BP BD =. A .1个 B .2个C .3个D .4个【答案】D【解析】对于∵,当1x y z ===时,0PA PB PC ++=;设BC 中点为M ,则2PB PC PM +=,即22PA PM MP =-=,P ∴为ABC 的重心,∵正确;对于∵,当1x =,2y =,3z =时,230PA PB PC ++=,()2PA PC PB PC ∴+=-+,取AC 中点D ,BC 中点E ,2PA PC PD +=,2PB PC PE +=,24PD PE ∴=-,即2PD EP =,P ∴到直线BC 距离1d 与D 到直线BC 距离2d 之比为:1:3,即12:1:3d d =;又D 为AC 中点,∴点A 到直线BC 距离322d d =,13:1:6d d ∴=, 13::1:6PBCABCSSd d ∴==,即16PBCABCSS =,∵正确;对于∵,由PA PB PB PC ⋅=⋅得:()0PA PB PB PC PB PA PC PB CA ⋅-⋅=⋅-=⋅=,PB AC ∴⊥,同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心,∵正确;对于∵,当1x =,3y =,1z =时,30PA PB PC ++=,3PA PC PB ∴+=-, 又D 为AC 边中点,233PD PB BP ∴=-=,又BP PD BD +=,32BP BP BD ∴+=,25BP BD ∴=,∵正确.故选:D.。
2021版高考数学一轮复习第五章平面向量第2讲平面向量基本定理及坐标表示练习理北师大版
第2讲 平面向量基本定理及坐标表示[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D.因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D.2.(2020·安徽合肥第一次质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( )A.⎝ ⎛⎭⎪⎫-65,85B .(-6,8) C.⎝ ⎛⎭⎪⎫65,-85D .(6,-8)解析:选D.因为向量b 与向量a 方向相反,所以可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=25λ2=5|λ|=-5λ=10,所以λ=-2,所以b =(6,-8).故选D.3.已知向量AC →,AD →和AB →在边长为1的正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λ+μ等于( )A .2B .-2C .3D .-3解析:选A.如图所示,建立平面直角坐标系,则AD →=(1,0),AC →=(2,-2),AB →=(1,2).因为AC →=λAB →+μAD →,所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3.所以λ+μ=2.故选A. 4.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)解析:选C.平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m ,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A.因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎪⎨⎪⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18). 10.如图,AB 是圆O 的直径,C ,D 是圆O 上的点,∠CBA =60°,∠ABD =45°,CD →=xOA →+yBC →,求x +y 的值.解:不妨设⊙O 的半径为1,以圆心O 为坐标原点,以OB ,OD 为x ,y 轴的正方向,建立如图所示的直角坐标系,则A (-1,0),B (1,0),D (0,1),C ⎝ ⎛⎭⎪⎫12,-32.所以CD →=⎝ ⎛⎭⎪⎫-12,1+32,BC →=⎝ ⎛⎭⎪⎫-12,-32.又CD →=xOA →+yBC →, 所以⎝ ⎛⎭⎪⎫-12,1+32=x (-1,0)+y ⎝ ⎛⎭⎪⎫-12,-32.所以⎩⎪⎨⎪⎧-12=-x -12y ,1+32=-32y ,解得⎩⎪⎨⎪⎧x =3+33,y =-3+233.所以x +y =3+33-3+233=-33.[综合题组练]1.已知P ={}a |a =(1,0)+m (0,1),m ∈R ,Q ={b |b =(1,1)+n (-1,1),n∈R }是两个向量集合,则P ∩Q 等于( )A.{}(1,1) B .{}(-1,1) C.{}(1,0)D .{}(0,1)解析:选A.设a =(x ,y ),则所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.2.(2020·包河区校级月考)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,合得其中较长的一段AC 是全长与另一段CB 的比例中项,即满足AC AB =BC AC =5-12,后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点,在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,设AP →x 1AB→+y 1AC →,AQ →=x 2AB →+y 2AC →,则x 1x 2+y 1y 2=( )A.5+12B .2 C. 5D .5+1解析:选C.由题意, AP →=AB →+BP →=AB →+⎝ ⎛⎭⎪⎫1-5-12BC →=AB →+3-52(AC →-AB →) =⎝⎛⎭⎪⎫1-3-52AB →+3-52AC →=5-12AB →+3-52AC →,同理,AQ →=AB →+BQ →=AB →+5-12BC →=AB →+5-12(AC →-AB →)=3-52AB →+5-12AC →. 所以x 1=y 2=5-12,x 2=y 1=3-52. 所以x 1x 2+y 1y 2=5-13-5+3-55-1= 5.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2. 所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且PA →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由PA →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=0 5.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB→|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3. 法二:由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB→=1×1×⎝ ⎛⎭⎪⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎪⎨⎪⎧m =54,n =74.所以m+n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线. (1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x+2y的值,并说明理由.解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y =3.。
2023年高考数学一轮复习第五章平面向量与复数3平面向量的数量积练习含解析
平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θe . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示 坐标表示数量积 a·b =|a ||b |cos θa·b =x 1x 2+y 1y 2模|a |=a ·a|a |=x 21+y 21夹角cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a∥b 的充要条件a =λb (λ∈R )x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系|a ·b |≤|a ||b | (当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.9解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0,a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,3则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫34AB →-AD →=12AB →·AD →-AD →2+316AB →2=12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3B .-2C .2D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos∠DBM =|BM →|2=1.思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°,所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b|a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73B.23C.79D.29答案 B解析 方法一 设a =(1,0),b =(0,1),则c =(7,2),∴cos〈a ,c 〉=a ·c |a ||c |=73,∴sin〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos〈a ,c 〉=a ·c |a ||c |=71×3=73,∴sin〈a ,c 〉=23. (2)(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知,|OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝ ⎛⎭⎪⎫22,22,取β=5π4,则P 2⎝ ⎛⎭⎪⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β),所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求:(1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝ ⎛⎭⎪⎫6+2222×1×1+3=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10km/h ,水流速度的大小为|ν2|=6km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,PA →·PB →有最小值,即PA →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1B .2C.2D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c ,M 为AB 的中点,由极化恒等式有(a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32, 因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎪⎫255,-55或⎝ ⎛⎭⎪⎫-255,55B.⎝ ⎛⎭⎪⎫-255,-55或⎝ ⎛⎭⎪⎫255,55C.⎝⎛⎭⎪⎫255,55 D.⎝ ⎛⎭⎪⎫-255,55答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b62+-32=±⎝ ⎛⎭⎪⎫255,-55.5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2,故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为a·b |b |·b |b |=12b ,B 错误;对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝ ⎛⎭⎪⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝ ⎛⎭⎪⎫12a +12b=12a 2+12a·b =12×32+12×3×2×cos60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n .(1)求函数f (x )的单调递增区间;(2)在Rt△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin2x +12cos2x -12=sin ⎝⎛⎭⎪⎫2x +π6-12.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)f (C )=sin ⎝ ⎛⎭⎪⎫2C +π6-12=0,sin ⎝ ⎛⎭⎪⎫2C +π6=12,又C ∈⎝ ⎛⎭⎪⎫0,π2,所以C =π3.在△ACD 中,CD =233,在△BCE 中,BE =22+⎝⎛⎭⎪⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos∠BDA -|DC →||BD →|cos∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB→|AB →|,AC→|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC→|AC →|所在的直线为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=102N ,则物体的重力大小为________N.答案 20解析 如图所示,∵|F 1|=|F 2|=102N , ∴|F 1+F 2|=102×2=20N , ∴物体的重力大小为20N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝ ⎛⎭⎪⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos0°+(1-2x )2=1, ∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝ ⎛⎭⎪⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C , 所以m·n =sin C , 又m·n =sin2C ,所以sin2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b .21 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18,即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
2023年新考案 微专题5 数学工具——平面向量在解题中的应用(共22张PPT)
21
目录
(2)若 θ∈
π
0,
2
,向量 m= ,n=(1-cos θ,sinθ-2cos θ),求 m·n 的最
小值及对应的 θ 的值.
【解析】由题意得 C(cosθ,sinθ),m= =(cosθ+1,sin θ),
π
4
则 m·n=1-cos2θ+sin2θ-2sin θcosθ=1-cos 2θ-sin 2θ=1- 2sin 2θ+ ,
要使·最小,则与方向相反,即点 P 在线段 AD 上,则
(2·)min=-2||||,问题转化为求||||的最大值.
3
又||+||=||=2× = 3,
2
| |+| | 2
3 2 3
∴||||≤
=
= ,
2
2
4
∴
3 3
[·(+ )]min=(2·)min=-2× =- .故选
4
(1)若 θ= ,设点 D 为线段 OA 上的动点,求| + |的最小值;
2 2
2 2
【解析】
(1)设 D(t,0)(0≤t≤1),由题意知 C - ,
-
2
2
+t,
2
2
,所以 +=
,
所以| +|2= t2
2
2 2 1
+ ,
2
2
2
2
所以当 t= 时,| +|有最小值,最小值为 .
即点 B 在圆(x-2)2+y2=1 上运动.
∵=a-b,∴|a-b|的最小值即点 B 到射线 OA 的距离的最小值,为圆心(2,0)
到射线 y= 3x(x≥0)的距离减去圆的半径,
2025年高考数学一轮复习-第六章-第四节-平面向量的应用【课件】
3
3
15
又 = c + b + bc=( c) +( b) + bc≥2× c× b+ bc= bc,
4 16
16
32
4
4
32
4
4 32
32
当且仅当c=3b时,等号成立.
15
所以bc≤8,又sin∠BAC= ,
4
1
1
15
所以S△ABC= bcsin∠BAC≤ ×8× =
2
2
4
15.
考点二平面向量的实际应用
C.恰好与A'重合
D.无法确定
【解析】选A.建立如图所示的平面直角坐标系,
由题意可得v1=(-5,5 3),v2=(6,0),
所以v1+v2=(1,5 3),
说明游船有x轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在
A'东侧.
(2)若平面上的三个力F1,F2,F3作用于一点,且处于平衡状态.已知 1 =1 N, 3 =
1
(3)在△ABC中,已知( + )·=0,且 · = ,则△ABC为(
|| ||
|| || 2
A.等边三角形
B.直角三角形
C.等腰三角形
D.三边均不相等的三角形
)
【解析】选A. , 分别表示,方向上的单位向量,
|| | |
+ 在∠A的平分线上,
第六章
第四节
平面向量、复数
平面向量的应用
核心考点·分类突破
核心考点·分类突破
考点一平面向量在几何中的应用
[例1](1)(2023·漳州模拟)已知P为△ABC所在平面内一点,+2+2=0,
2015高考数学(理)一轮题组训练:5-4平面向量应用举例
第4讲平面向量应用举例基础巩固题组(建议用时:40分钟)一、填空题1.(2014·邵阳模拟)已知a=(1,sin2x),b=(2,sin 2x),其中x∈(0,π).若|a·b|=|a||b|,则tan x的值等于________.解析由|a·b|=|a||b|知,a∥b.所以sin 2x=2sin2x,即2sin x cos x=2sin2x,而x∈(0,π),所以sin x=cos x,即x=π4,故tan x=1.答案 12.(2014·南昌模拟)若|a|=2sin 15°,|b|=4cos 15°,a与b的夹角为30°,则a·b 的值是________.解析a·b=|a||b|cos 30°=8sin 15°cos 15°×32=4×sin 30°×32= 3.答案 33.(2013·扬州模拟)函数y=tan π4x-π2的部分图象如图所示,则(OA→+OB→)·AB→=________.解析由条件可得B(3,1),A(2,0),∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 64.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a ·b =0有两相等实根,则向量a 与b 的夹角是________.解析 由已知可得Δ=|a |2+4a ·b =0, 即4|b |2+4×2|b |2cos θ=0, ∴cos θ=-12, 又∵0≤θ≤π,∴θ=2π3. 答案 2π35.(2014·安庆二模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对应的三角形的边长,若4aBC →+2bCA →+3cAB →=0,则cos B =________. 解析 由4aBC →+2bCA →+3cAB →=0,得4aBC →+3cAB →=-2bCA →=-2b (BA →-BC →)=2bAB →+ 2bBC →,所以4a =3c =2b .由余弦定理得cos B =a 2+c 2-b 22ac =b 24+49b 2-b 22·b 2·23b =-1124.答案 -11246.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1,那么c =________.解析 由题意知AB →·AC →+BA →·BC →=2, 即AB →·AC →-AB →·BC →=AB →·(AC →+CB →) =AB →2=2⇒c =|AB →|= 2.答案 27.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 解析 OP →=(x ,y ),OM →=(1,1),ON →=(0,1), ∴OP →·OM →=x +y ,OP →·ON →=y ,即在⎩⎨⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识知,当x =0,y =1时,z max =3. 答案 38.(2013·东北三校一模)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若(3b -c )cos A =a cos C ,S △ABC =2,则BA →·AC →=________. 解析 依题意得(3sin B -sin C )cos A =sin A cos C ,即3sin B cos A =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 于是有cos A =13,sin A =1-cos 2A =223, 又S △ABC =12·bc sin A =12bc ×223=2,所以bc =3,BA →·AC →=bc cos(π-A )=-bc cos A =-3×13=-1. 答案 -1 二、解答题9.已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆C 上的任意一点,点N 在线段MA 的延长线上,且MA →=2AN →,求点N 的轨迹方程. 解 设M (x 0,y 0),N (x ,y ).由MA →=2AN →,得 (1-x 0,1-y 0)=2(x -1,y -1),∴⎩⎨⎧x 0=3-2x ,y 0=3-2y .∵点M (x 0,y 0)在圆C 上, ∴(x 0-3)2+(y 0-3)2=4,即(3-2x -3)2+(3-2y -3)2=4.∴x 2+y 2=1. ∴所求点N 的轨迹方程是x 2+y 2=1.10.(2014·北京海淀模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k (k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B , 又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B , ∴sin B cos A =sin A cos B ,即sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵-π<A -B <π,∴A =B ,即△ABC 为等腰三角形. (2)由(1)知,AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k , ∵c =2,∴k =1.能力提升题组 (建议用时:25分钟)一、填空题1.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB →的夹角的取值范围是________.解析 由题意,得OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使直线OA 与圆相切时,向量OA→与向量OB →的夹角分别达到最大、最小值.答案 ⎣⎢⎡⎦⎥⎤π12,512π2.(2013·北京东城区期末)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为________.解析 如图所示,CD →=AD →-AC →=12AD →-AB →,∴CD →2=⎝ ⎛⎭⎪⎫12AD →-AB →2,即3=14AD →2+AB →2-AD →·AB →, ∵|AD →|=|AB →|,∴54|AD →|2-|AD →||AB →|cos 60°=3,∴|AD →|=2. 又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1, ∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin 60°+12×1×3=32 3. 答案 32 33.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则AO →·BC →等于________.解析 AO →·BC →=AO →·(AC →-AB →)=AO →·AC →-AO →·AB →, 因为OA =OB ,所以AO →在AB →上的投影为12|AB →|. 所以AO →·AB →=12|AB →|·|AB →|=2, 同理AO →·AC →=12|AC →|·|AC →|=92, 故AO →·BC →=92-2=52. 答案52二、解答题4.(2014·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1, n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x 4.(1)若m ·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围. 解 (1)m ·n =3sin x 4·cos x 4+cos 2x4 =32sin x 2+1+cos x22=sin⎝ ⎛⎭⎪⎫x 2+π6+12, ∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12.cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3,∴0<A <2π3. ∴π6<A 2+π6<π2,sin ⎝ ⎛⎭⎪⎫A 2+π6∈⎝ ⎛⎭⎪⎫12,1.又∵f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.。
高三数学一轮复习平面向量数量积坐标运算试卷(有详细答案)
高三数学一轮复习平面向量数量积坐标运算试卷一、选择题1、(2007•辽宁)若向量a与b不共线,a•b≠0,且,则向量a与c的夹角为(D)A、0B、C、D、考点:平面向量数量积的坐标表示、模、夹角。
分析:求两个向量的夹角有它本身的公式,条件中表现形式有点繁琐,我们可以试着先求一下要求夹角的向量的数量积,求数量积的过程有点出乎意料,一下就求出结果,数量积为零,两向量垂直,不用再做就得到结果,有些题目同学们看着不敢动手做,实际上,我们试一下,它表现得很有规律.解答:解:∵==0∴向量a与c垂直,故选D.点评:用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,本题使用两个不共线的向量来表示第三个向量,这样解题时运算有点麻烦,但是我们应该会的.2、(2007•上海)在直角坐标系xOy中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,,则k的可能值有()A、1个B、2个C、3个D、4个考点:平面向量数量积的坐标表示、模、夹角。
分析:根据给的两个向量写出第三条边所对应的向量,分别检验三个角是直角时根据判断向量垂直的充要条件,若数量积为零,能做出对应的值则是,否则不是.解答:解:∵(1)若A为直角,则;(2)若B为直角,则;(3)若C为直角,则.∴k的可能值个数是2,故选B点评:能利用数量积的5个重要性质及数量积运算规律解决有关问题;会解两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.3、已知△ABC中,,则△ABC的面积为(C)A、2B、C、D、考点:平面向量数量积的坐标表示、模、夹角;数量积表示两个向量的夹角。
专题:计算题。
分析:由=(cos23°,sin23°),=(2cos68°,2sin68°),知和x轴成23°角,和x轴68°角,由此能求出和,再由正弦定理能求出ABC的面积.解答:解:∵=(cos23°,sin23°),=(2cos68°,2sin68°),∴和x轴成23°角,和x轴68°角,,=2,∴△ABC的面积S==.故选C.点评:本题考查平面向量的坐标表示,是基础题.解题时要认真审题,仔细解答,注意诱导公式、正弦定理的灵活运用.4、已知点A(3,0),B(﹣,1),C(cosa,sina),O(0,0),若||=,a∈(0,π),则与的夹角为(D)A、B、C、D、考点:平面向量数量积的坐标表示、模、夹角;向量的模;三角函数的恒等变换及化简求值。
高考数学一轮复习 第5章 平面向量 第3节 平面向量的数量积及应用举例课时跟踪检测 理 新人教A版-
第三节 平面向量的数量积及应用举例A 级·基础过关 |固根基|1.已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由a ·b >0,可得到θ∈⎣⎢⎡⎭⎪⎫0,π2,不能得到θ∈⎝ ⎛⎭⎪⎫0,π2;而由θ∈⎝⎛⎭⎪⎫0,π2,可以得到a ·b >0.故选B .2.(2019届某某一中高三入学测试)已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |等于( )A .7B .10C .13D .4解析:选C 依题意得a ·b =12,∴|a +3b |=a 2+9b 2+6a ·b =13,故选C .3.(2019届某某模拟)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m+n ),则实数t 的值为( )A .4B .-4C .94D .-94解析:选B 由n ⊥(t m +n )可得n ·(t m +n )=0,即t m ·n +n 2=0,所以t =-n 2m ·n=-n 2|m ||n |cos 〈m ,n 〉=-|n |2|m ||n |×13=-3|n ||m |.又4|m |=3|n |,∴t =-3×43=-4.故选B .4.(2019届东北联考)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3解析:选C 因为(a +2b )·(5a -4b )=0,|a |=|b |=1, 所以6a ·b -8+5=0,即a ·b =12.又a ·b =|a ||b |cos θ=cos θ,所以cos θ=12.因为θ∈[0,π],所以θ=π3.故选C .5.(2019届某某模拟)在△ABC 中,AB =4,AC =3,AC →·BC →=1,则BC =( ) A . 3 B . 2 C .2D .3解析:选D 设∠A =θ, 因为BC →=AC →-AB →,AB =4,AC =3,所以AC →·BC →=AC →·(AC →-AB →)=AC →2-AC →·AB →=9-AC →·AB →=1,即AC →·AB →=8,所以cos θ=AC →·AB→|AC →||AB →|=83×4=23,所以BC =16+9-2×4×3×23=3.故选D .6.已知向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的取值X 围为( ) A .[1,2]B .[2,4]C .⎣⎢⎡⎦⎥⎤14,12 D .⎣⎢⎡⎦⎥⎤12,1 解析:选D 由题意知b ≠0,设向量a ,b 的夹角为θ,因为(a +b )·(a -2b )=a 2-a ·b -2b 2=0,又|a |=1,所以1-|b |cos θ-2|b |2=0,所以|b |cos θ=1-2|b |2.因为-1≤cos θ≤1,所以-|b |≤1-2|b |2≤|b |,所以12≤|b |≤1,所以|b |的取值X 围是⎣⎢⎡⎦⎥⎤12,1.故选D .7.(2020届某某调研)在Rt △ABC 中,∠C =π2,AC =3,取点D ,E ,使BD →=2DA →,AB →=3BE →,那么CD →·CA →+CE →·CA →=( )A .-6B .6C .-3D .3解析:选D 由BD →=2DA →,得CD →-CB →=2(CA →-CD →),得CD →=23CA →+13CB →.由AB →=3BE →,得CB →-CA→=3(CE →-CB →),得CE →=-13CA →+43CB →.因为∠C =π2,即CA →⊥CB →,所以CA →·CB →=0.所以CD →·CA →+CE →·CA →=⎝ ⎛⎭⎪⎫23CA →+13CB →·CA →+⎝ ⎛⎭⎪⎫-13CA →+43CB →·CA →=23CA →2-13CA →2=3,故选D .8.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →的值是( )A .-34B .-89C .-14D .-49解析:选B 因为BF →=2FO →,r =1,所以|FO →|=13,所以FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO→2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89,故选B .9.(2019届某某市摸底联考)已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC=60°,则△OBC 的面积为( )A .33 B . 3 C .32D .23解析:选A ∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,∴S △OBC =13S △ABC .∵AB →·AC →=2,∴|AB→|·|AC →|·cos ∠BAC =2.又∠BAC =60°,∴|AB →|·|AC →|=4,∴S △ABC =12|AB →|·|AC →|sin ∠BAC=3,∴△OBC 的面积为33,故选A . 10.(2020届某某摸底)已知a ,b 均为单位向量,若|a -2b |=3,则a 与b 的夹角为________.解析:由|a -2b |=3,得|a -2b |2=3,即a 2-4a ·b +4b 2=3,即1-4a ·b +4=3,所以a ·b =12,所以cos 〈a ,b 〉=a ·b |a |·|b |=12,所以〈a ,b 〉=π3.答案:π311.(2019届某某摸底调研)已知动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,且|AB |=2,点C 为直线l 上一点,且满足CB →=52CA →,若M 是线段AB 的中点,则OC →·OM →的值为________.解析:解法一:动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,连接OA ,OB ,因为|AB |=2,所以△AOB 为等边三角形,于是不妨设动直线l为y =3(x +2),如图所示,根据题意可得B (-2,0),A (-1,3),因为M 是线段AB 的中点,所以M ⎝ ⎛⎭⎪⎫-32,32.设C (x ,y ),因为CB →=52CA →,所以(-2-x ,-y )=52(-1-x ,3-y ),所以⎩⎪⎨⎪⎧-2-x =52(-1-x ),-y =52(3-y ),解得⎩⎪⎨⎪⎧x =-13,y =533,所以C ⎝ ⎛⎭⎪⎫-13,533,所以OC →·OM →=⎝ ⎛⎭⎪⎫-13,533·⎝ ⎛⎭⎪⎫-32,32=12+52=3.解法二:连接OA ,OB ,因为直线l 与圆O :x 2+y 2=4相交于A ,B 两点,|AB |=2,所以△AOB 为等边三角形.因为CB →=52CA →,所以OC →=OA →+AC →=OA →+23BA →=OA →+23OA →-23OB →=53OA →-23OB →.又M 为AB 的中点,所以OM →=12OA →+12OB →,且OA →与OB →的夹角为60°,则OC →·OM →=⎝ ⎛⎭⎪⎫53OA→-23OB →·⎝ ⎛⎭⎪⎫12OA →+12OB →=56OA →2-13OB →2+12|OA →||OB →|cos 60°=56×4-13×4+12×2×2×12=3. 答案:312.如图,已知O 为坐标原点,向量OA →=(3cos x ,3sin x ),OB →=(3cosx ,sin x ),OC →=(3,0),x ∈⎝⎛⎭⎪⎫0,π2.(1)求证:(OA →-OB →)⊥OC →;(2)若△ABC 是等腰三角形,求x 的值. 解:(1)证明:∵OA →-OB →=(0,2sin x ), ∴(OA →-OB →)·OC →=0×3+2sin x ×0=0, ∴(OA →-OB →)⊥OC →.(2)若△ABC 是等腰三角形,则AB =BC , ∴(2sin x )2=(3cos x -3)2+sin 2x , 整理得2cos 2x -3cos x =0, 解得cos x =0,或cos x =32. ∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x =32,即x =π6.B 级·素养提升 |练能力|13.(2019届某某市第一次联考)已知点O 是锐角三角形ABC 的外心,若OC →=mOA →+nOB →(m ,n ∈R ),则( )A .m +n ≤-2B .-2≤m +n <-1C .m +n <-1D .-1<m +n <0解析:选C 因为点O 是锐角三角形ABC 的外心,所以O 在三角形内部,则m <0,n <0.不妨设锐角三角形ABC 的外接圆的半径为1,因为OC →=mOA →+nOB →,所以OC →2=m 2OA →2+n 2OB →2+2mnOA →·OB →.设向量OA →,OB →的夹角为θ,则1=m 2+n 2+2mn cos θ<m 2+n 2+2mn =(m +n )2,所以m +n <-1或m +n >1(舍去),所以m +n <-1,故选C .14.已知点P 是圆x 2+y 2=4上的动点,点A ,B ,C 在以坐标原点O 为圆心的单位圆上运动,且AB →·BC →=0,则|PA →+PB →+PC →|的最大值为( )A .5B .6C .7D .8解析:选C 由A ,B ,C 三点在圆x 2+y 2=1上,且AB →·BC →=0,得AC 是该圆的直径.设PO →,OB →的夹角为θ,θ∈[0,π],则|PA →+PB →+PC →|=|2PO →+PB →|=|3PO →+OB →|=(3PO →+OB →)2=9|PO →|2+|OB →|2+6PO →·OB →=36+1+12cos θ=37+12cos θ,当θ=0时,|PA →+PB →+PC →|取得最大值7,故选C .15.在Rt △ABC 中,∠BCA =90°,CA =CB =1,P 是AB 边上的点,AP →=λAB →,若CP →·AB →≥PA →·PB →,则实数λ的最大值是( )A .1B .2-22C .22D .2+22解析:选A 以点C 为坐标原点,CA →,CB →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则C (0,0),A (1,0),B (0,1),所以AB →=(-1,1).因为点P 在线段AB 上,AP →=λAB →,所以AP →=(-λ,λ),所以P (1-λ,λ),所以CP →=(1-λ,λ),PB →=(λ-1,1-λ),λ∈[0,1].因为CP →·AB →≥PA →·PB →,所以(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),化简得2λ2-4λ+1≤0,解得2-22≤λ≤2+22.因为λ∈[0,1],所以2-22≤λ≤1,所以λ的最大值是1.故选A .16.如图,在平行四边形ABCD 中,|AD →|=2,向量AD →在AB →方向上的投影为1,且BD →·DC →=0,点P 在线段CD 上,则PA →·PB →的取值X 围为________.解析:解法一:由题意知∠DAB =45°,且|AB →|=1,设|PD →|=x ,则0≤x ≤1,因为AP →=AD →+DP →,BP →=BC →+CP →=AD →+CP →,所以PA →·PB →=(-AD →-DP →)·(-AD →-CP →)=AD →2+AD →·CP →+AD →·DP →+DP →·CP →=2+2(1-x )cos 135°+2x cos 45°-x (1-x )=x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34∈[1,3].解法二:由题意可知,DB ⊥AB ,以B 为坐标原点,AB 及BD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系.由题意知B (0,0),A (-1,0),设P (x ,1),其中0≤x ≤1,则PA →·PB →=(-1-x ,-1)·(-x ,-1)=x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34∈[1,3].答案:[1,3]17.已知△ABC 的面积为24,点D ,E 分别在边BC ,AC 上,且满足CE →=3EA →,CD →=2DB →,连接AD ,BE 交于点F ,则△ABF 的面积为________.解析:解法一:如图,连接CF ,由于B ,F ,E 三点共线,因而可设CF →=λCB →+(1-λ)CE →.∵CE →=3EA →,CD =2DB →,∴CF →=32λCD →+34(1-λ)CA →.又A ,F ,D 三点共线,∴32λ+34(1-λ)=1,解得λ=13,∴CF →=13CB →+23CE →=13CB →+12CA →.∵AF→=CF →-CA →=13CB →-12CA →,FD →=CD →-CF →=13CB →-12CA →,∴F 为AD 的中点,因而S △ABF =12S △ABD =16S △ABC=4.解法二:如图,过D 作AC 的平行线,交BE 于H ,则由已知CD →=2DB →,得DH ═∥13CE ,又CE →=3EA →,因而DH ═∥EA ,△AEF ≌△DHF ,则F 为AD 的中点,因而S △ABF =12S △ABD =16S △ABC =4. 答案:4。
2023年高考数学一轮复习第五章平面向量与复数1平面向量的概念及线性运算练习含解析
平面向量的概念及线性运算考试要求 1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法a-b=a+(-b)数乘|λa|=|λ||a|,当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.向量共线定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使得b=λa. 常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12(OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB →+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1. 5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)|a |与|b |是否相等,与a ,b 的方向无关.( √ ) (2)若向量a 与b 同向,且|a |>|b |,则a >b .( × )(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (4)起点不同,但方向相同且模相等的向量是相等向量.( √ ) 教材改编题1.(多选)下列命题中,正确的是( ) A .若a 与b 都是单位向量,则a =b B .直角坐标平面上的x 轴、y 轴都是向量C .若用有向线段表示的向量AM →与AN →不相等,则点M 与N 不重合 D .海拔、温度、角度都不是向量 答案 CD解析 A 错误,由于单位向量长度相等,但是方向不确定;B 错误,由于只有方向,没有大小,故x 轴、y 轴不是向量;C 正确,由于向量起点相同,但长度不相等,所以终点不同;D 正确,海拔、温度、角度只有大小,没有方向,故不是向量.2.下列各式化简结果正确的是( ) A.AB →+AC →=BC → B.AM →+MB →+BO →+OM →=AM → C.AB →+BC →-AC →=0 D.AB →-AD →-DC →=BC →3.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由题意知存在k ∈R , 使得a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.题型一 向量的基本概念例1 (1)(多选)给出下列命题,不正确的有( ) A .若两个向量相等,则它们的起点相同,终点相同B .若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形 C .a =b 的充要条件是|a |=|b |且a ∥bD .已知λ,μ为实数,若λa =μb ,则a 与b 共线 答案 ACD解析 A 错误,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. (2)如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →教师备选(多选)下列命题为真命题的是( )A .若a 与b 为非零向量,且a ∥b ,则a +b 必与a 或b 平行B .若e 为单位向量,且a ∥e ,则a =|a |eC .两个非零向量a ,b ,若|a -b |=|a |+|b |,则a 与b 共线且反向D .“两个向量平行”是“这两个向量相等”的必要不充分条件 答案 ACD思维升华 平行向量有关概念的四个关注点 (1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量. (4)a|a |是与a 同方向的单位向量. 跟踪训练1 (1)(多选)下列命题正确的是( ) A .零向量是唯一没有方向的向量 B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a =b ,b =c ,则a =c 答案 BCD解析 A 项,零向量是有方向的,其方向是任意的,故A 错误; B 项,由零向量的定义知,零向量的长度为0,故B 正确;C 项,因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 是反向共线时才成立,故C 正确;D 项,由向量相等的定义知D 正确.(2)对于非零向量a ,b ,“a +b =0”是“a∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a +b =0,则a =-b ,则a ∥b ,即充分性成立;若a ∥b ,则a =-b 不一定成立,即必要性不成立,即“a +b =0”是“a ∥b ”的充分不必要条件. 题型二 平面向量的线性运算 命题点1 向量加、减法的几何意义例 2 (2022·济南模拟)已知单位向量e 1,e 2,…,e 2023,则|e 1+e 2+…+e 2023|的最大值是________,最小值是________. 答案 2023 0解析 当单位向量e 1,e 2,…,e 2023方向相同时, |e 1+e 2+…+e 2023|取得最大值,|e 1+e 2+…+e 2023|=|e 1|+|e 2|+…+|e 2023|=2023; 当单位向量e 1,e 2,…,e 2023首尾相连时,e 1+e 2+…+e 2023=0,所以|e 1+e 2+…+e 2023|的最小值为0. 命题点2 向量的线性运算例3 (多选)如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD ,E 是BC 边上一点,且BC →=3EC →,F 是AE 的中点,则下列关系式正确的是( )A.BC →=-12AB →+AD →B.AF →=13AB →+13AD →C.BF →=-13AB →+23AD →D.CF →=-16AB →-23AD →答案 ABD解析 因为BC →=BA →+AD →+DC →=-AB →+AD →+12AB →=-12AB →+AD →,所以选项A 正确; 因为AF →=12AE →=12(AB →+BE →)=12⎝⎛⎭⎪⎫AB →+23BC →,而BC →=-12AB →+AD →,代入可得AF →=13AB →+13AD →,所以选项B 正确; 因为BF →=AF →-AB →, 而AF →=13AB →+13AD →,代入得BF →=-23AB →+13AD →,所以选项C 不正确; 因为CF →=CD →+DA →+AF →=-12AB →-AD →+AF →,而AF →=13AB →+13AD →,代入得CF →=-16AB →-23AD →,所以选项D 正确.命题点3 根据向量线性运算求参数例4 (2022·青岛模拟)已知平面四边形ABCD 满足AD →=14BC →,平面内点E 满足BE →=3CE →,CD与AE 交于点M ,若BM →=xAB →+yAD →,则x +y 等于( ) A.52 B .-52C.43 D .-43答案 C解析 如图所示,易知BC =4AD ,CE =2AD ,BM →=AM →-AB → =13AE →-AB →=13(AB →+BE →)-AB → =13(AB →+6AD →)-AB → =-23AB →+2AD →,∴x +y =43.教师备选1.(2022·太原模拟)在△ABC 中,AD 为BC 边上的中线,若点O 满足AO →=2OD →,则OC →等于( ) A.-13AB →+23AC →B.23AB →-13AC →C.13AB →-23AC →D.-23AB →+13AC →答案 A解析 如图所示,∵D 为BC 的中点, ∴AD →=12(AB →+AC →),∵AO →=2OD →,∴AO →=23AD →=13AB →+13AC →,∴OC →=AC →-AO →=AC →-⎝ ⎛⎭⎪⎫13AB →+13AC →=-13AB →+23AC →.2.(2022·长春调研)在△ABC 中,延长BC 至点M 使得BC =2CM ,连接AM ,点N 为AM 上一点且AN →=13AM →,若AN →=λAB →+μAC →,则λ+μ等于( )A.13B.12 C .-12D .-13答案 A解析 由题意,知AN →=13AM →=13(AB →+BM →)=13AB →+13×32BC →=13AB →+12(AC →-AB →) =-16AB →+12AC →,又AN →=λAB →+μAC →,所以λ=-16,μ=12,则λ+μ=13.思维升华 平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义. (2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值. 跟踪训练2 (1)点G 为△ABC 的重心,设BG →=a ,GC →=b ,则AB →等于( ) A .b -2a B.32a -12b C.32a +12b D .2a +b答案 A解析 如图所示,由题意可知 12AB →+BG →=12GC →, 故AB →=GC →-2BG →=b -2a .(2)(2022·大连模拟)在△ABC 中,AD →=2DB →,AE →=2EC →,P 为线段DE 上的动点,若AP →=λAB →+μAC →,λ,μ∈R ,则λ+μ等于( )A .1B.23C.32D .2答案 B解析 如图所示,由题意知, AE →=23AC →,AD →=23AB →,设DP →=xDE →,所以AP →=AD →+DP →=AD →+xDE → =AD →+x (AE →-AD →) =xAE →+(1-x )AD → =23xAC →+23(1-x )AB →, 所以μ=23x ,λ=23(1-x ),所以λ+μ=23x +23(1-x )=23.题型三 共线定理及其应用 例5 设两向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线, 又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b . ∵a ,b 是不共线的两个向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1. 教师备选1.已知P 是△ABC 所在平面内一点,且满足PA →+PB →+PC →=2AB →,若S △ABC =6,则△PAB 的面积为( )A .2B .3C .4D .8答案 A解析 ∵PA →+PB →+PC →=2AB →=2(PB →-PA →), ∴3PA →=PB →-PC →=CB →,∴PA →∥CB →,且两向量方向相同,∴S △ABC S △PAB =BC AP =|CB →||PA →|=3, 又S △ABC =6,∴S △PAB =63=2.2.设两个非零向量a 与b 不共线,若a 与b 的起点相同,且a ,t b ,13(a +b )的终点在同一条直线上,则实数t 的值为________. 答案 12解析 ∵a ,t b ,13(a +b )的终点在同一条直线上,且a 与b 的起点相同,∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝ ⎛⎭⎪⎫23a -13b ,又a ,b 为两个不共线的非零向量, ∴⎩⎪⎨⎪⎧ 1=23λ,t =13λ,解得⎩⎪⎨⎪⎧λ=32,t =12.思维升华 利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据. (2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.跟踪训练3 (1)若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k 等于( ) A .-1B .1C.32D .2答案 B解析 由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,故存在实数λ, 使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.(2)如图,已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案 B解析 因为线段CO 与线段AB 交于点D , 所以O ,C ,D 三点共线, 所以OC →与OD →共线, 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 可得OD →=λm OA →+μmOB →,因为A ,B ,D 三点共线, 所以λm +μm=1,可得λ+μ=m >1, 所以λ+μ的取值范围是(1,+∞).课时精练1.(多选)下列选项中的式子,结果为零向量的是( ) A.AB →+BC →+CA → B.AB →+MB →+BO →+OM → C.OA →+OB →+BO →+CO → D.AB →-AC →+BD →-CD → 答案 AD解析 利用向量运算,易知A ,D 中的式子结果为零向量. 2.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B 解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b |b |,则有a ,b 共线,而a ,b 共线,则a|a |,b|b |是相等向量或相反向量,所以“a|a |=b|b |”是“a ,b 共线”的充分不必要条件.3.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是( ) A .a ∥b B .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案 B解析 由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b 成立,所以A 正确;由a +b =b ,所以B 不正确,C 正确;由|a +b |=|b |,|a |+|b |=|b |, 所以|a +b |=|a |+|b |,所以D 正确.4.(2022·汕头模拟)下列命题中正确的是( ) A .若a ∥b ,则存在唯一的实数λ使得a =λbB .若a∥b ,b∥c ,则a∥cC .若a·b =0,则a =0或b =0D .|a |-|b |≤|a +b |≤|a |+|b | 答案 D解析 若a ∥b ,且b =0,则可有无数个实数λ使得a =λb ,故A 错误; 若a ∥b ,b ∥c (b ≠0),则a ∥c ,若b =0, 则a ,c 不一定平行,故B 错误; 若a·b =0,也可以为a ⊥b ,故C 错误;根据向量加法的三角形法则和向量减法的几何意义知, |a |-|b |≤|a +b |≤|a |+|b |成立,故D 正确.5.在平行四边形ABCD 中,AC →与BD →交于点O ,E 是线段OD 的中点.若AC →=a ,BD →=b ,则AE →等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b 答案 C解析 如图所示,∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12a +12b , ∴AE →=AD →-ED →=12a +12b -14b =12a +14b .6.下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .向量a 与b 平行,则a 与b 的方向相同或相反D .向量的模是一个正实数 答案 A解析 A 项,AB →与BA →的长度相等,方向相反,正确;B 项,两个有共同起点且长度相等的向量,若方向也相同,则它们的终点相同,故错误;C 项,向量a 与b 平行时,若a 或b 为零向量,不满足条件,故错误;D 项,向量的模是一个非负实数,故错误.7.如图,在平行四边形ABCD 中,E 为BC 的中点,F 为DE 的中点,若AF →=xAB →+34AD →,则x 等于( )A.34B.23C.12D.14答案 C解析 连接AE (图略),因为F 为DE 的中点, 所以AF →=12(AD →+AE →),而AE →=AB →+BE →=AB →+12BC →=AB →+12AD →,所以AF →=12(AD →+AE →)=12⎝⎛⎭⎪⎫AD →+AB →+12AD →=12AB →+34AD →, 又AF →=xAB →+34AD →,所以x =12.8.(多选)已知4AB →-3AD →=AC →,则下列结论正确的是( ) A .A ,B ,C ,D 四点共线 B .C ,B ,D 三点共线 C .|AC →|=|DB →| D .|BC →|=3|DB →| 答案 BD解析 因为4AB →-3AD →=AC →,所以3DB →=BC →,因为DB →,BC →有公共端点B ,所以C ,B ,D 三点共线,且|BC →|=3|DB →|, 所以B ,D 正确,A 错误; 由4AB →-3AD →=AC →,得AC →=3AB →-3AD →+AB →=3DB →+AB →, 所以|AC →|≠|DB →|,所以C 错误.9.(2022·太原模拟)已知不共线向量a ,b ,AB →=t a -b (t ∈R ),AC →=2a +3b ,若A ,B ,C 三点共线,则实数t =__________. 答案 -23解析 因为A ,B ,C 三点共线,所以存在实数k ,使得AB →=kAC →, 所以t a -b =k (2a +3b )=2k a +3k b , 即(t -2k )a =(3k +1)b .因为a ,b 不共线,所以⎩⎪⎨⎪⎧t -2k =0,3k +1=0,解得⎩⎪⎨⎪⎧k =-13,t =-23.10.已知△ABC 的重心为G ,经过点G 的直线交AB 于D ,交AC 于E ,若AD →=λAB →,AE →=μAC →,则1λ+1μ=________.答案 3解析 如图,设F 为BC 的中点,则AG →=23AF →=13(AB →+AC →),λμ∴AG →=13λAD →+13μAE →,又G ,D ,E 三点共线, ∴13λ+13μ=1,即1λ+1μ=3. 11.若正六边形ABCDEF 的边长为2,中心为O ,则|EB →+OD →+CA →|=________. 答案 2 3解析 正六边形ABCDEF 中,EB →+OD →+CA →=EO →+DC →+OD →+CA →=ED →+DA →=EA →, 在△AEF 中,∠AFE =120°,AF =EF =2, ∴|EA →|=22+22-2×2×2×cos120°=23, 即|EB →+OD →+CA →|=2 3.12.在平行四边形ABCD 中,点M 为BC 边的中点,AC →=λAM →+μBD →,则λ+μ=________. 答案 53解析 AC →=λ⎝ ⎛⎭⎪⎫AB →+12AD →+μ(AD →-AB →)=(λ-μ)AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又因为AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=43,μ=13,所以λ+μ=53.13.(多选)点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 AD解析 因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0, 所以|CB →|-|(PB →-PA →)+(PC →-PA →)|=0, 即|CB →|=|AB →+AC →|, 所以|AB →-AC →|=|AC →+AB →|, 等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.14.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD →=14AC →+λAB →(λ∈R ),则λ=________,AD 的长为________. 答案 343 3解析 ∵B ,D ,C 三点共线, ∴14+λ=1,解得λ=34. 如图,过D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N , 则AN →=14AC →,AM →=34AB →,∵在△ABC 中,∠A =60°,∠A 的平分线交BC 于D , ∴四边形AMDN 是菱形, ∵AB =4,∴AN =AM =3, ∴AD =3 3.15.(2022·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为( ) A. 3 B .2 3 C .3 3 D .4 3答案 B解析 设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →. 由AB →+PB →+PC →=0, 得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点, 所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点, 又D 为BC 的中点,所以四边形CPBM 为平行四边形. 又|AB →|=|PB →|=|PC →|=2, 所以|MC →|=|BP →|=2,则|AC →|=4, 且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°, 则S △ABC =12×2×4×32=2 3.16.若2OA →+OB →+3OC →=0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC ∶S △ABC =________. 答案 1∶6解析 若2OA →+OB →+3OC →=0, 设OA ′——→=2OA →,OC ′——→=3OC →, 可得O 为△A ′BC ′的重心,如图,设S △AOB =x ,S △BOC =y ,S △AOC =z , 则S △A ′OB =2x ,S △BOC ′=3y ,S △A ′OC ′=6z , 由2x =3y =6z ,可得S△AOC∶S△ABC=z∶(x+y+z)=1∶6.。
2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)
B.-1
C.-6
D.-18
D
由题意知 cos
〈a,b〉=sin
17π 3
=sin
6π-π3
=-sin
π 3
=
-
3 2
,所以 a·b=|a||b|cos 〈a,b〉=1×2
3
×-
3
2
=-3,b·(2a-b)
=2a·b-b2=-18.故选 D.
返回导航
3.在 Rt△ABC 中,∠ABC=60°,∠BAC=90°,则向量B→A 在向量
返回导航
[常用结论] 1.平面向量数量积运算的常用公式 ①(a+b)·(a-b)=a2-b2;②(a±b)2=a2±2a·b+b2; ③a2+b2=0⇒a=b=0. 2.有关向量夹角的两个结论 ①两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为夹角 为 0 时不成立).
返回导航
规定 零向量与任一向量的数量积为 0
返回导航
(2)当 0°≤〈a,b〉<90°时,a·b>0;当〈a,b〉=90°时,a·b=0; 当 90°<〈a,b〉≤180°时,a·b<0;当〈a,b〉=0°时,a·b=|a||b|;当 〈a,b〉=180°时,a·b=-|a||b|.
返回导航
(3)投影向量
大一轮复习讲义 数学(BSD)
第五章 平面向量、复数 第三节 平面向量的数量积及平面向量应用举例
内 夯实·主干知识 容 探究·核心考点 索 引 课时精练
返回导航
【考试要求】 1.理解平面向量数量积的含义及其物理意义.2.了解平 面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平 面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判 断两个平面向量的垂直关系.5.会用向量方法解决某其他一些实际问题.
高考数学一轮复习全套课时作业5-4平面向量的综合应用
专题层级快练 5.4平面向量的综合应用一、单项选择题1.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为( ) A .1 B. 2 C. 3 D .22.(2021·湖北黄石一中月考)已知B 是以线段AC 为直径的圆上的一点(异于点A ,C),其中|AB|=2,则AC →·AB →=( )A .1B .2C .3D .4 3.如图所示,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1, 则AC →·AD →=( ) A .2 3 B.32 C.33D. 3 4.(2020·杭州学军中学模拟)在△ABC 中,BC →=a ,CA →=b ,AB →=c ,且a·b =b·c =c ·a ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.(2021·江西省八所重点中学联考)设向量a =(1,-1),b =(sin 2α,cos 2α),α∈⎝⎛⎦⎤0,π2,a ·b =12,则α=( )A.π6B.π3C.π4D.π26.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形D .等边三角形7.(2020·银川调研)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( ) A .直角梯形 B .矩形 C .菱形 D .正方形8.(2021·甘肃白银一中模拟)已知△ABC 的垂心为H ,且AB =3,AC =5,M 为BC 的中点,则HM →·BC →=( )A .5B .6C .7D .89.已知向量a ,b ,c 共面,且均为单位向量,a ·b =0,则|a +b -c |的取值范围是( )A .[2-1,2+1]B .[1,2]C .[2,3]D .[2-1,1]10.(2017·课标全国Ⅱ,理)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43 D .-1二、多项选择题11.(2021·潍坊二模)设a ,b 是非零向量,若函数f(x)=(x a +b )·(a -x b )的图象是一条直线,则必有( ) A .a ⊥b B .a ∥b C .|a |=|b | D .a ·b =0 12.如图,已知四边形OAED ,OCFB 均为正方形,2AE →+CF →=0,AB →·AD →=-1,则下列说法正确的是( ) A .∠AOB =90° B .AD =1 C.BO →·CD →=2 D .AO =1三、填空题与解答题13.(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________.14.(2021·湖南五市十校联考)已知向量m =(cosx ,sinx),n =(cosx ,3cosx),x ∈R ,设函数f(x)=m ·n +12. (1)求函数f(x)的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f(A)=2,b +c =22,△ABC 的面积为12,求a的值.15.如图,AB 是半圆O 的直径,C ,D 是AB ︵的三等分点,M ,N 是线段AB 的三等分点,若OA =6,则MC →·ND →=________.16.已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =12,则(a +b )·(2b-c )的最小值是________,最大值是________.专题层级快练 5.4平面向量的综合应用1.答案 B解析 ∵a =(1,sin θ),b =(1,cos θ),∴a -b =(0,sin θ-cos θ). ∴|a -b |=02+(sin θ-cos θ)2=1-sin2θ. ∴|a -b |的最大值为 2.故选B. 2.答案 D解析 连接BC ,∵AC 为直径,∴∠ABC =90°,∴AB ⊥BC ,AC →在AB →上的投影为|AC →|cos 〈AC →,AB →〉=|AB →|=2,∴AC →·AB →=|AC →||AB →|·cos 〈AC →,AB →〉=4.故选D. 3.答案 D解析 AC →·AD →=(AB →+BC →)·AD →=AB →·AD →+BC →·AD →=BC →·AD →= 3 BD →·AD →=3|BD →||AD →|·cos ∠BDA =3|AD →|2= 3. 4.答案 D解析 因为a ,b ,c 均为非零向量,且a·b =b·c ,得b·(a -c )=0⇒b ⊥(a -c ). 又a +b +c =0⇒b =-(a +c ),∴[-(a +c )]·(a -c )=0⇒a 2=c 2,得|a|=|c|. 同理|b|=|a|,∴|a|=|b|=|c|. 故△ABC 为等边三角形. 5.答案 B解析 由题意,得a ·b =sin 2α-cos 2α=12,即cos2α=-12,又α∈⎝⎛⎦⎤0,π2,所以2α∈(0,π],则2α=2π3,所以α=π3.故选B.6.答案 D思路 本题可先由条件的几何意义得出AB =AC ,再求得A =π3,即可得出答案.解析 因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC.又AB →|AB →|·AC →|AC →|=1×1×cos ∠BAC =12,所以cos ∠BAC =12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D. 7.答案 C解析 由AB →+CD →=0得平面四边形ABCD 是平行四边形,由(AB →-AD →)·AC →=0得DB →·AC →=0,故平行四边形的对角线垂直,所以该四边形一定是菱形,故选C. 8.答案 D 解析如图,HM →·BC →=(HA →+AM →)·BC →=HA →·BC →+AM →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=8. 9.答案 A 10.答案 B 解析如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A(0,3),B(-1,0),C(1,0),设P(x ,y),则PA →=(-x ,3-y),PB →=(-1-x ,-y),PC →=(1-x ,-y),所以PA →·(PB →+PC →)=(-x ,3-y)·(-2x ,-2y)=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA →·(PB→+PC →)取得最小值,为-32,选B.11.答案 AD解析 f(x)=(x a +b )·(a -x b )的图象是一条直线,即f(x)的表达式是关于x 的一次函数或常函数.而(x a +b )·(a -x b )=-x 2a ·b +(a 2-b 2)x +a ·b ,故a ·b =0,即a ⊥b ,故应选AD. 12.答案 ACD解析 因为2AE →+CF →=0,所以CF =2AE ,CF ∥AE ,因为四边形OAED ,OCFB 均为正方形,所以AO ⊥BO ,所以∠AOB =90°,故A 正确;因为AB →·AD →=(AO →+OB →)·(AO →+OD →)=AO →2+OB →·OD →=-AO →2=-1,所以AO =1,故D 正确;从而可得AD =2,B 错误;因为BO →·CD →=BO →·(CO →+OD →)=2OD →2=2,故C 正确.故选ACD. 13.答案5 -1解析方法一:如图,由题意及平面向量的平行四边形法则可知,点P 为BC 的中点,在三角形PCD 中,|PD →|=5,cos ∠DPB =-cos ∠DPC =-15,∴PB →·PD →=|PB →|·|PD →|cos ∠DPB =1×5×⎝⎛⎭⎫-15=-1.方法二:以A 为坐标原点,AB ,AD 所在直线分别为x 轴、y 轴,建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∴AP →=12(AB →+AC →)=(2,1),P(2,1),∴PD →=(-2,1),PB →=(0,-1),∴|PD →|=5,PB →·PD →=(0,-1)·(-2,1)=-1.14.答案 (1)f(x)=sin ⎝⎛⎭⎫2x +π6+1 单调递增区间为⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z (2)3-1解析 (1)由题意知,f(x)=cos 2x +3sinxcosx +12=sin ⎝⎛⎭⎫2x +π6+1.令2x +π6∈⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,解得x ∈⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z .∴函数f(x)的单调递增区间为⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z .(2)∵f(A)=sin ⎝⎛⎭⎫2A +π6+1=2,∴sin ⎝⎛⎭⎫2A +π6=1.∵0<A<π,∴π6<2A +π6<13π6,∴2A +π6=π2,即A =π6.由△ABC 的面积S =12bcsinA =12,得bc =2,又b +c =22,∴a 2=b 2+c 2-2bccosA =(b +c)2-2bc(1+cosA), 解得a =3-1. 15.答案 26解析 连接OC ,OD ,MC ,ND ,由题可知∠AOC =∠DOC =∠DOB =60°,|MO →|=|NO →|=2,|OD →|=|OC→|=6.则MC →·ND →=(MO →+OC →)·(NO →+OD →)=MO →·NO →+MO →·OD →+NO →·OC →+OC →·OD →=-4+6+6+18=26.16.答案 3-3 3+ 3 解析由|a |=|b |=1,a ·b =12,可得〈a ,b 〉=π3,令OA →=a ,OB →=b ,以O 为坐标原点,OA →的方向为x 轴的正方向建立如图所示的平面直角坐标系,则a =OA →=(1,0),b =OB →=⎝⎛⎭⎫12,32.设c =OC →=(cos θ,sin θ)(0≤θ<2π),则(a +b )·(2b -c )=2a ·b -a ·c +2b 2-b ·c =3-⎝⎛⎭⎫cos θ+12cos θ+32sin θ=3-3sin ⎝⎛⎭⎫θ+π3.因为-1≤sin ⎝⎛⎭⎫θ+π3≤1,所以(a +b )·(2b -c )的最小值和最大值分别为3-3,3+ 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题5.4 平面向量应用
一、填空题:
1.如图,已知ABC ∆的边BC 的垂直平分线交AC 于点P ,交BC 于点Q .若
3,5AB AC ==,
()()AP AQ AB AC +⋅-的值为 .
【答案】-16 【解析】
2.已知,,a b c r r r 是同一平面内的三个向量,其中,a b r r
是互相垂直的单位向量,且
())1a c c -∙-=r r r ,则||c r
的最大值为 .
【解析】
试题分析:由,a b r r 是互相垂直的单位向量得||2a ==r ,因此由()(3)1a c b c -∙-=得
222||(1||2||cos 1||2||10||1c a c c c c c c θ-⋅=⇒-⋅=⇒-⋅≤⇒≤≤r r r r r r r r
.3. 如图所示,三个边长为2的等边三角形有一条边在同一直线上,边33C B 上有10个不同的点1021,,,P P P ,记i i AB M ⋅=2
(10,,2,1 =i ),则=+++1021M M M .
【答案】180
4. 在平面直角坐标系xOy 中,设M 是函数24
()x f x x
+= (x>0)的图象上任意一点,过M 点
向直线y=x 和y 轴作垂线,垂足分别是A ,B ,则MA MB ⋅= ▲ . 【答案】2- 【解析】
试题分析:设(,),(,)M x y A m m ,则(0,)B y ,因此
2(,)(,0)MA MB m x m y x x mx ⋅=--⋅-=-,又
224
11222MA
y m x k y x m x m x mx x m x
-+=-⇒=-⇒=-+⇒=-+⇒-=--,因此
2.MA MB ⋅=-
5. 设二次函数c bx ax x f ++=2
)(的图象经过点)2,(t C ,且与x 轴交于B A ,两点,若
ACB ∠是钝角,则实数a 的取值范围是 .
【答案】1
(,)2
-∞-.
【解析】由题意22
=++c bt at ,设02
=++c bx ax 的两根为21,x x ,则)0,(),0,(21x B x A ,
y
x
向量
6.如图,在梯形ABCD 中,AB
//DC ,AD AB ⊥,1
22
AD DC AB ==
=,点N 是CD 边上一动点,则AN AB ⋅的最大值为 .
【答案】8
【解析】由平面向量数量积知识得,
||||cos |||||'|||248AN AB AN AB NAB AM AB AM AB ⋅=⋅⋅∠=⋅≤⋅=⨯=
7.已知向量)0,2(=,向量)2,2(=,向量)sin 2,cos 2(αα=,则向量OA 与向量OB 的夹角的取值范围是 .
【答案】]12
5,12[
π
π 【解析】如图,以O 为原点建立平面直角坐标系,则由题意可知)0,0(O ,)0,2(B ,)2,2(C ,
又由(2)CA αα=可知A 在以C 为圆心,2为半径的圆上,若直线OA 与圆
相切,由图可知
1264621222sin π
πππ=-=∠⇒=∠⇒===
∠AOB COA OC AC COA ,
即OA 与OB 夹角的最小值为12π,同理可得OA 与OB 夹角的最大值为12
5π,即OA 与OB 夹角的取值范围为]12
5,12[
π
π.
8.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心、AB 为半径的圆弧上的任意一点,设向量AC =λDE +μAP ,则λ+μ的最小值为________.
【答案】1
2
所以当α=0时,f (α)min =f (0)=1
2,
所以(λ+μ)min =1
2
..
9.直线1x =与抛物线C :24y x =交于,M N 两点,点P 是抛物线C 准线上的一点, 记(,)OP aOM bON a b =+∈R ,其中O 为抛物线C 的顶点.给出下列命题: ①,a b ∀∈R ,PMN ∆不是等边三角形; ②∃0a <且0b <,使得OP 与ON 垂直; ③无论点P 在准线上如何运动,1a b +=-总成立. 其中,所有正确命题的序号是___. 【答案】①②③
10.如图,在直角梯形ABCD 中,AD ⊥AB ,AB ∥DC ,AD =DC =1,AB =2,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设AP =λAD +μAB (λ,μ∈R),则λ+μ的取值范围是 ________.
【答案】 [1,2]
二、解答题:
11.如图,在xoy 平面上,点)0,1(A ,点B 在单位圆上,θ=∠AOB (πθ<<0)
(1)若点)5
4,53(-B ,求)4
2
tan(
π
θ
+
的值;
(2)若OC OB OA =+,四边形OACB 的面积用θS 表示,求OC OA S ⋅+θ的取值范围
.
【答案】(1)-3,(2)120+≤⋅+<OC OA S θ.
【解析】(1)由于)54
,53(-B ,θ=∠AOB ,所以5
3cos -=θ,54
sin =
θ
2
53154cos 1sin 2tan =-=+=θθθ ,
于是)42tan(πθ+321212tan
12tan
1-=-+=-+=θθ
. (2)θS θθsin sin 11=⨯⨯=,由于)0,1(=,)sin ,(cos θθ=,所以
)sin ,cos 1(θθ+=+=OB OA OC ,θθθcos 1sin 0)cos 1(1+=⨯++⨯=⋅OC OA ,则
OC OA S ⋅+θ1)4
sin(21cos sin ++
=++=π
θθθ(πθ<<0)
, 由于
454
4
π
π
θπ
<
+
<,所以1)4
sin(22≤+<-πθ,所以120+≤⋅+<OC OA S θ. 12.已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点. (1)求证:APB ∠恒为锐角;
(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值. 【答案】(1)证明见解析;(2)2.
∴||||AB BP = 化简得到2210x x -+=, ∴1x =, ∴(1,0)P ,
设(,)Q a b ,∵PQ BA =, ∴(1,)(1,1)a b -=--, ∴0
1a b =⎧⎨
=-⎩
, ∴(0,2)(1,1)2BQ AQ ⋅=-⋅-=.
13.如图,平面直角坐标系xOy 中,已知向量(6,1)AB =,(,),(2,3)BC x y CD ==--,且//BC AD 。
(1)求x 与y 间的关系;(2)若AC BD ⊥,求x 与y 的值及四边形ABCD 的面积. 【答案】(1)20x y +=;(2)21x y =⎧⎨
=-⎩或6
3
x y =-⎧⎨=⎩,16ABCD S =四边形.
14.在DEM ∆中,EM DE ⊥,()80-=,OD ,N 在y E 在x 轴上移动.
(Ⅰ)求点M 的轨迹方程;
(Ⅱ)过点()10,
F 作互相垂直的两条直线21l l 、,1l 与点M 的轨迹交于点A 、B ,2l 与点M 的轨迹交于点C 、D ,求DB AC ⋅的最小值. 【答案】(Ⅰ)y x 42
=(0≠x );(Ⅱ)12.。