高等数学(第43-44课)强化
大学数学强化提升课教案
课程名称:高等数学授课班级:XX级XX班授课时间:每周二第5节授课教师:[教师姓名]教学目标:1. 通过本课程的学习,使学生熟练掌握高等数学的基本概念、基本理论和基本方法。
2. 培养学生的逻辑思维能力、分析问题和解决问题的能力。
3. 提高学生的数学素养,为后续专业课程学习打下坚实基础。
教学内容:1. 微积分基本概念与性质2. 多元函数微分学3. 多元函数积分学4. 线性代数基本概念与性质5. 线性方程组与矩阵6. 特征值与特征向量7. 傅里叶变换与拉普拉斯变换8. 微分方程与差分方程教学过程:一、导入1. 回顾中学数学知识,激发学生对高等数学的兴趣。
2. 引导学生思考高等数学在实际问题中的应用。
二、教学环节1. 微积分基本概念与性质- 介绍极限、导数、积分的基本概念和性质。
- 通过实例讲解极限、导数、积分的应用。
2. 多元函数微分学- 介绍多元函数偏导数、全微分、方向导数等概念。
- 讲解多元函数的极值、条件极值问题。
3. 多元函数积分学- 介绍二重积分、三重积分、曲线积分、曲面积分等概念。
- 讲解多元函数积分的计算方法。
4. 线性代数基本概念与性质- 介绍向量、矩阵、行列式等基本概念。
- 讲解线性方程组、矩阵的秩、逆矩阵等概念。
5. 特征值与特征向量- 介绍特征值、特征向量的概念。
- 讲解特征值、特征向量的计算方法。
6. 傅里叶变换与拉普拉斯变换- 介绍傅里叶变换、拉普拉斯变换的基本概念。
- 讲解傅里叶变换、拉普拉斯变换的应用。
7. 微分方程与差分方程- 介绍微分方程、差分方程的基本概念。
- 讲解微分方程、差分方程的解法。
三、课堂练习1. 每节课结束后,布置适量的课后练习题,巩固所学知识。
2. 定期组织课堂讨论,引导学生积极思考、交流。
四、教学评价1. 通过课堂提问、课后作业、期中考试、期末考试等方式,评价学生的学习成果。
2. 针对学生的学习情况,及时调整教学策略,提高教学效果。
教学总结:本课程通过系统讲解高等数学的基本概念、基本理论和基本方法,使学生掌握高等数学的核心知识,提高学生的数学素养。
09考研高等数学强化讲义(第四章)全
新东方考研高等数学电子教材主讲:汪诚义欢迎使用新东方在线电子教材教材说明:本教案是针对新东方在线使用的内部讲义,本讲义按章节提供。
根据老师的意见,例题的解题步骤不给提供,在课件的板书上有显示,学员自己可以先做题目再听 老师的讲解效果会更好。
严禁翻印、在网上任意传播!第四章 常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1.常微分方程和阶 2.解、通解和特解 3.初始条件4.齐次线性方程和非齐次线性方程例1.x y e xy y xsin '3''=++为二阶、线性、非齐次方程,如果要求0)0(',1)0(==y y ,这就是初始条件,从而得到特解。
例2.xe y y yy =++sin )'(''2为二阶非线性方程二、变量可分离方程及其推广 1.()()()()0≠=y Q y Q x p dxdyC dx x p y Q dy+=⎰⎰)()(2.齐次方程:⎪⎭⎫ ⎝⎛=x y f dx dy 令,u x y =则,,dx du x u dx dy xu y +==代入后得 )(u f dxdu x u =+,则C x C xdxu u f du +=+=-⎰⎰ln )(三、一阶线性方程及其推广 1.()()x Q y x P dxdy=+ 通解])([)()(C dx e x Q e y dxx p dx x p +⎰⎰=⎰- 2.()()()1,0≠=+ααy x Q y x P dx dy(数学三不考,数一、二要考) )()(1x Q y x P dxdy y =+--αα )()(1111x Q y x P dxdy =+---ααα令z y=-α1 则为一阶线性方程四、全微分方程及其推广(数学一) 1.()()0,,=+dy y x Q dx y x P ,满足yPx Q ∂∂=∂∂ 2.()()0,,=+dy y x Q dx y x P ,y P x Q ∂∂≠∂∂但存在()y x R ,,使()()yRP x RQ ∂∂=∂∂五、差分方程(数学三)(乙)典型例题例1.求dxdyxy dx dy xy =+22的通解。
10考研高等数学强化讲义(第三章)全
第三章 一元函数积分学§3. 1 不定积分(甲)内容要点一、基本概念与性质1.原函数与不定积分的概念设函数()x f 和()x F 在区间I 上有定义,若()()x f x F ='在区间I 上成立。
则称()x F 为()x f 在区间I 的原函数,()x f 在区间I 中的全体原函数成为()x f 在区间I 的不定积分,记为()⎰dx x f 。
原函数:()()⎰+=C x F dx x f其中⎰称为积分号,x 称为积分变量,()x f 称为被积分函数,()dx x f 称为被积表达式。
2.不定积分的性质 设()()⎰+=C x F dx x f ,其中()x F 为()x f 的一个原函数,C 为任意常数。
则(1)()()⎰+='C x F dx x F 或()()⎰+=C x F x dF 或⎰+=+C x F C x F d )(])([ (2)()[]()x f dx x f ='⎰或()[]()dx x f dx x f d =⎰(3)()()⎰⎰=dx x f k dx x kf (4)()()[]()()⎰⎰⎰±=±dx x g dx x f dx x g x f3.原函数的存在性一个函数如果在某一点有导数,称为可导;一个函数有不定积分,称为可积。
原函数存在的条件:比连续要求低,连续一定有原函数,不连续有时也有原函数。
可导要求比连续高。
⎰-dx ex这个不定积分一般称为积不出来,但它的积分存在,只是这个函数的积分不能用初等函数表示出来设()x f 在区间I 上连续,则()x f 在区间I 上原函数一定存在,但初等函数的原函数不一定是初等函数,例如()⎰dx x 2sin ,()⎰dx x 2cos ,⎰dx x x sin ,⎰dx x x cos ,⎰x dx ln ,⎰-dxe x 2等被积函数有原函数,但不能用初等函数表示,故这些不定积分均称为积不出来。
关于在高等数学教学中渗透思政元素的一点思考
进 ,就会距离梦想越来越近。
2.3.3 函数的连续性——欲速则不达
在 学 习 函 数 的 连 续 性 时 ,首 先 利 用 定 义 中 的 表 达 式 △lxim→ a Δy = 0 ,用直观的语言解释连续的本质特征 :若自变 量改变很微小 ,则函数值的变化也很微小。进而延伸到生
活实际 ,引导学生去发现自然界中的连续变化现象 ,如人的
DOI:10.16871/ki.kjwhc.2021.06.024
摘 要 把思想政治工作贯穿教育教学全过程是当下高等 院校教学改革的一个重要目标。高等数学作为面向大一新 生开设的一门课程,对于引导学生树立正确“三观”和高尚 道德情操起着重要作用。但高等数学课程内容高度的抽象 性和理论性,对在教学中挖掘和运用思政元素提出了很大 的挑战。该文从四个方面分析和探讨如何在高等数学教学 中融入思政教育元素。 关键词 高等数学;教学改革;思政元素 Some Thoughts on Infiltrating Ideological and Political El⁃ ements in Higher Mathematical Teaching // WANG Yan‐ gling Abstract It is an important goal of current teaching reform in colleges and universities to put ideological and political educa‐ tion through the whole process of teaching. Higher mathematics as a course for freshmen plays an important role in guiding stu‐ dents to establish correct“three views”and noble moral feeling. However, how to excavate and use its ideological and political elements in teaching is also facing a greater challenge, due to its high abstract and theoretical content. This paper will analyze and discuss how to integrate the elements of ideological and political education into higher mathematics teaching from four aspects. Key words higher mathematics;reform in education;ideological and political elements
数学强化每章总结知识点
数学强化每章总结知识点第一章:代数代数是数学的一个重要分支,主要研究数的计算、数与数量关系的表示和运算等。
代数包括整式、方程、不等式等内容。
在代数这一章中,学生将学习整式的加减乘除、因式分解、方程的解法等知识。
这些知识是数学学习的基础,对于理解后续更加复杂的数学知识和问题解决具有重要意义。
1.1 整式整式是由常数和变量经过有限次的加减乘除和乘方运算得到的代数式,整式分为单项式和多项式两种。
学生需要掌握整式的加减乘除运算法则,以及整式的化简和合并同类项的方法。
1.2 因式分解因式分解是将一个多项式分解成若干个不可约的因式的乘积,可以应用在解方程、求导等各种数学问题中。
因式分解的方法有公因式提取法、配方法、分组分解法等,学生需要熟练掌握这些方法。
1.3 方程的解法方程是含有未知数的等式,在数学应用中具有广泛的意义。
方程的解法包括一元一次方程的解法、二元一次方程的解法、一元二次方程的解法等。
学生需要掌握每种类型方程的解法,并能够应用到实际问题中解决。
第二章:几何几何是研究空间形状和大小、位置关系以及变换规律的数学学科。
在几何这一章中,学生将学习到点、直线、平面、多边形、圆等图形的性质,以及图形的面积、周长、体积等相关知识。
2.1 点、线、面点是几何的基本对象,线和面是由点构成的。
学生需要理解点、线、面的概念和性质,以及它们在平面和空间中的表示方法。
2.2 多边形和圆多边形是由若干条线段首尾相接构成的图形,圆是平面上所有到圆心距离相等的点的集合。
学生需要掌握多边形和圆的性质,以及它们的相关计算方法。
2.3 面积和周长面积和周长是几何图形的重要特征,求解面积和周长是解决实际问题的基础。
学生需要掌握各种常见几何图形的面积和周长的计算方法,以及应用到不同问题中的技巧。
2.4 体积和表面积体积和表面积是三维图形的重要特征,求解体积和表面积同样是解决实际问题的基础。
学生需要熟练掌握各种常见三维图形的体积和表面积的计算方法,并能够应用到各种问题中解决。
最新-2021学年高中数学人教B版 选修44课件:第1章 11 直角坐标系平面上的伸缩变换 精品
=x2+(y- 23a)2+(x+a2)2+y2+(x-a2)2+y2 =3x2+3y2- 3ay+54a2=3x2+3(y- 63a)2+a2≥a2,
当且仅当
x=0,y=
3 6a
时,等号成立,
∴所求最小值为 a2,此时 P 点坐标为 P(0, 63a)是正△ABC 的中心.
类型二 用坐标法解决实际问题 我国海军第五批护航编队由“广州”号导弹驱逐舰,“微山湖”号
3.将点 P(-2,2)变换为点 Q(-6,1)的伸缩变换公式为( ) 【导学号:62790000】
A.X=13x Y=2y
B.X=12x Y=3y
X=3x C.Y=12y
X=3x D.Y=2y
【解析】 将XY==1-6 与yx==2-2 代入到公式
φ:XY==bayx
中,有- 1=6= b·2a,·-2,
【尝试解答】 (1)设点 A′(X,Y). 由伸缩变换 φ:X2Y==3yx
X=3x, 得到Y=12y. 又已知点 A(13,-2). 于是 X=3×13=1,Y=12×(-2)=-1. ∴变换后点 A′的坐标为(1,-1).
(2)设曲线 C′上任意一点 Q(X,Y),
将x=13X y=2Y
代入 x2-6y42 =1,得X92-46Y42=1,
[思考·探究] 1.如何根据几何图形的几何特征建立恰当的坐标系?
【提示】 ①如果图形有对称中心,可以选对称中心为坐标原点;②如果 图形有对称轴,可以选对称轴为坐标轴;③若题目有已知长度的线段,以线段 所在的直线为 x 轴,以端点或中点为原点.
建系原则:使几何图形上的特殊点尽可能多地在坐标轴上.
2.如何理解点的坐标的伸缩变换?
【解】 设曲线 C 上任意一点 M(x,y),经过变换后对应点 M′(X,Y).
高等数学第二章课后习题答案
第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim(1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。
⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()32y x y π=-=-所以切线方程为1()223y x π-=--2(1)03y +-+=班级 姓名学号法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0 001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001s i n(0)(0)1l i m l i m l i ms i n 0x x x x f x f x x x xx∆→∆→∆→∆+∆-==∆=∆∆∆ 所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f hh +→+→++-==='00(0)(0)(0)limlim 1h h f h f hf hh -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在7. ()(). , 0 0sin x f x x x x x f '⎩⎨⎧≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;班级 姓名学号当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+ 2'364y x x =-+652'20282y x x x ---=--+ (3);3253xx e x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2s e c s e c t a ny x x x =+班级 姓名学号(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+ '422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22l n c o s c o s l n s i n x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x xy x -+-=+ 2222(1)csc cot 4csc (1)x x x x xx -+-=+ (10).ln 3ln 223x x x x y ++=2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x xx x -+-+=+ 9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1s i n c o s s i n2d d ρϕϕϕϕϕ=+-班级 姓名学号所以4222422284d d πϕρπϕ==+-=+10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。
武忠祥高等数学强化课教材
武忠祥高等数学强化课教材《武忠祥高等数学强化课教材》正文:封面上方:武忠祥高等数学强化课教材封面下方:作者:***第一页(空白页)目录:1. 强化课简介2. 前言3. 第一章极限与连续3.1 极限的引入3.2 极限的性质3.3 无穷小量与无穷大量...4. 第二章微分与导数4.1 导数的定义4.2 基本导数公式4.3 高阶导数与高阶导数公式...5. 第三章积分与定积分5.1 积分的引入5.2 不定积分与定积分的概念和性质 ...6. 第四章微分方程6.1 一阶微分方程及其解法...7. 第五章无穷级数...8. 第六章空间解析几何和变量变线 ...9. 第七章多元函数及其应用...(以此类推,列出所有章节和小节)(在每个小节的开头,以一段话简短介绍该小节的主要内容,例如:)3. 第一章极限与连续3.1 极限的引入极限是高等数学中的重要概念之一,它在揭示函数性质和计算中有着广泛的应用。
本节将引入极限的概念,从数列极限和函数极限两个方面进行详细讲解,帮助学生全面理解极限的概念及其特性。
(在每个小节的结尾,以一段话总结该小节的重点内容,例如:)4. 第二章微分与导数4.1 导数的定义导数作为微积分的核心概念,具有重要的几何和物理意义。
本节详细介绍导数的定义及其几何意义,并通过大量的例题演示导数的计算方法,帮助学生掌握导数的概念与计算技巧。
(在每个章节的结尾,以一段话概括该章节的主要内容,例如:)第三章积分与定积分本章主要介绍积分与定积分的概念、计算方法和应用。
通过对不定积分与定积分的详细讲解,以及一些典型应用问题的实例分析,使学生理解积分的几何意义和应用背景,掌握定积分的计算技巧。
结尾(空白页)。
高等数学强化班讲义
高等数学(强化班)讲义第一章 函数、极限、连续一、重、难点内容归纳1. 函数概念、性质1) 会讨论分段函数在“接头点”处极限、连续、导数、积分。
2) 会求分段函数的复合函数。
3) 熟悉函数的性态——单调性,奇偶性,周期性,有界性。
2. 极限1) 熟悉应用“保号性定理”。
2) 熟练求极限的方法(特别要注意运用方法的条件、技巧。
易出错的地方)。
3. 会讨论函数的连续性与间断性1) 分段函数在“接头点”处的连续性的讨论。
2) 明确函数间断性的讨论是指:① 求出全部间断点; ② 指出间断点的类型。
4. 熟悉连续函数在闭区间上的性质1) 熟练应用“零点定理,介值定理,最值定理”。
2) 会讨论方程的根(① 根的存在性,唯一性; ② 根的个数的确定)。
二、方法、技巧、题型例1 分段函数的复合<例1.1> 设⎩⎨⎧>≤-=⎩⎨⎧>≤=1||21||2)(,1||1||)(22x x x x g x x x x x f ,求))((x g f . (答:⎩⎨⎧>≤-=⎪⎩⎪⎨⎧>≤>--≤≤--=1||21||21||21||,1|2|21||,1|2|)2())((222222x x x x x x x x x x x g f 且且 )<例1.2> 设⎩⎨⎧>≤-=⎩⎨⎧>≤=2||22||2)(,1||01||1)(2x x x x g x x x f ,求))(()),((x f g x g f . (答:⎪⎩⎪⎨⎧><≤≤=2||01||03||11))((x x x x g f 或2||3≤<x ,⎩⎨⎧>≤=1||21||1))((x x x f g ) 例2 函数性态单调性 <例2.1> 求⎰-=πd 2sin 1x x I (答:22).<例2.2> 设)(x f 连续且单调增.求证:0)(d )(0≤-⎰x xf t t f x . <例2.3> 设),0[,0)0(+∞∈∀=x f 有xx f x g x f )()(,)(=↑',证明: )(x g 单调增.奇偶性 <例2.4> 设)(x f 连续,⎰-=xt t f t x x F 0d )()2()(时,那么1)若)(x f 为奇函数,证明)(x F 为奇函数。
《高等数学一》第一章-函数--课后习题(含答案解析)
第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。
.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。
考研高数强化知识点归纳
考研高数强化知识点归纳考研数学是许多考生在备考过程中需要重点攻克的科目之一,其中高等数学部分尤为重要。
以下是对考研高等数学强化知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和类型。
- 极限的定义、性质和计算方法。
- 无穷小的比较和极限存在的条件。
- 连续性的定义、性质和间断点的类型。
二、导数与微分- 导数的定义、几何意义和物理意义。
- 基本导数公式和求导法则。
- 高阶导数的计算方法。
- 微分的概念、性质和应用。
三、中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理。
- 导数在函数性质研究中的应用,如单调性、凹凸性、极值问题。
- 曲线的凹凸性、拐点和渐近线。
四、不定积分与定积分- 不定积分的定义、性质和计算方法。
- 定积分的定义、几何意义和计算方法。
- 牛顿-莱布尼茨公式的应用。
- 定积分在几何和物理问题中的应用。
五、级数- 级数的收敛性判别方法,如比较判别法、比值判别法等。
- 幂级数和泰勒级数的展开。
- 函数项级数的一致收敛性。
六、多元函数微分学- 多元函数的偏导数和全微分。
- 多元函数的极值问题和拉格朗日乘数法。
- 多元函数的几何应用,如空间曲线的切线和法平面。
七、重积分与曲线积分、曲面积分- 二重积分和三重积分的计算方法。
- 曲线积分和曲面积分的计算方法。
- 格林公式、高斯公式和斯托克斯公式的应用。
八、常微分方程- 一阶微分方程的解法,如分离变量法、变量替换法等。
- 高阶微分方程的降阶方法和特殊解法。
- 线性微分方程的一般解和特征方程。
九、解析几何- 空间直线和平面的方程。
- 空间曲面的方程和性质。
结束语:考研高等数学的强化知识点归纳是考生复习过程中的重要环节。
掌握这些知识点不仅能帮助考生在考试中取得好成绩,更能为今后的学术研究和工作实践打下坚实的基础。
希望考生能够通过系统复习,不断深化对这些知识点的理解和应用,最终在考研数学中取得优异的成绩。
高等数学强化课推荐教材
高等数学强化课推荐教材在选择高等数学强化课的推荐教材时,我们需要考虑多方面的因素。
一个好的教材能够提供系统、全面的知识体系,并且具有易于理解和学习的特点。
在市场上有很多种教材可供选择,下面将介绍几本备受推崇的高等数学强化课教材。
1.《高等数学强化教程》《高等数学强化教程》由数学教育专家编写,是一本经典的教材。
这本教材内容全面,针对高等数学的各个知识点都进行了深入的讲解和推导,适合对高等数学有一定基础的学生进一步提升自己的数学水平。
书中的例题和习题设计充实且合理,能够帮助学生巩固所学知识,扩展思维。
此外,教材的排版清晰美观,语言通俗易懂,有助于学生理解和掌握高等数学的概念和方法。
2.《高等数学强化教程实践指南》《高等数学强化教程实践指南》是一本教师辅助用书,由多位经验丰富的高等数学教师编写。
教材中的内容和教学方法针对高等数学强化课的实际需求进行了精心设计。
书中提供了大量的教案和教学活动,以及相关的教学案例和教学思路,帮助教师更好地组织和开展高等数学强化课的教学工作。
此外,书中还附有一些学生作业和答案,供教师进行教学评价和辅导。
教材的编排紧凑,内容丰富,适合教师参考使用。
3.《高等数学强化教材选编》《高等数学强化教材选编》是一本由多位高等数学教师共同编写的教材。
这本教材侧重于选取高等数学的重点和难点,对这些知识点进行深入浅出的讲解和分析。
教材中通过大量的例题和习题,引导学生巩固和应用所学的知识,提高解题能力,培养数学思维。
书中还包括一些考研和竞赛题的解析,帮助学生拓宽数学视野,应对各种数学题型的挑战。
总结起来,选择一本适合的高等数学强化课教材对学生的学习效果至关重要。
上述推荐的教材都具有较高的教学质量,内容覆盖全面,讲解深入浅出,适合学生和教师参考使用。
在实际选择时,可以根据自身的需求和学习情况进行衡量,选择符合自己学习风格和认知习惯的教材,从而更好地提升自己的高等数学水平。
海文高数赵达夫强化班讲义
6
正无穷: lim f (x) ; 负无穷: lim f (x) .
x x0
x x0
2
无穷小量:
若 lim x x0
f (x) 0 ,
称
f (x) 是 x x0 时的无穷小量。
(1)
设
f (x) 、 g(x) 都是 x x0 时的无穷小量,
若且 lim xx0
f g
x x
l
,
x
(A) f (t) f (t)dt
0
(C) f '(x)
x
(B) f (t) f (t)dt
0
(D)根据上面条件无法判断
3
例 4 设函数 f (x) 具有二阶导数,并满足 f ( x) f ( x),且 f (x) f (x 1). 若
f '(1) 0, 则( )
(A) f ''(5) f '(5) f (5).
且
lim
n
an
0
,
lim
n
bn
1
,
lim
n
cn
,
则(
)
A an bn ,n
B bn cn , n
C
lim
n
ancn
不存在
D
lim
n
bncn
不存在
例 4 设函数 f (x) 在 , 内单调有界, {xn} 为数列, 下面命题正确的是( )
A 若{xn} 收敛,则{ f (xn )} 必收敛 B 若{xn} 单调,则{ f (xn )} 必收敛 C 若{ f (xn )} 收敛, 则{xn} 收敛 D 若{ f (xn )} 单调, 则{xn} 收敛
2016考研数学高数强化(冯敬海)
二、利用无穷小求极限:
例 12. lim
8 x 2 − 2(1 − cos 2 x ) = x →0 3x 3 + 4 tan 2 x
例 13. lim(
x →0
考ቤተ መጻሕፍቲ ባይዱ
1+ x 1 − )= 1 − e− x x
例 14. lim
x →0
e x − sin x − 1 1 − 1 − x2
3x 2 + 5 2 例 15. lim ⋅ sin = x →∞ 5 x + 3 x
(B)极大值点; (D) 不能确定。
例 44.若 f (0) = 0 连续,且 lim
x →0
(A)驻点而非极值点; (C)驻点且是极小值点;
例 45.设 lim
x →0
考
1 + f ( x )sin 2 x − 1 = 2 ,求 lim f ( x ) 。 x →0 e3 x − 1
试
8
f ( x) = 2 ,那么 f ( x ) 在 x = 0 处是( ) x2
如果 lim
2n x2 x4 n x cos x = 1 − + − + (−1) + = 2! 4! (2n)!
ln(1 + x ) = x −
x2 x3 xn + − + ( −1) n −1 + = n 2 3
点
∑ (−1)n
n =0 n
x 2 n +1 (2n + 1)!
x2n (−1) ∑ (2n)! n =0
2
n →∞
例 32.设数列 {xn } 满足 0 < x1 < π , xn +1 = (1)证明 lim xn 存在,并求此极限; (2) sin xn ,
高等数学课后习题及参考答案(第四章)
高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。