最新湘教版八年级上册数学期中考试试卷

合集下载

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.上复习课时李老师叫小聪举出一些分式的例子,他举出了: 211133,22x xy x x y π++,,,,1m,其中正确的个数为( )A .2B .3C .4D .5 2.若分式1x x -在实数范围内有意义,则x 的取值范围为( ) A .1x >B .1x ≠C .0x ≥D .0x ≠且1x ≠ 3.若分式1(3)(1)x x x -+-的值为0,则x 等于 ( ) A .1 B .1或-3 C .-1或1 D .-14.已知买n 千克苹果共花了m 元,则买2千克苹果要花( )元.A .2mnB .2m nC .2mnD .2n m 5.方程2331x x =-的解为( ) A .311x =; B .113x =; C .37x =; D .73x =. 6.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2. ③三角形的一个外角大于任何一个内角. ④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个7.若线段,AP AQ 分别是ABC 边上的高线和中线,则( )A .AP AQ >B .AP AQ ≥C .AP AQ <D .AP AQ ≤ 8.关于x 的分式方程144x a x x +=--有增根,则a 的值为( ) A .2B .3C .4D .5 9.若分式62m -的值是正整数,则m 可取的整数有 ( ) A .4个 B .5个 C .6个 D .10个10.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2二、填空题11.下列4个分式:①233a a ++;②22x y x y --;③22m m n;④21m +,中最简分式有_____个. 12.在下列方程:①2213x =、②221x π-=、③23x x =、④11322x x x -+=--、⑤10x=中,分式方程的个数有__________.13.化简2269x x +-得_____. 14.计算:02+11()2--=__________. 15.若等腰三角形的两边的边长分别为3cm 和7cm ,则第三边的长是_________cm . 16.如图,已知//AE BD ,1130∠=︒,230∠=︒,则C ∠=__________.17.等腰三角形的一个内角为100°,则顶角的度数是____________.18.如图,已知在ABC ∆中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若6,9AB AC ==,则ABD ∆的周长是________.三、解答题19.计算:1201()(2)54--+-⨯.20.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.21.某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.22.如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.23.如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A 的度数.24.如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形.25.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.26.如图1,若点P 是线段AB 上的动点(P 不与A ,B 重合),分别以AP 、PB 为边向线段AB 的同一侧作等边APC ∆和等边PBD ∆.(1)图1中,连接AD 、BC ,相交于点Q ,设AQC α∠=,那么α= ; (2)如图2,若点P 固定,将PBD ∆绕点P 按顺时针方向旋转(旋转角小于180),此时α的大小是否发生变化?请说明理由.参考答案1.B【分析】根据分式定义:如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式进行分析即可.【详解】解:在211133,22x xy x x y π++,,,,1m 中,131x x y m +,,是分式,只有3个, 故选:B .【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.B【分析】根据分式有意义的条件:分母不等于零,即可得x 的取值范围.【详解】解:当分母x-1≠0,即x≠1时,分式1x x -在实数范围内有意义. 故选:B .【点睛】本题考查分式有意义的条件,解题关键是:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.D【分析】根据分式的值为零的条件是:分子为零且分母不等于零进而得出答案.【详解】 解:若分式1(3)(1)x x x -+-的值为0, 则|x|-1=0且(x+3)(x-1)≠0,解得:x=-1.故选:D .【点睛】本题考查分式的值为零的条件,正确把握定义是解题关键.4.B【分析】根据单价、总价、数量间的关系列出代数式即可.【详解】解:买n 千克苹果共花了m 元,则买2千克苹果要花2m n元, 故选B .【点睛】 本题考查列代数式问题,关键是根据总价=单价×数量解答.5.C【详解】 解:2331x x=- 23(31)(31)(31)x x x x x x -=--, ∴293x x =-, ∴37x =; 将检验37x =是方程的根, ∴方程的解为37x =; 故选C .【点睛】本题主要考查了分式方程及其解法,解分式方程的步骤为:去分母,化为整式方程;移项、合并同类项;系数化为1;检验;结论,熟练掌握分式方程的解法是解题的关键. 6.A【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【详解】A 、两条平行线被第三条直线所截,内错角相等,故A 错误,为假命题;B 、如果∠1和∠2是对顶角,那么∠1=∠2,故B 正确,为真命题;C 、三角形的一个外角大于任何一个与它不相邻的内角,故C 错误,为假命题;D 、如x=-2时,x 2>0,但是x<0,故D 错误,为假命题,故选A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度不大.7.D【分析】画出符合题意的图形,根据点到直线的距离,垂线段最短,等腰三角形的三线合一,逐一判断各选项可得答案.【详解】解:如图,AP是ABC的高,AQ是ABC的中线,∴≤当ABC为等腰三角形,且AB ACAP AQ,=时,等号成立.A B C错误,D正确,故,,故选:D.【点睛】本题考查的是点到直线的距离,垂线段最短,等腰三角形的三线合一,三角形的高,中线的含义,掌握以上知识是解题的关键.8.D【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+1=a,由分式方程有增根,得到x-4=0,即x=4,代入整式方程得:a=5,故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.A分析:根据题意,得到2m -是6的约数,计算即可. 详解:若分式62m -的值是正整数, 得到2m -是6的约数,且20,m ->由6的约数为6,3,2,1±±±±得26m -=或23m -=或22m -=或21m -=,即m 的值为:8或5或4或3.共4个.故选A.点睛:此类题目主要考查了整除的知识:某数M 能被N 整除,则N 为M 的因数.10.A【解析】如图所示:满足条件的C 点有5个。

湘教版八年级数学上册期中试卷及完整答案

湘教版八年级数学上册期中试卷及完整答案

湘教版八年级数学上册期中试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________. 3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、B7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、a≤2.3、3.4、()()2a b a b++.5、956、12三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、223、0.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.在94,3b a ,24x y +,1y ,5m n +中,分式的个数是()A .2B .3C .4D .52.若把分式3x x y+中的x 和y 都扩大到原来的2倍,那么分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍3.计算2111242m m m -÷+--结果为()A .0B .12m +C .22m +D .22m m +-4.下列长度的三条线段能组成三角形的是()A .1,1,2B .4,4,9C .3,4,5D .6,16,85.下列语句中是命题的有()个(1)三角形的内角和等于180︒;(2)如果5x =,那么5x =;(3)1月份有30天;(4)作一条线段等于已知线段;(5)一个锐角与一个钝角互补吗?A .2B .3C .4D .56.如图,ABC EFD ≌△△且AB EF =,4CE =,5CD =,则AC =()A .4B .5C .9D .107.如图,//AD BC ,//AB DC ,AC 与BD 相交于点O ,EF 经过点O ,且与边AD 、BC 分别交于E 、F 两点,若BF DE =,则图中的全等三角形有()A .2对B .3对C .4对D .6对8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .100603030=+-x x B .100603030=+-x x C .100603030=-+x x D .100603030=-+x x 9.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD=158°,则∠EDF 等于()A .58°B .68°C .78°D .32°10.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是()A .18°B .24°C .30°D .36°二、填空题11.已知3x =-时,分式x b x a ++无意义,4x =-时,此分式的值为0,a b +=________.12.化简:11123x x x++=__________.13.方程:2348x x =--的解是__________.14.等腰三角形的两边长分别是2和5,则这个等腰三角形的周长为_______.15.若关于x 的分式方程355x a x x -=--有增根,则a 的值为__________.16.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.17.如图ABC 的周长为18,且AB AC =,AD BC ⊥于D ,ACD △的周长为12,那么AD 的长为__________.18.如图,△ABC 中,边AB 的中垂线分别交BC 、AB 于点D 、E ,AE =3cm ,△ADC 的周长为9cm ,则△ABC 的周长是_____cm .三、解答题19.解分式方程:(1)33222x x x -+=--(2)22201x x x+=++20.先化简,再求值:2211y x y y x xy y ⎛⎫+÷ ⎪+--⎝⎭,其中2x =,1y =-.21.在ABC ∆中,90C ∠=︒,DE 垂直平分斜边AB ,分别交AB 、BC 于D E 、.若30CAB B ∠=∠+︒,求AEB ∠.22.甲、乙两单位为爱心基金捐款,其中甲单位捐款4800元,乙单位捐款6000元.已知乙单位捐款人数比甲单位多50人,且两单位人均捐款数相等,问这两单位共有多少人捐款?人均捐款额是多少?23.如图,点D 为码头,A ,B 两个灯塔与码头的距离相等,DA ,DB 为海岸线,一轮船离开码头,计划沿∠ADB 的平分线航行,在航行途中C 点处,测得轮船与灯塔A 和灯塔B 的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.24.观察下面的计算:2241⨯=,2241+=;39322⨯=,39322+=;416433⨯=,416433+=;525544⨯=,525544+=﹔根据上面的计算,你能作出什么猜测?你将用什么方法来判断你的猜想是正确的?25.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且BD =AE ,AD 与CE 交于点F(1)求证:AD =CE ;(2)求∠DFC 的度数.26.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB∠+∠=________.(2)ABX ACX∠+∠=________.(说明理由)参考答案1.B【分析】根据分式的概念进行求解即可.【详解】解:∵315ba y m n+,,的分母中含有字母,∴它们都是分式,而9244x y+,的分母中不含有字母,∴它们不是分式,故选:B.【点睛】本题考查分式的概念,熟练掌握分式的定义是解题关键.2.D【解析】【分析】直接利用分式的性质化简得出答案.【详解】解:将分式3x x y+中的x 和y 都扩大到原来的2倍得:()()333284==222x x x x y x y x y +++∴34x x y +=3x x y+×4,即分式的值扩大4倍故选:D【点睛】此题主要考查了分式的基本性质,正确化简分式是解题关键.3.C【解析】【分析】根据分式的混合运算法则计算.【详解】解:原式=()()()112222m m m m -⨯-+-+=1122m m +++=22m +,故选C .【点睛】本题考查分式的运算,熟练掌握分式的除法法则是解题关键.4.C【解析】【分析】组成三角形的三条线段长度,必须满足“两边之和大于第三边,两边之差小于第三边”.根据逐一判断即可【详解】A .1+l=2,不能组成三角形,故该选项错误;B .4+4<9,不能组成三角形,故该选项错误;C .3+4>5,5-4<3能组成三角形,故该选项正确;D .6+8=14<16不能组成三角形,故该选项错误.故选:C【点睛】本题考查三角形三边关系:解题的关键是掌握三角形“两边之和大于第三边,两边之差小于第三边”.5.B【解析】【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个选项进行逐一分析即可.【详解】解:(1)三角形的内角和等于180︒,是命题;(2)如果5x =,那么5x =,是命题;(3)1月份有30天,是命题;(4)作一条线段等于已知线段,不是命题;(5)一个锐角与一个钝角互补吗?不是命题,∴是命题的有3个,故选:B .【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.6.C【解析】【分析】根据三角形全等的性质可以得到解答.【详解】解:∵△ABC≌△EFD,∴AC=DE=CD+CE=5+4=9,故选C.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的性质是解题关键.7.D【解析】【分析】先证明四边形ABCD是平行四边形,再根据平行四边形的性质及全等三角形的判定可得图中全等的三角形.【详解】AB DC,解:∵//AD BC,//∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∠BAD=∠BCD,AO=OC,BO=OD,∵BF=DE,∴CF=AE,∵//AD BC,∴∠EAO=∠FCO,∠EDO=∠FBO,①∵AB=CD,AO=OC,BO=OD,∴△AOB≌△COD(SSS);②∵AD=BC,AO=OC,OD=OB,∴△AOD≌△COB(SSS);③∵AB=CD,∠ABC=∠ADC,AD=BC,∴△ABC≌△CDA(SAS);④∵AB=CD,∠BAD=∠BCD,AD=BC,∴△BAD≌△DCB(SAS);⑤∵AE=CF,∠EAO=∠FCO,AO=OC,∴△AOE≌△COF(SAS);⑥∵DE=BF,∠EDO=∠FBO,BO=OD,∴△FOB≌△EOD(SAS),综上,一共6对全等三角形,故选:D .【点睛】本题考查了平行四边形的判定与性质、平行线的性质、全等三角形的判定,熟练掌握平行四边形的性质和全等三角形的判定是解答的关键.8.A【解析】【分析】根据题目中的等量关系列出分式方程即可.【详解】解:设江水的流速为x 千米/时,100603030x x=+-.故选:A .【点睛】本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.9.B【详解】∵FD ⊥BC ,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC ﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°﹣∠B ﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B .10.A【解析】【分析】先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.【详解】解:∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.【点睛】题目主要考查等腰三角形的性质,三角形的内角和定理,理解题意,综合运用这些知识点是解题关键.11.7【解析】【分析】根据分式无意义和分式的值为零的条件得出a和b的值,代入a+b即可【详解】解:因为x=﹣3时,分式x bx a++无意义,所以﹣3+a=0,所以a=3,又因为x=﹣4时,此分式的值为0,所以﹣4+b=0,所以b=4,所以a+b=3+4=7.故答案为7【点睛】本题考查分式有意义的条件和分式为0的条件,解题的关键是掌握分式分母的值为0时分式无意义,要使分式的值为0,必须使分式分子的值为0并且分母的值不为0.12.11 6x【解析】【分析】先通分,然后再计算即可.【详解】解:11163223661616x x x x x x x ++=++=.故答案为11 6x.【点睛】本题考查了异分母分式加法,正确的通分是解答本题的关键.13.4x=-【解析】【分析】根据解分式方程的方法和步骤求解.【详解】解:原方程两边同时乘以(x-4)(x-8)得:2(x-8)=3(x-4),解之得:x=-4,经检验,x=-4是原方程的解.故答案为:x=-4.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法是解题关键.14.12【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故答案是:12.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.5【解析】【分析】根据分式方程增根的定义可以得解.【详解】解:原方程两边同时乘以(x-5)得:x-3(x-5)=a,由题意,x=5,∴a=5,故答案为:5.【点睛】本题考查分式方程无解的问题,熟练掌握分式方程增根的意义及产生根源是解题关键.16.直角【解析】【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.17.3【解析】【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义求解.【详解】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=18,即AB+BD+CD+AC=18,∴AC+DC=9∴AC+DC+AD=12,∴AD=3.故答案为:3.【点睛】本题考查等腰三角形的性质;由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.18.15【解析】【分析】根据题意得在△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,根据线段垂直平分线的性质,即可求得AD=BD,AB=2AE,又由△ADC的周长为9cm,即可求得AC+BC的值,继而求得△ABC的周长.【详解】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故答案为:15.【点睛】本题考查线段垂直平分线的性质.解题的关键是注意数形结合思想的应用以及等量代换思想的应用.19.(1)43x=(2)无解【解析】【分析】(1)方程两边同时乘以(x-2)可以去掉分母变成整式方程,解出整式方程后再把解代入x-2检验即可得到解答;(2)方程两边同时乘以x(x+1)可以去掉分母变成整式方程,解出整式方程后再把解代入x(x+1)检验即可得到解答.【详解】解:(1)方程两边同时乘以2x-,则()3223x x-+-=-解得:43 x=又∵20x-≠,∴此方程的解:4 :3 x=(2)方程两边同时乘以()1x x+,则220x+=解得:1x=-又∵10x+=,∴1x=-是此方程的增根,此方程无解.【点睛】本题考查分式方程的求解,熟练掌握分式方程的解法和步骤并检验是解题关键.20.2()x y-+;2-【解析】【分析】先将原式进行化简,然后将x,y代入即可.【详解】解:先化简;2211y x y y x xy y⎛⎫+÷ ⎪+--⎝⎭22()()()y y x y x y x y y --=⋅+-2()x y -=+求值:当2x =,1y =-时22221x y --==-+-【点睛】本题考查了整式的加减−化简求值问题,解题的关键是原式化简.21.120°【解析】【分析】已知DE 垂直平分斜边AB 可求得AE =BE ,∠EAB =∠EBA .易求出∠AEB .【详解】解:∵90C ∠=︒∴90CAB B ∠+∠=︒又∵30CAB B ∠=∠+︒∴3090B B ∠+︒+∠=︒∴30B ∠=︒∵DE 垂直平分BC∴EA EB=∴30EAB B ∠=∠=︒∴180AEB EAB B∠=-∠-∠1803030=︒-︒-︒120=︒.【点睛】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,三角形内角和定理,解题的关键是注意角与角之间的转换.22.450人;24元【解析】【分析】设甲单位捐款人数为x 人,由题意列出分式方程并解出分式方程后可以得到问题解答.【详解】解:设甲单位捐款人数为x 人,则乙单位捐款人数为()50x +人由题意可得:48006000050x x=+解方程得:200x =经检验,x=200是原方程的解且符合实际情况,所以甲单位捐款人数为200人,从而乙单位捐款人数为250人,人均捐款额为480024200=元答:这两单位有450人捐款,人均捐款额为24元.【点睛】本题考查分式方程的应用,设定合适的未知数并根据题目的数量关系列出方程求解是解题关键.23.轮船航行没有偏离指定航线.理由见解析.【解析】【分析】只要证明轮船与D 点的连线平分∠ADB 就说明轮船没有偏离航线,也就是∠ADC=∠BDC ,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【详解】解:轮船航行没有偏离指定航线.理由是:在△ADC 与△BDC 中,∵,,AD BD DC DC AC BC ===,∴ADC BDC SSS ≌(),∴ADC BDC ∠=∠,∴轮船航线DC 即为∠ADB 的角平分线故答案为:轮船航行没有偏离指定航线.【点睛】本题考查了全等三角形的实际应用,解题的关键是读懂题意,建立数学模型.24.11n n n n n n ⨯=+--(n 为大于1的正整数);见解析.【解析】【分析】通过观察题目的几个算式可以得到如下猜测:11n n n n n n ⨯=+--n 为大于1的正整数),然后根据分式的运算法则可以对得到的猜测作出证明.【详解】解:能作出如下的猜测:11n n n n n n ⨯=+--(n 为大于1的正整数)证明猜测:211n n n n n ⨯=--2(1)111n n n n n n n n n -++==---∴11n n n n n n ⨯=+--(n 为大于1的正整数)【点睛】本题考查与实数运算相关的规律探索,在阅读题目所给算式的基础上作出猜测并利用所学知识对得到的猜测给予证明是解题关键.25.(1)见解析;(2)60°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证得△AEC ≌△BDA ,所以AD =CE ,(2)根据全等三角形的性质得到∠ACE =∠BAD ,再根据三角形的外角与内角的关系得到∠DFC =∠FAC +∠ACF =∠FAC +∠BAD =∠BAC =60°.【详解】(1)证明:∵△ABC 是等边三角形,∴∠B =∠BAC =60°,AB =AC .又∵BD =AE∴△ABD ≌△CAE (SAS )∴AD =CE(2)解:由(1)得△ABD ≌△CAE∴∠ACE =∠BAD .∴∠DFC =∠FAC +∠ACE =∠FAC +∠BAD =∠BAC =60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.26.(1)150︒(2)60︒;理由见解析【解析】【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX∠+∠ABC XBC ACB XCB=∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.。

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试题一、单选题1.下列分式是最简分式的是()A .331x x +B .22x y x y --C .222x y x xy y --+D .64x y2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a≥0时,|a|=a ;④内错角互补,两直线平行.其中是真命题的有()A .1个B .2个C .3个D .4个3.若分式211x x -+的值为0,则x 的值为()A .1B .-1C .±1D .24.要使分式1+1x 有意义,则x 应满足的条件是()A .1x ≠B .1x ≠-C .0x ≠D .1x >5.下列运算正确的是()A .()235x x =B .()55x x -=-C .326x x x ⋅=D .235325x x x +=6.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A .带①去B .带②去C .带③去D .①②③都带7.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点.如果∠D =70°,∠CAB =50°,那么∠DAB =()A .20°B .50°C .70°D .60°8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于()A.58°B.68°C.78°D.32°10.若分式方程1322a xx x-+=--有增根,则a的值是()A.1B.0C.—1D.3二、填空题11.计算:()32a-=__________.12.计算:1133x x+--=________________.13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=_____.14.已知关于x的方程244x kx x=--会产生增根,则k的值为________.15.将0.0000105用科学记数法可表示为_______________.16.等腰三角形的两边的长分别为5cm和7cm,则此三角形的周长是_____.17.在△ABC中,∠A=70°,∠A比∠B大10°,则∠C=_______°.18.如图,∠1=∠2,要使△ABE≌△ACE,需添加一个条件是__________.(填上一个条件即可)三、解答题19.计算:101(2( 3.14)2π---+-20.解分式方程:33122x x x-+=--21.先化简,再求值:22453262a a a a a --÷-+++选择一个你喜欢的数.22.观察下面的变形规律:112⨯=1-12;123⨯=12-13;134⨯=13-14;……解答下面的问题:(1)若n 为正整数,请你猜想1n(n 1)+=.(2)若n 为正整数,请你用所学的知识证明1111(1)n n n n -=++;(3)求和:112⨯+123⨯+134⨯+…+120112012⨯ .23.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E ,△BCE 的周长等于18cm ,求AC 的长.24.如图,D 、E 在BC 上,且BD =CE ,AD =AE ,∠ADE =∠AED .求证:AB =AC .25.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?26.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC ≌CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案1.A2.B3.A4.B5.B6.C7.D8.C9.B10.Da-11.612.0.13.70°14.815.1.05×10-516.17cm或19cm.17.50°18.∠B=∠C(或BE=CE或∠BAE=∠CAE)19.-3【详解】--+解;原式=221=-3.20.x=1【详解】解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21.32a -+,-1【详解】解:224522(3)525.32623(2)(32)2222a a a a a a a a a a a a a a ---+÷-=-=-=-+++++-++++∵a+2≠0,a+3≠0,∴a≠-2且a≠-3,∴取a=1,∴原式=-122.(1)111n n -+;(2)见详解;(3)20112012.【详解】(1)∵112⨯=1-12;123⨯=12-13;134⨯=13-14,∴1n(n 1)+=111n n -+.(2)∵1111(1)(1)n nn n n n n n +-=-+++=11111(1)(1)n n n n n n n n +--==+++,∴1111(1)n n n n -=++;(3)∵()11111n n n n =-++,∴112⨯+123⨯+134⨯+…+120112012⨯=1-12+12-13+13-14+…+1120112012-=1-12012=20112012.23.10cm 【详解】解:∵BCE 的周长为18cm ,∴18BC CE BE cm++= 8BC cm=∴10BE CE cm+=∵DE 垂直平分AB ∴AE BE=∴10BE CE AE CE AC cm +=+==24.证明见解析【分析】先求出BE=CD ,再利用“边角边”证明△ABE 和△ACD 全等,根据全等三角形对应边相等证明即可.【详解】证明:∵BD=CE ,∴BD+DE=CE+DE ,即BE=CD ,在△ABE 和△ACD 中,AD AE ADE AED BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴AB=AC .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于求出BE=CD .25.(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元.【解析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:20x =,经检验,20x =是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元.(2)300.820200.825880⨯⨯+⨯⨯=(元).答:共花费880元.26.(1)①证明见解析;②证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【解析】(1)①根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆;②根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:①AD MN ⊥ ,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCEADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;②ADC CEB ∆≅∆ ,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、单选题1.下列各式:2a b -,3x x -,5y π+,a b a b+-,1m (x -y)中,是分式的共()A .1个B .2个C .3个D .4个2.若分式293x x -+的值为0,则x 的值为()A .0B .3C .3-D .3或3-3.如果把分式2xx y-中的x 和y 都扩大5倍,那么分式的值是()A .扩大5倍B .扩大10倍C .不变D .缩小5倍4.分式﹣11x-可变形为()A .﹣11x -B .﹣11x+C .11x+D .11x -5.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程()A .4848944x x +=+-B .4848944+=+-x x C .48x+4=9D .9696944+=+-x x 6.已知ABC ∆中,6AB =,4BC =,那么边AC 的长可能是下列哪个值()A .2B .5C .10D .117.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于()A .50°B .30°C .20°D .15°8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为()A .35°B .40°C .45°D .50°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于()A .10B .7C .5D .410.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD()A .∠B=∠CB .AD=AEC .BD=CED .BE=CD二、填空题11.用科学记数法表示:0.00002015=_________.12.计算:211x xx x ---=_____.13.若分式方程144-=--x mx x 无解,则m =__________.14.有下面四根长度为3厘米,4厘米,5厘米,7厘米的木棒,选取其中3根组成三角形,则可以组成三角形共有___________个.15.已知x y xy +=,则代数式()()1111x y x y+---的值为___________.16.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_________度.17.如图,在ABC ∆中,D 、E 分别是AB ,AC 上面的点,若已知12∠=∠,BE CD =,9AB =,2AE =,则CE =_________.18.如图,△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB=_______cm .三、解答题19.计算:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭20.先化简,再求值:222111a a a a -+⎛⎫÷- ⎪⎝⎭,其中,2a =.21.解方程:(1)143x x =+;(2)2311x x x+=--.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.如图,点B 、C 、E 、F 在同一直线上,BC=EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC=DF .求证:(1)ABC DEF △≌△;(2)AB DE ∥.24.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数;(2)若CD=2,求DF 的长.25.某火车站北广场将于2018年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?26.如图,已知90ABC ∠=︒,D 是直线AB 上的点,AD BC =.(1)如图1,过点A 作AF AB ⊥,并截取AF BD =,连接DC ,DF ,CF ,判断CDF ∆的形状并证明;(2)如图2,若E 是直线BC 上一点,且CE BD =,直线AE ,CD 相交于点P ,APD ∠的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.[提示:联想第(1)问的证明过程]参考答案1.C 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D11.2.015×10﹣512.x 13.314.315.016.6017.718.1619.5.【分析】由乘方、零指数幂、绝对值、以及有理数乘法的运算法则进行计算,即可得到答案.【详解】解:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭=480.12511-⨯++=4111-++=5.【点睛】本题考查了乘方、零指数幂、绝对值、以及有理数乘法的运算法则,解题的关键是熟练掌握运算法则进行解题.20.化简结果为1a a --,值为12-【解析】【分析】先算减法,再计算除法,然后把a 的值代入化简后的式子计算即可.【详解】解:222111a a a a -+⎛⎫÷- ⎪⎝⎭=22211a a a a a-+-÷=22(1)111a a a a a a a a--⋅==---当2a =时,原式=112a a --=-【点睛】本题考查了分式的化简求值是基本题型,熟练掌握分式的混合运算法则是解题的关键.21.(1)1x =;(2)12x =.【解析】【分析】(1)先去分母,然后移项合并,再进行检验,即可得到答案;(2)先把分式方程进行整理,然后去分母,移项合并,再进行检验,即可得到答案.【详解】解:(1)143x x =+,∴34x x +=,∴1x =;检验:当1x =时,30x +≠;∴1x =是原分式方程的解;(2)2311x x x+=--,∴2311x x x -=--,∴231x x -=-,∴233x x -=-,∴12x =;检验:当12x =时,10x -≠,∴12x =是原分式方程的解;【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意需要检验.22.(1)证明见解析(2)等腰三角形,理由见解析【解析】【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)见解析【解析】【分析】(1)根据垂直得出90ACB DFE ∠=∠=︒,结合BC EF =,AC DF =得出三角形全等;(2)根据三角形全等得出B DEF ∠=∠,根据同位角相等,两直线平行得到答案.【详解】解:(1)∵AC BC DF EF ⊥⊥,,90ACB DFE ∴∠=∠=︒,又∵BC EF =,AC DF =,∴ABC DEF △≌△(2)∵ABC DEF △≌△,∴B DEF ∠=∠,∴AB DE ∥(同位角相等,两直线平行)【点睛】本题考查三角形全等的性质与应用,平行线的判定,熟练掌握以上定理是解答本题的关键.24.(1)30°;(2)4.【解析】【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC 是等边三角形,再根据直角三角形的性质即可求解.【详解】(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点睛】本题主要考查了运用三角形的内角和算出角度,并能判定等边三角形,会运用含30°角的直角三角形的性质.25.(1)A4200棵,B2400棵;(2)A14人,B12人.【解析】【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26-a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【详解】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:420024006040(26)a a =-,解得:a=14,经检验:a=14是原分式方程的解,26-a=26-14=12,答:安排14人种植A 花木,12人种植B 花木.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.26.(1)△CDF 是等腰直角三角形,见解析;(2)是,45°【解析】【分析】(1)利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,即可判断三角形的形状;(2)作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF ,利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,∠FDC=90°,即可得出∠FCD=∠APD=45°.【详解】解:(1)△CDF 是等腰直角三角形∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BC FAD DBC AF BD =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,11∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形;(2)∠APD 的度数是一个固定值,等于45°作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF,如图,∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BCFAD DBC AF BD=⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形,∴∠FCD=45°,∵AF ∥CE ,且AF=CE ,∴四边形AFCE 是平行四边形,∴AE ∥CF ,∴∠APD=∠FCD=45°.。

湘教版八年级上册数学期中考试试题带答案

湘教版八年级上册数学期中考试试题带答案

湘教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案) 1.下列各式:2a b -,3x x +,5y π+,a ba b +-,1m(x+y )中,是分式的共有( )A .1个B .2个C .3个D .4个2.已知三角形的三边长分别为4,5,x ,则x 不可能是( ) A .3B .5C .7D .93.若分式2424x x --的值为零,则x 等于( )A .0B .2C .±2D .﹣24.下列计算正确的是( ) A .33y xy x ÷ B .2313y x x y x ⋅= C .x÷y·1y D .2111a a a a a --=+ 5.已知2m a =,3n a =则43m n a -的值是( ) A .1627-B .1627C .2716-D .27166.若△ABC ≌△DEF ,且△ABC 的周长为20,AB=5,BC=8,则DF 长为( ) A .5B .8C .7D .5或87.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .4848944x x +=+- B .4848944+=+-x x C .48x+4=9 D .9696944+=+-x x 8.下列选项中,可以用来证明命题“若a²>1,则a >1”是假命题的反例是( ) A .a=-2.B .a==-1C .a=1D .a=29.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是( ) A .13B .17C .22D .17或2210.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③内错角互补,两直线平行.其中真命题的有( ) A .1个 B .2个 C .3个 D .0个二、填空题11.计算:(a ﹣2)3=________. 12.计算:1133x x+--=________________ . 13.用科学记数法表示:﹣0.00002016= _____________.14.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC =___.15.将“互为相反数的两个数之和等于0”写成如果________________,那么_______________的形式.16.化简:2396xx x --+=________________.17.已知1x﹣1y =3,则分式2322x xy y x xy y +---的值为_____.18.如图,AE ∥BD ,C 是BD 上的点,且AB=BC ,∠ACD=110°,则∠EAB=_____度.三、解答题 19.计算:(1)112-⎛⎫- ⎪⎝⎭﹣2+(π﹣3.14)0(2)22121x x x -++÷21x x x -+.20.解下列分式方程: (1)321x x =- (2)2316111x x x +=+--. 21.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数; (2)若CE =5,求BC 长.22.先化简,再求值:22453262a a a a a --÷-+++选择一个你喜欢的数.23.观察下面的变形规律:111122=-⨯;1112323=-⨯;1113434=-⨯;…解答下面的问题: ()1若n 为正整数,请你猜想()11n n =+________;()2求和:111122334++⨯⨯⨯.(注:只能用上述结论做才能给分); ()3用上述相似的方法求和:1111 (13355720132015)++++⨯⨯⨯⨯. 24.去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米? 25.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.参考答案1.C 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】3x x +,a b a b +-,()1x y m+分母中含有字母,因此是分式; 2a b -,5y π+的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个. 故选C . 【点睛】本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式. 2.D 【分析】已知两边时,第三边的范围是大于两边的差,小于两边的和.这样就可以确定x 的范围,也就可以求出x 的不可能取得的值. 【详解】5-4<x <5+4,即1<x <9,则x 的不可能的值是9, 故选D . 【点睛】本题考查了三角形三边关系,解一元一次不等式组,解题的关键是已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和. 3.D 【分析】分式的值是0的条件是:分子为0,分母不为0. 【详解】 ∵x 2-4=0, ∴x=±2,当x=2时,2x-4=0,∴x=2不满足条件. 当x=-2时,2x-4≠0,∴当x=-2时分式的值是0. 故选D . 【点睛】本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 4.B 【分析】原式各项计算得到结果,即可做出判断. 【详解】A 、原式=2311•3y x xy x=,错误; B 、原式=1x ,正确;C 、原式=2xy,错误;D 、原式=()22212a a a a a a a ---=,错误,故选B . 【点睛】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键. 5.B 【分析】根据同底数幂的除法法则和积的乘方和幂的乘方的运算法则求解. 【详解】 ∵a m =2,a n =3∴a 4m-3n =a 4m ÷a 3n =(a m )4÷(a n )3=16÷27=1627. 故选:B . 【点睛】此题考查了同底数幂的除法以及积的乘方和幂的乘方,掌握运算法则是解题的关键. 6.C 【分析】根据三角形的周长可得AC长,然后再利用全等三角形的性质可得DF长.【详解】∵△ABC的周长为20,AB=5,BC=8,∴AC=20−5−8=7,∵△ABC≌△DEF,∴DF=AC=7,故选C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.7.A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.8.A【详解】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=-2.因为a=-2时,a2>1,但a<1.故选A9.C【分析】由于等腰三角形的底和腰长不能确定,故应分两种情况进行讨论.【详解】分为两种情况:①当三角形的三边是4,4,9时, ∵4+4<9,∴此时不符合三角形的三边关系定理,此时不存在三角形; ②当三角形的三边是4,9,9时,此时符合三角形的三边关系定理,此时三角形的周长是4+9+9=22. 故选C. 10.A 【解析】试题分析:两点之间,线段最短,所以①正确; 相等的角不一定是对顶角,所以②错误; 内错角相等,两直线平行,所以③错误. 故选A .考点:命题与定理. 11.6a - 【分析】根据幂的乘方法则计算即可. 【详解】解:236a a -=﹣()故答案为6a -. 【点睛】本题主要考查了幂的乘方,熟练掌握运算法则是解题的关键. 12.0. 【解析】 试题分析:原式=1133x x ---=0,故答案为0. 考点:分式的加减法. 13.-2.016×10-5 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:-0.00002016=-2.016×10-5. 故答案为-2.016×10-5. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 14.15 【详解】试题分析:因为EF 是AB 的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12, 所以AC =AF+FC=12+3=15. 考点:线段垂直平分线的性质15.两个数互为相反数, 这两个数之和等于0. 【详解】试题分析:把命题“互为相反数的两个数之和等于0”改写成“如果…,那么…”的形式是:如果两个数互为相反数,那么这两个数之和等于0,故答案为如果两个数互为相反数,那么这两个数之和等于0. 考点:命题与定理. 16.13x-. 【解析】 试题分析:2396xx x --+=23(3)x x --=13x -.故答案为13x-. 考点:约分.17.35【分析】由已知条件可知xy ≠0,根据分式的基本性质,先将分式2322x xy yx xy y+---的分子、分母同时除以xy ,再把113x y-=代入即可.【详解】解:∵113x y-=∴x ≠0,y ≠0, ∴xy ≠0.2223222332322333.21123251122x xy y x y x xy y xy y x x xy y x xy y xy y x x y ⎛⎫+---+-+ ⎪+--⨯+⎝⎭∴=====------⎛⎫----- ⎪⎝⎭故答案为35.【点睛】本题主要考查了分式的基本性质及求分式的值的方法,把113x y-=作为一个整体代入,可使运算简便. 18.40 【解析】试题分析:首先利用∠ACD=110°求得∠ACB 与∠BAC 的度数,然后利用三角形内角和定理求得∠B 的度数,然后利用平行线的性质求得结论即可. 解:∵AB=BC , ∴∠ACB=∠BAC ∵∠ACD=110° ∴∠ACB=∠BAC=70° ∴∠B=∠40°, ∵AE ∥BD , ∴∠EAB=40°, 故答案为40. 19.(1)-3;(2)1x【分析】(1)根据零指数幂与负指数幂的法则计算,然后再进行加减运算即可; (2)用平方差公式与完全平方公式进行变形,然后化除为乘进行计算即可. 【详解】解:(1)原式=2213--+=-;(2)原式=()()()()211111x x xx xx-++⨯=-+1x故答案为(1)-3;(2)1 x .【点睛】本题主要考查了实数的运算与整式的运算,熟练掌握运算顺序与运算法则是关键. 20.(1)x=3;(2)x=2【分析】(1)两边都乘以最简公分母x(x-1)化为整式方程,根据整式方程的求解方法进行解答即可;(2)两边都乘以最简公分母(x+1)(x-1)化为整式方程,根据整式方程的求解方法进行解答即可.【详解】解:(1)两边都乘以最简公分母x(x-1),得:3(x-1)=2x,去括号得:3x-3=2x,解得:x=3,经检验x=3是原分式方程的解;(1)两边都乘以最简公分母(x+1)(x-1),得:3(x-1)+(x+1)=6,去括号得:3x-3+x+1=6,解得:x=2,经检验x=2是原分式方程的解.故答案为(1)x=3;(2)x=2.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(1)∠ECD=36°;(2)BC长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A ;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC =∠A+∠ECD =72°,继而得∠BEC=∠B ,推出BC=CE 即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.22.32a -+,-1 【分析】先根据分式的混合运算的法则把分式化简,又由a+2≠0,a+3≠0,所以可以代入a 取-2和-3以外的任何数求解.【详解】 解:224522(3)525.32623(2)(32)2222a a a a a a a a a a a a a a ---+÷-=-=-=-+++++-++++ ∵a+2≠0,a+3≠0,∴a≠-2且a≠-3,∴取a=1,∴原式=-1【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.()11 1?1n n -+;()324;(3)10072015 【分析】(1)根据已知等式做出猜想,写出即可;(2)原式利用得出的规律变形,计算即可得到结果;(3)仿照(2)将:转换成12×(1﹣13+13﹣15+15﹣17+…+12013﹣12015)就可轻易算出结果.【详解】(1)猜想得到11n n+()=1n﹣11n+;(2)原式=1﹣12+12﹣13+13﹣14=1﹣14=34;(3)原式=12×(1﹣13+13﹣15+15﹣17+…+12013﹣12015)=12×(1﹣12015)=12×20142015=10072015.【点睛】本题考查了有理数的混合运算,弄清题中的拆项规律是解答本题的关键.24.80米【分析】解:设原计划每天修水渠x 米.根据题意得:36003600201.8x x-=解得:x =80经检验:x = 80是原分式方程的解答:原计划每天修水渠80米.【详解】请在此输入详解!25.(1)见解析(2)成立(3)△DEF为等边三角形【分析】(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(ASA).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.。

新版湘教版八年级上册数学期中考试试卷

新版湘教版八年级上册数学期中考试试卷

振湘中学八年级上册数学期中测试卷(总分:120分时间:120分钟)班级姓名得分一、选择题(本题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1. 当x =时,分式的xx+-11值无意义. ( ) A. 0 B. 1 C. -1 D. 22. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是 ( )A.1,2,6B.2,2,4C.1,2,3D.2,3,43. 2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.000 001 6秒,将0.000 001 6用科学记数法表示为()A. 71016-⨯B. 6106.1-⨯C. 5106.1-⨯D. 51610-⨯ 4.分式方程的解为 ()A.B.C.D.5. 下列语句是命题的是()(1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余. (3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4) 6.下列分式不是最简分式的是 ( )A.133+x xB. 22y x y x +-C.222y xy x y x +-- D.y x 467.化简ba b b a a ---22的结果是( ) A .22b a -B .b a +C .b a -D .18.如下图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A . 60°B . 70°C . 80°D .90° 9. 若分式32122---b b b 的值为0,则b 的值为( )A. 1B. -1C.±1D.210. 货车行驶25千米与小车行驶35千米所用时间相同,小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( ) A .203525-=x x B .x x 352025=- C .203525+=x x D .xx 352025=+ 二、填空题(本题共8小题,每小题3分,共24分) 11.计算:. 12、等腰三角形的两条边长分别是5cm 和7cm ,则该三角形的周长为____________ 。

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若分式23x-有意义,则x的取值范围是()A.x≠3B.x≠﹣3 C.x>3 D.x>﹣32.在式子1a ,2334a b,112nna++,78x y+中,分式的个数是()A.1 B.2 C.3 D.4 3.下列属于命题的是()A.期中测试卷难吗?B.请你把书递过来C.今天下雨了D.连接A、B两点4.下列运算正确的是()A.x4•x3=x12B.(x3)4=x81C.x4÷x3=x(x≠0)D.x4+x3=x75.若分式||11xx-+的值为0,则x的值为()A.1 B.﹣1 C.±1 D.无解6.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A.13 B.17 C.22 D.17或227.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD =BC B.BD=AC C.∠D=∠C D.OA=OB8.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.2cm,3cm,5cmC.5cm,6cm,12cm D.4cm,6cm,8cm9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x千米/时,则可列出的方程为()A.906022=+-x xB.906022=-+x xC.90602x x+=D.60902x x+=二、填空题10.计算:(﹣1)0+(13)﹣1=_____.11.分式:211a -,21+a a ,21a 的最简公分母是 12.把命题“全等三角形的对应边相等”改写成“如果……,那么……”的形式 13.用三根木条钉成一个三角形框架,这个三角形框架的形状和大小就不变了,这是因为三角形具有14.某种原子直径为1.2×10﹣2纳米,把这个数化为小数是__纳米.15.如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=__度.16.如图,等腰三角形ABC 中,AB =AC ,∠A =40°,CD ⊥AB 于D ,则∠DCB 等于_____.三、解答题17.化简:()x y x y x y x y +÷-+-22211 (2)先化简,再求值:22453262a a a a a --÷-+++,并选一个你喜欢的数代入求值. 18.解方程:(1)1233x x x=+-- (2)2316111x x x +=+--. 19.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.20.如图,在方格纸中,△PQR 的三个顶点及A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 中的三个顶点为顶点画三角形,(1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等 但不全等.21.为了帮助四川雅安芦山县遭到地震的灾区重建家园,某公司号召员工自愿捐款,请你根据下面两位经理的对话,求出第一次捐款的人数.经理甲:第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元; 经理乙:第一次捐款总额为20000元,第二次捐款总额为56000元.22.如图,P 、Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.23.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.24.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度; (2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论参考答案1.A【分析】分式有意义时,分母不等于零.【详解】当分母x﹣3≠0,即x≠3时,分式23x-有意义.故选A.2.B 【解析】试题解析:在式子1a,2334a b,109xy+,78x y+中,分式为1a,109xy+.共2个.故选B.3.C【解析】试题解析:A、期中测试卷难吗?是疑问句,不是命题;B、是祈使句,不是命题;C、今天下雨了,对某件事情做出了判断,是命题;D、是祈使句,不是命题,故选C.4.C【详解】试题解析:A、x4•x3=x7,故本选项错误;B、(x3)4=x12,故本选项错误;C、x4÷x3=x(x≠0),故本选项正确;D、x4+x3≠x7,故本选项错误;故选C.5.A【详解】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.6.C【分析】由于等腰三角形的底和腰长不能确定,故应分两种情况进行讨论.【详解】分为两种情况:①当三角形的三边是4,4,9时,∵4+4<9,∴此时不符合三角形的三边关系定理,此时不存在三角形;②当三角形的三边是4,9,9时,此时符合三角形的三边关系定理,此时三角形的周长是4+9+9=22. 故选C.7.B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB ,根据SAS 判定定理可知需添加BD =AC ,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A 、1+2<4,不能组成三角形;B 、2+3=5,不能组成三角形;C 、5+6<12,不能组成三角形;D 、4+6>8,能组成三角形.故选:D .【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.9.A【分析】根据等量关系:顺流航行90千米时间=逆流航行60千米所用的时间,列出方程即可.【详解】解:设船在静水中的速度为x 千米/时,由题意得:906022=+-x x , 故选A .【点睛】此题主要考查了由实际问题抽象出分式方程,找到等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的求法.10.4 【解析】试题解析:(﹣1)0+(13)﹣1=1+3=4.11.a2(a+1)(a﹣1)【解析】试题解析:先把分母因式分解,再找出最简公分母a2(a+1)(a﹣1).12.如果两个三角形全等,那么这两个三角形的对应边相等【解析】∵原命题的条件是:两个三角形是全等三角形,结论是:对应角相等,∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等.13.稳定性【解析】试题解析:根据三角形的稳定性可知,三根木条钉成一个三角形框架的形状和大小就不变了,故答案为:稳定性.14.0.012【解析】将1.2中的小数点向左移动两位即可得出结论.15.95【详解】试题分析:根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.考点:三角形全等的性质.16.20°.【详解】试题分析:先根据等腰三角形的性质求得∠B的度数,再根据三角形的内角和定理即可求得结果.∵AB=AC,∠A=40°,∴∠B=(180°-∠A)÷2=70°∵CD⊥AB∴∠DCB=20°.考点:本题考查的是等腰三角形的性质,三角形的内角和点评:解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°. 17.(1)2xy;(2)当a=1时,原式=-1. 【解析】试题分析:(1)先对括号内的式子通分,然后去括号后,将除法转化为乘法即可解答本题;(2)根据分式的除法和减法即可化简本题,然后选取合适的a 的值代入即可化简本题,注意a 不能取2,﹣2,﹣3.试题解析:(1)()x y x y x y x y +÷-+-22211 =2()()()()x y x y x y x y x y x y x y ++--+⨯-+ =22x x y =2xy; (2)22453262a a a a a --÷-+++ =22(3)53(2)(2)2a a a a a a -+⨯-+-++ =2522a a -++ =32a -+, 当a=1时,原式=312-+=﹣1. 18.(1)x=7;(2)x=2.【解析】试题分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)去分母得:1=2x ﹣6﹣x ,解得:x=7,经检验x=7是分式方程的解;(2)去分母得:3x ﹣3+x+1=6,解得:x=2,经检验x=2是分式方程的解.19.见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°20.解:(1)如图所示:(2)如图所示:【详解】(1)过A 作AE ∥PQ ,过E 作EB ∥PR ,再顺次连接A 、E 、B .(答案不唯一)(2)∵△PQR 面积是:12×QR×PQ=6,∴连接BA ,BA 长为3,再连接AD 、BD ,三角形的面积也是6,但是两个三角形不全等.(答案不唯一)21.400人.【解析】试题分析:设第一次捐款的人数为x,那么二次捐款人数是2x,根据人均捐款额比第一次多20元,列出方程求解即可.试题解析:设第一次捐款的人数为x人,根据题意列方程得:560002000020-=,2x x解得x=400,经检验x=400是原方程的根,且符合题意;答:第一次捐款400人.22.∠BAC=105°.【分析】由BP=PQ=QC=AP=AQ,可得∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,继而根据三角形外角的性质可得∠BQP=30°,继而可得∠AQB=90°,从而求得∠CAQ=45°,再由∠BAC=∠BAQ+∠CAQ即可求得答案.【详解】∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,又∵∠BQP+∠ABQ=∠APQ,∠C+∠CAQ=∠AQB,∴∠BQP=30°,∴∠AQB=∠BQP+∠AQP=90°,∴∠CAQ=45°,∴∠BAC=∠BAQ+∠CAQ=105°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的性质,三角形外角的性质等,正确求出∠BAQ与∠CAQ的度数是解本题的关键.23.(1)∠ECD=36°;(2)BC长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)90;(2)①180αβ+=︒,理由见解析;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.【分析】(1)可以证明△BAD ≌△CAE ,得到∠B =∠ACE ,证明∠ACB =45°,即可解决问题; (2)①证明△BAD ≌△CAE ,得到∠B =∠ACE ,β=∠B +∠ACB ,即可解决问题; ②证明△BAD ≌△CAE ,得到∠ABD =∠ACE ,借助三角形外角性质即可解决问题.【详解】(1)90︒;(2)①αβ180+=︒.理由:∵BAC DAE ∠∠=,∴BAC DAC DAE DAC ∠∠∠∠-=-.即BAD CAE ∠∠=.又AB AC AD AE ==,,∴ABD ACE ≌.∴B ACE ∠∠=.∴B ACB ACE ACB ∠∠∠∠+=+.∴B ACB β∠∠+=.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.②当点D 在射线BC 上时,αβ180+=︒.当点D 在射线BC 的反向延长线上时,αβ=.【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.代数式213x -,21a a +-,35,2x π-,32x y ,2xx 中,是分式有()A .1个B .2个C .3个D .4个2.下列长度的三条线段不能组成三角形的是()A .5,5,10B .4,5,6C .4,4,4D .3,4,53.下列分式是最简分式的为()A .223aa b B .23a a a-C .22a b a b ++D .222a ab a b --4.若分式211x x --的值为0,则()A .x=1B .x =﹣1C .x=±1D .x ≠15.下列计算正确的是()A .1b a a b ÷=B .212x x⋅=C .11111x xx x +-⋅=-+D .()32163a b a b ----=-6.如果分式2+a a b中的a ,b 都同时扩大2倍,那么该分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍7.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的一点,若△ADE ≌△CFE ,则下列结论中不正确的是()A .AD=CFB .AB//CFC .E 是AC 的中点D .AC ⊥DF8.如图,DE 是AC 的垂直平分线,AB=12厘米,BC=10厘米,则△BCD 的周长为()A.22厘米B.16厘米C.26厘米D.25厘米9.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.如图,两个三角形全等,则∠α的度数是____12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是_____(只写一个条件即可).13.数据0.00000000835用科学记数法表示为____________14.把“对顶角相等”改写成“如果…那么…”的形式________________________15.已知6mx =,3n x =,则2m n x -的值为________.16.如图,AD 、BE 是△ABC 的两条中线,则S △EDC :S △ABD=______.17.如图,已知点D 、点E 分别是等边三角形ABC 中BC 、AB 边的中点,6AD =,点F 是线段AD 上的动点,则BF EF +的最小值为______.18.如图,在△ABC 中,∠ACB=90º,∠BAC=30º,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有____个.三、解答题19.计算:(1)()()()22021211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭;(2)解方程:221111x x x x --=--.20.先化简,再求值:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭,选择一个你喜欢的x 的值代入其中并求值.21.如图,四边形ABCD 中,AB ∥CD ,∠A =60°,(1)作∠ADC 的角平分线DE ,交AB 于点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)判断△ADE 是什么三角形,并说明理由;22.如图所示,ADF 和BCE 中,A B ∠=∠,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD BC =;②DE CF =;③//BE AF .(1)请你用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)说明你写的一个命题的正确性.23.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?24.当a 为何值时,关于x 的方程223224ax x x x +=-+-无解.25.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E .求证:(1)△BFC ≌△DFC ;(2)AD=DE .26.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC =cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.参考答案1.C 【解析】【分析】根据分式的定义:形如AB(A 、B 为整式)这种形式,B 中含有字母,且B 不等于0的式子叫做分式,进行逐一判断即可.【详解】解:213x -不是分式;21a a +-是分式;35不是分式;2x π-不是分式;32x y 是分式;2xx 是分式;∴分式一共有3个,故选C .【点睛】本题主要考查了分式的定义,解题的关键在于熟知定义.2.A 【解析】【详解】解:A .5+5=10,不能组成三角形,故此选项正确;B .4+5=9>6,能组成三角形,故此选项错误;C .4+4=8>4,能组成三角形,故此选项错误;D .4+3=7>5,能组成三角形,故此选项错误.故选A .3.C 【解析】【分析】根据最简分式的概念可直接进行排除选项.【详解】解:A .22233a a b ab=,故不符合题意;B .2133a a a a =--,故不符合题意;C .22a ba b ++,分子和分母不能约分,故符合题意;D .()()()222a a b a ab a a b a b a b a b--==-+-+,故不符合题意.故选C .【点睛】本题主要考查最简分式的概念,熟练掌握最简分式的概念是解题的关键.4.B 【解析】【分析】根据分式值为零的条件是分子等于零且分母不等于零解答即可.【详解】根据题意得,x 2-1=0且x -1≠0,解得x=±1且x≠1,所以x=-1.故选B .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D 【解析】【分析】根据分式的乘除以及负整数指数幂的计算法则进行求解即可.【详解】解:A 、22b a b b a b a b a a÷=⋅=,计算错误,不符合题意;B 、21x x x⋅=,计算错误,不符合题意;C 、11111x xx x +-⋅=--+,计算错误,不符合题意;D 、()32163a b a b ----=-,计算正确,符合题意;故选D .【点睛】本题主要考查了分式的乘除计算,负整数指数幂,解题的关键在于能够熟练掌握相关计算法则.6.C 【解析】【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可.【详解】分式2a a b ⎛⎫ ⎪+⎝⎭中的a 、b 都同时扩大2倍,∴()222222a a a b a b=++,∴该分式的值扩大2倍.故选:C .【点睛】本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.D【解析】【分析】根据全等三角形的性质进行判断,全等三角形的对应边相等,全等三角形的对应角相等.【详解】解:∵△ADE≌△CFE,∴AD=CF,∠A=∠ECF,AE=CE,∴AB∥CF,点E是AC的中点∴(A)、(B)、(C)正确;∵∠AED不一定为直角∴AC⊥DF不一定成立∴(D)不正确.故选:D.【点睛】本题考查了全等三角形的性质,解题时注意:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.8.A【解析】【分析】要求△BCD的周长,现有CB的长度,只要求出BD+CD即可,根据线段垂直平分线的性质得CD=AD,于是答案可得.【详解】解:∵DE垂直平分AC,∴CD=AD,又AB=12厘米,BC=10厘米,∴△BCD的周长为BD+DC+BC=AD+DB+BC=AB+BC=12+10=22(厘米).故选:A.【点睛】本题考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对相等的线段进行等效转移是正确解题的关键.9.C【解析】【分析】已知条件中的外角可能是顶角的外角,也可能是底角的外角,需要分情况进行讨论,再结合三角形的内角和为180︒,即可求出顶角的度数.【详解】︒-︒=︒;解:∵①当顶角的外角等于100︒时,则该顶角为:18010080︒-︒=︒,又由于是等腰三角形,故此时②当底角的外角等于100︒时,则该底角为18010080︒-︒-︒=︒.顶角为:180808020∴综上所述,等腰三角形的顶角为80︒或20︒.故选:C【点睛】此题考查了等腰三角形的性质以及邻补角的性质.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.10.C【解析】【分析】根据矩形的性质和AAS可证△AEB≌△CED,进而可得BE=DE,然后根据等腰三角形的定义以及轴对称图形的定义即可判断①③④;但无法判断∠ABE和∠CBD是否相等,于是可得答案.【详解】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,∵∠BAE=∠DCE,∠AEB=∠CED,AB=CD,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,故说法①③④是正确的;但无法判断∠ABE和∠CBD是否相等,所以说法②不正确.故结论正确的有3个.故选:C.【点睛】本题考查了折叠的性质、矩形的性质、全等三角形的判定、等腰三角形的定义以及轴对称图形的定义等知识,属于常见题型,熟练掌握上述知识是解题的关键.11.50°【解析】【分析】根据全等三角形的对应角相等解答.【详解】解:∵两个三角形全等,∴∠α=50°,故答案为:50°.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.∠B=∠C(答案不唯一)【解析】【详解】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS、ASA进行全等的判定,答案不唯一:添加∠B=∠C,可由AAS判定△ABE≌△ACD;添加AB=AC或DB=EC可由SAS判定△ABE≌△ACD;添加∠ADC=∠AEB或∠BDC=∠CEB,可由ASA判定△ABE≌△ACD.故答案为:∠B=∠C13.98.3510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835=8.35×10−9.故答案为:8.35×10−9.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.15.12【解析】【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x x x -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE 12=AB ,根据相似三角形的性质得到EDC ABCS S = (DE AB )214=,根据三角形的面积公式计算,得到答案.【详解】∵AD 、BE 是△ABC 的两条中线,∴DE ∥AB ,DE 12=AB ,∴△EDC ∽△ABC ,∴EDC ABCS S = (DE AB )214=,∵AD 是△ABC 的中线,∴12ABD ABC S S = ,∴S △EDC :S △ABD=1:2.故答案为:1:2.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.6【解析】【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=6,即BF+EF=6.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),由于C 和B 关于AD 对称,则BF+EF=CF ,∵等边△ABC 中,BD=CD ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,ADB CEB ABD CBE AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEB (AAS ),∴CE=AD=6,即BF+EF=6.故答案为:6.【点睛】本题考查了轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.18.6【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP );③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ).故符合条件的点有6个.故答案为:6.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.19.(1)12;(2)2x =.【解析】【分析】(1)原式利用乘方的意义,负整数指数幂、零指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()220210211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭1149=-+⨯+149=-++12=(2)221111x x x x --=--方程的两边同时乘以最简公分母()()11x x +-得:()()()()12111x x x x x +--=+-即:22211x x x x +-+=-解得:2x =.检验:把2x =代入()()11x x +-得()()21210+⨯-≠:∴2x =为原方程的解.【点睛】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,注意要检验.20.11x -;2x =时,原式=1.【解析】【分析】先计算括号内的分式,然后根据计算分式的除法,最后根据分式有意义的条件,代值计算即可.【详解】解:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭()22211121x x x x x x ⎡⎤-=--÷⎢⎥+++⎣⎦()()()()()221111111x x x x x x x x -++⎡⎤=-⋅⎢⎥+++-⎣⎦()()()()2211(1)111x x x x x x x --++=⋅++-()()()211111x x x x +=⋅++-11x =-.由题知,10x +≠且2210x x ++≠,且210x -≠∴1x ≠-或1x ≠,可取2x =.当2x =时,原式111121x ===--.【点睛】本题主要考查了分式的化简求值,分式有意义的条件,解题的关键在于能够熟练掌握相关计算法则.21.(1)作图见解析;(2)△ADE 是等边三角形;理由见解析.【解析】【分析】(1)根据角平分线的作法作出图形即可;(2)由角平分线定义,平行线的性质,得到∠ADE=∠AED ,则AD=AE ,结合∠A =60°,即可得到答案.【详解】解:(1)如图所示,(2)△ADE 是等边三角形;理由如下:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵AB//CD ,∴∠CDE=∠AED ,∴∠ADE=∠AED ,∴AD=AE ,∵∠A =60°,∴△ADE 是等边三角形;【点睛】本题考查了角平分线的作法,等边三角形的判定,平行线的性质,解题的关键是熟练掌握所学的知识,正确的作出图形进行分析.22.(1)如果①,③,那么②;如果②,③,那么①;(2)见解析(答案不唯一)【解析】【分析】(1)本题主要考查全等三角形的判定,能不能成立,就看作为条件的关系式能不能证明△ADF ≌△BCE ,从而得到结论;(2)对于“如果①,③,那么②”进行证明,根据平行线的性质得到∠AFD =∠BEC ,因为AD =BC ,∠A =∠B ,利用AAS 判定△ADF ≌△BCE ,得到DF =CE ,即得到DE =CF .【详解】(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵AD BC =,A B ∠=∠,∴ADF BCE ≅ ,∴DF CE =.∴DF EF CE EF -=-,即DE CF =;对于命题“如果②,③,那么①”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵DE CF =,∴DE EF CF EF +=+,即DF CE =.∵A B ∠=∠,∴ADF BCE ≅ ,∴AD BC =.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,AAS 、HL 等.编题然后选择,最后进行证明是现在比较多的一种考题,要注意掌握.23.30天【分析】设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意,得:1551511.5x x++=,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.24.a=1,-4或6时原方程无解.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.【点睛】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)由CF 平分∠BCD 可知∠BCF=∠DCF ,然后通过SAS 就能证出△BFC ≌△DFC .(2)要证明AD=DE ,连接BD ,证明△BAD ≌△BED 则可.AB ∥DF ⇒∠ABD=∠BDF ,又BF=DF ⇒∠DBF=∠BDF ,∴∠ABD=∠EBD ,BD=BD ,再证明∠BDA=∠BDC 则可,容易推理∠BDA=∠DBC=∠BDC .【详解】解:(1)∵CF 平分∠BCD ,∴∠BCF=∠DCF .在△BFC 和△DFC 中,{BC DCBCF DCFFC FC=∠=∠=∴△BFC ≌△DFC (SAS ).(2)连接BD .∵△BFC ≌△DFC ,∴BF=DF ,∴∠FBD=∠FDB .∵DF ∥AB ,∴∠ABD=∠FDB .∴∠ABD=∠FBD .∵AD ∥BC ,∴∠BDA=∠DBC .∵BC=DC ,∴∠DBC=∠BDC .∴∠BDA=∠BDC .又∵BD 是公共边,∴△BAD ≌△BED (ASA ).∴AD=DE .【点睛】本题考查全等三角形的判定与性质;梯形.26.(1)(10﹣2t);(2)t =2.5;(3)存在;v 的值为2.4或2【解析】【分析】(1)根据题意求出BP ,计算即可;(2)根据全等三角形的判定定理解答;(3)分△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,根据全等三角形的性质解答.【详解】解:(1)∵点P 的速度是2cm/s ,∴ts 后BP=2tcm ,∴PC=BC−BP=(10−2t)cm ,故答案为:(10﹣2t)(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=CP=5,在△ABP 和△DCP 中,AB DCB C BP CP=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△DCP ;(3)∵∠B=∠C=90°,∴当AB=PC,BP=CQ 时,△ABP ≌△PCQ ,∴10−2t=6,2t=vt ,解得,t=2,v=2,当AB=QC,BP=CP 时,△ABP ≌△QCP ,此时,点P为BC的中点,点Q与点D重合,∴2t=5,vt=6,解得,t=2.5,v=2.4,综上所述,当v=1或v=2.4时,△ABP≌△PCQ全等.21。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列各有理式222211.2455a b m a x y x a +-+,,,,中,分式 有( ) A .1个B .2个C .3个D .4个 2.要使分式1(1)(2)x x x ++-有意义,则x 应满足( ) A .x≠﹣1 B .x≠2 C .x≠±1 D .x≠﹣1且x≠2 3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为( ) A . B . C . D . 4.下列分式是最简分式的是( )A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 5.下列约分正确的是( )A 、1-=---y x y xB 、022=--yx y x C 、y x y x x y -=--1)()(32 D 、b a b x a x =++ 6.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .3,4,5D .3,4,8 7.下列命题中正确的是( )A .对顶角一定是相等的B .没有公共点的两条直线是平行的C .相等的两个角是对顶角D .如果|a|=|b|,那么a=b8.在等腰三角形ABC 中,它的两边长分别为8cm 和 3cm ,则它的周长为( ) A .19cm B .19cm 或 14cm C .11cm D .10cm9.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 10.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .11二、填空题 11.当x=______时,分式242x x --没有意义. 12.计算:222(1)a a a a a --÷=__________. 13.若关于x 的分式方程222-=--x m x x 有增根,则m 的值为__________. 14.在△ABC 中,∠A+∠B=150°,∠C=3∠A ,则∠A=_____.15.命题“互为相反数的两数的和是0”的逆命题是______________,它是__命题.(填“真、假”)16.如图,在△ABC 中,AB =5 cm ,AC =3 cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,连接DC ,则△ACD 的周长为_______.17.如图,直线a ∥b ,△ABC 是等边三角形,点A 在直线a 上,边BC 在直线b 上,把△ABC 沿BC 方向平移BC 的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是___.三、解答题18.计算:(1)112111x x x ⎛⎫-÷ ⎪+--⎝⎭ (2)21011 + 23π--⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭(1)19.解方程:(1)(2)2114+?=?-33-9x x x + 20.先化简,再求值:a 2−2ab+b 2a 2−b 2+ba+b -,其中a=﹣2,b=1. 21.如图,已知线段AB .用尺规作图的方法作出线段AB 的垂直平分线(保留作图痕迹,不要求写出作法);22.在 △ABC 中,∠BAC=50°,∠B=45°,AD 是△ABC 的一条角平分线,求∠ADB 的度数23.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数是甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .求证:BC ∥EF .参考答案1.B【详解】 因为形如A B(0)B ≠的代数式是分式, 所以215x a +,,是分式, 故选:B .考点:分式的概念2.D【解析】试题分析:当(x+1)(x-2)0≠时分式1(1)(2)x x x ++-有意义,所以x≠-1且x≠2,故选:D . 考点:分式有意义的条件.3.B【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以用科学记数法表示0.000043=,故选B . 考点:科学记数法4.C【详解】解:A 、11m m--=﹣1; B 、1=33xy y x xy x --; C 、22x y x y -+分子、分母中不含公因式,不能化简,故为最简分式; D 、6161=3232m m -- 故选C .5.C【解析】试题分析:因为()x y x y x y x y ---+=--,不能约分,所以A 错误;因为212x y x y-=-,所以B 错误;因为2233()()1()()y x x y x y x y x y --==---,所以C 正确;因为b a b x a x =++,不能约分,所以D 错误;故选:C .考点:分式约分6.C【详解】A 、1+2=3,不能构成三角形,故A 错误;B 、2+2=4,不能构成三角形,故B 错误;C 、3+4>5,能构成三角形,故C 正确;D 、3+4<8,不能构成三角形,故D 错误.故选C .7.A【解析】试题分析:因为对顶角一定是相等,所以命题A 正确;因为在同一平面内,没有公共点的两条直线是平行的,所以命题B 错误;因为所有的直角都相等,但不一定是对顶角,所以C 错误;因为互为相反数的绝对值相等,所以D 错误;故选A .考点:命题8.A【分析】从①当等腰三角形的腰长为8cm ,底边长为3cm 时;②当等腰三角形的腰长为3cm ,底边长为8cm 时,两种情况去分析即可.【详解】当8cm 的边是腰时,三角形的周长=8+8+3=19cm ,当3cm 的边是腰时,因为3+3<8,所以不能组成三角形,所以等腰三角形ABC 的周长=19cm ,故选A .9.A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:xx -=+306030100,故选:A . 考点:列分式方程.10.C【分析】由ED 是AB 的垂直平分线,可得AD=BD ,又由△BDC 的周长=DB+BC+CD ,即可得△BDC 的周长=AD+BC+CD=AC+BC .【详解】解:∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.11.x=2【解析】试题分析:因为当x-2=0时分式242x x --没有意义,所以x=2. 考点:分式没有意义的条件.12.1-a【解析】 试题分析:22222222(1)(1)(1)1(1)a a a a a a a a a a a a a a a a ----÷=⋅=⋅=---. 考点:分式的除法13.m=2【解析】试题分析:因为222-=--x m x x ,所以x-2(x-2)=m ,又关于x 的分式方程222-=--x m x x 的增根是x=2,所以把x=2代入x-2(x-2)=m 得m=2.考点:分式方程的增根14.10°.【解析】试题解析:∵∠A+∠B+∠C=180°,∠A+∠B=150°,∴∠C=30°,∵∠C=3∠A ,∴∠A=10°.考点:三角形内角和定理.15.如果两个数的和是零,那么这两个数互为相反数 真【解析】试题分析:命题“互为相反数的两数的和是0”的逆命题是如果两个数的和是零,那么这两个数互为相反数.它是一个真命题.考点:命题与逆命题16.8㎝【解析】试题分析:因为DE 垂直平分线段BC ,所以BD=CD,所以△ACD 的周长=AD+CD+AC= AD+BD+AC= AB+AC=5+3=8cm .考点:线段垂直平分线的性质17.301.【详解】∵△ABC 是等边三角形,∴AB=BC=AC ,∵A′B′∥AB ,BB′=B′C=12BC ,∴B′O=12AB ,CO=12AC , ∴△B′OC 是等边三角形,同理阴影的三角形都是等边三角形.观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n 个图形中大等边三角形有n+1个,小等边三角形有2n 个.故第100个图形中等边三角形的个数是:100+1+2×100=301. 故答案是301.考点:1.等边三角形的判定与性质2.平移的性质.18.(1)11+x ;(2)0 【解析】试题分析:(1)先算小括号内的,然后除法变为乘法,然后约分即可;(2)先把所给的各数的值化简,然后加减计算即可.试题解析:(1)1121(1)1211111(1)(1)2(1)(1)21x x x x x x x x x x x x --+---⎛⎫-÷=⋅=⋅= ⎪+--+-+-+⎝⎭; (2)-2-1011- - -+ 143023π⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭(1).考点:1.分合运算2.乘方.19.(1)x=-(2)x=2 【详解】试题分析:(1)按照去分母,去括号,移项合并同类项,系数化为1,然后检验即可;(2)按照去分母,去括号,移项合并同类项,系数化为1,然后检验即可.试题解析:(1),3x-(3x+3)=2x ,3x-3x-3=2x ,3x-3x-2x=3,-2x=3,x=-,经检验x=-是原方程的根;(2)2114+?=?-33-9x x x ,x+3+x-3=4,2x=4,x=2,经检验x=2是原方程的根. 考点:解分式方程.20.a a+b ,2【解析】解:原式=(a−b)2(a+b)(a−b)+b a+b =a−b a+b +b a+b =a a+b当a=﹣2,b=1时, 原式=−2−2+1=2先约分、通分化简。

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试题一、单选题1.计算:03-=()A.-3B.-1C.1D.32.用科学记数法表示0.0000000314为()A.90.31410-⨯B.93.1410-⨯C.83.1410-⨯D.73.1410-⨯3.若分式293x x --的值为零,则x 的值为()A.-3B.-1C.3D.3±4.下列运算正确的是()A.55835a b a b -=B.1262t t t ÷=C.()222a b a b +=+D.()428216t t -=5.已知命题“能被2整除的数是偶数”,则其逆命题为()A.能被2整除的数不是偶数B.不能被2整除的数是偶数C.偶数是能被2整除的数D.偶数不是能被2整除的数6.化简2221211x x x x x x ---++g 的结果是()A.1xB.x C.11x x +-D.11x x -+7.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是()A.304015x x =-B.304015x x=-C.304015x x =+D.304015x x=+8.如图,AE、AD 分别是ABC 的高和角平分线,且28B ∠=︒,72C ∠=︒,则DAE ∠的度数为()A.18°B.22°C.30°D.38°9.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是()A.13cm B.6cm C.5cm D.4m10.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.二、填空题11.计算:()()2112x x ---=______.12.如图,在长方形ABCD 中,对角线AC,BD 交于点O,若120AOD ∠=︒,2AB =,则CO 的长为________.13.如图,AC=BD,AC,BD 交于点O,要使△ABC≌△DCB,只需添加一个条件,这个条件可以是______.14.计算:2222342•()()a b a b a ----÷=______________.15.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=__度.16.已知23,25xy ==,则212x y --的值为____________.17.如图所示,每个小正方形的边长为1,A、B、C 是小正方形的顶点,则∠ABC 的度数为_____.18.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.19.已知D、E 分别是△ABC 的边BC 和AC 的中点,若△ABC 的面积=36cm ,则△DEC 的面积为__________.三、解答题20.解方程:23193xx x +=--21.计算:21211x xx x x-+-+-22.如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.23.化简,再求值:22112x xx x x--÷+,其中x=224.如图,在四边形ABCD中,//AD BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE 交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.25.已知:如图,∠ABC=50°,∠ACB=80°,点D、B、C、E四点共线,DB=AB,CE=CA,求∠D、∠E、∠DAE的度数.26.如图,点D,E在线段BC上,BD=CE,∠ADE=∠AED,证明△ABC是等腰三角形.27.如图1,点P、Q 分别是等边△ABC 边AB、BC 上的动点(端点除外),点P 从顶点A、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:ABQ CAP ≌△△:(2)当点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P、Q 在运动到终点后继续在射线AB、BC 上运动,直线AQ、CP 相交于点M,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.B 【解析】【分析】依题意,依据零指数幂定义及性质进行求解即可;【详解】由题知,零指数幂为:01a =(0)a ≠;可得:031=,∴03(1)1-=-=-;故选:B;【点睛】本题考查零指数幂的定义和性质,关键在负号“-”的理解;2.C 【解析】【分析】依题意,依据科学记数法的基本形式转换即可;【详解】由题知,科学记数法的基本形式为:10n a ⨯(110,)a n ≤<为正整数或负整数;∴80.0000000314 3.1410-=⨯;故选:C 【点睛】本题考查科学记数法,关键在熟练科学记数法的基本形式及要求;3.A 【解析】【分析】根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:29030x x ⎧-=⎨-≠⎩解得:x=-3,故选:A.【点睛】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件.4.D 【解析】【分析】直接利用合并同类项、同底数幂的乘法、幂的乘方、完全平方公式进行进行判断即可;【详解】A、555835a b a b a b -=,故A 错误;B、1266t t t ÷=,故B 错误;C、()2222a b a ab b +=++,故C 错误;D、()428216t t -=,故D 正确;故选:D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、完全平方公式,正确掌握计算方法是解题的关键.5.C 【解析】【分析】依题意,写出原命题中的条件和结论,然后按照逆命题的要求,交换结论和条件即可;【详解】由题知,原命题为:能被2整除的数是偶数;原命题的条件为:一个数能被2整数;原命题的结论为:这个数则为偶数;逆命题:一个数是偶数,则这个数能被2整除;故选:C 【点睛】本题考查命题及其四种命题的转换,关键在写出原命题的条件和结论;6.B 【解析】【分析】先把分式的分子和分母因式分解,再约分即可求解.【详解】原式()()()()211111x x x x x x --=++-g x=故选:B.【点睛】本题考查分式的乘法,解题的关键是熟练掌握分子和分母的因式分解,利用到的知识点是分式的基本性质和约分.7.C 【解析】【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【详解】∵甲车的速度为x 千米/小时,则乙车的速度为(x+15)千米/小时∴甲车行驶30千米的时间为30x ,乙车行驶40千米的时间为4015x +,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C.8.B 【解析】【分析】根据角平分线性质和三角形内角和定理求解即可;【详解】∵AE 是ABC 的高,∴90AEB AEC ∠=∠=︒,又∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠,∵28B ∠=︒,72C ∠=︒,∴40BAD CAD ∠=∠=︒,∴180407268ADC ∠=︒-︒-︒=︒,∴906822DAE ∠=︒-︒=︒;故答案选B.【点睛】本题主要考查了角平分线的性质和三角形内角和定义,准确分析计算是解题的关键.9.B 【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.10.A 【解析】【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.11.214x -【解析】【分析】原式利用平方差公式计算即可得到答案;【详解】原式=()()2121214x x x -+--=-,故答案为:214x -.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键;12.2【解析】【分析】根据题意120AOD ∠= ,得到60AOB ∠= ,再根据OA OB =可以得到AOB 为等边三角形,再根据矩形的对角线互相平分,得到OA OC AB ==,即可得到答案.【详解】解:∵120AOD ∠= ∴60AOB ∠=又∵长方形ABCD 中,对角线AC,BD 交于点O,∴O 为AC,BD 的中点,且AC=BD,∴OA OB=∴AOB 为等边三角形∴2OA AB ==∵四边形ABCD 是长方形∴AC 、BD 相等且互相平分∴2OC OA AB ===故答案为:2.【点睛】本题主要考查矩形的性质和等边三角形的判定,解题的关键在于判断AOB 为等边三角形.13.AB=DC 【解析】根据全等三角形的判定,可以用SSS解题.【详解】解:∵AC=BD,BC=BC当添加条件为AB=DC时,即可判定△ABC≌△DCB,故答案为AB=DC(答案不唯一)【点睛】本题考查了全等三角形的判定,属于简答题,掌握证明全等的方法是解题关键.14.8b【解析】【分析】幂的乘方,法则为:底数不变,指数相乘;同底数幂相乘,法则为:底数不变,指数相加,积的乘方等于先把每个因数乘方,再把所得的幂相乘,此题先算乘方,再算乘除即可.【详解】原式=a−2b2⋅a−6b6÷a−8=a−8b8÷a−8=b8,故答案为b8【点睛】本题考查整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.15.95【解析】【详解】根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.故答案为:9516.9 10【解析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【详解】解:212x y --=22x ÷2y÷2=(2x )2÷2y ÷2=9÷5÷2=910故答案为910.【点睛】本题考查同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.17.45︒【解析】【分析】如图,连接AC,根据勾股定理即可得到AB,BC,AC 的长度,勾股定理的逆定理判断ABC 的形状,进而可得出∠ABC 的度数.【详解】解:如图,连接AC,由勾股定理得:AC BC ==,AB =∵222+=,∴222AC BC AB +=,∴△ABC 是等腰直角三角形,∴∠ABC=45°,故答案为:45°.【点睛】本题考查了勾股定理,勾股定理的逆定理,等腰三角形的判定与性质.解题的关键在于判断ABC 的形状.18.4θ2nθ【解析】【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,根据角平分线的定义可得∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,整理得到∠A 1=12∠A,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案.【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,∴∠A 1=12∠A,同理可得∠A 2=12∠A 1=14∠A,∵∠A=θ,∴∠A 2=4θ,同理:∠A 3=12∠A 2=382θθ=,∠A 4=12∠A 3=4162θθ=……∴∠A n =2nθ.故答案为:4θ,2nθ【点睛】本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.19.9cm .【解析】【详解】试题分析:∵D 是△ABC 的边BC 的中点,∴S △ACD =36÷2=18(cm 2);又∵E 是AC 的中点,∴S △DEC =18÷2=9(cm 2).故答案为9cm .考点:三角形的面积.20.4x =-【解析】【分析】根据解分式方程的基本步骤解方程即可.【详解】解:23193xx x +=--方程两边同时乘(3)(3)x x -+可得:3+(3)x x +=(3)(3)x x -+,去括号可得:22339x x x ++=-,移项合并同类项可得:312x =-,解得:4x =-,将4x =-代入(3)(3)x x -+可得:(3)(3)x x -+=7≠0,∴原方程的解为:4x =-【点睛】本题主要考查分式方程,注意解方程最后要检验,防止无解的情况出现.21.-1【解析】【分析】根据分式的性质计算即可;【详解】原式()()()221111x x x x x--=---,()2211x x xx --+=-,()()2211x x --=-,1=-.【点睛】本题主要考查了分式的加减运算,准确计算是解题的关键.22.见解析【解析】【分析】先连接BD,由AB=CB、AD=CD、BD=BD 可证△ABD≌△CBD,即可证得结论.【详解】证明:如图:连接BD,∵在△ABD 和△CBD 中,AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩∴△ABD≌△CBD,∴∠C=∠A.【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线、灵活运用SSS 证明三角形全等是解答本题的关键.23.12x x ++;34.【解析】【分析】先化除法为乘法进行化简,然后代入求值.【详解】解:原式=()(1)(1)21x x xx x x +-⋅+-=12x x ++,将x=2代入,原式=213224+=+.【点睛】本题考查了分式的化简求值,不应考虑把x 的值直接代入,通常做法是先把分式化简,然后再代入求值.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先根据平行线的性质可得,F DAE ECF D ∠=∠∠=∠,再根据线段中点的定义可得CE DE =,然后根据三角形全等的判定定理与性质即可得证;(2)先根据三角形全等的性质可得FE AE =,再根据线段垂直平分线的判定与性质可得AB FB =,然后根据线段的和差、等量代换即可得证.【详解】(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAEECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅ ,FC AD ∴=;(2)由(1)已证:CEF DEA ≅ ,FE AE ∴=,又BE AE⊥,BE∴是线段AF的垂直平分线,AB FB BC FC∴==+,由(1)可知,FC AD=,AB BC AD∴=+.【点睛】本题考查了平行线的性质、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.25.∠D=25°,∠E=40°,∠DAE=115°.【解析】【详解】试题分析:由∠ABC=50°,DB=BA,据三角形外角性质可得∠D=∠DAB=12∠ABC=25°;同理可得∠E=40°;由三角形内角和定理可得∠BAC=50°,即可得∠DAE的度数.试题解析:解:∵∠ABC=50°,DB=BA,∴∠D=∠DAB=12∠ABC=25°;同理可得∠E=∠CAE=12∠ACB=40°;∵在△ABC中,∠ABC=50°,∠ACB=80°,∴∠BAC=50°,∴∠DAE=∠DAB+∠BAC+∠CAE=115°.考点:1.三角形内角和定理;2.三角形的外角性质.26.证明见试题解析.【解析】【详解】试题分析:先证△ABD≌△AEC,进而证出结论.试题解析:证明:∵∠ADE=∠AED,∴AD=AE,∠BDA=∠CEA,∵BD=CE,∴△ABD≌△AEC,∴AB=AC,∴△ABC是等腰三角形.考点:1.等腰三角形的判定;2.全等三角形的性质和判定.27.(1)证明见解析(2)∠QMC的大小不变,∠QMC=60°(3)∠QMC的大小不变,∠QMC=120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ≌△CAP;(2)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q 运动速度相同,∴AP=BQ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS);(2)解:点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小不变,∠QMC=60°.理由:∵ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°(3)解:点P、Q 在运动到终点后继续在射线AB、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°.。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,52.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233()x x y y-=3.若102a a-=,则a 的值为()A .0B .1C .1-D .24.如图,在等边ABC 中,点O 是BC 上任意一点,OD ,OE 分别与AB ,AC 垂直,垂足为D 、E ,且等边三角形的高为2,则+OD OE 的值为()A .5B .4C .3D .25.已知两个分式:244A x =-,1122B x x=++-,其中x≠±2,则A 与B 的关系是()A .相等B .互为倒数C .互为相反数D .A 大于B6.如图,已知长方形ABCD ,将△DBC 沿BD 折叠得到△DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则△ABE 的周长是()A .5cmB .10cmC .15cmD .20cm7.下列分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中,不能再化简的有()A .1个B .2个C .3个D .4个8.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是()A .2802801421x x +=-B .2802801421x x +=+C .1401401421x x +=-D .1401401421x x +=+9.若等腰三角形的两边长为2和5,则该等腰三角形的周长为()A .9B .12C .9或12D .710.已知11xy-=3,则代数式232x xy yx xy y+---的值是()A .72-B .112-C .92D .3411.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)1x ⊗+=,则x 的值为()A .32B .13C .12D .12-12.已知关于x 的分式方程329133x mxx x--+=---无解,则m 的值为()A .1m =B .4m =C .3m =D .1m =或4m =二、填空题13.为使一个四边形木架不变形我们会从中钉一根木条,这是利用了三角形的_______.14.如图所示,在△ABC 中,AB =AC ,∠B =50°,则∠A =________.15.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工________套校服.16.在等腰△ABC 中,AB=AC ,一腰上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为__________17.若111(1)1n n n n =-++,则111112233499100+++⋅⋅⋅+=⨯⨯⨯⨯________.18.如图,ABC 中,14cm AB AC ==,AB 的垂直平分线MN 交AC 于点D ,且DBC △的周长是24cm ,则BC =________cm .三、解答题19.计算:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 20.如图,已知ABC .(保留作图痕迹)(1)作BC 边上的高AD 交BC 于点D ;(2)作AC 边上的垂直平分线EF ,交AC 于点E ,交BC 于点F ;(3)作AB 边的中线CG ,交AB 于点G .21.解分式方程:(1)2133193x x x +=--(2)2134412142x x x x +=--+-22.先化简,再求值:2222-++xy y x xy y ÷(1﹣x y x y -+)•222-y x ,其中x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩.23.如图,点D 在AB 上,点E 在AC 上,BE 、CD 相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B 的度数;(2)试猜想∠BOC 与∠A+∠B+∠C 之间的关系,并证明你猜想的正确性.24.如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,且BD=AE ,AD 与CE 交于点F .(1)求证:△ABD ≌△CAE ;(2)求∠DFC 的度数.25.“六一”儿童节前夕,某文具店用4000元购进A 种滑板车若干台,用8400元购进B 种滑板车若干台,所购B 种滑板车比A 种滑板车多10台,且B 种滑板车每台进价是A 种滑板车每台进价的1.4倍.(1)A 、B 两种滑板车每台进价分别为多少元?(2)第一次所购滑板车全部售完后,第二次购进A 、B 两种滑板车共100台(进价不变),A 种滑板车的售价是每台300元,B 种滑板车的售价是每台400元.两种滑板车各售出一半后,六一假期已过,两种滑板车均打七折销售,全部售出后,第二次所购滑板车的利润为5800元(不考虑其他因素,求第二次购进A 、B 两种滑板车各多少台?26.(1)如图1,在ABC 中,BP 平分ABC ∠,CP 平分ACB ∠,求证:1902P A ∠=︒+∠;(2)如图2,在ABC 中,BP 平分ABC ∠,CP 平分外角ACE ∠,猜想P ∠和A ∠有何数量关系,并证明你的结论.参考答案1.C 【解析】【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A 、1+1=2,不满足三边关系,故错误;B 、1+2<4,不满足三边关系,故错误;C 、2+3>4,满足三边关系,故正确;D 、2+3=5,不满足三边关系,故错误.故选C .【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B 【解析】【分析】由分式的基本性质可判断,,,A B C 由分式的乘方运算可判断,D 从而可得答案.【详解】解:1,1x x y y +≠+故A 不符合题意;()1,x y x y x y x y---+==---故B 符合题意;()()22,x y x y x y x y x y x y-+-==-++故C 不符合题意;22239()x x y y-=,故D 不符合题意;故选:.B 【点睛】本题考查的是分式的基本性质,分式的乘方运算,掌握以上知识是解题的关键.3.B 【解析】【分析】根据102a a-=即可得到10a -=,由此即可得到答案.【详解】解:∵102a a-=,a≠0∴10a -=,∴1a =,故选B .【点睛】本题主要考查了分式值为零的条件,解题的关键在于能够熟练掌握分式值为零时的条件是分子为0,分母不等于0.4.D 【解析】【分析】连接AO ,作CF ⊥AB 于点F ,利用等边三角形性质分别表示出ABC S 和AOB AOC S S +△△,可得出OE 与OD 的和与三角形的高相等,进而求解即可.【详解】解:如图所示,连接AO ,作CF ⊥AB 于点F ,∵△ABC 是等边三角形,∴AB=AC ,∵等边三角形的高为2,∴CF=2,∵OD ⊥AB ,OE ⊥AC ,∴ABCAOB AOCS S S =+△△△∴111222AB CF AB OD AC OE ⨯⨯=⨯⨯+⨯⨯,∴()11222AB AB OD OE ⨯⨯=⨯⨯+,∴2OD OE +=.故选:D .【点睛】本题考查了等边三角形的性质,三角形面积,解题的关键是根据题意分别表示出ABC S 和AOB AOC S S +△△.5.C 【解析】【详解】∵B=1122x x ++-=1122x x ++-=()()()()2222x x x x --++-=2-44x -,又∵A=244x -,∴A+B=244x -+2-44x -=0,∴A 与B 的关系是互为相反数.故选:C .6.B 【解析】【分析】根据现有条件推出∠EDB=∠EBD ,得出BE=DE ,可知△ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∠CBD=∠C′BD ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADB=∠C′BD ,∴∠EDB=∠EBD ,∴BE=DE ,∴△ABE 的周长=AB+AD ,∵长方形的周长为20cm ,∴2(AB+AD )=20cm ,∴AB+AD=10cm ,∴△ABE 的周长为10cm ,故选:B .【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE 是解题关键.7.C 【解析】【分析】根据最简分式的定义即可得出答案.24221(1)(1)1=1(1)(1)(1)1x x x x x x x x -+-=-++-+,能化简,其余均不能化简,故选:C .【点睛】本题考查的是最简分式,比较简单,注意约分前先进行因式分解.8.D 【解析】【详解】读前一半时,平均每天读x 页,即读140页时,用时表示为140x天,后一半平均每天要多读21页,得读后一半时平均每天读()21x +页,用时14021x +天,∴两周借期内读完列分式方程为:14014014.21x x +=+故选:D.9.B 【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.D 【解析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11.D 【解析】【分析】根据新运算的运算规则计算即可.【详解】因为规定11a b b a⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D .【点睛】本题考查了新定义下的运算,分式方程的计算,解决此题的关键是要正确理解新定义运算的概念.12.D 【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:3−2x−9+mx =−x +3,整理得:(m−1)x=9,当m−1=0,即m=1时,该整式方程无解;当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,把x=3代入整式方程得:3m−3=9,解得:m=4,综上,m的值为1或4,故选D.【点睛】此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.稳定性【解析】【分析】题中给出四边形的不稳定性,即可判断是利用三角形的稳定性.【详解】为使四边形木架不变形,从中钉上一根木条,让四边形变成两个三角形,因为三角形不变形,故应该是利用三角形的稳定性.故答案为:稳定性【点睛】本题考查三角形稳定性的应用,关键在于熟悉三角形的基本性质.14.80°【解析】【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数.解:∵在△ABC中,AB=AC,∠B=50°∴∠C=50°∴∠A=180°﹣50°﹣50°=80°故答案为80°.15.50【解析】【分析】设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,然后根据两厂各加工600套校服,甲厂比乙厂少用4天,列出方程求解即可.【详解】解:设乙工厂每天加工x套校服,则甲工厂每天加工1.5x套校服,由题意得60060041.5x x-=,解得50x=,经检验50x=是原方程的解,∴乙工厂每天加工50套校服,故答案为:50.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.16.7或11【解析】【分析】分两种情况讨论,列出方程即可解决问题.【详解】①当15是腰长与腰长一半时,1152AC AC+=,解得10AC=,∴底边长1121072=-⨯=;三边长为:10,10,7;②当12是腰长与腰长一半时,1122AC AC+=,解得8AC=,∴底边长1158112=-⨯=,三边长为:8,8,11;经验证,这两种情况都是成立的.∴这个三角形的底边长等于7或11.故答案为:7或11.【点睛】本题主要考查了等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验是否符合三角形三边性质.分类讨论是正确解答本题的关键.17.99100##0.99【解析】【分析】根据题目给出的结论,把算式变形,然后计算即可.【详解】解:∵111 (1)1 n n n n=-++,∴1111 12233499100 +++⋅⋅⋅+⨯⨯⨯⨯=1111111 12233499100 -+-+-+⋅⋅⋅+-=1 1 100 -=99 100.故答案为:99 100.【点睛】本题考查了有理数的运算,解题关键是根据题目给出的结论对算式进行变形.18.10【解析】【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.【详解】解:∵C △DBC =24cm ,∴BD +DC +BC =24cm ①,又∵MN 垂直平分AB ,∴AD =BD ②,将②代入①得:AD +DC +BC =24cm ,即AC +BC =24cm ,又∵AC =14cm ,∴BC =24−14=10cm .故答案为:10.19.(1)5-;(2)1x y-【分析】(1)本题需先根据零指数幂、负整数指数幂、正整数指数幂的运算法则分别进行计算,再把所得的结果合并即可.(2)先根据完全平方公式运算括号内的,再利用除法法则运算即可.【详解】解:(1)1530122( 3.142020)2π-⎛⎫--÷+-+ ⎪⎝⎭,2=221--+,=241--+,=5-;(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x ,222=x y x xy y x x ⎛⎫--+÷ ⎪⎝⎭,()2x y x y x x--=÷,()2x y x x x y -=⨯-,1x y=-.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)以点A为圆心,AC长为半径画弧交BC于点E,再分别以点E和点C为圆心,大于二分之一CE的长度为半径画弧,最后连接弧的交点即可;(2)以点A和点C分别为圆心,大于二分之一AC的长为半径画弧,连接弧的交点即可;(3)以点A和点B分别为圆心,大于二分之一AB的长为半径画弧,连接弧的交点与AB 交于点G,连接CG即可.【详解】解:(1)如图所示,AD为所求.;(2)如图所示,EF为所求.;(3)如图所示,CG为所求..【点睛】本题考查了尺规作图,解题的关键是熟练掌握垂直平分线的画法.21.(1)无解;(2)x=6【解析】【分析】先去分母,将分式方程化为整式方程,解出整式方程,再检验,即可求解.【详解】解:(1)2133193x x x +=--方程两边同时乘以()93x -,得:()23131x x -+=,解得:13x =检验:当13x =时,1939303x -=⨯-=,∴13x =为增根,原方程无解.(2)2134412142x x x x +=--+-方程两边同时乘以,得:()()()213221421x x x +=⨯--+解得:6x =检验:当6x =时,()()2224124612860x -=⨯-=≠∴6x =是原方程的解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,并注意验根是解题的关键.22.﹣21()+x y ,﹣14.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将方程组中两个方程相加得到x+y 的值,继而整体代入计算可得.【详解】解:原式=2()()y x y x y -+÷22•()()y x y x y x y +-+-=﹣2()•()2y x y x y x y y -++2•()()x y x y +-=﹣21()+x y ,∵x 、y 满足方程组24210x y x y +=⎧⎨+=-⎩,∴3x+3y =﹣6,则x+y =﹣2,∴原式=﹣21(2)-=﹣14.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)30°;(2)∠BOC=∠A+∠B+∠C ,理由见解析.【解析】【分析】(1)利用三角形外角的性质和三角形内角和定理即可求得∠B 的度数;(2)用三角形外角和定理求出∠BOC ,∠BEC 的两角之和,最后得出结论.【详解】解:(1)∵∠A=50°,∠C=30°,∴∠BDO=80°;∵∠BOD=70°,∴∠B=30°;(2)∠BOC=∠A+∠B+∠C.理由:∵∠BOC=∠BEC +∠C ,∠BEC=∠A+∠B ,∴∠BOC=∠A+∠B+∠C.24.(1)见解析;(2)60度【解析】【分析】(1)利用等边三角形的性质,证明△ABD ≌△CAE ;(2)由△ABD ≌△CAE 得出角相等,∠ACE=∠BAD ,再利用角的等量代换求出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC=∠B=60°,AB=AC ,在△AEC 和△BDA 中,AC AB EAC DBA AE BD ⎧⎪∠∠⎨⎪⎩===,又∵AE=BD ,∴△AEC ≌△BDA (SAS ).(2)∵△AEC ≌△BDA ,∴∠ACE=∠BAD ,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°.【点睛】本题考查了等边三角形的性质和全等三角形的性质与判定;解决本题的关键是利用全等求解角相等.25.(1)A 、B 两种滑板车每台进价分别为200元,280元;(2)第二次购进A 种滑板车40台、B 种滑板车60台【解析】【分析】(1)设A 种滑板车每台进价为x 元,则B 种滑板车每台进价为1.4x 元,根据用8400元购买的B 种滑板车比用4000元购买的A 种滑板车多10台,即可得出关于x 的分式方程,解之即可得出结论;(2)设第二次购进A 种滑板车y 台,则购进B 种滑板车(100−y )台,根据总利润=每台的利润×销售数量,即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)解:设A 种滑板车每台进价为x 元.根据题意得:84004000101.4x x-=,解得:200x =,经检验200x =是原方程的根,且符合题意.B 种:1.4×200=280(元),答:A 、B 两种滑板车每台进价分别为200元,280元;(2)解:设第二次购进A 种滑板车y 台.()()()()10010030020030070%20040028040070%28058002222y y y y --⨯-+⨯⨯-+⨯-+⨯⨯-=,解得:40y =,B 种:100-40=60(台).答:第二次购进A 种滑板车40台、B 种滑板车60台.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.26.(1)见解析;(2)12P A ∠=∠,证明见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的定义进行证明即可:(2)根据一个三角形的外角等于与它不相邻的两个内角和,可求出A ACE ABC ∠=∠-∠,P PCE PBC ∠=∠-∠,再由角平分线的定义得到12PBC ABC ∠=∠,12PCE ACE ∠=∠,则()11112222P ACE ABC ACE ABC A ∠=∠-∠=∠-∠=∠.【详解】(1)证明:()180P PBC PCB ∠=-∠+∠ ,∵BP 平分ABC ∠,CP 平分ACB ∠,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠,∴()111222PBC PCB ABC ACB ABC ACB ∠+∠=∠+∠=∠+∠∴()11801802P PBC PCB ABC ACB ∠=--=-∠+∠o o ∠∠,∵=180ABC ACB A+-o ∠∠∠()11180180=9022P A A ∴∠=--+∠o o o ∠;(2)猜想:12P A ∠=∠,证明:ACE A ABC ∠=∠+∠ ,A ACE ABC ∴∠=∠-∠,∵PCE P PBC ∠=∠+∠,∴P PCE PBC ∠=∠-∠,又BP 平分ABC ∠,CP 平分ACE ∠,∴12PBC ABC ∠=∠,12PCE ACE ∠=∠,()11112222P ACE ABC ACE ABC A ∴∠=∠-∠=∠-∠=∠,12P A ∴∠=∠.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,解题的关键在于能够熟练掌握角平分线的定义.。

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试题一、单选题1.分式22x -有意义,则x 的取值范围是()A .2x >B .2x ≠C .2x ≠-D .2х>-2.下列线段,能组成三角形的是()A .2cm,3cm,5cmB .5cm,6cm,10cmC .1cm,1cm,3cmD .3cm,4cm,8cm3.把0.000000125这个数据用科学记数法可表示为()A .0.125×107B .1.25×107C .1.25×10﹣7D .0.125×10﹣74.把代数式xyx y+中的x 、y 同时扩大2倍后,代数式的值()A .扩大为原来的1倍B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的125.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC6.下列命题的逆命题不成立的是()A .等边对等角B .线段垂直平分线上的点到线段两端的距离相等C .全等三角形的对应角相等D .三个角都是60°的三角形是等边三角形7.已知关于x 的方程31(1)x a x x x +=--的增根是x =1,则字母a 的值为()A .1B .1-C .2D .2-8.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D ,E ,若3AD =,1BE =,则DE 的长是()A .32B .2C .3D .49.如图,已知AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法正确的是()①BD =CD ;②∠BAD =∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE =AEA .①②B .③⑤C .①③④D .①④⑤10.222a b b b a b-⎛⎫⨯ ⎪-⎝⎭的结果是()A .1bB .2a b ab b -+C .a b a b-+D .1()b a b +二、填空题11.计算:112-⎛⎫= ⎪⎝⎭_____________.12.在△ABC 中,∠B =40°,∠C =25°,点D 在BA 的延长线上,则∠CAD 为____度.13.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为__________14.分式2111,,42x x x x --+,的最简公分母是______15.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =10cm ,CF =3cm ,则AC =_______cm .16.我国元代数学家朱世杰的著作《四元玉鉴》中记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽.”其大意为:用6210文钱请人代买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是______.三、解答题17.计算:212()a b a b --18.解分式方程:11222x x x-=---.19.先化简,再求值:24512(1()11a a a a a a-+-÷----,其中a =﹣1.20.如图,在△ABC 中,D 是AC 的中点,且BD ⊥AC ,ED ∥BC ,ED 交AB 于点E ,BC=6cm ,AC =4cm ,求△AED 的周长.21.如图,D 是△ABC 的边AC 上一点,点E 在AC 的延长线上,ED =AC ,过点E 作EF ∥AB ,并截取EF =AB ,连接DF .求证:DF=CB .22.某中学为了创设“体育校园”,准备购买A ,B 两种足球,在购买时发现,A 种足球的单价比B 种足球的单价多30元,用750元购买A 种足球的个数与用600元购买B 种足球的个数相同.求A,B两种足球的单价各是多少元?23.如图,AD是△ABC的中线,分别过点C、B作AD及其延长线的垂线,垂足分别为E、F.(1)求证:△CED≌△BFD;(2)若△ACE的面积为8,△CED的面积为6,求△ABF的面积.24.综合与探究:如图①,在△ABC中,∠C>∠B,AD是∠BAC角平分线.(1)探究与发现:如图①,AE⊥BC于点E,①若∠B=30°,∠C=70°,则∠CAD=°,∠DAE=°;②若∠B=45°,∠C=65°,则∠DAE=°;③试探究∠DAE与∠B、∠C的数量关系,并说明理由.(2)判断与思考:如图②,F是AD上一点,FE⊥BC于点E,这时∠DFE与∠B、∠C又有怎样的数量关系?参考答案1.B【解析】【分析】由分母不为0,列不等式,再解不等式即可.【详解】解: 分式22x-有意义,20,x∴-≠2x∴≠故选:B.【点睛】本题考查的是分式有意义的条件,掌握“分式有意义:分母不为0”是解本题的关键.2.B【解析】【分析】根据三角形的三边关系定理即可进行判断.【详解】解:A、3+2=5,故选项错误;B、5+6>10,故正确;C、1+1<3,故错误;D、4+3<8,故错误.故选B.【点睛】考查了三角形的三边关系,验证三角形的三边关系定理:任意两边之和大于第三边.只要验证两条较短的边的和大于最长的边即可.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:0.000000125=1.25×10﹣7,故选:C.【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,n等于原数左数第一个非零数字前0的个数,按此方法即可正确求解.4.B【解析】【分析】将x、y同时扩大2倍后再进行化简即可求解.故选:B【点睛】本题主要考查了分式的基本性质,熟练掌握分式的基本性质是解答此题的关键.5.C【解析】【详解】解:选项A、添加AB=DE可用AAS进行判定,故本选不符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选C.6.C【解析】【分析】根据选项写出原命题的逆命题,判断真假即可.【详解】解:A、等边对等角的逆命题为:等角对等边,成立,不符合题意;B、线段垂直平分线上的点到线段两端的距离相等的逆命题为:到线段两端的距离的点在线段垂直平分线上,成立,不符合题意;C、全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,不成立,符合题意;D、三个角都是60°的三角形是等边三角形的逆命题为:等边三角形的三个角都是60 ,成立,不符合题意;故选:C.【点睛】本题考查了命题与逆命题,以及命题的真假,能够根据原命题准确写出逆命题然后判断真假是解本题的关键.7.C【解析】【分析】把分式方程化为整式方程后,把x=1代入,即可求得结果.【详解】解:方程两边同时乘以x(x-1)得:3x=x+a,把x=1代入得:3×1=1+a,解得:a=2,故选:C.【点睛】本题考查了分式方程的增根,理解分式方程增根的定义是解决问题的关键.8.B【解析】【分析】根据已知条件可以得出∠E=∠ADC=90°,进而得出∆CEB≅∆ADC,就可以得出BE=DC,就可以求出DE的值.【详解】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°∴∠EBC+∠BCE=90°∵∠BCE+∠ACD=90°∴∠EBC=∠DCA在∆CEB和∆ADC中,∠E=∠ADC,∠EBC=∠DCA,BC=AC∴∆CEB≅∆ADC(AAS)∴BE=DC=1,CE=AD=3∴DE=EC-CD=3-1=2故选:B.【点睛】全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.9.C【解析】【分析】①根据三角形的中线直接进行判断即可;②一般三角形一条边上的中线不一定是这条边所对的角的平分线;③根据“SAS”直接进行判断即可;④根据三角形全等的性质直接判定∠F=∠DEC,根据平行线的判定方法得出结果;⑤根据全等三角形的性质可以判定CE=BF,不能判定CE=AE.【详解】解:①∵AD是△ABC的中线,∴BD=CD,故①正确;②∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;③在△BDF和△CDE中BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;④∵△BDF≌△CDE,∴∠F=∠DEC,∴BF CE,故④正确;⑤∵△BDF≌△CDE,∴CE =BF ,故⑤错误;综上分析可知,①③④正确,故C 正确.故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形中线的定义,熟练掌握三角形全等的判定方法并准确识图,是解题的关键.10.B 【解析】【分析】首先把每一项因式分解,然后根据分式的混合运算法则求解即可.【详解】222a b b b a b-⎛⎫⨯ ⎪-⎝⎭=()()()22a b bb a b a b -⨯+-=()a b b a b -+=2a b ab b -+故选:B .【点睛】此题考查了分式的混合运算,解题的关键是先对每一项因式分解,然后再根据分式的混合运算法则求解.11.2【解析】【分析】根据负整指数幂的意义,可得答案.【详解】解:原式2=,故答案为:2.【点睛】本题考查了负整指数幂,负整数指数为正整数指数的倒数.12.65【解析】【分析】由题意直接根据三角形的一个外角等于和它不相邻的两个内角的和进行分析计算即可得出答案.【详解】解:∵∠B=40°,∠C=25°,∴∠CAD=∠B+∠C=40°+25=65°,故答案为:65.【点睛】本题主要考查三角形外角的性质,解题的关键是熟练掌握三角形的一个外角等于和它不相邻的两个内角的和.13.12【解析】【分析】分5作腰和2作腰,两种情形求解即可.【详解】解:当5为等腰三角形的腰时,三边长分别为5,5,2,满足两边之和大于第三边,此时,等腰三角形存在,且周长为5+5+2=12;当2为等腰三角形的腰时,三边长分别为5,2,2,不满足两边之和大于第三边,此时,等腰三角形不存在,综上所述,等腰三角形的周长为12,故答案为12.【点睛】本题考查了等腰三角形的按边分类的周长计算问题,正确进行分类是解题的关键.14.(2)(2)x x x +-【解析】【分析】首先把分母分解因式,然后再确定最简公分母.【详解】解:2114(2)(2)x x x =-+-,则最简公分母为(2)(2)x x x +-,故答案为:(2)(2)x x x +-.【点睛】此题主要考查了最简公分母,关键是掌握如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.15.13【解析】【分析】由AE =BE ,DE 是AB 的垂线得到AD BD =,证明ADF BDF ≅△△,即可得解;【详解】∵AE =BE ,DE 是AB 的垂线,∴AD BD =,90ADE BDE ∠=∠=︒,在ADF 和BDF 中,AD BD ADE BDE DF DF =⎧⎪∠=∠⎨⎪=⎩,∴ADF BDF ≅△△,∴AF BF =,∴AC AF CF BF CF =+=+,∵BF =10cm ,CF =3cm ,∴13AC cm =;故答案是13.【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键.16.()621031x x-=【解析】【分析】根据单价=总价÷数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x 的分式方程,此题得解.【详解】依据题意,得:()621031x x -=故答案为:()621031x x-=【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.17.4a b 【解析】【分析】根据整数指数幂的运算进行计算即可.【详解】解:212()a b a b --=422241a a bab a b b --==【点睛】本题考查了整数指数幂的运算,掌握负整数幂的意义是解题的关键.18.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:1-x=-1-2x+4,解得:x=2,经检验x=2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.a(a﹣2),3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【详解】解:原式=(1)(1)4521(1) a a a aa a a+----÷--=2(2)(1)12 a a aa a--∙--=a(a﹣2),当a=﹣1时,原式=﹣1×(﹣3)=3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.8【解析】【分析】根据线段垂直平分线的性质得到AB=BC=6cm,再根据等腰三角形的性质求出得到AE=DE=BE,故可求出DE,AE,故可求解.【详解】∵D是AC边的中点,BD⊥AC,∴BD是线段AC的垂直平分线,AD=12AC=2cm,∴AB=BC=6cm,∴△ABC是等腰三角形∵BD⊥AC∴BD平分∠ABC∴∠ABD=∠CBD∵ED∥BC∴∠EDB=∠CBD∴∠ABD=∠EDB∴BE=DE∵BD ⊥AC∴∠A+∠ABD=∠EDB+∠ADE=90°∴∠A=∠ADE∴AE=DE∴AE=DE=BE∵AB =BC =6cm ,∴AE=DE=BE=3cm∴△ADE 的周长=AE +DE +AD =8cm .【点睛】此题主要考查等腰三角形的判断与性质,解题的关键是熟知垂直平分线的性质与等腰三角形的三线合一.21.证明过程见解析【解析】【分析】根据EF ∥AB ,得到A E ∠=∠,再根据已知条件证明ABC EFD ≅△△,即可得解;【详解】∵EF ∥AB ,∴A E ∠=∠,在ABC 和EFD △中,EF AB E A ED AC =⎧⎪∠=∠⎨⎪=⎩,∴ABC EFD ≅△△,∴DF CB =;【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.22.购买A 种足球单价需要150元,B 种足球单价需要120元.【解析】【分析】根据题意设B 种足球的单价为x 元,进而依据用750元购买A 种足球的个数与用600元购买B 种足球的个数相同建立等量关系,最终求解分式方程即可.【详解】解:设B 种足球的单价为x 元,根据题意,得75060030x x=+,解得x =120.经检验:x =120是原分式方程的解.∴x+30=150.答:购买A 种足球单价需要150元,B 种足球单价需要120元.【点睛】本题主要考查分式方程的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.23.(1)见解析;(2)20【解析】【分析】(1)由题意根据垂线的性质得到∠CED=∠BFD=90°,根据中线的性质得到BD=CD ,从而利用全等三角形的判定定理AAS 进行证明即可;(2)由题意根据三角形中线的性质得到S △ABD=S △ACD ,再由全等三角形的性质得到S △BDF=S △CED ,从而结合图形利用三角形面积之间的关系求解即可.【详解】解:(1)∵CE ⊥AD ,BF ⊥AF ,∴∠CED =∠BFD =90°,∵AD 是△ABC 的中线,∴BD =CD ,在△CED 和△BFD 中,CED BFD CDE BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△BFD (AAS );(2)∵AD 是△ABC 的中线,∴S △ABD =S △ACD ,∵S △ACE =8,SCED =6,∴S △ACD =S △ABD =14,∵△BFD ≌△CED ,∴S △BDF =S △CED =6,∴S △ABF =S △ABD+S △BDF =14+6=20.【点睛】本题考查全等三角形的判定与性质,应熟练掌握全等三角形的判定定理及其相关性质,注意运用数形结合的思想方法,从图形中寻找等量关系,与此同时结合三角形中线的性质进行求解.24.(1)①40,20;②10;③∠DAE =12(∠C-∠B),理由见解析;(2)∠DFE =12(∠C ﹣∠B),理由见解析【解析】【分析】(1)①根据三角形内角和求出BAC ∠,然后根据角平分线的定义求出CAD ∠,根据AE ⊥BC ,进而求得∠DAE 的度数;②根据①中的方式求解即可;③根据①中计算过程推到即可;(2)根据三角形内角和以及三角形外角的性质等知识点进行推到即可.【详解】解:(1)①∵∠B =30°,∠C =70°,∴18080BAC B C ∠=︒-∠-∠=︒,∵AD 是∠BAC 角平分线,∴1402CAD BAD CAB ∠=∠=∠=︒,∵AE ⊥BC ,∴90AEC ∠=︒,∴907020CAE ∠=︒-︒=︒,∴402020DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:40,20;②∵∠B =45°,∠C =65°,∴18070BAC B C ∠=-∠-∠=︒︒,∵AD 是∠BAC 角平分线,∴1352CAD BAD CAB ∠=∠=∠=︒,∵AE ⊥BC ,∴90AEC ∠=︒,∴906525CAE ∠=︒-︒=︒,∴352510DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:10;③∠DAE =12(∠C-∠B),理由如下:在△AEC 中,∠AEC+∠C+∠EAC =180°,∴∠EAC =180°-∠AEC-∠C =180°-90°-∠C =90°-∠C ,∴∠DAE =∠CAD-∠EAC =12×(180°-∠B-∠C)=(90°-12∠B-12∠C)-(90°-∠C)=12(∠C-∠B);(2)判断与思考;∠DFE =12(∠C ﹣∠B),理由如下:证明:∵AD 平分∠BAC ,∴∠BAD =01802B C-∠-∠=90°-12(∠C+∠B),∵∠ADC 为△ABD 的外角,∴∠ADC =∠B+90°-12(∠C+∠B )=90°+12(∠B-∠C),∵FE ⊥BC ,∴∠FED =90°,∴∠DFE =90°-[90°+12(∠B-∠C)]=90°-90°-12(∠B-∠C),∴∠DFE =12(∠C-∠B).。

2024-2025学年八年级上学期湘教版数学期中综合测试卷

2024-2025学年八年级上学期湘教版数学期中综合测试卷

2024-2025学年八年级上学期湘教版数学期中综合测试卷1.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.102.下列分式中最简分式是()A.B.C.D.3.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°4.4.如图,在框中解分式方程的4个步骤中,其中根据等式基本性质的有()解分式方程:.解:…①……②…③…④A.①②B.②④C.①③D.③④5.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D6.判断命题“如果,那么”是假命题,只需举出一个反例,反例中的n可以为()A.B.C.0D.7.如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是A.B.C.D.8.如图,边,的垂直平分线,相交于点O,M,N在边上,若,则的度数为()A.B.C.D.9.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A.B.C.D.10.如图,中,,沿将此三角形对折,又沿再一次对折,点C落在上的处,此时,则原三角形的的度数为()A.B.C.D.11.观察下面的变形规律:,,,,…回答问题:若,则的值为()A.100B.98C.1D.12.如图,在四边形中,,,,,则()°A.15B.18C.20D.2513.命题“如果,那么”,则它的逆命题是________命题(填“真”或“假”).14.化简:_____.15.将一副直角三角尺按图所示的位置放置,使含角的三角尺的一条直角边和含角的三角尺的一条直角边放在同一条直线上,则的度数是________°.16.若,则分式的值为_____.17.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_____.18.如图,与中,,,,交于D.给出下列结论:①;②;③;④.其中正确的结论是__________(填写所有正确结论的序号).19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.小明解答“先化简,再求值:,其中”的过程如下.请指出解答过程中错误步骤的序号,并写出正确的解答过程.解:当时,原式22.如图,在四边形中,,过点作,垂足为点,过点作,垂足为点,且.(1)求证:;(2)连接,且平分交于点.求证:是等腰三角形.23.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x-1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设则有故此解得所以=问题解决:(1)设,求A、B.(2)直接写出方程的解.24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.。

湘教版八年级数学上册期中考试及答案【必考题】

湘教版八年级数学上册期中考试及答案【必考题】

湘教版八年级数学上册期中考试及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知:20n 是整数,则满足条件的最小正整数n ( ) A .2 B .3 C .4 D .54.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x x x x++=-- (2)()()21112x x x x =+++-2.先化简再求值:(a﹣2 2ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.3.解不等式组:1225112xxx⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、D6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、-153、13k <<.4、135°5、406、2三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、原式=a b a b -=+3、﹣4≤x <1,数轴表示见解析.4、略5、略6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、单选题1.口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为()A.0.136×10﹣3B.1.36×10﹣3C.1.36×10﹣4D.13.6×10﹣52.计算111a a a +--的结果是()A.11aa +-B.﹣1aa +C.﹣1D.1﹣a3.下列计算正确的是()A.a 2+a 3=a5B.a 6÷a 2=a 3C.(﹣2)﹣1=2D.(a 2)﹣3=a ﹣64.若分式241x x -+的值为0,则x 的值是()A.±2B.﹣2C.0D.25.可以用来说明命题“若m<n,则1m >1n ”是假命题的反例是()A.m=2,n=﹣3B.m=﹣2,n=3C.m=﹣2,n=﹣3D.m=2,n=36.如图,在△ABC 中,AB=AC,∠A=40°,AB 的垂直平分线交AB 于点D,交AC 于点E,连接BE,则∠CBE 的度数为()A.30°B.40°C.70°D.80°7.如图,在等腰三角形ABC 中,BD 为∠ABC 的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2a b+B.2a b-C.a-b D.b-a8.如图,若△ABD≌△EBC,且AB=3,BC=7,则DE 的长为()A.2B.4C.10D.39.若a=-0.32,b=-32,c=21()3--,d=01(3,则a、b、c、d 从大到小依次排列的是()A.a<b<c<dB.d<a<c<b C.b<a<d<c D.c<a<d<b10.张老师和李老师同时从学校出发,步行15千米去县城购买文具,张老师比李老师每小时多走1千米,结果比李老师早到30分钟,两位老师每小时各步行多少千米?设李老师每小时走x 千米,依题意,得到的方程是()A.151x +﹣15x =12B.1515112x x =++C.15151x x -+=30D.1515112x x -=-二、填空题11.命题“对顶角相等”的逆命题是一个__________命题(填“真”或“假”).12.分式2235,,346a b ab的最简公分母是_____________.13.如图,点P 是等边△ABC 的边BC 上一点,以A 点为圆心,以AP 的长为半径画弧,交AC 于D 点,连接PD,若∠APD=80°,则∠DPC 的度数为___.14.已知a,b,c 是△ABC 的三边长,a,b 满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=_____.15.若关于x 的方程22x a x ++=﹣1的解为正数,则实数a 的取值范围是___.16.若m 2=3,my=5,则m 6﹣2y 的值是___.17.如图,在△ABC 中,点D.E.F 分别是线段BC、AD、CE 的中点,且ABC S =28cm ,则BEF S =____2cm 18.如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数是____________.三、解答题19.计算(1)021|2|(2)()3π--+-+-+(﹣1)2021(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2(3)2a a 1-﹣a﹣1(4)223424()()()a a b b ab÷20.解方程(1)21133x x x x =-++(2)2227361x x x x x x +=+--21.先化简,再求值:2112111x x x x +⎛⎫-÷-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值.22.已知:如图点A、B、C 在同一直线上,且AM=AN,BM=BN,求证:CM=CN.23.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值?24.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.25.(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD,连接AC 和BD,相交于点E,连接BC.求∠AEB 的大小;(2)如图2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.参考答案1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000136=1.36×10-4.故选:C.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C【解析】【分析】通分将原式化简,即可求解.【详解】解:111 111a aa a a-+==----.故选:C【点睛】本题主要考查了分式的加减,熟练掌握利用分式的基本性质进行通分是解题的关键.3.D【解析】【分析】结合幂的乘方与积的乘方、负整数指数幂、同底数幂的除法进行求解即可.【详解】解:A、a2和a3不是同类项,不能合并,该选项不符合题意;B、a6÷a2=a4,原计算错误,该选项不符合题意;C、(﹣2)﹣1=-12,原计算错误,该选项不符合题意;D、(a 2)﹣3=a ﹣6,正确,该选项符合题意;故选:D.【点睛】本题考查了幂的乘方与积的乘方、负整数指数幂、同底数幂的除法,解答本题的关键在于熟练掌握各知识点的概念和运算法则.4.D【解析】【分析】根据分式的值为0的条件,可得240x -=,且10x +≠,解出即可.【详解】解:∵分式241x x -+的值为0,∴240x -=,且10x +≠,解得:2x =.故选:D【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键.5.B【解析】【分析】所选取的m、n 的值符合题设,则不满足结论即作为反例.【详解】解:A、当m=2,n=﹣3时,1123>-,故m=2,n=﹣3不是是命题“若m<n,则1m >1n”的反例;B、当m=−2,n=3时,−12<13,故m=−2,n=3是命题“若m<n,则1m >1n”的反例;C、当m=﹣2,n=﹣3时m n >不符合m<n,故m=﹣2,n=﹣3不是是命题“若m<n,则1m >1n”的反例;D当m=2,n=3时1123 ,故m=2,n=3不是是命题“若m<n,则1m>1n”的反例;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解题关键是掌握命题与定理.6.A【解析】【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质与判定,三角形内角和定理,熟练掌握相关性质,运用数形结合思想是解题的关键.7.C【解析】【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.【详解】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故选:C.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和判定得出BD=BC=AD解答.8.B【解析】【分析】根据△ABD≌△EBC,且AB=3,BC=7,可以得到BD和EB的长,然后即可得到DE的长,本题得以解决.【详解】解:∵△ABD≌△EBC,且AB=3,BC=7,∴AB=EB=3,BD=BC=7,∴DE=BD−EB=7−3=4,故选:B.【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.9.C【解析】【详解】解:∵a=-0.09,b=-9,c=9,d=1,∴可得:b<a<d<c.故选C.10.B【分析】设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意,即可列出方程.【详解】解:设李老师每小时走x 千米,则张老师每小时走()1x +千米,根据题意得:1515112x x =++.故选:B【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.11.假【解析】【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【详解】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.12.212a b【解析】【分析】找分母各项的系数的最小公倍数,和相同字母的次数最高的项.【详解】解:根据题意:最简公分母为212a b .故答案为:212a b13.20°【解析】在△APD 中,求得∠PAD 的度数,进而求得∠APC 的度数,进而即可求解;【详解】在△APD 中,AP=AD,∴∠APD=∠ADP=80°∴∠PAD=180°−80°−80°=20°∴∠BAP=60°−20°=40°∴∠APC=∠B+∠BAP=60°+40°=100°∴∠DPC=∠APC −∠APD=100°−80°=20°.故答案为:20°.【点睛】本题主要考查了等腰三角形的性质和等边三角形的性质,题目比较简单,属于基础性题目.14.7【解析】【分析】根据非负数的性质列式求出a、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a,b 满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为:7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.a<−2【解析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于a的不等式,从而求得a的范围.【详解】解:∵于x的方程22x ax++=−1有解,∴x+2≠0,去分母得:2x+a=−x−2即3x=−a−2解得x=−2 3 a+根据题意得:−23a+>0解得:a<−2故答案是:a<−2.【点睛】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.16.27 25【解析】【分析】根据幂的运算公式即可求解.【详解】∵m2=3,my=5,∴m6﹣2y=(m2)3÷(my)2=33÷52=27 25.故答案为:27 25.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.17.2.【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点D 是BC 的中点,∴ABD S =ADC S △=12ABC S =4,∵点E 是AD 的中点,∴ABE S =12ABD S =2,ACE S =12ADC S △=2,∴ABE S +ACE S =4,∴BCE S =8-4=4,∵点F 是CE 的中点,∴BEF S =12BCE S =12×4=2.故答案为:2.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等(同)底等(同)高的三角形的面积相等.18.360【解析】【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【详解】解:∵∠1是△ABG 的外角,∴∠1=∠A+∠B,∵∠2是△EFH 的外角,∴∠2=∠E+∠F,∵∠3是△CDI 的外角,∴∠3=∠C+∠D,∵∠1、∠2、∠3是△GIH 的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.19.(1)11;(2)1014427m n --;(3)11a -;(4)3256a 【解析】【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)根据整式混合运算法则计算可求解;(3)根据分式的混合运算法则即可求出答案;(4)根据分式的混合运算法则即可求出答案.【详解】(1)021|2|(2)()3π--+-+-+(﹣1)2021=2+1+91-,11=;(2)(﹣3m 2n ﹣2)﹣3÷(﹣2m ﹣2n 4)﹣2664811274m n m n --⎛⎫⎛⎫=-÷ ⎪ ⎪⎝⎭⎝⎭,1014427m n -=-;(3)2a a 1-﹣a﹣1()()21111a a a a a +-=---,2211a a a -+=-,11a =-;(4)223424()()()a a b b ab ÷432644256a a b b a b=÷ ,462344256a b b a a b= ,3256a =.【点睛】本题主要考查有理数的混合运算,整式的混合运算,分式的混合运算,绝对值,负整数指数幂,乘方,掌握运算法则是解题的关键.20.(1)34x =;(2)37x =【解析】【分析】(1)把分式方程转化为整式方程,即可求解,再验根即可.(2)两边同乘以最简公分母(1)(1)x x x +-,即可把分式方程转化为整式方程,即可求解,再验根即可.【详解】解:(1)21133x x x x =-++,()()312131x x x x x +-=++,()()()3163131x x x x x +-=++,两边同时乘以()31x +得:633x x x =+-,43x =,34x =,经检验34x =是原方程的根.(2)2227361x x x x x x +=+--,()()()()73611+11x x x x x x x +=+--,两边同乘以(1)(1)x x x -+得:()()()()()()()()71316111111x x x x x x x x x x x x x -++=+-+-+-,7(1)3(1)6x x x x -++=,277336x x x x -++=,271030x x -+=,()()1730x x --=,10x -=或730x -=,解得:1231,7x x ==,∵220,10x x x -≠-≠,∴1x ≠,∴37x =,经检验37x =是原方程的根.【点睛】本题考查求解分式方程,一元二次方程.把分式方程转化为整式方程是解题关键,且需要注意验根.21.22x +,1【解析】【分析】根据分式的运算法则进行运算求解,最后代入0x =求值即可.【详解】解:原式112(1)(1)(1)(1)(1)(1)⎡⎤+-+=-÷⎢⎥-+-+-+⎣⎦x x x x x x x x x 11(1)(1)(1)(1)2⎡⎤+-+-+=⨯⎢⎥-++⎣⎦x x x x x x x 2(1)(1)(1)(1)2⎡⎤-+=⨯⎢⎥-++⎣⎦x x x x x 22x =+.∵x+1≠0且x-1≠0且x+2≠0,∴x≠-1且x≠1且x≠-2,当0x =时,分母不为0,代入:原式2=102=+.【点睛】本题考查分式的加减乘除混合运算,解题的关键是掌握运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.22.见解析【解析】【分析】先证出MAB NAB ≅ 进而得到MAB NAB ∠=∠,再证出AMC ANC ≅ 即可得出结论.【详解】解:∵AM=AN,BM=BN,AB AB =,∴MAB NAB ≅ ,∴MAB NAB ∠=∠,∵AM=AN,AC AC =,∴AMC ANC ≅ ,∴CM=CN.【点睛】本题考查全等三角形的判定与性质,解题关键是掌握全等三角形的判定与性质.23.5a =-或12-或2-.【解析】【分析】方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,利用方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值.【详解】解:方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,∴−1−2x=ax+2,把1代入可得a=−5,2代入可得a=12-,此时方程无解;又a=−2时方程无解,∴a=−5或12-,或−2,【点睛】本题考查分式方程,解题的关键是熟练掌握分式方程的化简.24.(1)60(2)24【解析】【分析】本题主要考查分式方程的应用.等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:1011(20140x x ++⨯=解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:(114060+)y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.25.(1)60°;(2)60°【解析】【详解】试题分析:(1),由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,从而利用外角的性质可得∠AEB=∠4+∠6=∠4+∠5=∠2=60°;(2)由△DOC和△ABO都是等边三角形,且点O是线段AD的中点,可得OD=OC=OB=OA,∠1=∠2=60°,∠4=∠5,∠6=∠7,根据三角形内角和可得∠5=∠6,从而利用外角的性质可得∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2.解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.。

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试题2022年一、单选题1.下列各式中,是分式的是( )A .15B .x πC .y2 D .12m +2.下列计算正确的是( ) A .325a a a ⋅= B .236a a a +=C .824a a a÷= D .()325a a =3.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cm B .4cm ,6cm ,8cm C .5cm ,6cm ,12cm D .2cm ,3cm ,5cm 4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或0 5.下列命题中,错误的是( ) A .三角形两边之和大于第三边.B .三角形的外角等于与它不相邻的两个内角和.C .三角形的一条中线能将三角形面积分成相等的两部分.D .若5x =,则5x =.6.对分式2yx ,23x y,14xy 通分时,最简公分母是( )A .212xyB .2212x yC .224xyD .2324x y 7.下面是四位同学解方程2111xx x+=--过程中去分母的一步,其中正确的是( ) A .21x x +=- B .21x x -=- C .21x x -=- D .21x +=8.已知等腰三角形的一个内角为70°,则另两个内角的度数是( ) A .55°,55° B .70°,40° C .55°,55°或70°,40° D .以上都不对9.已知:222211⨯=+,333322⨯=+,444433⨯=+,…,若1010a ab b ⨯=+(a 、b 都是正整数),则a b +的最小值是( )A .16B .17C .18D .1910.如图,△ABC 中,△ABC 与△ACB 的平分线交于点F ,过点F 作DE△BC 交AB 于点D ,交AC 于点E ,那么下列结论:△△BDF 和△CEF 都是等腰三角形;△DE =BD+CE ;△△ADE 的周长等于AB 与AC 的和;△BF =CF .其中正确的有( )A .△△△B .△△△△C .△△D .△ 二、填空题 11.要使分式51x -有意义,则x 的取值范围为_________. 12.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为______.13.如图,在△ABC 中,D 是BC 延长线上一点,△B=40°,△ACD=120°,则△A=____.14.已知2310t t -+=,则1t t+=________.15.解关于x 的分式方程2022mx x x-=--有增根,则m 的值是______. 16.在ABC 中,7AB =,4AC =,BC 的垂直平分线分别交AB 、BC 于D 、E ,连接DC ,则ACD △的周长为______.17.一个等腰三角形的底边长为7,一腰上的中线把它的周长分成的两部分的差为3,则这个等腰三角形的腰长为______. 18.若x ,y 均为实数,432021x =,472021y =,则4347xy xy⋅=______x y +;11xy+=_______. 三、解答题 19.计算: (1)()()1202111 3.142-⎛⎫--π-+ ⎪⎝⎭(2)m nn m m n+--20.解分式方程: (1)532x x=-; (2)11322xx x-=---21.先化简:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,再从-2,0,2中选择一个恰当的数代入求值.22.如图,在ABC 中,AB AC =,D 为BC 边上一点,E 为AD 边的中点,40B ∠=︒,30DAB ∠=︒(1)求DAC ∠的度数;(2)求DCE ∠的度数.23.已知:如图,AE 、BD 相交于点O ,点C 是线段AB 的中点,CE CD =,ACD BCE ∠=∠, (1)求证:ACE BCD ≌△△; (2)判断OAB 的形状,并说明理由.24.某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加1056元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为1000元,那么该商店4月份销售这种商品的利润是多少元?25.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么称这个分式为“和谐分式”.(1)下列分式中,______是和谐分式(填写序号即可);△211x x -+;△222a b a b --;△22x y x y +-;△()222a b a b -+;△2213x x x-+. (2)若a 为正整数,且216x x ax -++为和谐分式,=a ______;(3)利用和谐分式,化简:22344a a bab b b -÷-26.已知ABC 中,12AB AC BC ===.点P 从点B 出发沿射线BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D . (1)如图△,过点P 作PF AQ ∥交BC 于点F ,求证:C PDF QD △△≌; (2)如图△,当点P 为AB 的中点时,求CD 的长;(3)如图△,过点P 作PE BC ⊥于点E ,在点P 从点B 向点A 移动的过程中,线段DE 的长度是否保持不变?若保持不变,请求出DE 的长度,若改变,请说明理由.参考答案1.D 【解析】 【分析】根据分式的定义逐项分析即可,一般地,如果A 、B (B 不等于零)表示两个整式,且B 中含有字母,那么式子AB就叫做分式,其中A 称为分子,B 称为分母. 【详解】A.15是整式,不符合题意; B.xπ是整式,不符合题意;C.y2是整式,不符合题意; D.12m+是分式,符合题意; 故选D 【点睛】本题考查了分式的定义,掌握分式的定义是解题的关键. 2.A 【解析】 【分析】根据同底数幂的乘除法、合并同类项、幂的乘方法则逐项判断即可得. 【详解】 A 、325a a a ⋅=,此项正确;B 、235a a a +=,此项错误;C 、826a a a ÷=,此项错误;D 、()326a a =,此项错误;故选:A . 【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键. 3.B 【解析】 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】解:根据三角形的三边关系,知 A 、1+2<4,不能组成三角形; B 、4+6>8,能组成三角形; C 、5+6<12,不能够组成三角形; D 、2+3=5,不能组成三角形. 故选:B .此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得:x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D【解析】【分析】利用三角形的三边关系、外角的性质、中线的性质及绝对值的定义分别判断后即可确定正确的选项.【详解】解:A、三角形的两边之和大于第三边,正确,该选项不符合题意;B、三角形的外角等于与它不相邻的两个内角的和,正确,该选项不符合题意;C、三角形的一条中线能将三角形分成面积相等的两部分,正确,该选项不符合题意;D、若|x|=5,则x=±5,故错误,该选项符合题意,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、外角的性质、中线的性质及绝对值的定义等知识,难度不大.6.A【分析】按照找最简公分母的方法即可确定三个分式的最简公分母.【详解】12xy;系数的最小公倍数为12,因式x与y的最高次数分别为一次与二次,所以最简公分母为2故选:A【点睛】本题考查了求分式分母的最简公分母,其步骤是:先找分母系数的最小公倍数,找分母中所有因式的最高次幂,它们的乘积就是各分母的最简公分母.当分母是多项式时要分解因式.7.B【解析】【分析】去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.【详解】解:方程的两边同乘(x−1),得2−x=x−1.故选:B.【点睛】本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.C【解析】【详解】试题分析:分别把70°看做等腰三角形的顶角和底角,分两种情况考虑,利用三角形内角和是180度计算即可.解:当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故选C.考点:等腰三角形的性质.9.D 【解析】 【分析】根据前几个式子的特征可得规律:11n nn n n n ⨯=+--,根据规律求出a ,b ,再求值即可. 【详解】解:222211⨯=+,333322⨯=+,444433⨯=+,…,由已知可得规律:11n nn n n n ⨯=+--, △a b ×10=ab+10 , △a=10,b=9, △a+b=19. 故选D . 【点睛】本题考查用代数式表示规律,解题关键是观察分析前几个式子的特征得出规律. 10.A 【解析】 【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质. 【详解】 解:△DE△BC ,△△DFB=△FBC ,△EFC=△FCB ,△△ABC 中,△ABC 与△ACB 的平分线交于点F , △△DBF=△FBC ,△ECF=△FCB , △△DBF=△DFB ,△ECF=△EFC , △DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形; 故△正确;△DE=DF+EF=BD+CE , 故△正确;△△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ; 故△正确;△△ABC 不一定等于△ACB , △△FBC 不一定等于△FCB , △BF 与CF 不一定相等, 故△错误. 故选:A . 【点睛】本题考查了等腰三角形的性质,角平分线的性质及平行线的性质,熟悉相关性质是解答本题的关键. 11.x≠1 【解析】 【详解】 由题意得 x -1≠0, △x≠1. 故答案为x≠1. 12.4210-⨯ 【解析】 【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解. 【详解】解:将数0.0002用科学记数法表示为4210-⨯; 故答案为4210-⨯. 【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 13.80︒##80度 【解析】 【分析】根据三角形的外角性质即可得. 【详解】解:由三角形的外角性质得:ACD A B ∠=∠+∠,40,120B ACD ∠=︒∠=︒,40120A ∴∠+︒=︒,解得80A ∠=︒,故答案为:80︒.【点睛】本题考查了三角形的外角性质,熟练掌握三角形的外角性质是解题关键.14.3.【解析】【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可.【详解】 解:22111t t t t t t t++=+=, 又△2310t t -+=,△213t t +=, 则2113=3t t t t t t++==, 故答案为:3.【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算.15.-1【解析】【分析】由分式方程的最简公分母为x -2,且分式方程有增根知增根为x=2,将x=2代入去分母后所得整式方程,解之可得答案.【详解】解:方程两边都乘以x -2,得:2+mx=0,△分式方程有增根,△分式方程的增根为x=2,将x=2代入2+mx=0,得:2+2m=0,解得m=-1,故答案为:-1.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:△化分式方程为整式方程;△把增根代入整式方程即可求得相关字母的值.16.11【解析】【分析】根据垂直平分线的性质可得DC DB =,进而计算三角形的周长为+AB AC ,代入求值即可.【详解】 解:DE 是BC 的垂直平分线,∴DC DB =,7AB =,4AC =,∴ACD △的周长为4711AC AD DC AC AD DB AC AB ++=++=+=+=故答案为:11【点睛】本题考查了垂直平分线的性质,掌握垂直平分线的性质是解题的关键.17.4或10##10或4【解析】【分析】分情况讨论,当AD AB CB CD +<+和AD AB CB CD +>+,进而求得腰长【详解】设AB AC =,D 是AC 上的中点,7BC =AD DC ∴=△如图,当AD AB CB CD +<+时,∴()()3CB CD AD AB BC AB +-+=-=7BC =4AB ∴=△如图,当AD AB CB CD +>+时,∴()()3AD AB CB CD AB BC +-+=-=7BC =10AB ∴=故答案为:4或10【点睛】本题考查了等腰三角形的定义,三角形中线的性质,分类讨论是解题的关键.18. 2021 1【解析】【分析】根据同底数幂乘法、积的乘方、幂的乘方等计算法则进行等量代换即可.【详解】解:△432021x =,472021y =△(432021)x y y =,(472021)y x x =,4347(43)(47)202120212021xy xy x y y x y x x y +⋅=⨯=⨯=,故答案为:2021;△=4)3(4347202147xy xy xy xy =⋅⨯,即20212021xy x y +=,△xy x y =+, △111x y x y xy++==, 故答案为:1.【点睛】本题主要考查同底数幂乘法、积的乘方、幂的乘方等知识点,熟练掌握以上知识点的运算法则是解决本题的关键.19.(1)0;(2)-1【解析】【分析】(1)根据零指数幂、负整数指数幂的意义计算即可;(2)根据分式的加法法则可以解答本题.【详解】解:(1)()()12021011 3.142-⎛⎫--π-+ ⎪⎝⎭ 112=--+0=;(2)m n n m m n+-- m n n m n m=--- m n n m -=- = -1.【点睛】本题考查了零指数幂、负整数指数幂以及分式的加法运算,解答本题的关键是明确零指数幂、负整数指数幂以及分式混合运算的计算方法.20.(1)3x =-;(2)无解【解析】【分析】(1)等式两边同时乘以(2)x x -转化为整式方程,解之检验即可;(2)等式两边同时乘以(2)x -转化为整式方程,解之检验即可.【详解】解:(1)532x x=-; 解:去分母,得:()532x x =-解之,得:3x =-检验,当3x =-时,()20x x -≠所以,3x =-是原方程的解;(2)11322x x x-=--- 解:去分母,得:()()1132x x =----即24=x解之,得:2x =检验,当2x =时,20x -=所以,2x =是原方程的增根,原方程无解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解题的关键,注意分式方程需要验根.21.23x x -+,23- 【解析】【分析】先化简:22169(2)14x x x x +++÷+-,再从-2,0,2中选择一个恰当的数代入求值. 【详解】 解:原式23(2)(2)2(3)x x x x x ++-=⨯++23x x -=+ 因为2x ≠±,3x ≠-,所以0x =, 代入得,原式23=-. 【点睛】本题考查了分式的化简求值,分式有意义的条件,熟练掌握运算法则是解本题的关键. 22.(1)70°;(2)15°【解析】【分析】(1)根据三角形内角和定理求得△BAC=100°,即可求解;(2)利用三角形的外角性质求得△ADC=70°,可证明△ADC 是等腰三角形,利用等腰三角形的性质即可求解.【详解】解:(1)△AB AC =,40B ∠=︒,△40C B ∠=∠=︒,△1804040100BAC ∠=︒-︒-︒=︒,又△30DAB ∠=︒,△1003070DAC ∠=︒-︒=︒;(2)△403070ADC B BAD ∠=∠+∠=︒+︒=︒,△ADC DAC ∠=∠,△AC DC =,又△E 是AD 的中点,△30215DCE ∠=︒÷=︒.【点睛】本题考查了等腰三角形的判定和性质,三角形的外角性质,熟记各图形的性质并准确识图是解题的关键.23.(1)证明见解析;(2)OAB 是等腰三角形,理由见解析.【解析】【分析】(1)先根据线段中点的定义可得AC BC =,再根据角的和差可得ACE BCD ∠=∠,然后根据三角形全等的判定定理(SAS 定理)即可得证;(2)先根据全等三角形的性质可得A B ∠=∠,再根据等腰三角形的判定即可得.【详解】证明:(1)△点C 是线段AB 的中点,△AC BC =,△ACD BCE ∠=∠,△ACD DCE BCE DCE ∠+∠=∠+∠,即ACE BCD ∠=∠,在ACE 和BCD △中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,△()ACE BCD SAS ≅;(2)OAB 是等腰三角形,理由如下:△ACE BCD ≌△△,△A B ∠=∠,△OAB 是等腰三角形.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定,熟练掌握三角形全等的判定定理是解题关键.24.(1)该商店3月份这种商品的售价是48元;(2)该商店4月份销售这种商品的利润是1216元.【解析】【分析】(1)设该商店3月份这种商品的售价为x 元,则4月份这种商品的售价为0.9x 元,根据销售量增加30件,列出分式方程,解方程求解即可;(2)设该商品的进价为y 元,先根据利润等于售价减进价乘以数量,求得商品的进价,进而求得4月份的利润 .【详解】解:(1)设该商店3月份这种商品的售价为x 元,则4月份这种商品的售价为0.9x 元,根据题意得:240024001056300.9x x+=- 解得:48x =经检验,48x =是原分式方程的解.答:该商店3月份这种商品的售价是48元.(2)设该商品的进价为y 元,根据题意得:()240048100048y -⨯= 解得:28y =,△()24001056480.9-281216480.9+⨯⨯=⨯(元) 答:该商店4月份销售这种商品的利润是1216元.【点睛】本题考查了分式方程的应用,一元一次方程的应用,找到等量关系列出方程是解题的关键.25.(1)△△;(2)5或7;(3)()4a b a b - 【解析】【分析】(1)利用和谐分式定义对各式进行一一验证即可;(2)根据中间项系数6=1×6=2×3因数分解中两正数1与6,2与3的和即可求解;(3)利用和谐分式先因式分解,再通分,去括号合并同类项,再因式分解,也变为和谐分式即可.【详解】解:(1)△211x x -+分子分母都不能因式分解,不是和谐分式; △()()2222a b a b a b a b a b --=-+-能因式分解,不能约分,是和谐分式; △()()221x y x y x y x y x y x y ++==-+--,能约分,不是和谐分式;△()()()()2222a b a b a b a b a b a b a b +---==+++,能约分,不是和谐分式; △()()()2211133x x x x x x x +--=++能因式分解,不能约分,是和谐分式; 故答案为△△;(2)△分式216x x ax -++为和谐分式,且a 为正整数, ()()()()211162316x x x x ax x x x x ---==++++++, △235a =+=,167a =+=,△5a =,7a =,故答案为5或7;(3)原式()()()()()22222222244444444a a a b a a a a ab ab b a b b b a b b a b b a b ---+=-===----()4a b a b =-. 【点睛】本题考查新定义分式,约分,利用新定义求字母的值,应用和谐分式化简分式,掌握新定义的实质是能因式分解的最简分式,明确题意,找出所求问题需要的条件是解题关键. 26.(1)见解析;(2)3;(3)线段DE 的长度保持不变,为6.【解析】【分析】(1)根据等边对等角可得,B ACB ∠=∠,根据平行线的性质可得PFB ACB ∠=∠,进而可得B PFB ∠=∠,BP FP =,等量代换可得BP CQ =,根据平行线的性质可得DPF DQC ∠=∠,以及对顶角性质PDF QDC ∠=∠,AAS 即证明D PFD QC △△≌;(2)过P 点作PF AC ∥交BC 于F ,证明BF BP =,求得6FC =,进而根据(1)的结论可得132CD DF FC ===; (3)根据等腰三角形的性质,三线合一可得BE EF =,结合(1)的结论即可得162DE EF DF BC =+==. 【详解】 解:(1)△AB AC =,△B ACB ∠=∠.△PF AC ∥,△PFB ACB ∠=∠△B PFB ∠=∠,△BP FP =由题意,BP CQ =,△FP CQ =△PF AC ∥,△DPF DQC ∠=∠.又PDF QDC ∠=∠,△D PFD QC △△≌;(2)如图,过P 点作PF AC ∥交BC 于F ,BA BC =BAC BCA ∴∠=∠PF AC ∥BAC BPF BCA BFP ∴∠=∠∠=∠, BFP BPF ∴∠=∠BF BP ∴=P 是AB 的中点162PA PB AB ∴===6BF ∴=1266FC BC BF ∴=-=-=21 由(1)知D PFD QC △△≌,CD DF = △132CD DF FC ===;(3)线段DE 的长度保持不变.如图,过点P 作PF AC ∥交BC 于F ,由(1)知PB PF =△PE BC ⊥,PF PB =△BE EF =由(1)知D PFD QC △△≌,CD DF = △162DE EF DF BC =+==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学学科期中测试卷(总分:120分 时间:120分钟)班级 姓名 得分 一、 选择题(本题共10小题,每小题3分,共30分) 1. 当x = 时,分式的xx+-11值无意. ( ) A. 0 B. 1 C. -1 D. 22. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,43. 2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.000 0016秒,将0.000 001 6用科学记数法表示为 ( )A. 71016-⨯B. 6106.1-⨯C. 5106.1-⨯D. 51610-⨯4. 分式方程3121x x =-的解为 ( ) A.1x = B. 2x = C. 4x = D. 3x = 5. 下列语句是命题的是 ( ) (1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余. (3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4)6. 如果把分式xyyx -中的x 和y 都扩大了3倍,那么分式的值 ( ) A. 扩大3倍 B. 不变 C. 缩小3倍 D. 缩小6倍7.如下图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( ) A . 60° B . 70° C . 80° D . 90°8.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于 ( ) A . 25° B . 30° C . 35° D . 40°9. 甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米。

甲骑自行车的平均速度比乙快2千米/时,AB C DE结果两人同时到达C 地,求两人的平均速度。

为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是 ( )10. 在等腰三解形ABC 中(AB =AC ≠BC ),在△ABC 所在一平面内找一点P ,使得∆PAB ,∆PAC ,∆PBC 都是等腰三解形,则满足此条件的点有 ( )个 A . 1 B. 2 C. 3 D. 4 二、填空题(本题共8小题,每小题3分,共24分)11.计算:=-+-xx x 222 .12. 若(a ﹣5)2+|b ﹣9|=0,则以a 、b 为边长的等腰三角形的周长为 . 13. 计算:20+|-3|-)21(1-= .14如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可).(14题) (15题) (17题) 15. 如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF =12,CF =3,则AC = . 16.已知311=-y x ,则分式yxy x yxy x ---+2232的值为 ___ . 17. 已知△ABC 为等边三角形,BD 为△ABC 的高,延长BC 至E ,使CE=CD=1,连接DE ,则BE= ,∠BDE= 。

18.如图,已知,DAB CAE ∠=∠,AC=AD.给出下列条件: ① AB=AE ;② BC=ED ;③ D C ∠=∠;④ E B ∠=∠.其中能使AED ABC ∆≅∆的条件为(注:把你认为正确的答案序号都填上). 三、解答题(本题共7小题,共66分) 19. (8分)计算: (1)43239227b aba b a b ⋅÷-; (2)21211x x x -++ABCD EF20. (10分) 解分式方程:(1). 221+422x x x x =-+- (2) . 22222222x x x x x x x++--=--21.(8分) 在△ABC 中,15A B B C ∠-∠=∠-∠=︒,求∠A 、∠B 、∠C 的度数22. (8分) 先化简,再求值:(﹣)÷,其中x=4.23.(10分)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . ①求证:△ABE ≌△CBD ;②若∠CAE=30°,求∠BDC 的度数.24.(10分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25(12分).如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC=,其中为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.AB CEDm(图1)(图2)(图3)m ABCDE2013年八年级数学期中考试答题卷注意:请按试题卷上的题号顺序在答题卷相应位置作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.11. 12. 13. 14.15. 16. 17. 18.三、解答题(本大题共9个小题,满分58分)19.(8分)(1)解:(2)解:20.解分式方程.(10分)(1)解:(2)解:21.(8分)解:22.(8分)化简,求值:23.(10分)(1)(2)24.(10分) 25.(12分)解:(1)(2)(3)参考答案 一、 选择题 CDBDA CCDAD 二、填空题AB CE Dm (图1)(图2)(图3)m ABCDE BFC m15. 15 16. 5317. BE=3,∠BDE=120° 18. ①③④三、解答题19.(1) 221ab- 5分 (2) x -115分 20 .(1) 2(2)2x x x +-=+ ··· 2分242x x x +-=+ ····· 3分 242x x x +-=+ ····· 3x = ········· 4分 当3x =时,042≠-x ,故是原方程的解. 5分(2)去分母,得:2(22)(2)(2)2x x x x x +--+=- 2分 解得:12x =-4分 当12x =-时,022≠-x x ,故12x =-是原方程的解. 5分 21. 设∠B=x °, 则∠A=(x+15)°, ∠C=(x-15)° 2分 ∴x+x+15+x-15=180 4分 ∴x=60 5分 ∴∠A=75°, ∠B=60°, ∠C=45° 8分 22.解:原式=(﹣)÷ 2分=×4分=﹣, 6分当x=4时,原式=﹣=﹣. 8分23.①证明:∵∠ABC=90°,D 为AB 延长线上一点, ∴∠ABE=∠CBD=90°, 1分 在△ABE 和△CBD 中,,∴△ABE ≌△CBD (SAS ); 5分 ②解:∵AB=CB ,∠ABC=90°,∴∠CAB=45°, 1分 ∵∠CAE=30°,∴∠BAE=∠CAB ﹣∠CAE=45°﹣30°=15°, 2分 ∵△ABE ≌△CBD ,∴∠BCD=∠BAE=15°, 3分24.解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品, 1分根据题意得,﹣=10, 6分解得x=40, 8分经检验,x=40是原方程的解,并且符合题意, 9分1.5x=1.5×40=60,答:甲、乙两个工厂每天分别能加工40件、60件新产品 10分25.证明:(1)∵BD⊥直线m,CE⊥直线m∴∠BDA=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD………………1分又AB=AC∴△ADB≌△CEA………………3分∴AE=BD,AD=CE∴DE=AE+AD= BD+CE………………4分(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE………………5分∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA………………7分∴AE=BD,AD=CE∴DE=AE+AD=BD+CE………………8分(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形∴∠ABF=∠CAF=60°]∴∠DBA+∠ABF=∠CAE+∠CAF∴∠DBF=∠FAE………………10分ABCED m(图1)F(图2)mABC D E∵BF=AF∴△DBF≌△EAF………………11分∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.………………12分。

相关文档
最新文档