铜仁中考数学试题及答案

合集下载

【真题】贵州省铜仁市中考数学试题含答案解析()

【真题】贵州省铜仁市中考数学试题含答案解析()

贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。

2023年贵州铜仁中考数学真题及答案

2023年贵州铜仁中考数学真题及答案

2023同学你好!答题前请认真阅读以下内容:A.B.C.D.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民元.10870这个数用科学记数法表示正确的是(41.08710⨯31.08710⨯BD 相交于点E .若40C =︒,则A ∠的度数是(A.39︒B.40︒5.化简11a a a+-结果正确的是(A.4m B.6m8.在学校科技宣传活动中,某科技活动小组将个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出球,并对小球标记的内容进行介绍,下列叙述正确的是(A.模出“北斗”小球的可能性最大C.摸出“高铁”小球的可能性最大A.第一象限B.第二象限11.如图,在四边形ABCD中,A.2B.312.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y(km)与所用时间x(h)之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50km75km/hC.小星从家出发2小时离景点的路程为用了3h二、填空题(每小题4分,共16分)x-=__________.13.因式分解:2414.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是洞堡机场的坐标是_______.三、解答题(本大题共9步骤)17.(1)计算:2(2)(-+(2)已知,1,A a B =-=18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小星:由题目的已知条件,若连接BE 证明(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若5AD =21.如图,在平面直角坐标系中,四边形是矩形,反比例函数()0k y x x=>的图象分别与,AB BC 交于点(D (1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数,当点M 在反比例函数图象上,D E 之间的部分时(点m 的取值范围.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,两处的水平距离AE(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,223.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.24.如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =-++->,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.25.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,根据题意在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】根据(1)所画图形,探究线段PA 与PE 的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P 在射线CB 上移动,将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,探究线段,,BA BP BE 之间的数量关系,并说明理由.ABC 中,120BAC ∠=︒,∴(11802B C BAC ∠=∠=︒-∠ AD BC ⊥,∴11126m 22AD AB ==⨯=,故选B.矩形ABCD 中,1AB =∴3BC AD ==,∴1tan 3AB ACB BC ∠===∴30ACB ∠=︒,60BAC ∠= 60BCE ∠=︒,BAE ∠=∴30ACE BCA ︒∠=∠=,∵6030ACD ACB ∠+∠=︒+∴点E 关于AC 的对称点∴AFB CAF ACB ∠=∠+∠∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴31FC BC BF =-=-,∴四边形ABCE 的面积ABC ACE ABC S S S S =+=+ 故答案为:2312-.【点睛】本题考查矩形的性质,根据特殊角三角函数值求角的度数,轴对称的性质,等腰三角形的判定和性质,三角形外角的性质等,综合性较强,难度较大,解题的关键是正确作出辅助线,将四边形ABCE 17.(1)4;(2)2a >【分析】(1)先计算乘方和零次幂,再进行加减运算;由①可知四边形AEBC是矩形,∴CE AB=,四边形AEDB是平行四边形,∴DE AB=,∴CE DE=.(2)解:如图,连接ADBD CB=,23 CBAC=,【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数.23.(1)1∠、2∠、3∠、4∠;(2)证明见详解;(3)四边形OAEB 是菱形;【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形;【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.24.(1)29y x =-+(2)点P 的坐标为()0,6(3)4613b ≥【分析】(1)设抛物线的解析式为(2)点B 关于y 轴的对称点坐标即可;(3)分05b <≤和5b >两种情况,根据最小值大于等于【详解】(1)解: 抛物线的对称轴与∴设抛物线的解析式为y 9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入y 2930k a k =⎧⎨⋅+=⎩,解得91k a =⎧⎨=-⎩,∴抛物线的解析式为y =-(2)解: 抛物线的解析式为当1x =时,198y =-+=(3)解: 22y x bx =-+∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当x =则13379b -≥,解得4613b ≥,∴46513b ≤≤;当5b >时,在46x ≤≤范围内,当x =∵,90CA CB C =∠=︒,∴190452ABC BAC ∠=∠=⨯︒=∵BD AB ⊥,∴90ABD Ð=°,∴45CBE ABC ABE ∠=∠+∠=根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、P 、B 、E 四点共圆,∴45AEP ABP ∠=∠=︒,∴904545EAP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =.(3)解:当点P 在线段BC 上时,连接根据解析(2)可知,PA PE =,∵90EFP APE ∠=∠=︒,∴EPF PEF EPF APC ∠+∠=∠+∠∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴EF PC =,∵18045EBF CBE ∠=︒-∠=︒,∠∴EBF △为等腰直角三角形,∴2BE EF =,∵ABC 为等腰直角三角形,根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、B 、P 、E 四点共圆,∴45EAP EBP ∠=∠=︒,∴904545AEP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴PF AC =,∵BC AC =,∴PF BC =,∵45EBF ∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴()(222BE BF PF BP BC ==+=即2BE BA BP =+;四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.。

贵州铜仁中考数学试卷真题

贵州铜仁中考数学试卷真题

贵州铜仁中考数学试卷真题一、选择题1. 以下哪个选项中的数是无理数?A) 0.5 B) 3/4 C) √2 D) 2.52. 解方程2(x+1) = 5(x-2),得出的x的值为:A) -1 B) 1 C) 3 D) 43. 若两个角互补,则它们的和是:A) 45° B) 90° C) 135° D) 180°4. 下列各组数中,按从小到大的顺序排列正确的是:A) 0.25,0.33,0.31 B) -0.6,-0.9,-0.7 C) -1,0,1 D) -2,-1,05. 如图所示,一个正方形的对角线被一刀切割成两段,比值为2:3。

求短边的长度是长边的几分之一。

(图略)A) 1/2 B) 2/5 C) 2/3 D) 3/5二、计算题1. 若m = 2,n = 4,则下列哪个不等式是正确的?A) m + n > 0 B) m + n < 0 C) m - n > 0 D) m - n < 02. 已知△ABC中,AB = 8 cm,AC = 10 cm,BC = 6 cm。

则△ABC 的面积为:A) 24 cm^2 B) 30 cm^2 C) 32 cm^2 D) 48 cm^23. 一个半径为4 cm的正圆锥体,高为6 cm,则其体积为:A) 32 cm^3 B) 64 cm^3 C) 96 cm^3 D) 128 cm^3三、解答题1. 某商店进行促销活动,原价300元的商品打8折出售,售出了180个。

求此活动后的总收入。

2. 小明乘坐火车从A地到B地,沿途共经过4个站点。

第一个站点上车的人数是600人,每过一个站点,人数会减少40%。

求小明到达B地时,剩余的乘客人数。

3. 一个正方形的边长是x,一个矩形的长是正方形的两倍,宽是正方形的一半。

若正方形的面积是16,求矩形的周长。

四、解析题1. 在星期一至星期五这五天里,小明中午从学校回家吃饭,然后再返回学校。

贵州省铜仁市中考数学真题试题含解析

贵州省铜仁市中考数学真题试题含解析

2021年贵州省铜仁市中考数学试卷一、选择题〔共10小题,每题4分,总分值40分〕1.〔4分〕2021的相反数是〔〕A.B.﹣C.|2021|D.﹣20212.〔4分〕如图,假如∠1=∠3,∠2=60°,那么∠4的度数为〔〕A.60°B.100°C.120°D.130°3.〔4分〕今年我市参加中考的学生约为56000人,56000用科学记数法表示为〔〕A.56×103B.×104C.×105D.×10﹣44.〔4分〕某班17名女同学的跳远成绩以下表所示:成绩〔m〕人数23234111这些女同学跳远成绩的众数和中位数分别是〔〕A.,B.,C.,D.,5.〔4分〕如图为矩形ABCD,一条直线将该矩形切割成两个多边形,假定这两个多边形的内角和分别为a和b,那么a+b不行能是〔〕A.360°B.540°C.630°D.720°6.〔4分〕一元二次方程4x2﹣2x﹣1=0的根的状况为〔〕A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.〔4分〕如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,那么四边EFGH的周长为〔〕形A.12B.14C.24D.218.〔4分〕如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,那么S△CEF=〔〕A.B.C.D.9.〔4分〕如图,平行四边形ABCD中,对角线AC、BD订交于点O,且AC=6,BD=8,P是对角线BD上随意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,那么能大概表示y与x之间关系的图象为〔〕A.B.C.D.10.〔4分〕如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折获得△FDE,延伸EF交BC于G,FH⊥BC,垂足为H,连结BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=;此中正确的个数是〔〕A.2B.3C.4D.5二、填空题:〔本大题共8个小题,每题4分,共32分〕11.〔4分〕因式分解:a2﹣9=.12.〔4分〕小刘和小李参加射击训练,各射击10次的均匀成绩同样,假如他们射击成绩的方差分别是S小刘2=,S小李2=,那么两人中射击成绩比较稳固的是;13.〔4分〕如图,四边形ABCD为⊙O的内接四边形,∠A=100°,那么∠DCE的度数为;14.〔4分〕分式方程=的解y=.15.〔4分〕某市了扎落脱攻中“两不愁、三保障〞的住宅保障工作,昨年已投入5元金,并划投入金逐年增,明年将投入元金用于保障性住宅建,两年投入金的年均匀增率.16.〔4分〕如,在△中,D 是的中点,且⊥,∥,交于点,ABC AC BD ACEDBCED AB EBC =7,=6,△的周等于.cmAC cm AED cm17.〔4分〕假如不等式的解集是x<a4,a的取范是.18.〔4分〕按必定律摆列的一列数挨次:,,,,⋯〔a≠0〕,按此律摆列下去,列数中的第n个数是.〔n正整数〕三、答:〔本大共4个小,第 19每小10分,第20、21、22每小10分,共40分,要有解的主要程〕19.〔10分〕〔1〕算:||+〔1〕2021+2sin30°+〔〕0〔2〕先化,再求:〔〕÷,此中x=220.〔10分〕如,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求:BD=CE.21.〔10分〕某中学开的体育修有球、足球、排球、羽毛球、球,学生能够根据自己的喜好选修此中1门.某班班主任对全班同学的选课状况进行了检查统计,制成了两幅不完好的统计图〔图〔1〕和图〔2〕〕:〔1〕请你求出该班的总人数,并补全条形图〔注:在所补小矩形上方标出人数〕;〔2〕在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.假如该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰巧有1人选修排球、1人选修羽毛球的概率是多少?22.〔10分〕如图,、B 两个小岛相距10,一架直升飞机由B岛飞往A岛,其飞翔高度A km向来保持在海平面以上的,当直升机飞到P 处时,由P处测得B岛和A岛的俯角分别hkm是45°和60°,A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h〔结果取整数,≈〕四、〔本大题总分值12分〕23.〔12分〕如图,一次函数y=kx+b〔k,b为常数,k≠0〕的图象与反比率函数y=﹣的图象交于A、B两点,且与标都是3.x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐1〕求一次函数的表达式;2〕求△AOB的面积;(3〕写出不等式kx+b>﹣的解集.五、〔本大题总分值12分〕24.〔12分〕如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连结BF,延伸BA,过F作FG⊥BA,垂足为G.1〕求证:FG是⊙O的切线;2〕FG=2,求图中暗影局部的面积.六、〔本大题总分值14分〕25.〔14分〕如图,抛物线y=ax2+bx﹣1与x轴的交点为A〔﹣1,0〕,B〔2,0〕,且与y轴交于C点.1〕求该抛物线的表达式;2〕点C对于x轴的对称点为C1,M是线段BC1上的一个动点〔不与B、C1重合〕,ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么地点时,矩形MFOE的面积最大?说明原因.〔3〕点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为极点的四边形为平行四边形时,求出相应的点P 和点的坐标.Q2021年贵州省铜仁市中考数学试卷参照答案与试题分析一、选择题〔共10小题,每题4分,总分值40分〕1.【解答】解:2021的相反数是﹣2021,应选:D.2.【解答】解:∵∠1=∠3,a∥b,∴∠5=∠2=60°,∴∠4=180°﹣60°=120°,应选:C.3.【解答】解:将56000用科学记数法表示为:×104.应选:B.4.【解答】解:由表可知,出现次数最多,因此众数为;因为一共检查了2+3+2+3+1+1+1=17人,因此中位数为排序后的第9人,即:170.应选:B.5.【解答】解:一条直线将该矩形ABCD切割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,剖析四个答案,只有630不可以被180整除,因此a+b不行能是630°.应选:C.6.【解答】解:∵△=〔﹣2〕2﹣4×4×〔﹣1〕=20>0,∴一元二次方程4x2﹣2x﹣1=0有两个不相等的实数根.应选:B.7.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=7,∴四边形EFGH的周长=7+5=12.应选:A.8.【解答】解:∵四边形ABCD为菱形,AB=2,∠DAB=60°AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CBCE=CF=∴△CEF为等边三角形∴S△CEF==应选:D.9.【解答】解:当0≤x≤4时,BO为△ABC的中线,EF∥AC,BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y=,同理可得,当4<x≤8时,y=〔8﹣x〕.应选:A.10.【解答】解:∵正方形ABCD中,AB=6,E为AB的中点AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°∵△ADE沿DE翻折获得△FDE∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°BE=EF=3,∠DFG=∠C=90°∴∠EBF=∠EFB∵∠AED+∠FED=∠EBF+∠EFB∴∠DEF=∠EFBBF∥ED故结论①正确;AD=DF=DC=6,∠DFG=∠C=90°,DG=DGRt△DFG≌Rt△DCG∴结论②正确;FH⊥BC,∠ABC=90°AB∥FH,∠FHB=∠A=90°∵∠EBF=∠BFH=∠AED∴△FHB∽△EAD∴结论③正确;Rt△DFG≌Rt△DCGFG=CG设FG=CG=x,那么BG=6﹣x,EG=3+x在Rt△BEG中,由勾股定理得:32+〔6﹣x〕2=〔3+x〕2解得:x=2BG=4∴tan∠GEB==故结论④正确;∵△FHB∽△EAD,且BH=2FH设FH=a,那么HG=4﹣2a在Rt△FHG中,由勾股定理得:a2+〔4﹣2a〕2=22解得:a=2〔舍去〕或a=∴S△BFG=×4×=故结论⑤错误;应选:C.二、填空题:〔本大题共8个小题,每题4分,共32分〕11.【解答】解:a2﹣9=〔a+3〕〔a﹣3〕.12.【解答】解:因为S小刘2<S小李2,且两人10次射击成绩的均匀值相等,∴两人中射击成绩比较稳固的是小刘,故答案为:小刘13.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°14.【解答】解:去分母得:5y=3y﹣6,解得:y=﹣3,经查验y=﹣3是分式方程的解,那么分式方程的解为y=﹣3.故答案为:﹣315.【解答】解:设这两年中投入资本的均匀年增加率是x,由题意得:5〔1+x〕2=,解得:x1==20%,x2=﹣〔不合题意舍去〕.答:这两年中投入资本的均匀年增加率约是20%.故答案是:20%.16.【解答】解:∵D是AC的中点,且BD⊥AC,AB=BC=7cm,AD=AC=3cm,ED∥BC,∴AE=BE=AB=cm,ED=BC=cm,∴△AED的周长=AE+ED+AD=10cm.故答案为:10.17.【解答】解:解这个不等式组为x<a﹣4,那么3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.18.【解答】解:第1个数为〔﹣1〕1?,,第2个数〔1〕2?第3个数〔1〕3?,第4个数〔1〕4?,⋯,因此列数中的第n个数是〔1〕n?.故答案〔1〕n?.三、答:〔本大共4个小,第19每小10分,第20、21、22每小10分,共40分,要有解的主要程〕19.【解答】解:〔1〕||+〔1〕2021+2sin30°+〔〕0==+〔1〕+2×+1==+〔1〕+1+1==;〔2〕〔〕÷====,当x=2,原式=.20.【解答】明:∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE〔ASA〕.BD=CE.21.【解答】解:〔1〕该班的总人数为12÷24%=50〔人〕,足球科目人数为50×14%=7〔人〕,补全图形以下:〔2〕设排球为A,羽毛球为B,乒乓球为C.画树状图为:共有12种等可能的结果数,此中有1人选修排球、1人选修羽毛球的占4种,因此恰巧有1人选修排球、1人选修羽毛球的概率==,22.【解答】解:由题意得,∠A=30°,∠B=45°,AB=10km,在Rt△APM和Rt△BPM中,tan A==,tan B==1,∴AM==h,BM=h,AM+BM=AB=10,∴h+h=10,解得:h=15﹣5≈6;答:h约为6km.四、〔本大题总分值12分〕23.【解答】解:〔1〕∵一次函数y=kx+b〔k,b为常数,k≠0〕的图象与反比率函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B〔﹣4,3〕,A〔3,﹣4〕,把A,B点代入y=kx+b得:,解得:,故直线分析式为:y=﹣x﹣1;2〕y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:〔﹣1,0〕,那么△AOB的面积为:×1×3+×1×4=;〔3〕不等式+>﹣的解集为:x <﹣4或0<<3.kxb x 五、〔本大题总分值12分〕24.【解答】〔1〕证明:连结OF,AO,AB=AF=EF,∴==,∴∠ABF=∠AFB=∠EBF=30°,OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,AB∥OF,∵FG⊥BA,OF⊥FG,FG是⊙O的切线;〔2〕解:∵==,∴∠AOF=60°,OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,FG=2,∴AF=4,∴AO=4,AF∥BE,∴S△ABF=S△AOF,∴图中暗影局部的面积==.六、〔本大题总分值14分〕25.【解答】解:〔1〕将〔﹣1,0〕,〔2,0〕分别代入抛物线y =ax2+﹣1中,得,A B bx解得:∴该抛物线的表达式为:y=x2﹣x﹣1.〔2〕在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C〔0,﹣1〕∵点C对于x轴的对称点为C1,∴C〔10,1〕,设直线C1B分析式为y=kx+b,将B〔2,0〕,C1〔0,1〕分别代入得,解得,∴直线CB分析式为y=﹣x+1,设M〔t,+1〕,那么E〔t,0〕,F〔0,+1〕1∴S矩形=OE×OF=t〔﹣t+1〕=﹣〔t2,﹣1〕+MFOE∵﹣<0,((∴当t=1时,S矩形MFOE最大值=,此时,M〔1,〕;即点M为线段C1B中点时,S矩形MFOE((最大.(3〕由题意,C〔0,﹣1〕,C1〔0,1〕,以C、C1、P、Q为极点的四边形为平行四边形,分以下两种状况:①C1C为边,那C1C∥PQ,C1C=PQ,设P〔m,m+1〕,Q〔m,﹣m﹣1〕,么∴|〔﹣m﹣1〕﹣〔m+1〕|=2,解得:m1=4,m2=﹣2,m3=2,m4=0〔舍〕,P1〔4,3〕,Q1〔4,5〕;P2〔﹣2,0〕,Q2〔﹣2,2〕;P3〔2,2〕,Q3〔2,0〕②C1C为对角线,∵C1C与PQ相互均分,C1C的中点为〔0,0〕,∴PQ的中点为〔0,0〕,设P〔m,m+1〕,那么Q〔﹣m,+m﹣1〕∴〔m+1〕+〔+m﹣1〕=0,解得:m1=0〔舍去〕,m2=﹣2,∴P4〔﹣2,0〕,Q4〔2,0〕;综上所述,点P和点Q的坐标为:P1〔4,3〕,Q1〔4,5〕或P2〔﹣2,0〕,Q2〔﹣2,2〕或P3〔2,2〕,Q3〔2,0〕或P4〔﹣2,0〕,Q4〔2,0〕.。

铜仁中考数学试题及答案

铜仁中考数学试题及答案

铜仁中考数学试题及答案一、选择题1. 已知数a、b满足条件a×b=12。

若a的一个取值为4,则b的值为多少?A) 24 B) -24 C) 3 D) -32. 若一根棍子长度为18 cm,其中a cm为蓝色部分,b cm为红色部分,若a/b=2/3,则b=多少?A) 12 cm B) 6 cm C) 9 cm D) 8 cm3. 若正整数x满足3x+2=17,则x的值等于?A) 5 B) 6 C) 7 D) 84. 若正整数x满足x+3<15,则x的最大值为多少?A) 12 B) 11 C) 10 D) 95. 若图中三角形ABC的面积为24 cm²,BC边长为3 cm,AB边长为8 cm,则角ACB的大小为多少度?A) 60° B) 90° C) 30° D) 45°二、填空题1. 在一辆公共汽车上,一共有30人,其中男生占总人数的三分之二,女生占剩下的部分。

那么女生的数量为______人。

答案:102. 小明上学迟到了5分钟,他从家中到学校的路程正常需要10分钟。

他正常速度行走时,每分钟行走的距离为______米。

答案:1003. 一根绳子长80厘米,从绳子上剪下的一段边长为12厘米的正方形,剩下的绳子长度为______厘米。

答案:444. 若一辆汽车以每小时60公里的速度行驶,那么20分钟后该汽车行驶的距离为______公里。

答案:205. 若3x+5=14,则x的值为______。

答案:3三、解答题1. 某商店玩具部销售了一批玩具,其中有3个卡通人物玩偶和5个娃娃。

求从这批玩具中随机选出3个玩具,其中至少有一个卡通人物玩偶的概率。

解答:设从3个卡通人物玩偶中选出1个的概率为P1,从5个娃娃中选出2个的概率为P2。

则所求概率为1 - 选出3个娃娃的概率 = 1 - P2根据组合公式计算P2:P2 = C(5, 2) / C(8, 3) = 10 / 56 = 5 / 28所以所求概率为1 - 5 / 28 = 23 / 28。

贵州省铜仁市中考数学试卷有答案

贵州省铜仁市中考数学试卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前贵州省铜仁市2015年初中毕业生学业(升学)统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 015的相反数是( ) A .2015B .2015-C .12015-D .12015 2.下列计算正确的是( )A .2242a a a +=B .23622a a a ⨯=C .321﹣=a aD .236()a a =3.河北省赵县的赵州桥的桥拱是近似的抛物线型,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB为 ( )A .20﹣m B .10m C .20m D .10-m4.已知关于x 的一元二次方程234-50+=x x ,下列说法不正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定5.请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是( )ABCD 6.如果一个多边形的每一个外角都是60︒,则这个多边形的边数是( )A .3B .4C .5D .67.在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为129,136,145,136,148,136,150.则这次考试的平均数和众数分别为( ) A .145,136B .140,136C .136,148D .136,1458.如图,在矩形ABCD 中,6BC =,3CD =,将BCD △沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,则线段DE 的长为( ) A .3 B .154C .5D .1529.如图,在平行四边形ABCD 中,点E 在边DC 上,31DE EC =::,连接AE 交BD 于点F ,则DEF △的面积与BAF △的面积之比为( ) A .34:B .916:C .91:D .31:10.如图,在平面直角坐标系系xOy 中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若1S =△OBC ,1tan 3BOC ∠=,则2k 的值是 ( )A .3-B .1C .2D .3第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共8小题,每小题4分,共32分.请把答案填写在题中的横线上) 11.||6.18﹣= .12.定义一种新运算:2*x y x y x +=,如2212*122+⨯==,则4*2*()()1=﹣ . 13.不等式5335x x -+<的最大整数解是 .14.已知点()3,P a 关于y 轴的对称点为2(),Q b ,则ab = .15.已知一个菱形的两条对角线长分别为6cm 和8cm ,则这个菱形的面积为 2cm . 16.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .17.如图,90ACB ∠=,D 为AB 中点,连接DC 并延长到点E ,使14CE CD =,过点B 作BF DE ∥交AE 的延长线于点F .若10BF =,则AB 的长为 .18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分,每题5分)(1)计算:41||(1)(sin 451)22-1÷--+⨯-;(2)先化简22252)x+2443(+++⨯+++x x x x x x,然后选择一个你喜欢的数代入求值.20.(本小题满分10分)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图. (2)求这次调查参加体育锻炼时间为1.5小时的人数. (3)这次调查参加体育锻炼时间的中位数是多少?21.(本小题满分10分)已知:如图,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连接DF 并延长交BC 的延长线于点E ,=FE FD . 求证:AD CE =.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)如图,一艘轮船航行到B 处时,测得小岛A 在船的北偏东60︒的方向,轮船从B 处继 续向正东方向航行200海里到达C 处时,测得小岛A 在船的北偏东30︒的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险. 1.)73223.(本小题满分12分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?24.(本小题满分12分)如图,已知ABC △的边AB 是O 的切线,切点为B ,AC 经过圆心O 并与圆相交于点D ,C ,过C 作直线CE AB 丄,交AB 的延长线于点E . (1)求证:CB 平分ACE ∠;(2)若3BE =,4CE = ,求O 的半径.25.(本小题满分14分)如图,已知:关于x 的二次函数2y x bx c =++的图象与x 轴交于点()1,0A 和点B ,与y 轴交于点()0,3C ,抛物线的对称轴与x 轴交于点D . (1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使C PB △为等腰三角形?若存在,请求出点P 的坐标); (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,MNB △面积最大,试求出最大面积.数学试卷 第7页(共18页) 数学试卷 第8页(共18页)贵州省铜仁市2015年初中毕业生学业(升学)统一考试数 学第Ⅰ卷一、选择题 1.【答案】B【解析】根据相反数的含义,可得2015的相反数是:2015-.故选:B .【提示】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可. 【考点】相反数 2.【答案】D【解析】A 、应为2222+=a a a ,故本选项错误;B 、应为23522⨯=a a a ,故本选项错误;C 、应为321-=a a ,故本选项错误;D 、26()3=a a ,正确.故选:D .【提示】根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解. 【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方 3.【答案】C【解析】根据题意B 的纵坐标为4-,把4=-y 代入2125=-y x ,得10=±x ,∴(10,4)--A ,(10,4)-B ,∴20m =AB .即水面宽度AB 为20m .故选C .【提示】根据题意,把4=-y 直接代入解析式即可解答. 【考点】二次函数的应用 4.【答案】B【解析】解:∵,∴方程有两个不相等的实数根.故选B . 【提示】先求出∆的值,再判断出其符号即可. 【考点】根的判别式 5.【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、是轴对称图形,不是中心对称图形.故错误.故选C .【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形;轴对称图形 6.【答案】D【解析】解:∵一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,∴这个多边形的边数是:360606÷=.故选:D .【提示】由一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,即可求得这个多边形的边数. 【考点】多边形内角与外角 7.【答案】B【解析】解:在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129136145136148136150)7140++++++÷=.故选B .【提示】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案. 【考点】众数,加权平均数 8.【答案】C【解析】设=ED x ,则8=-AE x ;∵四边形ABCD 为矩形,∴∥AD BC ,∴∠=∠EDB DBC ;由题意得:∠=∠EBD DBC ,∴∠=∠EDB EBD ,∴==EB ED x ;由勾股定理得:222=+BE AB AE ,即2242(8)=+-x x ,解得:5=x ,∴5=ED .故选:C .【提示】首先根据题意得到=BE DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题. 【考点】翻折变换(折叠问题) 9.【答案】B【解析】∵四边形ABCD 为平行四边形,∴∥DC AB ,∴△∽△DFE BFA ,∵:31=:DE EC ,∴:134==:DE DC ,∴:34=:DE AB ,∴9:16=△△:DFE BFA S S .选:数学试卷 第9页(共18页) 数学试卷 第10页(共18页)B .【提示】可证明△∽△DFE BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【考点】相似三角形的判定与性质;平行四边形的性质 10.【答案】D【解析】∵直线12=+y k x 与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,2),∴2=OC ,∵1=△OBC S ,∴1=BD ,∵1tan 3∠=BOC ,∴13=BD OD ,∴3=OD ,∴点B 的坐标为(1,3),∵反比例函数2=ky x在第一象限内的图象交于点B ,∴2133=⨯=k .选D .【提示】首先根据直线求得点C 的坐标,然后根据△BOC 的面积求得BD 的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,求得结论. 【考点】反比例函数与一次函数的交点问题第Ⅱ卷二、填空题 11.【答案】6.18【解析】 6.18-的绝对值是6.18.答案为:6.18.【提示】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.【考点】绝对值 12.【答案】0【解析】4224*224+⨯==,22(1)2*(1)02+⨯--==.故(4*2)*(1)0-=.答案为:0.【提示】先根据新定义计算出4*22=,然后再根据新定义计算2*(1)-即可. 【考点】有理数的混合运算13.【答案】3【解析】不等式的解集是4<x ,故不等式5335-+<x x 的正整数解为1,2,3,则最大整数解为3.故答案为:3.【提示】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【考点】一元一次不等式的整数解 14.【答案】6-【解析】∵点(3,)P a 关于y 轴的对称点为(,2)Q b ,∴2=a ,3=-b ,∴6=-ab ,故答案为:6-.【提示】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得2=a ,3=-b ,进而可得答案.【考点】关于x 轴、y 轴对称的点的坐标15.【答案】24【解析】∵一个菱形的两条对角线长分别为6cm 和8cm ,∴这个菱形的面积216824(cm )2=⨯⨯=.故答案为:24. 【提示】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【考点】菱形的性质16.【答案】12【解析】根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为12.故答案为:12.【提示】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【考点】概率公式数学试卷 第11页(共18页) 数学试卷 第12页(共18页)17.【答案】8【解析】∵点D 是AB 的中点,∥BF DE ,∴DE 是△ABF 的中位线.∵10=BF ,∴152==DE BF .14=CE CD ,∴554=CD ,解得4=CD .△ABC 是直角三角形,∴28==AB CD .答案为:8.【提示】先根据点D 是AB 的中点,∥BF DE 可知DE 是△ABF 的中位线,故可得出DE 的长,根据14=CE CD 可得出CD 的长,再根据直角三角形的性质即可得出结论.【考点】三角形中位线定理,直角三角形斜边上的中线 18.【答案】654233245661520156++++++a a b a b a b a b ab b【解析】6642332456()651520156+=++++++a b a a b a b a b a b ab b ,本题答案为:654233245661520156++++++a a b a b a b a b ab b .【提示】通过观察可以看出6()+a b 的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1. 【考点】完全平方公式,规律型,数字的变化 三、解答题19.【答案】(1)原式|212()2=-÷÷-- 222(2)=-÷-⨯-14=-+ 3=;(2)原式22452(2)(3)++++=++x x x x x x 23(3)2(2)(3)++=++x x x x x 3(2)=+x x , 当1=x 时,原式1=.【提示】(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.【考点】分式的化简求值,实数的运算,负整数指数幂,特殊角的三角函数值 20.【答案】(1)调查的总人数是好:9010%900÷=(人), 锻炼时间是1小时的人数是:90040%460⨯=(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:90027036090180---=(人); (3)锻炼的中位数是:1小时.【提示】(1)根据时间是2小时的有90人,占10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图; (2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解. 【考点】频数(率)分布直方图,扇形统计图,中位数 21.【答案】证明:作∥DG BC 交AC 于G ,如图所示:则∠=∠DGF ECF ,在△DFG 和△EFC 中,∠=∠⎧⎪∠=∠⎨⎪=⎩DGF ECFDFG EFC FD EF ,∴()△≌△DFG EFC AAS , ∴=GD CE ,∵△ABC 是等边三角形, ∴60∠=∠=∠=︒A B ACB , ∵∥DG BC ,∴∠=∠ADG B ,∠=∠AGD ACB , ∴∠=∠=∠A ADG AGD , ∴△ADG 是等边三角形, ∴=AD GD ,数学试卷 第13页(共18页) 数学试卷 第14页(共18页)∴=AD CE .【提示】作∥DG BC 交AC 于G ,先证明△≌△DFG EFC ,得出=GD CE ,再证明△ADG 是等边三角形,得出=AD GD ,即可得出结论.【考点】全等三角形的判定与性质,等边三角形的判定与性质 22.【答案】该轮船不改变航向继续前行,没有触礁危险 理由如下:如图所示.则有30∠=︒ABD ,60∠=︒ACD . ∴∠=∠CAB ABD , ∴200==BC AC 海里.在Rt △ACD 中,设=CD x 海里, 则2=AC x,==AD ,在Rt △ABD中,2==AB AD ,3=BD x ,又∵=+BD BC CD , ∴3200=+x x , ∴100=x .∴173.2==≈AD , ∵173.2170海里>海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.【提示】如图,直角△ACD 和直角△ABD 有公共边AD ,在两个直角三角形中,利用三角函数即可用AD 表示出CD 与BD ,根据=-CB BD CD 即可列方程,从而求得AD 的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险. 【考点】解直角三角形的应用-方向角问题23.【答案】(1)设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,依题意有201000800=+⎧⎪⎨=⎪⎩x y x y ,解得10080=⎧⎨=⎩x y ,经检验,10080=⎧⎨=⎩x y 是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬; (2)设甲种汽车有z 辆,乙种汽车有(16)-z 辆,依题意有10080(161)501490+--+=z z ,解得6=z ,1616610-=-=z . 故甲种汽车有6辆,乙种汽车有10辆.【提示】(1)可设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可; (2)可设甲种汽车有z 辆,乙种汽车有(16)-z 辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【考点】分式方程的应用,二元一次方程组的应用 24.【答案】(1)证明:如图1,连接OB , ∵AB 是O 的切线, ∴⊥OB AB , ∵丄CE AB , ∴∥OB CE ,∴13∠=∠,数学试卷 第15页(共18页) 数学试卷 第16页(共18页)∵=OB OC , ∴12∠=∠, ∴23∠=∠, ∴CB 平分∠ACE ; (2)如图2,连接BD , ∵丄CE AB , ∴90∠=︒E ,∴5===BC , ∵CD 是O 的直径, ∴90∠=︒DBC , ∴∠=∠E DBC , ∴△∽△DBC CBE , ∴=CD BC BC CE , ∴2=BC CD CE ,∴252544==CD , ∴12528==OC CD ,∴O 的半径258=.【提示】(1)证明:如图1,连接OB ,由AB 是O 的切线,得到⊥OB AB ,由于丄CE AB ,的∥OB CE ,于是得到13∠=∠,根据等腰三角形的性质得到12∠=∠,通过等量代换得到结果.(2)如图2,连接BD 通过△∽△DBC CBE ,得到比例式=CD BCBC CE,列方程可得结果. 【考点】切线的性质25.【答案】(1)把(1,0)A 和(0,3)C 代入2=++y x bx c ,103++=⎧⎨=⎩b c c 解得:4=-b ,3=c ,∴二次函数的表达式为:243=-+y x x ; (2)令0=y ,则2430-+=x x , 解得:1=x 或3=x , ∴(3,0)B ,∴=BC点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当=CP CB 时,=PC ,∴3=+=+OP OC PC或33=-=-OP PC OC∴1(0,3+P,2(0,3-P ; ②当=PB PC 时,3==OP OB , ∴3(3,0)-P ; ③当=BP BC 时, ∵3==OC OB∴此时P 与O 重合, ∴4(0,0)P ;综上所述,点P的坐标为:(0,3+或(0,3-或(3,0)-或(0,0);数学试卷 第17页(共18页) 数学试卷 第18页(共18页)(3)如图2,设=AM t ,由2=AB ,得2=-BM t ,则2=DN t ,∴221(2)22(1)12=⨯-⨯=-+=--+△MNB S t t t t t ,当点M 出发1秒到达D 点时,△MNB 面积最大,试求出最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【提示】(1)代入(1,0)A 和(0,3)C ,解方程组即可;(2)求出点B 的坐标,再根据勾股定理得到BC ,当△PBC 为等腰三角形时分三种情况进行讨论:①=CP CB ;②=BP BC ;③=PB PC ; (3)设=A M t 则2=DN t ,由2=AB ,得2=-BM t ,21(2)222=⨯-⨯=-+△MNB S t t t t ,运用二次函数的顶点坐标解决问题;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【考点】二次函数综合题。

2021年贵州铜仁中考数学试题及答案

2021年贵州铜仁中考数学试题及答案

2021年贵州铜仁中考数学试题及答案一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.2021年2月25日,全国脱贫攻坚总结表彰大会在京举行,习近平总书记在大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利.这是中国人民的伟大光荣,是中国共产党的伟大光荣,是中华民族的伟大光荣!”现行标准下9899万农村贫困人口全部脱贫,创造了又一个彪炳史册的人间奇迹.98990000用科学记数法表示为()A.9.899×106B.98.99×107C.9.899×108D.9.899×107答案:D.2.如图,是一个底面为等边三角形的正三棱柱,它的主视图是()A.B.C.D.答案:A.3.有6位同学一次数学测验分数分别是:125,130,130,132,140,145,则这组数据的中位数是()A.130 B.132 C.131 D.140答案:C.4.下列等式正确的是()A.|﹣3|+tan45°=﹣2 B.(xy)5÷()5=x10C.(a﹣b)2=a2+2ab+b2D.x3y﹣xy3=xy(x+y)(x﹣y)答案:D.5.直线AB、BC、CD、EG如图所示,∠1=∠2=80°,∠3=40°,则下列结论错误的是()A.AB∥CD B.∠EBF=40°C.∠FCG+∠3=∠2 D.EF>BE答案:D.6.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形答案:C.7.不等式组的解集在以下数轴表示中正确的是()A.B.C.D.答案:B.8.已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2﹣2x+3的交点个数为()A.0个B.1个C.2个D.1个或2个答案:C.9.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6 B.3C.4D.6答案:B.10.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.﹣1 C.5或1 D.﹣5或﹣1答案:C.二、填空题:(本大题共8个小题,每小题4分,共32分)11.要使分式有意义,则x的取值范围是x≠﹣1 .答案为:x≠﹣1.12.计算(+)(﹣)= 3 .答案为3.13.若甲、乙两人参加射击训练的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是乙(填甲或乙).答案为:乙.14.如图,矩形ABOC的顶点A在反比例函数y=的图象上,矩形ABOC的面积为3,则k = 3 .答案为:3.15.如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是66答案为:66.16.观察下列各项:1,2,3,4,…,则第n项是n.答案为:n.17.如图,将边长为1的正方形ABCD绕点A顺时针旋转30°到AB1C1D1的位置,则阴影部分的面积是2﹣.答案为:2﹣.18.如图,E、F分别是正方形ABCD的边AB、BC上的动点,满足AE=BF,连接CE、DF,相交于点G,连接AG,若正方形的边长为2.则线段AG的最小值为.答案为:;三、解答题:(本大题共4个小题,每小题10分,共40分,要有解题的主要过程)19.(10分)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用y1(万元)与月销售量x(辆)(x≥4)满足某种函数关系的五组对应数据如下表:x 4 5 6 7 8y10 0.5 1 1.5 2 (1)请你根据所给材料和初中所学的函数知识写出y1与x的关系式y1=x﹣2(x≥4).;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价﹣y1﹣进价)x,请你根据上述条件,求出月销售量x(x≥4)为多少时,销售利润最大?最大利润是多少?答:月销售量为8时,最大销售利润为32万元.20.(10分)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为①、③,结论为②;(2)证明你的结论.答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.21.(10分)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:等级频数频率A20 0.4B15 bC10 0.2D a0.1(1)频数分布表中a= 5 ,b=0.3 ,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.答案为:5,0.3;(2)1000×(0.4+0.3)=700(人),答:该校1000学生中“非常了解”和“比较了解”防疫常识的学生大约有700人;(3)用列表法表示所有可能出现的结果情况如下:共有20种等可能出现的结果情况,其中两人中至少有一名女生的有12种,所以两个学生中至少有一个女生的概率为=.答:两个学生中至少有一个女生的概率为.22.(10分)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.四、(本大题满分12分)23.(12分)某快递公司为了提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天多搬运20吨,并且3台A型机器人和2台B 型机器人每天共搬运货物460吨.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价3万元,每台B型机器人售价2万元,该公司计划采购A、B 两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出A、B两种机器人分别采购多少台时,所需费用最低?最低费用是多少?【解答】(1)解:设每台A型机器人每天分别搬运货物x吨,每台B型机器人每天分别搬运货物y吨.解得(2)设:A种机器人采购m台,B种机器人采购(20﹣m)台,总费用为w.100m+80(20﹣m)≥1800.解得:m≥10.w=3m+2(20﹣m)=m+40.∵1>0,∴w随着m的减少而减少.∴当m=10 w有最小值,w小=10+40=50.∴A、B两种机器人分别采购10台,20台时,所需费用最低,最低费用是50万.五、(本大题满分12分)24.(12分)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若BF=10,EF=20,求⊙O的半径和AD的长.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,即∠AEO+∠OEB=90°,∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠BEF=∠CAE,∴∠BEF=∠BAE,∵OA=OE,∴∠BAE=∠AEO,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:如图,设⊙O的半径为x,则OE=OB=x,∴OF=x+10,在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,∴x2+202=(x+10)2,解得:x=15,∴⊙O的半径为15;∵∠BEF=∠BAE,∠F=∠F,∴△EBF∽△AEF,∴==,设BE=a,则AE=2a,由勾股定理得:AE2+BE2=AB2,即a2+(2a)2=302,解得:a=6,∴AD=2a=12,∵∠CAE=∠BAE,∴,∴OE⊥BC,∵OE⊥EF,∴BC∥EF,∴,即,∴AD=9.六、(本大题满分14分)25.(14分)如图,在△ABC中,∠ACB=90°,BC=6cm,AC=12cm.点P是CA边上的一动点,点P从点C出发以每秒2cm的速度沿CA方向匀速运动,以CP为边作等边△CPQ (点B、点Q在AC同侧),设点P运动的时间为x秒,△ABC与△CPQ重叠部分的面积为S.(1)当点Q落在△ABC内部时,求此时△ABC与△CPQ重叠部分的面积S(用含x的代数式表示,不要求写x的取值范围);(2)当点Q落在AB上时,求此时△ABC与△CPQ重叠部分的面积S的值;(3)当点Q落在△ABC外部时,求此时△ABC与△CPQ重叠部分的面积S(用含x的代数式表示).【解答】解:(1)如图1中,当点Q落在△ABC内部时,S=×(2x)2=x2.(2)如图2中,当点Q落在AB上时,过点Q作QH⊥AC于H.∵∠QHA=∠ACB=90°,∴QH∥BC,∴=,∴=,∴x=4,∴CP=8,CH=PH=4,∴S=×82=16.(3)如图3中,点Q落在△ABC外部时,设CQ交AB于N,PQ交AB于M,过点N作NH ⊥AC于H,过点M作MJ⊥AC于J,作NT∥PQ交AC于T.由(2)可知,CH=HT=4,CT=NT=8,NH=4,AT=4,∴S△BCN=×6×4=12,∵NT∥PM,∴△AMP∽△ANT,∴=,∴=,∴MJ=12﹣2x,∴S=S△ABC﹣S△BCN﹣S△AMP=×6×12﹣12﹣×(12﹣2x)×(12﹣2x)=﹣2x2+24x﹣48(4<x≤6).。

贵州铜仁中考数学试卷(含答案)

贵州铜仁中考数学试卷(含答案)

保密★启用前铜仁地区2011年初中毕业生学业(升学)统一考试数学科试题姓名准考证号注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置.2.答题时,卷I必须使用2B铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试卷共8页,满分150分,考试时间120分钟.5.考试结束后,将试题卷和答题卡一并收回.卷I一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.-2的相反数是( )A 、 21B 、 21- C 、-2 D 、2 2.2011年,某地区有54310人参加中考,将54310用科学记数法(保留2个有效数字)表示为( )A 、54×103B 、0.54×105C 、5.4×104D 、5.5×1043.将如图1所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )4. 小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A 、60512601015-=+x x B 、 60512601015+=-x x C 、60512601015-=-x x D 、 5121015-=+xx 5.下列命题中真命题是( )A 、如果m 是有理数,那么m 是整数;B 、4的平方根是2;C 、等腰梯形两底角相等;D 、如果四边形ABCD 是正方形,那么它是菱形.6.已知⊙O 1与⊙O 2的半径分别为6cm 、11cm ,当两圆相切时,其圆心距d 的值为( ) A 、0cm B 、5cm C 、17cm D 、5cm 或17cm 7.下列关于等腰三角形的性质叙述错误的是( )A、等腰三角形两底角相等;B 、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合;C 、等腰三角形是中心对称图形;D 、等腰三角形是轴对称图形.8.反比例函数)0(<=k xky 的大致图像是( )A B C D9.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:yoxoyxxoyyx o则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A 、25,25B 、24.5,25C 、25,24.5D 、24.5,24.510.已知:如图2,在△ABC 中,∠AED=∠B,则下列等式成立的是( ). A 、DB ADBC DE =B 、AE AD BC BD= C 、AB AE CB DE = D 、ACAE AB AD = 卷II二、填空题:(本大题共8个小题,每小题4分,共32分)11.|-3|=_________;12.=--+- 45tan )32(001.020________________;13.已知菱形的两条对角线长分别为2cm ,3cm ,则它的面积是________________cm 2;14.某盏路灯照射的空间可以看成如图3所示的圆锥, 它的高AO=8米,底面半径0B=6米,则圆锥的侧面积是________________平方米(结果保留;15.按照下图所示的操作步骤,若输入x 的值为3,则输出的值为_______________;16.写出一概率为1的事件(即必然事件):________________;17.当k 时,关于x 的一元二次方程063622=+++k kx x 有两个相等的实数根;尺码(cm ) 23.5 24 24.5 25 25.5 销售量(双)12251输入x 减去5 平方 加上3 输出18.观察一列单项式:a ,22a -,34a ,48a -,… 根据你发现的规律,第7个单项式为 ;第n 个单项式为 .三、解答题:(本题共4个题,19题每小题5分,第20、21、22每小题10分,共40分,要有解题的主要过程)19.(1)先化简,再求值:1,2,)()(2222-==++÷-+--y x y x y x y x y x x y x y 其中(2) 已知一次函数y=kx+b 的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.20.已知:如图4,在ΔABC 中,∠BAC=90°,DE 、DF 是ΔABC 的中位线,连结EF 、AD. 求证:EF=AD .21.如图5,在A岛周围25海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:323 ).7122.某县为了了解“十、一”国庆期间该县常住居民的出游情况,有关部门随机调查了1600名常住居民,并根据调查结果绘制了如下统计图:根据以上信息,解答下列各题:(1)补全条形统计图,在扇形统计图中,直接填入出游主要目的是采集发展信息的人数的百分数;(2)若该县常住居民共48万人,请估计该县常住居民中,利用“十、一”期间出游采集发展信息的人数;(3)综合上述信息,用一句话谈谈你的感想.被调查居民出游基本情况统计图出游没有出游基本情况探访亲友43%休闲度假26% 其他11%采集发展信息被调查的出游居民出游主要目的统计图_____四、(本题满分12分)23.如图6,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.图6五、(本题满分12分)24.为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?六、(本题满分14分)25.如图7,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(-2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(-4,0),点Q(x,y)是抛物线上任意一点.(1)求此抛物线的解析式及点M的坐标;(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;(3)在抛物线上是否存在点Q,使得ΔBAQ的面积是ΔBMC的面积的2倍?若存在,求此时点Q的坐标.图7铜仁地区2011年初中毕业生学业(升学)统一考试数学试题参考答案及评分标准一、选择题(每小题4分):二、填空题(每小题4分,第18题每空2分):11、3;12、4;13、3;14、π60;15、7; 16、答案不唯一(如:太阳从东方升起);17、1±=;18、764a (或762a ),n n a 1)2(--.三、解答题19(1)、解:原式=2222))((yx yx y x y x xy x y xy ++⋅-+--- ……………………1分 =2222))((yx y x y x y x x y ++⋅-+--…………………..………2分 =yx --1………………………………………3分 当12-==y x ,时,原式=)(1--21-=31- .…………….……………5分(2)解:根据题意得 ⎩⎨⎧-=+=+121b k b k ………………………………..…… 2分解得⎩⎨⎧=-=32b k …………………………………………….…… 4分所以函数的解析式是y=-2x+3………………………………….……… 5分 20、证明:因为DE,DF 是△ABC 的中位线所以DE ∥AB ,DF ∥AC …………. 2分 所以四边形AEDF 是平行四边形 ………….… 5分 又因为∠BAC=90°所以平行四边形AEDF 是矩形……………………...8分 所以EF=AD …………………………….….………10分21、解:根据题意,有∠AOC=30°,∠ABC=45°, ∠ACB=90°所以BC=AC ,………………………………………….3分于是在Rt △AOC 中,由tan30°=OCAC, …………….…...4分 得ACAC +=2033, …………………………………………. 6分 解得AC=32.271320≈-(海里)……………………….….. 8分因为海里)(海里)(252.327>…………………….…..…... 9分 所以轮船不会触礁. ………………………………….….. 10分22、解:(1)如图所示:被调查居民出游基本情况统计人数2分4分 (2)6.3%20160060048=⨯⨯所以该县常住居民中,利用“十、一”期间出游采集发展信息的人数约为3.6万人.…………………………………………………………………………….…….7分 (3)只要谈出合理、积极、健康的感想即可给分.(如:该县常在居民非常注重亲情、友情等) ……………………………….10分被调查的出游居民出游主要目的统计图四、23、(1)证明:连接OD……………………………………………………….1分∵AD∥OC∴∠D AO=∠COB ∠ADO=∠DO C ……………………………….………..2分又∵OA=OD ∴∠D AO=∠ADO ………………………………………………4分∴∠COB=∠COD …………………………………………………………….. 5分∴⌒DE=⌒BE………………………………………………………………………6分(2)由(1)知∠DOE=∠BOE,…………………………………..7分在△COD和△COB中CO=CO∠DOC=∠BOCOD=OB∴△COD≌△COB…………………………………………….…….9分∴∠CDO=∠B …………………………………………………….10分又∵BC⊥AB∴∠CDO=∠B=90 ………………………………………….…11分即CD是⊙O的切线………………………………………………. 12分五、24.解:(1)设篮球的单价为x元,则排球的单价为23x元…..…1分据题意得x+23x =160………………………………..……...3分解得x=96……………………………………...…………….…...4分∴23x =64 即篮球和排球的单价分别是96元、64元. ……..…..5分(2)设购买的篮球数量为n,则购买的排球数量为(36-n)个….6分由题意得⎩⎨⎧≤-+<-3200)36(64961136n n n ………………………………..………...8分解得2528………………………………………………………….10分而n 是整数,所以其取值为26,27,28,对应36-n 的值为10,9,8, 所以共有三种购买方案: ①购买篮球26个,排球10个; ②购买篮球27个,排球11个;③购买篮球28个,排球8个…………………………..………………….12分六、25、解(1)因为抛物线的顶点坐标是(0,1),且过点(-2,2) 故设其解析式为12+=ax y …………………..….……….. 2分则有,1)2(22+-=a ,得41=a ………………....…….3分 所以此抛物线的解析式为:1412+=x y ………… 4分 因为四边形OABC 是平形四边形 所以AB=OC=4,AB ∥OC 又因为y 轴是抛物线的对称轴所以点A 与B 是抛物线上关于y 轴的对称点则MA=MB=2,即点A 的横坐标是2…………………………………………………..………………5分则其纵坐标12412+⨯=y =2,即点A (2,2),故点M (0,2)………….………6分 (2)作QH ⊥x 轴,交x 轴于点H ………………………………………………………………….7分 则90QHP MOC ∠=∠=,因为PQ ∥CM ,所以QPH MCO ∠=∠所以ΔPQH ∽ΔCMO ………………………………………………………………………………...……… 8分 所以MO QH CO PH =,即24y t x =-…………………………………………………………..…………… 9分而1412+=x y ,所以)141(2142+=-x t x所以2212-+-=x x t ……………………………………………………………………………………...10分(3)设ΔABQ 的边AB 上的高为h ,因为221=⋅=OM BM S BCM Δ 24212==⋅==h h AB S S BCM ABQ ,所以所以ΔΔ………………..…….………..…12分 所以点Q 的纵坐标为4,代入1412+=x y , 得32±=x 因此,存在符合条件的点Q ,其坐标为),)或(,(432-432. …….……..…..14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜仁地区高中阶段教育招生统一考试
数学试题
一、选择题(本大题共10小题,每小题4分,共40分)
1.下列式子中,正确的是()
A.x3+x3=x6B=±2 C.(x·y3)2=xy6D.y5÷y2=y3
2.已知x=0是方程x2+2x+a=0的一个根,则方程的另一个根为()
A.-1 B.1 C.-2 D.2
3.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300 B.80(1+x%)2=300
C.180(1-x%)=300 D.180(1-x%)2=300
4.不等式组的解集在数轴上表示如图,则该不等式组的解集是()
A.
x
x



≥-1
≤2
B.
x
x
>



-1
≤2
C.
x
x
>


<

-1
2
D.
x
x
<



-1
≥2
5.如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()
A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BD
6.如图,MN为⊙O的弦,∠M=30°,则∠MON等于()
A.30°B.60°C.90°D.120°
7.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()
A.5 B.4 C.3 D.2
8.已知正比例函数y =kx (k≠0)的函数值y 随x 的增大而减少,则一次函数y =kx +k 的图象大致是( )
9.随机掷一枚质地均匀的硬币两次,落地后至多有一次反面朝上的概率为( )
A .
34 B .14 C .12 D .23
10.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1
三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是( )
A 71()2
B 81()2
C 71()4
D 81()4
二、填空题(本大题共8个小题,每小题4分,共32分)
11.-5的相反数是_______.
12.分解因式x 2-9y 2=_______.
13.一副三角板,如图叠放在一起,∠1的度数是_______度.
14.已知菱形的两条对角线的长分别为5和6,则它的面积是________.
15.如图,请填写一个你认为恰当的条件_______,使AB∥CD.
16.根据图中的程序,当输入x=5时,输出的结果y=__ __.
17.定义运算“@”的运算法则为:x@y=xy-1,则(2@3)@4=__ __.
18.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是_______.三、解答题(本题共4个题,19题每小题5分,第20、21、22每题10分,共40分,要有解题的主要过程)
19.(每小题5分,共10分)
(1)(-2010)0+ -2sin60°.
(2)已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.
20.如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A
点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x 秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?
21.(10
(1)小明家的轿车每月(按30天计算)要行驶多少千米?
(2)若每行驶100千米需汽油8升,汽油每升6.70元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元(精确到百元).
22.(10分)如图,在⊙O中,AB=AC是⊙O的直径,AC⊥BD于F,∠ABD=60°.
(1)求图中阴影部分的面积;
(2)若用阴影部分围成一个圆锥侧面,请求出这个图象的底面圆的半径.
23.(10分)
24.(12分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F.
(1)求证:GE=GF;
(2)若BD=1,求DF的长.
【答案】(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠ABC=90°.
在Rt△ABC和Rt△DFC中,∠ABC=∠CFD=90°,∠ACE=∠DCF,DC=AC,∴Rt△ABC≌Rt△DFC.
∴CE=CF.
在Rt△AEC中,∠A=30°,
∴CE=1
2
AC=
1
2
DC.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DBG.
∴GF=GB.
(2)解:∵CD⊥AB,CE=ED,∴BC=BD.又∠ECB=∠A=30°,∠CEB=90°,BD=1,
∴BE=1
2
BC=
1
2
BD=
1
2

∴CE.
∴CD=2CE
∴DF
25.(2010贵州铜仁,25,14分)如图所示,矩形OABC位于平面直角坐标系中,AB=2,OA=3,点P是OA上的任意一点,PB平分∠APD,PE平分∠OPF,且PD、PF重合.
(1)设OP=x,OE=y,求y关于x的函数解析式,并求x为何值时,y的最大值;
(2)当PD⊥OA时,求经过E、P、B三点的抛物线的解析式;
(3)
【答案】解:(1)由已知PB 平分∠APD ,PE 平分∠OPF ,且PD 、PF 重合,则∠BPE =90°. ∴∠OPE +∠APB =90°.又∠APB +∠ABP =90°,∴∠OPE =∠PBA.
∴Rt △POE ∽Rt △BPA. ∴PO BA OE AP =.即23x y x =-.∴y =12x(3-x)=-12x 2+32
x(0<x<3). 且当x =
32时,y 有最大值98
. (2)由已知,△PAB 、△POE 均为等腰三角形,可得P(1,0),E(0,1),B(3,2). 设过此三点的抛物线为y =ax 2+bx +C ,则10932c a b c a b C =⎧⎪++=⎨⎪++=⎩∴15323c b a ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩
∴y =23x 2-53
x +1. (3)由(2)知∠EPB =90°,即点M 与点B 重合时满足条件.
直线PB 为y =x -1,与y 轴交于点(0,-1).
将PB 向上平移2个单位则过点E(0,1),
∴该直线为y =x +1. 由2125133y x y x x =+⎧⎪⎨=-+⎪⎩
得45x y =⎧⎨=⎩∴M(4,5). 故该抛物线上存在两点M(3,2),(4,5)满足条件.。

相关文档
最新文档