材料分析测试技术7

合集下载

《材料分析测试技术》试卷答案

《材料分析测试技术》试卷答案

《材料分析测试技术》试卷(答案)一、填空题:(20分,每空一分)1.X射线管主要由阳极、阴极、和窗口构成。

2.X射线透过物质时产生的物理效应有:散射、光电效应、透射X 射线、和热。

3.德拜照相法中的底片安装方法有: 正装、反装和偏装三种。

4. X射线物相分析方法分: 定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。

5.透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。

6.今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。

7. 电子探针包括波谱仪和能谱仪成分分析仪器。

8.扫描电子显微镜常用的信号是二次电子和背散射电子。

二、选择题:(8分,每题一分)1.X射线衍射方法中最常用的方法是( b )。

a.劳厄法;b.粉末多晶法;c.周转晶体法。

2. 已知X光管是铜靶,应选择的滤波片材料是(b)。

a.Co;b. Ni;c.Fe。

3.X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用( c )。

a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。

4.能提高透射电镜成像衬度的可动光阑是(b)。

a.第二聚光镜光阑;b.物镜光阑;c. 选区光阑。

5. 透射电子显微镜中可以消除的像差是( b )。

a.球差;b. 像散;c. 色差。

6.可以帮助我们估计样品厚度的复杂衍射花样是( a)。

a.高阶劳厄斑点;b.超结构斑点;c. 二次衍射斑点。

7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。

a.背散射电子;b.俄歇电子;c. 特征X射线。

8. 中心暗场像的成像操作方法是(c)。

a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。

三、问答题:(24分,每题8分)1.X射线衍射仪法中对粉末多晶样品的要求是什么?答: X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个最佳厚度(t =2.分析型透射电子显微镜的主要组成部分是哪些?它有哪些功能?在材料科学中有什么应用?答:透射电子显微镜的主要组成部分是:照明系统,成像系统和观察记录系统。

材料分析测试技术

材料分析测试技术

并提出改进措施。
3
材料比较
不同材料之间的测试结果可以用于选择 最合适的材料用于特定应用。
测试技术在材料质量控制中的应用保产 品符合相关标准和规 范。
缺陷检测
通过测试方法来检测 和识别可能存在的材 料缺陷。
质量问题解决
测试技术用于分析和 解决材料质量问题, 以确保产品的一致性 和可靠性。
测试技术的发展趋势
1 自动化和数字化
测试过程的自动化和数字 化将提高测试效率和结果 可靠性。
2 多模态测试
结合多种测试技术,以获 取更全面和准确的材料性 能数据。
3 材料仿真
借助计算机仿真技术,预 测材料性能和行为。
总结和展望
材料分析测试技术是材料科学的重要组成部分,对于材料研发和质量控制具有关键作用。随着科技的不断进步, 测试技术将继续发展,为材料行业带来更多创新和进步。
从物理、化学、力学等角 度进行测试,包括显微镜 观察、拉伸测试和热分析 等。
测试技术的分类
非破坏性测试
通过不改变材料结构进行测试,如X射线检测和 超声波检测。
表征测试
用于确定材料的组成、结构和性能,如扫描电镜 和X射线衍射。
破坏性测试
需要破坏样品以获取数据,如拉伸测试和硬度测 试。
化学分析
通过化学方法确定材料的组成和含量。
常用的材料分析测试技术
扫描电子显微镜(SEM)
通过扫描样品表面的电子束来观 察材料的形貌和结构。
X射线衍射(XRD)
用于分析材料的晶体结构和相组 成。
拉伸测试
通过施加力来测试材料的机械性 能和强度。
测试技术在材料研发中的应用
1
新材料开发
测试技术可用于评估和优化新材料的性

《材料分析测试技术》教学大纲

《材料分析测试技术》教学大纲

《材料分析测试技术》教学大纲课程名称:材料分析测试技术课程代码:XXXXX学时:36学时学分:2学分先修课程:材料科学基础课程性质:专业课一、课程目标:本课程旨在培养学生的材料分析测试技术理论和实践技能,使学生能够掌握常见的材料分析测试技术方法,了解各种材料的结构和性能,并通过实验操作,学会使用常见分析测试仪器和设备,掌握常见材料分析测试方法的原理和操作流程。

二、教学内容:1.材料分析测试技术概述(1)材料分析测试技术的定义和发展概述(2)材料分析测试技术的分类和主要方法2.金属材料分析测试技术(1)金属材料的组织分析技术(2)金属材料的成分分析技术(3)金属材料的缺陷检测技术(4)金属材料的性能测试技术3.非金属材料分析测试技术(1)陶瓷材料的成分分析技术(2)聚合物材料的结构分析技术(3)复合材料的界面分析技术(4)高分子材料的热性能测试技术4.表面分析技术(1)扫描电子显微镜(SEM)和能谱仪(EDS)的原理和应用(2)原子力显微镜(AFM)的原理和应用(3)透射电子显微镜(TEM)的原理和应用5.分析测试仪器设备的使用和操作(1)金相显微镜的使用和操作(2)光谱分析仪的使用和操作(3)差热分析仪的使用和操作(4)拉伸试验机的使用和操作三、教学方法:本课程采用理论授课与实验操作相结合的教学方法。

理论授课将介绍材料分析测试技术的基本原理和方法,通过案例分析和实例演示提高学生的理解。

实验操作将安排学生进行不同类型的材料分析测试实验,分析测试结果并撰写实验报告。

四、教学评价:本课程的教学评价包括平时成绩与期末考试成绩的综合评价。

平时成绩按照学生的实验报告及参与度进行评定,期末考试成绩占整个课程成绩的50%。

五、参考教材:1.《材料分析理论与实践》出版社:XXX出版社2.《材料分析测试技术导论》出版社:XXX出版社1.XXX,XXX.材料分析测试技术研究[M].北京:XXX出版社,20XX.2.XXX,XXX.材料分析测试技术导论[M].北京:XXX出版社,20XX.以上为《材料分析测试技术》教学大纲,内容旨在引领学生掌握和应用材料分析测试技术,提高他们的实践能力和分析思维能力。

材料分析测试技术

材料分析测试技术

材料分析测试技术材料分析测试技术是指通过对材料的组成、结构、性能等进行分析和测试,以获取材料的相关信息和数据,为材料的研究、开发和应用提供科学依据和技术支持。

材料分析测试技术在材料科学与工程领域具有重要的意义,对于提高材料的质量、性能和可靠性,推动材料创新和产业发展具有重要作用。

一、材料分析测试技术的分类。

1.化学分析技术,包括元素分析、化合物分析、表面分析等,常用的方法有光谱分析、质谱分析、色谱分析等。

2.结构分析技术,包括晶体结构分析、显微结构分析、电子显微镜分析等,常用的方法有X射线衍射、电子显微镜、原子力显微镜等。

3.性能测试技术,包括力学性能测试、热物性测试、电磁性能测试等,常用的方法有拉伸试验、热分析、磁性测试等。

4.损伤分析技术,包括断裂分析、磨损分析、腐蚀分析等,常用的方法有断口分析、磨损测试、腐蚀试验等。

二、材料分析测试技术的应用领域。

1.材料研究与开发,通过对材料的成分、结构、性能进行分析和测试,为新材料的研究与开发提供科学依据和技术支持。

2.材料质量控制,通过对材料的质量、性能进行测试,保证材料的质量符合要求,满足产品的生产需求。

3.产品应用与改进,通过对产品材料的分析和测试,了解产品的材料特性,为产品的应用与改进提供技术支持。

4.事故分析与预防,通过对材料损伤的分析和测试,了解损伤的原因和机理,为事故的分析与预防提供技术支持。

三、材料分析测试技术的发展趋势。

1.多元化,随着材料科学与工程的发展,材料的种类和应用领域不断扩大,对材料分析测试技术提出了更高的要求,需要开发出更多样化、多功能化的分析测试技术。

2.智能化,随着信息技术和人工智能技术的发展,材料分析测试技术也向智能化方向发展,实现数据的自动采集、处理和分析,提高测试的效率和准确性。

3.微观化,随着纳米技术和微观技术的发展,材料分析测试技术也向微观化方向发展,实现对材料微观结构和性能的精细分析和测试。

4.综合化,随着材料科学与工程的交叉融合,材料分析测试技术也向综合化方向发展,实现不同分析测试技术的融合应用,提高分析测试的综合能力。

材料分析测试技术课件

材料分析测试技术课件

汽车工业
测试材料的耐磨性、抗冲击 性和耐腐蚀性,确保汽车零 部件的质量和安全性。
航空航天
测试材料的高温和高压下的 性能和可靠性,保证航空航 天器件的稳定和安全。
医疗器械
通过测试材料的生物相容性 和机械性能,保证医疗器械 的安全和有效性。
材料分析测试的挑战与解决方案
复杂材料
对于复杂材料的分析测试,可 能需要组合多种方法和技术, 增加测试的复杂性和难度。
材料分析测试技术课件
欢迎来到材料分析测试技术课件!这个课件将介绍材料分析测试的重要性、 常用的测试方法、测试的步骤与流程、应用领域以及未来的发展方向。
材料分析测试的重要性
1 确保材料质量
通过分析测试,确保材料 符合标准和规定的质量要 求,提高产品的可靠性。
2 问题排查与解决
通过分析测试,找出材料 中的问题和缺陷,并提供 解决方案,帮助改进产品 质量。
3 新材料开发
通过分析测试,评估和验 证新材料的性能和适用性, 推动创新和技术进步。
常用的材料分析测试方法
化学分析
通过化学试剂和仪器,分析材 料的化学成分和元素含量。
物理分析
使用物理性质测量仪器,测试 材料的硬度、强度、密度等物 理特性。
显微分析
通过显微镜观察材料的微观结 构和组织,了解材料的纹理和 晶体结构。
新材料研究
加强对新型材料的研究和测试, 探索其潜在的性能和应用。
测试成本
部分高级测试设备和仪器的采 购和维护成本较高,增加试数据,需要使 用合适的软件和算法进行处理 和分析,确保准确性和可靠性。
材料分析测试技术的未来发展方向
高精度测试技术
发展更高精度、更可靠的测试方 法和仪器,提高测试的准确性和 稳定性。

《材料分析测试技术》课程试卷答案

《材料分析测试技术》课程试卷答案

一、选择题:(8分/每题1分)1。

当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生(D)。

A. 光电子;B. 二次荧光;C。

俄歇电子;D。

(A+C)2。

有一体心立方晶体的晶格常数是0.286nm,用铁靶Kα(λKα=0。

194nm)照射该晶体能产生(B)衍射线。

A。

三条; B 。

四条;C. 五条;D. 六条.3。

.最常用的X射线衍射方法是(B )。

A。

劳厄法;B. 粉末多晶法;C. 周转晶体法;D。

德拜法。

4. 。

测定钢中的奥氏体含量,若采用定量X射线物相分析,常用方法是(C )。

A。

外标法;B。

内标法;C。

直接比较法;D。

K值法。

5。

可以提高TEM的衬度的光栏是(B )。

A。

第二聚光镜光栏;B。

物镜光栏;C. 选区光栏;D. 其它光栏。

6. 如果单晶体衍射花样是正六边形,那么晶体结构是( D)。

A。

六方结构;B。

立方结构;C。

四方结构;D. A或B。

7。

将某一衍射斑点移到荧光屏中心并用物镜光栏套住该衍射斑点成像,这是(C).A。

明场像;B. 暗场像;C. 中心暗场像;D.弱束暗场像。

8. 仅仅反映固体样品表面形貌信息的物理信号是(B)。

A. 背散射电子;B. 二次电子;C。

吸收电子;D。

透射电子。

一、判断题:(8分/每题1分)1.产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态.(√)2.倒易矢量能唯一地代表对应的正空间晶面。

(√)3.大直径德拜相机可以提高衍射线接受分辨率,缩短暴光时间。

(×)4.X射线物相定性分析可以告诉我们被测材料中有哪些物相,而定量分析可以告诉我们这些物相的含量有什么成分。

( ×)5.有效放大倍数与仪器可以达到的放大倍数不同,前者取决于仪器分辨率和人眼分辨率,后者仅仅是仪器的制造水平。

(√)6.电子衍射和X射线衍射一样必须严格符合布拉格方程。

(×)7.实际电镜样品的厚度很小时,能近似满足衍衬运动学理论的条件,这时运动学理论能很好地解释衬度像。

材料分析测试

材料分析测试

材料分析测试材料分析测试是一种通过对材料进行实验和检测,以获取材料性能和特性的方法。

在工程领域和科学研究中,材料分析测试是至关重要的,它可以帮助我们了解材料的组成、结构、性能和行为,为材料的设计、选择和应用提供科学依据。

本文将介绍材料分析测试的一些常用方法和技术。

一、光学显微镜分析。

光学显微镜是一种常用的材料分析测试工具,它可以通过放大和观察材料的微观结构来了解材料的组织和形貌特征。

在材料科学研究和工程实践中,光学显微镜广泛应用于金属材料、陶瓷材料、塑料材料等材料的组织分析和缺陷检测。

二、扫描电子显微镜分析。

扫描电子显微镜是一种高分辨率的显微镜,它可以通过电子束对材料进行扫描,获得材料表面的形貌和结构信息。

扫描电子显微镜广泛应用于纳米材料、生物材料、复合材料等领域,可以观察到材料的微观形貌和表面特征,对材料的研究和分析具有重要意义。

三、X射线衍射分析。

X射线衍射是一种通过X射线对材料进行衍射,获取材料晶体结构和晶体学信息的方法。

X射线衍射广泛应用于金属材料、无机材料、晶体材料等领域,可以确定材料的晶体结构、晶格参数和晶体取向,对材料的性能和行为有重要影响。

四、热分析测试。

热分析是一种通过对材料在不同温度条件下的热性能进行测试和分析的方法。

常见的热分析方法包括热重分析、差热分析、热膨胀分析等,可以了解材料的热稳定性、热分解特性和热膨胀行为,对材料的加工和使用具有指导意义。

五、力学性能测试。

力学性能测试是一种通过对材料在外力作用下的变形和破坏行为进行测试和分析的方法。

常见的力学性能测试包括拉伸试验、压缩试验、弯曲试验等,可以了解材料的强度、韧性、硬度等力学性能指标,对材料的设计和评价具有重要意义。

六、化学成分分析。

化学成分分析是一种通过化学方法对材料的成分进行测试和分析的方法。

常见的化学成分分析方法包括光谱分析、质谱分析、原子吸收光谱分析等,可以确定材料的元素组成和含量,为材料的合金设计和质量控制提供依据。

材料分析测试技术

材料分析测试技术

材料分析测试技术第一篇:材料分析测试技术一、引言材料分析测试技术是现代材料科学领域中非常重要的一部分,涵盖了材料结构、材料性能以及材料组成等方面的研究。

通过对材料进行分析测试,能够为材料的合理设计、精细加工、可靠使用以及环境保护等方面提供科学依据。

二、主要内容1.材料结构分析测试:此项测试主要是通过对材料的原位形貌、拉伸或压缩变形过程以及破坏机理的观察和分析,来揭示材料微结构的特征和结构与性能之间的关系。

2.材料物理性质测试:此项测试主要包括材料的热学性能、电学性能、光学性能等各个方面。

其中,热学性能测试包括热膨胀系数、热导率、比热等;电学性能测试包括电导率、介电常数、磁导率等;光学性能测试包括透过率、反射率、吸收率等。

3.材料化学成分测试:此项测试主要是通过对材料中各种元素化学量的测定,来确定材料的组成及其含量范围。

其中,常用的测试方法有荧光光谱法、原子吸收光谱法、质谱法等。

4.材料力学性能测试:此项测试主要是通过对材料的受力响应、变形、破坏等参数的测定,来评估材料的强度、韧性、脆性、疲劳性等力学特性。

其中,常用的测试方法有拉伸试验、压缩试验、硬度测试等。

三、测试技术优化为了提高材料分析测试的准确性和可靠性,需要注重以下几个方面:1.测试设备的选用和改进:从设备的选型、使用、维护等多方面考虑,提高设备的测试精度、可靠性和稳定性,并为特定的测试任务提供更优化的测试方法。

2.测试方法的优化:对测试方法的有效性、精度和可重复性进行评估和提高,并根据实际测试情况不断优化测试方法。

3.测试样品的处理:要注重对测试样品的处理和制备,避免样品的变形、损伤、干扰等因素对测试结果的影响。

4.测试人员的素质提高:对测试人员必须进行专业知识的培训和技能的提高,使其具备独立进行测试的能力和科学分析测试结果的能力。

四、应用前景目前,材料分析测试技术已经广泛应用于材料科学领域中的各个方面,如材料设计、加工制造、环境保护、矿产资源开发等。

材料分析测试技术

材料分析测试技术

材料分析测试技术
材料分析测试技术是一项非常重要的技术,它可以帮助我们了解材料的性质和组成,以及评估其质量和性能。

以下是几种常见的材料分析测试技术。

1. 光谱分析技术:光谱分析技术通过测量材料与光的相互作用,来获取材料的组成和性质信息。

常见的光谱分析技术包括紫外可见光谱分析、红外光谱分析和拉曼光谱分析等。

2. 核磁共振技术:核磁共振技术可以通过测量材料的核磁共振信号,来获取材料的分子结构和组成信息。

常见的核磁共振技术包括质子核磁共振技术和碳-13核磁共振技术等。

3. 电子显微镜技术:电子显微镜技术可以通过对材料进行高分辨率的电子显微镜观察,来研究材料的晶体结构和表面形貌。

常见的电子显微镜技术包括扫描电子显微镜和透射电子显微镜等。

4. 热分析技术:热分析技术可以通过加热和测量材料在不同温度下的性质变化,来研究材料的热稳定性和热降解行为。

常见的热分析技术包括差示扫描量热法、热重分析和热导率测量等。

5. 表面分析技术:表面分析技术可以通过对材料表面进行分析,来研究材料的表面组成和表面特性。

常见的表面分析技术包括
X射线光电子能谱分析、原子力显微镜和扫描隧道显微镜等。

以上只是几种常见的材料分析测试技术,当然还有其他很多的
技术,如X射线衍射分析、负离子萃取法、电化学测试等。

不同的技术可以相互补充,提供更全面的材料信息。

材料分析测试技术在材料科学和工程中具有重要作用,可以用于材料的开发、制备、优化和质量控制等方面,为我们的科研和工业发展提供了重要的支持。

(完整版)材料分析测试技术部分课后答案

(完整版)材料分析测试技术部分课后答案

材料分析测试技术部分课后答案太原理工大学材料物理0901 除夕月1-1 计算0.071nm(MoKα)和0.154nm(CuKα)的X-射线的振动频率和能量。

ν=c/λ=3*108/(0.071*10-9)=4.23*1018S-1E=hν=6.63*10-34*4.23*1018=2.8*10-15 Jν=c/λ=3*108/(0. 154*10-9)=1.95*1018S-1E=hν=6.63*10-34*2.8*1018=1.29*10-15 J1-2 计算当管电压为50kV时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能.E=eV=1.602*10-19*50*103=8.01*10-15 Jλ=1.24/50=0.0248 nm E=8.01*10-15 J(全部转化为光子的能量)V=(2eV/m)1/2=(2*8.01*10-15/9.1*10-31)1/2=1.32*108m/s1-3分析下列荧光辐射产生的可能性,为什么?(1)用CuKαX射线激发CuKα荧光辐射;(2)用CuKβX射线激发CuKα荧光辐射;(3)用CuKαX射线激发CuLα荧光辐射。

答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。

最内层能量最低,向外能量依次增加。

根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。

由于释放的特征谱线的能量等于壳层间的能量差,所以Kß的能量大于Ka 的能量,Ka能量大于La的能量。

因此在不考虑能量损失的情况下:CuKa能激发CuKa荧光辐射;(能量相同)CuKß能激发CuKa荧光辐射;(Kß>Ka)CuKa能激发CuLa荧光辐射;(Ka>la)1-4 以铅为吸收体,利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性。

现代材料分析测试技术材料分析测试技术

现代材料分析测试技术材料分析测试技术

(1-7)
如果电子速度较低,其质量和静止质量相近,即m≈m0.如果加速电压很高,使电子速度极高,则必须经过相对论校正,此时:
式中 c——光速
表1-长在390-760nm之间,从计算出的电子波波长可以看出,在常用的100-200kV加速电压下,电子波的波长要比可见光小5个数量级。
01
1.1 引言
光学显微镜的分辨率
由于光波的波动性,使得由透镜各部分折射到像平面上的像点及其周围区域的光波发生相互干涉作用,产生衍射效应。一个理想的物点,经过透镜成像时,由于衍射效应,在像平面上形成的不再是一个像点,而是一个具有一定尺寸的中央亮斑和周围明暗相间的圆环所构成的Airy斑。如图1-1所示。 测量结果表明Airy斑的强度大约84%集中在中心亮斑上,其余分布在周围的亮环上。由于周围亮环的强度比较低,一般肉眼不易分辨,只能看到中心亮斑。因此通常以Airy斑的第一暗环的半径来衡量其大小。根据衍射理论推导,点光源通过透镜产生的Airy斑半径R0的表达式为:
据说日本电子已经制造了带球差校正器的透射电镜,但一个球差校正器跟一台场发射透射电镜的价格差不多。
式中 Cs表示球差系数。
No Fringe Un-corrected Corrected Si (111)Σ3 grain boundary TEM Cs Corrector
β-Si3N4
2nm
2200FS + STEM Cs corrector
电子波波长
根据德布罗意(de Broglie)的观点,运动的电子除了具有粒子性外,还具有波动性。这一点上和可见光相似。电子波的波长取决于电子运动的速度和质量,即 (1-4) 式中,h为普郎克常数:h=6.626×10-34J.s;m为电子质量;v为电子运动速度,它和加速电压U之间存在如下关系: 即 (1-5) 式中e为电子所带电荷,e=1.6×10-19C。 将(1-5)式和(1-4)式整理得: (1-6)

《材料分析测试技术》课件

《材料分析测试技术》课件

在生物学领域,材料分析测试技术用于研 究生物大分子的结构和功能,以及生物材 料的性能和生物相容性。
医学领域
环境科学领域
在医学领域,材料分析测试技术用于药物 研发、医疗器械性能评价以及人体组织与 器官的生理和病理研究。
在环境科学领域,材料分析测试技术用于 环境污染物检测、生态系统中物质循环的 研究以及环保材料的性能评估。
反射光谱测试技术
通过测量材料对不同波长光的反射率,分 析材料的表面特性、光学常数和光学性能 。
发光光谱测试技术
研究材料在受到激发后发射出的光的性质 ,包括荧光、磷光和热辐射等,以了解材 料的发光性能和光谱特性。
透射光谱测试技术
通过测量材料对不同波长光的透射率,分 析材料的透光性能、光谱特性和光学常数 。
磁粉检测技术
总结词
通过磁粉与材料相互作用,检测其表面和近表面缺陷。
详细描述
磁粉检测技术利用磁粉与被检测材料的相互作用,通过观察磁粉的分布和排列,检测材 料表面和近表面的裂纹、折叠等缺陷。该技术广泛应用于钢铁、有色金属等材料的检测

涡流检测技术
总结词
通过电磁感应在材料中产生涡流,检测其表 面和近表面缺陷。
《材料分析测试技术》ppt课件
目录
• 材料分析测试技术概述 • 材料物理性能测试技术 • 材料化学性能测试技术 • 材料力学性能测试技术 • 材料无损检测技术 • 材料分析测试技术的应用与展望
01
材料分析测试技术概述
Chapter
定义与目的
定义
材料分析测试技术是指通过一系列实验手段对材料 进行物理、化学、机械等性能检测,以获取材料组 成、结构、性能等方面的信息。
电学性能测试技术
电容率测试技术

材料分析测试技术_部分课后答案

材料分析测试技术_部分课后答案

材料分析测试技术_部分课后答案衍射仪9-1、电⼦波有何特征?与可见光有何异同?答:·电⼦波特征:电⼦波属于物质波。

电⼦波的波长取决于电⼦运动的速度和质量,=h mvλ若电⼦速度较低,则它的质量和静⽌质量相似;若电⼦速度具有极⾼,则必须经过相对论校正。

·电⼦波和光波异同:不同:不能通过玻璃透镜会聚成像。

但是轴对称的⾮均匀电场和磁场则可以让电⼦束折射,从⽽产⽣电⼦束的会聚与发散,达到成像的⽬的。

电⼦波的波长较短,其波长取决于电⼦运动的速度和质量,电⼦波的波长要⽐可见光⼩5个数量级。

另外,可见光为电磁波。

相同:电⼦波与可见光都具有波粒⼆象性。

9-2、分析电磁透镜对电⼦波的聚焦原理,说明电磁透镜的结构对聚焦能⼒的影响。

聚焦原理:电⼦在磁场中运动,当电⼦运动⽅向与磁感应强度⽅向不平⾏时,将产⽣⼀个与运动⽅向垂直的⼒(洛仑兹⼒)使电⼦运动⽅向发⽣偏转。

在⼀个电磁线圈中,当电⼦沿线圈轴线运动时,电⼦运动⽅向与磁感应强度⽅向⼀致,电⼦不受⼒,以直线运动通过线圈;当电⼦运动偏离轴线时,电⼦受磁场⼒的作⽤,运动⽅向发⽣偏转,最后会聚在轴线上的⼀点。

电⼦运动的轨迹是⼀个圆锥螺旋曲线。

右图短线圈磁场中的电⼦运动显⽰了电磁透镜聚焦成像的基本原理:结构的影响:1)增加极靴后的磁线圈内的磁场强度可以有效地集中在狭缝周围⼏毫⽶的范围内;2)电磁透镜中为了增强磁感应强度,通常将线圈置于⼀个由软磁材料(纯铁或低碳钢)制成的具有内环形间隙的壳⼦⾥,此时线圈的磁⼒线都集中在壳内,磁感应强度得以加强。

狭缝的间隙越⼩,磁场强度越强,对电⼦的折射能⼒越⼤。

3)改变激磁电流可以⽅便地改变电磁透镜的焦距9--3、电磁透镜的像差是怎样产⽣的,如何消除和减少像差?像差有⼏何像差(球差、像散等)和⾊差球差是由于电磁透镜的中⼼区域和边沿区域对电⼦的会聚能⼒不同⽽造成的;为了减少由于球差的存在⽽引起的散焦斑,可以通过减⼩球差系数和缩⼩成像时的孔径半⾓来实现像散是由透镜磁场的⾮旋转对称⽽引起的;透镜磁场不对称,可能是由于极靴内孔不圆、上下极靴的轴线错位、制作极靴的材料材质不均匀以及极靴孔周围局部污染等原因导致的。

材料分析测试技术

材料分析测试技术

材料分析测试技术材料分析测试技术材料分析测试技术是指对材料进行分析和测试,以得到关于材料性质和组成的信息的一种技术。

在材料科学与工程领域,材料分析测试技术起着重要的作用,它不仅能够帮助工程师和科学家了解材料的性能和特性,还能指导材料的研发和应用。

材料分析测试技术主要包括材料成分分析、材料结构表征、材料性能测试等方面。

下面将就这些方面逐一进行介绍。

首先是材料成分分析。

材料成分分析是指对材料中各组分含量和比例进行测定的过程。

常用的材料成分分析方法有化学分析方法和物理分析方法。

化学分析方法包括光谱分析、电化学分析、热分析等,通过对样品进行化学反应和测量,可以得到各组分的含量和比例。

物理分析方法包括X射线衍射、电子显微镜等,通过测量材料的物理性质,可以获得材料成分的信息。

其次是材料结构表征。

材料结构表征是对材料的内部结构进行分析和描述的过程。

常用的材料结构表征方法有扫描电子显微镜、透射电子显微镜、X射线衍射等。

这些方法可以通过观察材料的表面形貌、内部晶体结构等来揭示材料的微观结构和形态特征。

最后是材料性能测试。

材料性能测试是指对材料的各项性能进行测定和评估的过程。

材料的性能有机械性能、热性能、电学性能等多个方面。

常用的材料性能测试方法有拉伸试验、硬度测试、热重分析等。

这些测试方法可以帮助人们了解材料的强度、硬度、热稳定性等性能指标,从而指导材料的设计和应用。

材料分析测试技术在科学研究和工程实践中具有广泛的应用。

首先,它可以帮助科学家们进一步认识材料的本质,揭示材料的内在规律,为材料科学的发展做出贡献。

其次,材料分析测试技术可以指导材料的研发和制备。

通过对材料成分和性能的测试,可以为材料的合理设计和应用提供依据。

最后,材料分析测试技术也可以为产品质量控制和故障分析提供支持。

通过对材料进行分析和测试,可以确保产品的质量和可靠性,同时也可以对产品故障进行分析和修复。

总之,材料分析测试技术是材料科学与工程领域中一项重要的技术。

材料现代分析测试方法

材料现代分析测试方法

材料现代分析测试方法材料现代分析测试方法是指利用现代科学技术手段对材料进行分析和测试的方法。

随着科学技术的不断发展,材料分析测试方法也在不断更新和完善。

现代材料分析测试方法的发展,为材料科学研究和工程应用提供了更加精准、高效的手段,对于提高材料性能、改善材料品质、保障产品质量具有重要意义。

一、光学显微镜分析。

光学显微镜是一种常用的材料分析测试仪器,通过观察材料的微观形貌和结构特征,可以对材料的晶体结构、晶粒大小、晶界分布等进行分析。

通过光学显微镜观察,可以直观地了解材料的表面形貌、断口形貌等信息,为进一步的分析提供基础数据。

二、扫描电子显微镜分析。

扫描电子显微镜是一种高分辨率的显微镜,可以对材料进行高清晰度的表面形貌观察和微区分析。

通过扫描电子显微镜,可以观察到材料的微观形貌、晶粒形貌、晶界形貌等细节特征,对于材料的微观结构分析具有重要意义。

三、X射线衍射分析。

X射线衍射是一种常用的材料结构分析方法,通过测定材料对X射线的衍射图样,可以得到材料的晶体结构信息。

X射线衍射可以确定材料的晶格常数、晶体结构类型、晶面取向等重要参数,对于材料的结构表征具有重要意义。

四、质谱分析。

质谱分析是一种对材料进行成分分析的方法,通过质谱仪对材料进行分子离子的质量分析,可以确定材料的成分组成和相对含量。

质谱分析可以对材料的有机成分、无机成分、杂质成分等进行准确的定性和定量分析,为材料的成分表征提供重要依据。

五、热分析。

热分析是一种通过对材料在不同温度下的热性能进行测试和分析的方法,包括热重分析、差热分析、热膨胀分析等。

通过热分析,可以了解材料的热稳定性、热分解特性、热膨胀性能等重要参数,为材料的热性能评价提供重要依据。

六、表面分析。

表面分析是一种对材料表面成分、结构和性能进行分析的方法,包括X射线光电子能谱分析、原子力显微镜分析、电子探针分析等。

通过表面分析,可以了解材料表面的成分分布、表面形貌、表面粗糙度等重要信息,为材料的表面性能评价提供重要依据。

材料现代分析与测试 第七章 扫描探针显微分析

材料现代分析与测试 第七章 扫描探针显微分析

第七章扫描探针显微分析第一节概述电子探针显微分析(Electrom Probe Microanalysis——EPMA)也称为电子探针X射线显微分析,是利用电子光学和X射线光谱学的基本原理将显微分析和成分分析相结合的一种微区分析方法。

该分析方法特别适用于分析试样中微小区域的化学成分分析,是研究材料组织结构和元素分布状态的极为有用的分析方法。

扫描探针显微镜(Scanning Probe Microscopes 简称SPM)包括扫描显微镜(STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜以及扫描热显微镜等,是一类完全新型的显微镜。

它们通过其端粗细只有一个原子大小的探针在非常近的距离上探索物体表面的情况,便可以分辨出其它显微镜所无法分辨的极小尺度上的表面特征。

一、SPM的基本原理控制探针在被检测样品的表面进行扫描,同时记录下扫描过程中探针尖端和样品表面的相互作用,就能得到样品表面的相关信息。

因此,利用这种方法得到被测样品表面信息的分辨率取决于控制扫描的定位精度和探针作用尖端的大小(即探针的尖锐度)。

二、SPM的特点1. 原子级高分辨率。

STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm 和0.01nm,即可以分辨出单个原子,具有原子级的分辨率。

2. 可实时地得到实空间中表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究及表面扩散等动态过程的研究。

3. 可以观察单个原子层的局部表面结构,因而可直接观察表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。

4. 可在真空、大气、常温,以及水和其它溶液等不同环境下工作,不需要特别的制样技术,并且探测过程对样品无损伤。

这些特点适用于研究生物样品和在不同试验条件下对样品表面的评价。

5. 配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。

材料分析测试方法

材料分析测试方法

材料分析测试方法1. 扫描电子显微镜 (Scanning Electron Microscopy, SEM): SEM通过照射材料表面并收集所产生的散射电子来观察材料的形貌和表面特征。

它能够提供高分辨率和高深度的表面图像,并且可以通过能谱分析来确定元素的分布情况。

2. 透射电子显微镜 (Transmission Electron Microscopy, TEM): TEM是一种在材料中传输电子束来观察材料的内部结构和晶体缺陷的技术。

它提供了更高分辨率的图像和更详细的结构信息,可以用来研究纳米材料、薄膜、合金和晶体等。

3. X射线衍射 (X-ray Diffraction, XRD): XRD可以通过照射材料表面或内部来观察和分析材料的结构和有序性。

通过测量X射线入射和出射角度的差异,可以确定材料中的晶格参数和晶体结构。

4. 热重-差热分析 (Thermogravimetric Analysis, TGA): TGA可以通过对材料在加热过程中的质量变化进行监测和分析,以确定其热稳定性、失重行为、热分解特性和热化学性质等信息。

同时,差热分析可以提供材料热量变化的信息。

5. 红外光谱 (Infrared Spectroscopy, IR): 红外光谱可以通过测量材料对红外辐射的吸收和散射来分析其分子结构、功能团和化学键。

通过红外光谱可以确定材料的组成和结构信息,并且可以应用于材料识别、质量控制和病理分析等领域。

6. 核磁共振 (Nuclear Magnetic Resonance, NMR): NMR通过对材料中的核磁共振信号进行测量和分析,可以了解材料的分子结构和化学环境。

NMR广泛应用于有机化学、化学物理学和生物化学领域,可以确定化学物质的结构、反应动力学和分子间相互作用等。

7. 拉伸试验 (Tensile Test): 拉伸试验是一种用来测量材料力学性能的常见方法。

通过施加拉伸力并测量拉伸过程中的载荷和变形,可以确定材料的屈服强度、抗拉强度、伸长率和断裂韧性等。

材料分析测试技术

材料分析测试技术

材料分析测试技术一、常用的材料分析测试技术:1.光学显微镜:光学显微镜是一种非常常用的材料分析测试技术。

它利用光学原理对样品进行观察和分析,可以获取样品的形貌特征、颜色、晶体结构等信息。

2.电子显微镜:电子显微镜是一种比光学显微镜具有更高分辨率的显微镜。

它利用高能电子束来观察和分析样品,可以获得更高分辨率的图像和更详细的样品信息。

3.X射线衍射:X射线衍射技术是一种常用的材料结构分析技术。

它利用X射线与样品相互作用,通过分析衍射图样中的衍射峰位置和强度来推断样品的晶体结构、晶格参数等信息。

4.热分析技术:热分析技术包括热重分析、差热分析和热膨胀分析等。

它们利用样品在不同温度下的热物理性质的变化来推断材料的热稳定性、热解行为、热性能等信息。

5.光谱分析技术:光谱分析技术包括紫外可见吸收光谱、红外光谱、拉曼光谱等。

它们利用材料对不同波长的光的吸收、散射等现象来推断样品的组成、化学键信息、分子结构等。

6.表面分析技术:表面分析技术包括扫描电子显微镜、原子力显微镜、表面X射线衍射等。

它们通过分析样品表面的形貌、化学组成、原子排列等信息来了解材料的表面特性和性能。

7.能谱分析技术:能谱分析技术包括电子能谱、质谱、中子活化分析等。

它们通过分析样品中不同能量的粒子和辐射的能谱图样来推断样品的元素组成、同位素含量等。

二、材料分析测试技术的应用:1.材料研发和合成:材料分析测试技术可以帮助研究人员了解材料的组成、结构和性能,从而指导材料的设计、合成和改进。

2.质量控制和品质检验:材料分析测试技术可以帮助企业对原材料和成品进行质量控制和品质检验,确保产品的合格性和稳定性。

3.故障分析和事故调查:材料分析测试技术可以帮助工程师和科学家对发生故障和事故的材料进行分析和鉴定,并找出故障原因和事故责任。

4.工程应用和材料性能评估:材料分析测试技术可以帮助工程师评估材料的性能和可行性,为工程应用提供科学依据和技术支持。

5.文物保护和文化遗产研究:材料分析测试技术可以帮助文物保护人员对古代文物进行分析和鉴定,了解其材料组成和制作工艺,从而保护和研究文化遗产。

材料分析测试技术习题及答案

材料分析测试技术习题及答案

第一章一、选择题1.用来进行晶体结构分析的X射线学分支是()A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称()A.Kα;B. Kβ;C. Kγ;D. Lα。

3. 当X射线发生装置是Cu靶,滤波片应选()A.Cu;B. Fe;C. Ni;D. Mo。

4. 当电子把所有能量都转换为X射线时,该X射线波长称()A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题)A.光电子;B. 二次荧光;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,λ0和λk都随之减小。

()2. 激发限与吸收限是一回事,只是从不同角度看问题。

()3. 经滤波后的X射线是相对的单色光。

()4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。

()5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。

()三、填空题1. 当X 射线管电压超过临界电压就可以产生 X 射线和 X 射线。

2. X 射线与物质相互作用可以产生 、 、 、 、 、 、 、 。

3. 经过厚度为H 的物质后,X 射线的强度为 。

4. X 射线的本质既是 也是 ,具有 性。

5. 短波长的X 射线称 ,常用于 ;长波长的X 射线称 ,常用于 。

习题1. X 射线学有几个分支?每个分支的研究对象是什么?2. 分析下列荧光辐射产生的可能性,为什么? (1)用CuK αX 射线激发CuK α荧光辐射; (2)用CuK βX 射线激发CuK α荧光辐射; (3)用CuK αX 射线激发CuL α荧光辐射。

3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”?4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它?5. 产生X 射线需具备什么条件?6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

▼利用EPMA可以方便的分析从 利用 可以方便的分析从 4Be~92U之间的所有元素。 之间的所有元素。 ~ 之间的所有元素 的特点: ▼EPMA的特点:分析手段大为简化, 的特点 分析手段大为简化, 分析时间大为缩短, 分析时间大为缩短,分析用样品量 很少,是一种无损分析方法。 很少,是一种无损分析方法。 的构造: 大体相似, ▼EPMA的构造:与SEM大体相似, 的构造 大体相似 只是增加了接收记录X射线的谱仪 射线的谱仪。 只是增加了接收记录 射线的谱仪。
EPMA的基本原理 的基本原理
●用聚焦电子束照射试样表面感兴趣的微小区域,激 用聚焦电子束照射试样表面感兴趣的微小区域 激 发该区域中各元素的特征X射线 这些X射线具有 射线,这些 发该区域中各元素的特征 射线 这些 射线具有 不同的波长和能量。 射线谱仪探测这些X射线 不同的波长和能量。用X射线谱仪探测这些 射线, 射线谱仪探测这些 射线, 就得到了X射线谱。根据特征X射线的波长或能量 就得到了 射线谱。根据特征 射线的波长或能量 射线谱 射线的 进行元素的定性分析 根据其强度进行元素定量 定性分析; 强度进行元素 进行元素的定性分析;根据其强度进行元素定量 分析。 分析。 根据特征X射线波长色散来分析的仪器叫波长色 ●根据特征 射线波长色散来分析的仪器叫波长色 散谱仪简称波谱仪(英文缩写为WDS)。 散谱仪简称波谱仪(英文缩写为 )。 根据特征X射线能量色散来分析的仪器叫能量色 ●根据特征 射线能量色散来分析的仪器叫能量色 散谱仪简称能谱仪(英文缩写为EDS)。 散谱仪简称能谱仪(英文缩写为 )。
毒 品米 虫感光胶来自材料粉末作 业
1、SEM相对于 、 相对于TEM有哪些特点? 有哪些特点? 相对于 有哪些特点 2、SEM对样品有何要求? 对样品有何要求? 、 对样品有何要求 3、SEM经常用于研究断口的形貌观察, 经常用于研究断口的形貌观察, 、 经常用于研究断口的形貌观察 在断口的形貌观察中主要研究哪三个 方面的内容? 方面的内容? 4、典型的断裂特征有哪几种? 、典型的断裂特征有哪几种?
2..6 电子探针X射线显微分析
电子探针X射线显微分析 射线显微分析(EPMA,简称电子 ★ 电子探针 射线显微分析 简称电子 探针) 探针)是一种显微分析和成分分析相结合的 微区分析。 微区分析。特别适用于分析试样中微小区域 的化学成分,是研究材料组织结构和元素分 的化学成分, 布状态的极为有用的分析方法。 布状态的极为有用的分析方法。 与普通的化学分析方法不同, ★ EPMA与普通的化学分析方法不同,后者得 与普通的化学分析方法不同 到的是试样中的平均成分也叫宏观成分, 到的是试样中的平均成分也叫宏观成分,分 析结果与微观组织不存在对应关系。 析结果与微观组织不存在对应关系。
相关文档
最新文档