有关仪器分析的一些概念

合集下载

仪器分析实验员必会的100个概念及问题!(含气相、液相、质谱等)

仪器分析实验员必会的100个概念及问题!(含气相、液相、质谱等)

仪器分析实验员必会的100个概念及问题!(含气相、液相、质谱等)1 色谱分析法:色谱法是一种分别分析方法。

它利用样品中各组分与流淌相和固定相的作用力不同(吸附、安排、交换等性能上的差异),先将它们分别,后按肯定挨次检测各组分及其含量的方法。

2 色谱法的分别原理:当混合物随流淌相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按肯定挨次从柱中流出。

这种利用各组分在两相中性能上的差异,使混合物中各组分分别的技术,称为色谱法。

3 流淌相:色谱分别过程中携带组分向前移动的物质。

4 固定相:色谱分别过程中不移动的具有吸附活性的固体或是涂渍在载体表面的液体。

5 色谱法的特点:(1)分别效率高,简单混合物,有机同系物、异构体。

(2)灵敏度高,可以检测出g.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。

(3)分析速度快,一般在几分钟或几非常钟内可以完成一个试样的分析。

(4)应用范围广,气相色谱:沸点低于400℃的各种有机或无机试样的分析。

液相色谱:高沸点、热不稳定、生物试样的分别分析。

(5)高选择性:对性质极为相像的组分有很强的分别力量。

不足之处:被分别组分的定性较为困难。

6 色谱分析法的分类:按两相状态分类,按操作形式分类,按分别原理分类。

7 按两相状态分类:气相色谱(Gas Chromatography, GC),液相色谱(Liquid Chromatography, LC),超临界流体色谱 (Supercritical Fluid Chromatography, SFC)。

气相色谱:流淌相为气体(称为载气)。

常用的气相色谱流淌相有N2、H2、He等气体,按分别柱不同可分为:填充柱色谱和毛细管柱色谱;按固定相的不同又分为:气固色谱和气液色谱。

名词解释-仪器分析

名词解释-仪器分析
提纯。
适用范围有限
不同的仪器分析方法有不同的适用范围, 对于某些特定类型的样品或特定组分的测 定可能不适用。
对操作人员要求高
仪器分析需要操作人员具备较高的专业知 识和技能,能够正确使用和维护仪器,保 证分析结果的准确性和可靠性。
05 仪器分析的发展趋势
高通量和高灵敏度仪器的发展
总结词
随着科学技术的发展,仪器分析的高通量和 高灵敏度已成为重要的发展趋势。
红外光谱法是通过测量样品对红外光的吸收程度,来确定样品中分子的结构和组成。紫外-可见光谱法则是通过测量样品对紫 外-可见光的吸收和反射程度,来确定样品中分子的结构和组成。拉曼光谱法则是通过测量拉曼散射光的波长和强度,来确定 样品中分子的结构和组成。
电化学分析法
电化学分析法是利用电化学反应进行分析的方法。根据电化学反应过程中电流、电压、电导等参数的 变化,可以确定样品中物质的种类和浓度。电化学分析法包括电位分析法、伏安分析法、电导分析法 等。
详细描述
高灵敏度仪器能够检测更低浓度的物质,有 助于发现和诊断早期疾病,保护环境和食品 安全。高通量仪器能够在短时间内处理大量 样本,提高分析效率,满足大规模筛查和个 性化医疗的需求。
微型化与便携式仪器的发展
要点一
总结词
要点二
详细描述
仪器分析的微型化和便携化使得检测更为便捷,特别适用 于现场快速检测和移动医疗。
多技术联用仪器将电化学、光学、质谱等多种检测技术 集成在一个仪器中,充分发挥各种技术的优势,提高检 测的准确性和可靠性。这种仪器可以同时检测多种指标 ,提供更全面的信息,适用于复杂样品的分析和跨学科 的研究领域。
感谢您的观看
THANKS
VS
原子吸收光谱法是通过测量样品中原 子对特定波长光的吸收程度,来确定 样品中元素的含量。原子发射光谱法 则是通过测量样品中原子发射出的光 子能量和数量,来确定样品中元素的 种类和含量。

(完整版)仪器分析重点知识点整理

(完整版)仪器分析重点知识点整理

仪器分析重点知识点整理一,名词解释。

吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数A=abc =lg(I0/It)透光率(T):透射光强度与入射光强度之比T=I0/It摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象浓色效应(增色效应):使化合物吸收强度增加的效应淡色效应(减色效应):使化合物吸收强度减弱的效应吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带R带:Radikal(基团) ,是由n →π*跃迁引起的吸收带K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带E带:也是芳香族化合物特征吸收带,分为E1、E2紫外吸收曲线(紫外吸收光谱):最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光分子荧光:?荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰原子吸收光谱:?保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来红外线:波长为0.76-500um的电磁波红外光谱:又称分子振动转动光谱,属分子吸收光谱。

仪器分析及其方法

仪器分析及其方法

仪器分析及其⽅法仪器分析及其⽅法1.仪器分析概述1.1仪器分析概念及应⽤对象仪器分析是化学学科的⼀个重要分⽀,它是以物质的物理和物理化学性质为基础建⽴起来的⼀种分析⽅法。

指采⽤⽐较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来对物质进⾏定性分析,定量分析及形态分析的⼀类⽅法。

仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析⽅法。

仪器分析的分析对象⼀般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度⾼;⽽化学分析⼀般是半微量(0.01-0.1g)、常量(>0.1g)组分的分析,准确度⾼。

1.2仪器分析的基本特点及主要分析⽅法仪器分析的灵敏度⾼、取样量⼩、低浓度下的分析准确度⽐较⾼,另外分析迅速,可以在不破坏式样的情况下进⾏分析,适⽤于考古、⽂物等特殊领域的应⽤,其专⼀性强,便于遥测、遥控及⾃动化,操作极其简便,但仪器设备较复杂,价格较昂贵。

仪器分析⽅法所包括的分析⽅法很多,⽬前有数⼗种之多。

每⼀种分析⽅法所依据的原理不同,所测量的物理量不同,操作过程及应⽤情况也不同。

本实验将对光谱分析法、原⼦吸收和原⼦荧光光谱分析法、紫外-可见光光度分析法、质谱法、⾊谱法、⽓相⾊谱法及⾼效液相⾊谱法进⾏阐述。

1.3仪器分析的发展历程及重要意义1.3.1发展历程经过19世纪展,到20世纪20~30年代,分析化学已本成熟,它不再是各种分析⽅法的简单堆砌,已经从经验上升到了理论认识阶段,建⽴了分析化学的基本理论。

20世纪40年代以后,⼀⽅⾯由于⽣产和科学技术发展的需要,另⼀⽅⾯由于物理学⾰命使⼈们的进⼀步深化,分析化学也发⽣了⾰命性的变⾰,从传统的化学分析发展为仪器分析。

在仪器的发展中,理论和⽅法的相互作⽤,需要中介和桥梁,这就是技术。

理论要起指导作⽤,要转化为⽅法,需要特定的仪器、设备和试剂。

仪器分析概念及知识梳理

仪器分析概念及知识梳理

仪器分析(1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。

答:(1)仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。

(2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。

(3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

(1)原子光谱和分子光谱;(2)原子发射光谱和原子吸收光谱;(3)统计权重和简并度;(4)分子振动光谱和分子转动光谱;(5)禁戒跃迁和亚稳态;(6)光谱项和光谱支项;(7)分子荧光、磷光和化学发光;(8)拉曼光谱。

答:(1)由原子的外层电子能级跃迁产生的光谱称为原子光谱;由分子的各能级跃迁产生的光谱称为分子光谱。

(3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J +1个不同的支能级,2J+1称为能级的简并度。

(4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。

(5)不符合光谱选择定则的跃迁叫禁戒跃迁;(6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n 2S + 1 L;把J值不同的光谱项称为光谱支项,表示为n 2 S + 1 LJ。

(7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

仪器分析的概念

仪器分析的概念

一.仪器分析的重要概念仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法,测定时常常需要使用比较复杂的仪器。

1.仪器分析与化学分析相比,有如下特点:(1)灵敏度高,检测下限可降低。

(2)选择性好(3)操作简便,分析速度快,易于实现自动化(4)相对误差较大(5)需要价格比较昂贵的专用仪器2.仪器分析的分类(1)光学分析法:基于电磁波作用于待测物质后产生的辐射信号或所引起的变化而建立的分析方法。

可分为非光谱法和光谱法两类。

非光谱法不是以光的波长为特征信号,而是通过测量光的某些其他性质,如反射、折射、干涉、衍射和偏振等变化建立起来的方法。

光谱法则是以光的发射、吸收、散射和荧光为基础建立起来的方法(2)电化学分析法:根据物质在溶液中和电极上的电化学性质为基础建立起的方法(3)色谱分析法:根据混合物的各组分在互不相溶的两相(固定相和流动相)中吸附能力、分配系数或其他亲和作用的差异而建立起的分离分析方法二.光分析仪器基本组件用来研究吸收、发射或荧光的电磁辐射的强度和波长的关系的仪器叫作光谱仪或分光光度计。

这类仪器一般包括5个基本单元:光源、单色器、样品容器、检测器和读出器件1.光源:有连续光源和线光源等,一般连续光源主要用于分子吸收光谱法,线光源用于荧光、原子吸收和Raman光谱法。

对光源的要求:输出功率大(灵敏度高)、稳定(重现性好)长的使用寿命。

激光:强度高、方向性和单色性好。

2.单色器:将“复合光”分开为一系列“单一”波长的“单色光”的器件。

理想的100%的单色光是不可能达到的,实际上只能获得具有一定“纯度”的单色光,即该“单色光具有一定的宽度(有效带宽)。

有效带宽越小,分析灵敏度越高、选择性越好、线性相关性也越好。

单色器构成:入射(出射)狭缝、准直镜、色散元件、聚焦透镜。

3.吸收池:盛放试样的吸收池由光透明材料制成。

在紫外光区工作时,采用石英材料;可见光区,则用硅酸盐玻璃;红外光区,则可根据不同波长范围选用不同材料的晶体制成吸收池的窗口4.检测器:光谱仪的检测器是一个光学换能器.光电转换器是将光辐射转化为可以测量的电信号的器件。

仪器分析课件

仪器分析课件

仪器分析课件第1章:仪器分析概述1.1 仪器分析的定义1.1.1 仪器分析的概念1.1.2 仪器分析的历史发展1.2 仪器分析的基本原理1.2.1 仪器分析的基本概念1.2.2 仪器分析的分类和特点1.2.3 仪器分析的基本原理1.3 仪器分析的应用领域1.3.1 生物医药领域中的仪器分析1.3.2 环境监测中的仪器分析1.3.3 食品安全领域中的仪器分析1.3.4 能源领域中的仪器分析1.3.5 其他领域中的仪器分析第2章:常见仪器分析方法2.1 光谱分析法2.1.1 紫外可见光谱分析法2.1.2 红外光谱分析法2.1.3 质谱分析法2.1.4 核磁共振光谱分析法2.2 色谱分析法2.2.1 气相色谱分析法2.2.2 液相色谱分析法2.2.3 离子色谱分析法2.2.4 薄层色谱分析法2.3 电化学分析法2.3.1 电解法分析法2.3.2 电位法分析法2.3.3 极谱分析法2.3.4 电化学分析中的仪器设备2.4 质谱分析法2.4.1 质谱基本原理2.4.2 质谱原理及应用第3章:仪器分析的操作流程3.1 样品准备3.1.1 样品采集3.1.2 样品制备及处理3.2 仪器操作3.2.1 仪器的打开与关闭3.2.2 仪器的参数选择和调整 3.2.3 仪器的操作注意事项3.3 数据处理与分析3.3.1 数据采集与记录3.3.2 数据处理软件的使用 3.3.3 数据分析与解释第4章:仪器分析的常见问题与解决方法4.1 仪器故障与维护4.1.1 仪器常见故障原因4.1.2 仪器故障的排除方法4.1.3 仪器维护的注意事项4.2 数据异常及其处理4.2.1 数据异常的原因分析4.2.2 数据异常的处理方法4.3 实验误差及其控制4.3.1 实验误差的分类4.3.2 实验误差的产生原因4.3.3 实验误差的控制方法第5章:仪器分析的发展趋势5.1 仪器分析技术的创新5.1.1 新兴仪器分析技术的引入5.1.2 前沿仪器分析技术的研究进展5.2 仪器分析技术的应用推广5.2.1 实验室仪器的普及与应用5.2.2 仪器检测技术的应用领域扩展5.3 仪器分析技术的发展趋势5.3.1 仪器分析技术的自动化与智能化5.3.2 仪器分析技术在快速检测中的应用结语通过本课件的学习,你将了解到仪器分析的基本概念和原理,熟悉常见的仪器分析方法和操作流程,掌握解决仪器故障和数据异常的方法,了解仪器分析的发展趋势。

仪器分析的概念.

仪器分析的概念.

仪器分析的概念1.仪器分析的定义仪器分析是指采用比较复杂的仪器设备,通过测定物质的物理或物理化学性质(参数)的变化,来确定物质的组成、结构及其相对含量的一门科学。

值得注意的是:仪器分析法与化学分析法的本质区别并不是使用复杂、大型的仪器设备,而是测定的基本原理(参数)的不同。

化学分析法是依靠物质的化学性质进行测定的,其测定的关键步骤肯定涉及化学反应;而仪器分析是依靠物质的物理或物理化学性质进行测定的,其测定的关键步骤一般不会涉及化学反应。

例如光学分析中的比色分析法是一种通过比较溶液颜色深浅,来判断溶液浓度的分析方法,而比色法中的目视比色法,其测定过程仅仅用到了比色管这一简单玻璃仪器,但由于比色测定的参数,即颜色,属于物质的物理性质,因此,目视比色法应属于仪器分析的范畴。

仪器分析的应用极为广泛,从分析对象上看,各种仪器分析方法相结合,几乎可以测定所有的物质;从分析任务上看,仪器分析是一种既可以定性也可以定量的分析方法。

定性可以确定物质的组成和结构,定量可以测定物质的相对含量。

2.仪器分析与化学分析的关系仪器分析和化学分析是分析化学学科的两个分支,二者相辅相成,密不可分。

首先仪器分析以化学分析为基础,不能脱离化学分析而独立存在。

例如,仪器分析是一种相对分析法,需要纯物质或已知标准物质作为参照,而这些物质的获得要依靠化学分析法获得。

同时,在进行仪器分析之前的样品处理过程(如分离、富集、除杂等)也需要化学分析法来实施。

此外,仪器分析是分析化学学科的发展趋势。

随着现代科学技术的飞速进步,分析化学在分析方法和实验技术上都发生着日新月异的变化,尤其是仪器分析技术,由于具有一系列化学分析不具备的优点,已经在生产生活中起到了越来越重要的作用,仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,因此,仪器分析法逐步取代化学分析法是必然的趋势,是分析化学发展的方向。

仪器分析期末概念总结

仪器分析期末概念总结

仪器分析期末概念总结一、仪器分析的基本概念和原理仪器分析是指利用各种仪器设备进行物质或样品的定性、定量、结构、含量、纯度等方面的分析的一种方法。

仪器分析是现代分析化学的重要组成部分,具有灵敏、准确、可靠等特点。

仪器分析的原理主要涉及到仪器的结构、检测信号的产生、传感器的作用,以及物理化学过程的基础原理等。

在仪器分析中,有许多基本概念需要了解。

首先是仪器的精密度和准确度。

精密度是指在相同条件下,测量结果的一致性和重复性;准确度是指测量结果与真实值之间的接近程度。

仪器的精密度越高,能够提供更加一致和可靠的结果;而准确度则取决于仪器的校准和标定过程。

其次是仪器的探测极限。

探测极限是指仪器对于某一分析物质最低浓度的检测能力。

常用的探测极限包括检测极限和浓度极限,检测极限是指能够被仪器可靠检测到的最低浓度;浓度极限则是指仪器能够给出准确结果的最低浓度。

最后是仪器的线性范围和选择性。

线性范围是指在该范围内,仪器输出信号与输入浓度呈线性关系;而选择性是指仪器对于被测物质的专属性,即在样品中,仪器只检测感兴趣的物质,不受其他物质的干扰。

仪器的线性范围和选择性直接影响到结果的准确性和可靠性。

二、常用仪器的分类及应用常用的仪器可以根据测量原理和用途分为不同的类别。

首先是传统的光谱仪器,如紫外可见分光光度计、红外光谱仪、核磁共振仪等。

这些仪器能够通过测量样品的光吸收、发射或核磁共振信号来确定样品的组成和结构。

光谱仪器广泛应用于化学、生物、医学、环境等领域,如荧光光谱分析有机物、红外光谱分析有机小分子、核磁共振分析有机化合物结构等。

另一类仪器是质谱仪器,如气相色谱质谱联用仪、液相色谱质谱联用仪等。

质谱仪器通过测量样品中质子、电子、离子的能谱分布来确定样品的组成和结构。

质谱仪常用于分析有机物质、环境监测、药物检测等领域。

此外,电化学仪器也是常用的一类仪器,如电导仪、电位计、电解槽等。

电化学仪器可以通过测量电流、电压、电导等参数来确定样品的成分、浓度和电化学性质等。

仪器分析面试基础知识

仪器分析面试基础知识

仪器分析面试基础知识1. 仪器分析的定义和作用仪器分析是一种科学技术的应用,利用各种仪器设备对物质进行定性和定量分析。

它在化学、生物、医学等领域中广泛应用,起到了重要的作用。

2. 仪器分析的分类仪器分析可以按照测量原理和测量目的进行分类。

按照测量原理可以分为光谱分析、色谱分析、电化学分析、质谱分析等。

按照测量目的可以分为定性分析和定量分析。

2.1 光谱分析光谱分析是利用物质对光的吸收、发射、散射等现象进行分析的方法。

常见的光谱分析方法有紫外可见吸收光谱、红外光谱、核磁共振光谱等。

2.2 色谱分析色谱分析是利用物质在固定相和流动相之间分配系数不同而进行分离和分析的方法。

常见的色谱分析方法有气相色谱、液相色谱等。

2.3 电化学分析电化学分析是利用电化学原理进行分析的方法。

常见的电化学分析方法有电位滴定、电化学沉积、电解析吸附等。

2.4 质谱分析质谱分析是利用物质的分子或原子质量与其电荷比进行分析的方法。

常见的质谱分析方法有质谱仪、飞行时间质谱等。

3. 仪器分析的基本原理仪器分析的基本原理包括测量原理、信号转换原理、数据处理原理等。

3.1 测量原理测量原理是仪器分析中最基本的原理,它是通过测量物质的某个性质来进行分析。

例如光谱分析中测量物质的吸收或发射光强来定性或定量分析。

3.2 信号转换原理信号转换原理是将物质的性质转换成电信号的过程。

例如光谱分析中,光谱仪将物质吸收或发射的光转换成电信号进行处理和分析。

3.3 数据处理原理数据处理原理是对采集到的信号进行处理和分析,得到最终的结果。

常见的数据处理方法有峰面积计算、拟合曲线分析等。

4. 仪器分析的应用仪器分析在各个领域中都有广泛的应用。

4.1 化学领域在化学领域中,仪器分析常用于分析物质的组成和结构,例如利用质谱分析物质的分子结构。

4.2 生物医学领域在生物医学领域中,仪器分析常用于检测生物样品中的各种物质,例如血液中的生化指标。

4.3 环境监测领域在环境监测领域中,仪器分析可以用于检测空气、水质等环境中的有害物质,帮助保护环境。

仪器分析质量有关概念

仪器分析质量有关概念

仪器分析质量有关概念一、仪器分析质量的定义仪器分析质量通常指的是对仪器或仪器检测结果的准确性、精准度、灵敏度、重复性等进行评价和控制的过程。

它涉及到仪器本身的性能、校准方法、操作者技能以及环境因素等多个方面。

二、常见的仪器分析质量指标1.准确性(Accuracy):指测量结果与真实值的接近程度。

2.精密度(Precision):指重复测量的结果之间的接近程度。

3.检测限(Detection Limit):指仪器能够检测到的最小浓度或最小量。

4.线性度(Linearity):指仪器在一定浓度范围内测量结果与浓度的线性关系程度。

5.选择性(Selectivity):指仪器能够正确识别目标分析物与其他成分之间的差异。

6.重现性(Reproducibility):指在不同时间、不同仪器或不同操作者下测量结果的一致性。

7.稳定性(Stability):指仪器在长时间使用过程中测量结果的变化情况。

三、影响仪器分析质量的因素1.仪器性能:包括仪器的灵敏度、分辨率、线性度等。

2.标准曲线:标准曲线的制备和校准直接影响了仪器的准确性。

3.环境因素:如温度、湿度、光线等外部环境因素可能影响仪器性能。

4.操作者技能:操作者的经验和技能水平对仪器分析结果的准确性有重要影响。

5.标准品质量:标准品的纯度和稳定性会影响结果的准确性和精密度。

四、仪器分析质量控制方法1.校准:定期进行仪器的校准工作,确保仪器的准确性和精确度。

2.质量控制样品:使用质控样品进行重复测量和监控,评估仪器的检测结果。

3.常规维护:定期维护和清洁仪器,保持仪器性能的稳定。

4.操作规程:建立标准的操作规程,规范仪器使用流程,降低人为误差发生的可能性。

五、结语仪器分析质量是确保仪器分析结果准确可靠的重要环节,需要综合考虑仪器本身、环境因素、操作者经验等多方面因素。

通过正确的质量控制方法和策略,可以提高仪器分析的精确性和可靠性,保证实验结果的准确性和可重复性。

仪器分析必考知识点总结

仪器分析必考知识点总结

仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。

在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。

2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。

它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。

仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。

3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。

它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。

二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。

主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。

主要包括气相色谱、液相色谱、超高效液相色谱等。

3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。

主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。

4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。

主要包括电化学电位法、极谱法、循环伏安法等。

5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。

主要包括热重分析、差示扫描量热分析、热膨胀分析等。

6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。

主要包括激光诱导击穿光谱、激光诱导荧光光谱等。

三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。

在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。

2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。

仪器分析原理

仪器分析原理

仪器分析原理仪器分析原理是指利用各种仪器设备对物质进行定性、定量分析的基本原理。

仪器分析技术在科学研究、工业生产、环境监测等领域具有重要应用价值,对于提高分析质量、提高工作效率、降低成本具有重要意义。

本文将介绍仪器分析原理的基本概念和相关内容。

仪器分析原理的基本概念。

仪器分析原理是指利用物理、化学、光学等原理,通过仪器设备对样品进行分析的基本规律。

它主要包括样品的制备、仪器的选择、实验条件的控制、数据的处理和结果的解释等内容。

在仪器分析原理中,样品的制备是非常重要的一环,它直接影响到分析结果的准确性和可靠性。

仪器的选择是根据分析的目的和要求来确定的,不同的仪器有不同的分析原理和适用范围。

实验条件的控制是保证分析准确性的关键,包括温度、湿度、压力、光照等因素。

数据的处理和结果的解释是对实验数据进行分析和判断,得出最终的结论。

仪器分析原理的相关内容。

仪器分析原理涉及到许多相关内容,包括光谱分析、色谱分析、质谱分析、电化学分析等。

光谱分析是利用物质对光的吸收、发射、散射等现象进行分析的方法,包括紫外可见吸收光谱、荧光光谱、红外光谱等。

色谱分析是利用物质在固定相和流动相之间的分配现象进行分析的方法,包括气相色谱、液相色谱等。

质谱分析是利用物质离子在电场中的运动轨迹和质量谱图进行分析的方法,包括质子质谱、电子轰击质谱等。

电化学分析是利用物质在电场中的电化学反应进行分析的方法,包括电位滴定、电化学传感器等。

仪器分析原理的应用价值。

仪器分析原理在科学研究、工业生产、环境监测等领域具有重要应用价值。

在科学研究中,仪器分析原理可以帮助科学家们对物质的成分、结构、性质等进行深入研究,为科学发现和技术创新提供支持。

在工业生产中,仪器分析原理可以帮助企业进行产品质量控制、工艺优化、原料分析等,提高生产效率和产品质量。

在环境监测中,仪器分析原理可以帮助监测人员对大气、水体、土壤等环境样品进行分析,及时发现和解决环境污染问题。

有关仪器分析品质的概念.

有关仪器分析品质的概念.

儀器分析品質有關概念1准确度 accuracy :分析检测值与真值或可接受参考值闲之符合程度。

可用分析参考标准样品或品管样品之回收率 %表示。

2精密度 precision :样品重复分析检测多次,其检测值闲之符合程度。

可用样品重复多次检测值计算相对标准偏差(relative standard deviation,RSD或是计算二次重复分析测值之相对差异 Relative percent difference, RPD来表示。

3基质 matrix :组成样品之主要物质如土壤、淤泥、废弃物。

4空白 blank :每次分析检测时应同时分析,以其目的分为两种:方法空白 method blank , 或叫试剂空白:目的, 确认样品在分析检测过程是否受到污染。

通常以试剂水为样品, 以与待测样品相同之检测方法处理分析, 所测得之值为方法空白值。

运送空白 trip blank :检测有机物之样品在运送过程中是否受到污染。

可将试剂水装入与样品相同之容器密封带至采样地点, 再随同样品运回实验室。

视同一样品进行检测分析。

其测的值为运送空白值。

在检验室中将不含待测物之试剂、水溶液或吸附剂置入与盛装待测样品相同之采样瓶内,将瓶盖旋紧携至采样地点,但在现场不开封。

于采样完毕后与待测样品同时携回检验室,并以待测样品相同之前处理、分析步骤检测之;由运送空白样品之分析结果可判知样品在运送过程是否遭受污染。

野外空白 Field blank。

也叫现场空白:如在采样地点开始采样时,将此试剂水瓶盖打开待采样作业结束后再盖紧,则此试剂水为:在检验室中将不含待测物之试剂、水溶液或吸附剂置入与盛装待测样品相同之采样瓶内, 将瓶盖旋紧携至采样地点, 在现场开封并仿真采样过程,但不实际采样,密封后再与待测样品同时携回检验室。

依与待测样品相同前处理、分析步骤检测之; 由现场空白样品之分析结果可判知样品在采样过程是否遭受污染。

空白样品分析检验室可依实际需求执行野外空白及运送空白样品分析, 但检验室至少应伴随同一批次之样品分析时, 执行一试剂空白样品分析, 所测得的结果为检验室空白值。

仪器分析_精品文档

仪器分析_精品文档

仪器分析仪器分析简介仪器分析是化学分析中一种常用的分析方法,利用各种仪器设备对样品进行测试和分析,以获得样品的组成、结构、性质等信息。

仪器分析可以广泛应用于科学研究、工业生产和环境监测等领域,为相关研究和工作提供可靠的数据和结果。

仪器分析的主要原理是根据样品与仪器产生的相互作用,通过测量这种相互作用所引起的信号变化,进而得到样品的相关信息。

不同的仪器分析方法有不同的原理和应用范围,下面将介绍几种常见的仪器分析方法。

1. 质谱分析质谱分析是一种通过测量气体或溶液中样品分子的质荷比(mass-to-charge ratio, m/z)来确定其化学组成的方法。

质谱仪能够将样品分子分离,并测量其分子质荷比,进而获得样品分子的质量信息。

质谱分析广泛应用于有机物和无机物的鉴定、定量分析以及生物分子的研究等领域。

2. 红外光谱分析红外光谱分析利用样品对红外光的吸收特性来推断样品分子的结构和功能群。

红外光谱仪通过测量样品对一系列红外光的吸收和散射,得到红外光谱图。

通过对谱图的解析和比对,可以确定样品中存在的化学键和官能团,从而推测样品的化学结构。

3. 紫外可见光谱分析紫外可见光谱分析是一种利用样品对紫外光和可见光的吸收特性来判断样品组成和浓度等信息的方法。

紫外可见光谱仪通过测量样品对不同波长光的吸收程度,绘制出吸收光谱图。

通过对光谱图的解析,可以获得样品的吸收峰位和强度,从而推断样品的组成和浓度。

4. 核磁共振分析核磁共振分析基于原子核固有的旋磁现象,通过应用外加磁场和无线电波,使原子核发生共振吸收发射,从而获得关于样品分子结构和动力学性质的信息。

核磁共振仪器可以测量样品的核磁共振谱图,通过对谱图的解析,可以确定分子结构、检测分子环境的变化等。

5. 荧光光谱分析荧光光谱分析是一种基于物质荧光特性进行检测和分析的方法。

荧光光谱仪通过激发样品分子,测量其荧光发射光谱,从而获得样品的荧光特性。

荧光光谱可以用来确定样品的结构和浓度,也可用于检测样品中特定物质的存在和数量。

仪器分析知识点

仪器分析知识点

仪器分析知识点1. 引言仪器分析是化学、生物学、物理学等科学领域中的一种重要分析方法,它依赖于各种精密仪器来测定样品的化学成分、结构、物理性质等。

本文将概述仪器分析的基本概念、常用技术和应用领域。

2. 基本概念2.1 分析仪器的定义分析仪器是指能够对物质进行定性和定量分析的设备,它们通过测量样品与某种物理量或化学反应的变化来获取信息。

2.2 分析方法的分类分析方法主要分为两类:一是定性分析,用于确定样品中存在哪些成分;二是定量分析,用于测定各组分的含量。

3. 常用技术3.1 光谱分析3.1.1 紫外-可见光谱法 (UV-Vis)紫外-可见光谱法是通过测量样品对紫外光和可见光的吸收来进行分析的方法。

3.1.2 红外光谱法 (IR)红外光谱法是通过测量分子振动模式对红外光的吸收来进行结构分析的方法。

3.1.3 核磁共振光谱法 (NMR)核磁共振光谱法是通过测量核磁共振信号来获取分子结构信息的方法。

3.2 色谱分析3.2.1 气相色谱法 (GC)气相色谱法是一种利用气体作为流动相的色谱分析技术,适用于挥发性和半挥发性物质的分离和分析。

3.2.2 高效液相色谱法 (HPLC)高效液相色谱法是一种使用液体作为流动相的色谱技术,适用于非挥发性或热不稳定物质的分析。

3.3 质谱分析质谱分析是通过测量样品分子或分子碎片的质荷比来进行鉴定和定量的方法。

4. 应用领域4.1 环境分析仪器分析在环境监测中用于检测空气、水和土壤中的污染物。

4.2 药物分析在制药工业中,仪器分析用于药物成分的鉴定、纯度检测和质量控制。

4.3 食品安全仪器分析技术用于检测食品中的添加剂、农药残留和微生物污染等。

5. 结论仪器分析是现代科学研究和工业生产中不可或缺的工具。

随着技术的不断进步,仪器分析的应用范围将不断扩大,对提高分析效率和准确性起到关键作用。

6. 参考文献[1] Skoog, D. A., West, D. M., & Holler, F. J. (2015). Fundamentals of Analytical Chemistry. Brooks Cole.[2] Miller, J. N., & Miller, J. C. (2018). Statistics and Chemometrics for Analytical Chemistry. Pearson Education Limited.请注意,本文为概述性文章,旨在提供仪器分析的基本知识和概念。

仪器分析重要知识点总结

仪器分析重要知识点总结

仪器分析重要知识点总结一、基本原理1. 仪器分析的基本原理是什么?仪器分析的基本原理是通过分析仪器对样品进行一系列物理化学性质的测定,然后通过数据处理和分析得出样品的成分或性质。

根据所测定的物理化学性质不同,仪器分析可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的特点是什么?仪器分析具有高灵敏度、高精度、高选择性、高分辨率等特点。

而且,仪器分析方法还可以实现自动化、高通量和在线分析,大大提高了分析的效率和准确性。

3. 仪器分析的应用领域有哪些?仪器分析的应用领域非常广泛,主要包括环境监测、食品安全检测、药物质量分析、生物医学研究、地质勘探、材料分析等。

4. 仪器分析的分类有哪些?仪器分析根据测定的物理化学性质不同,可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

二、常见的分析仪器1. 分光光度计分光光度计是一种常用的光谱分析仪器,它可以测定物质在不同波长光照射下的吸光度或透射率,进而测定样品中所含的物质的浓度。

分光光度计的应用非常广泛,包括药物分析、环境监测、食品安全检测等领域。

2. 气相色谱仪气相色谱仪是一种色谱分析仪器,它通过气相色谱柱对气体混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

气相色谱仪在食品安全检测、环境监测、医药行业等领域得到广泛应用。

3. 液相色谱仪液相色谱仪是一种色谱分析仪器,它通过液相色谱柱对溶液混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

液相色谱仪在食品安全检测、环境监测、药物分析等方面有着重要的应用价值。

4. 质谱仪质谱仪是一种质谱分析仪器,它通过将分子在电离后的质荷比进行分析,可以对样品中的化合物进行定性和定量分析。

质谱仪在生物医学研究、环境监测、化学合成等方面有着广泛的应用。

5. 电化学分析仪电化学分析仪是一种电化学分析仪器,它通过测定电流、电压等电化学参数来分析样品的化学性质。

电化学分析仪在化学合成、药物质量分析、环境监测等方面得到广泛应用。

仪器分析知识点总结各章

仪器分析知识点总结各章

仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。

1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。

1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。

常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。

第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。

2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。

原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。

2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。

2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。

第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。

3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。

3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。

3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关仪器分析的一些概念一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。

这些方法一般都有独立的方法原理及理论基础。

仪器分析的分类1.光分析法光谱法和非光谱法非光谱法是指那些不以光的波长为特征的信号,仅通过测量电磁幅射的某些基本性质(反射,折射,干射,衍射,偏振等)。

光谱法则是以光的吸收,发射和拉曼散射等作用而建立的光谱方法。

这类方法比较多,是主要的光分析方法。

2. 电分析化学方法以电讯号作为计量关系的一类方法, 主要有五大类:电导、电位、电解、库仑及伏安。

3. 色谱法是一类分离分析方法, 主要有气相色谱和液相色谱。

4. 其它仪器分析方法①质谱,②热分析,③放射分析一.原子光谱的产生原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。

激发电位:从低能级到高能级需要的能量.共振线:具有最低激发电位的谱线.原子线(Ⅰ) 离子线(Ⅱ,Ⅲ) 相似谱线Ni = N0 gi/g0 e-Ei/kT (2) (玻兹曼方程)gi,g0为激发态和基态的统计权,Ei为激发电位,K为Boltzmann常数,T为温度。

2)代入(1)得:I ij = gi/g0A ij hυij N0e-Ei/kT此式为谱线强度公式。

I ij正比于基态原子N0,也就是说 I ij∝C,这就是定量分析依据。

影响I ij的因素很多,分别讨论如下:1.光谱项原子光谱是由原子外层的价电子在两能级间跃迁而产生的,原子的能级通常用光谱项符号来表示:n2S+1LJ or n M LJn为主量子数;L为总量子数;S为总自旋量子数;J为内量子数。

M=2S+1,称为谱线的多重性。

J又称光谱支项。

跃迁遵循选择定则:1.主量子数n变化,Δn为整数,包括0。

2.总角量子数L的变化,ΔL=±1。

3.内量子数J变化,ΔJ=0,±1。

但当J=0时,ΔJ=0的跃迁是禁戒的。

4.总自旋量子数S的变化,ΔS=0,即单重项只跃迁到单重项,三重项只跃迁到三重项。

2.自蚀在谱线上,常用r表示自吸,R表示自蚀。

在共振线上,自吸严重时谱线变宽,称为共振变宽击穿电压:使电极间击穿而发生自持放电的最小电压。

自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。

燃烧电压:自持放电发生后,为了维持放电所必需的电压。

由激发态直接跃迁至基态所辐射的谱线称为共振线。

由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。

当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。

用来测量该元素的谱线称分析线。

⑵.分辩率实际分辩率:指摄谱仪的每毫米感光板上所能分辩开的谱线的条数。

或在感光板上恰能分辨出来的两条谱线的距离。

理论分辩率R=λ/Δλ注:λ为两谱线的平均值,Δλ为它们的差值。

b.平面光栅Δ=d(sinφ+sinφ′) 当Δ=±Kλ, 则 Kλ=d(sinφ+sinφ′) -----为光栅公式.例:对一块宽度为50mm,刻线数为600条/mm的光栅,它的一级光栅的分辩能力为多少?解:R=1×50×600=3×104此时,在6000埃附近的两条谱线的距离为多少?解:Δλ=λ/R =6000/3000=0.2 埃当内标元素的含量一定时,C2为常数;又当内标线无自吸时,b2=1此时, I2 = a2分析线对的强度可表示为:I1/I2 = a C b取对数后,得到 :log R = log(I1/I2)= b log C + log a此为内标法定量分析的基本公式。

使用内标法必须具备下列条件:1.分析线对应具有相同或相近的激发电位和电离电位。

2.内标元素与分析元素应具有相近的沸点,化学活性及相近的原子量。

3.内标元素的含量,应不随分析元素的含量变化而变化。

4.内标线及分析线自吸要小。

5.分析线和内标线附近的背景应尽量小。

6.分析线对的波长,强度及宽度也尽量接近。

原子吸收光谱法(AAS)一. 基本原理:它是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的一种方法。

基态第一激发态,又回到基态,发射出光谱线,称共振发射线。

同样从基态跃迂至第一激发态所产生的吸收谱线称为共振吸收线(简称为共振线)锐线光源空心阴极灯:即发射线半宽度远小于吸收线半宽度光源.当用线光源时, 可用K0 代替 Kν ,用吸光度表示: A=lgI0/I=lg[1/exp(-K01)]=0.43K01A= k·N·1锐线光产生原理:在高压电场下, 阴极向正极高速飞溅放电, 与载气原子碰撞, 使之电离放出二次电子, 而使场内正离子和电子增加以维持电流。

载气离子在电场中大大加速, 获得足够的能量, 轰击阴极表面时, 可将被测元素原子从晶格中轰击出来, 即谓溅射, 溅射出的原子大量聚集在空心阴极内, 与其它粒子碰撞而被激发, 发射出相应元素的特征谱线-----共振谱线。

化学计量火焰由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

富燃火焰指燃气大于化学元素计量的火焰。

其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

贫燃火焰指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。

光谱通带: W = D·S被测元素共振吸收线与干扰线近,选用W要小,干扰线较远,可用大的W,一般单色器色散率一定,仅调狭缝确定W。

物理干扰: 是指试液与标准溶液物理性质有差别而产生的干扰。

粘度、表面张力或溶液密度等变化,影响样品雾化和气溶胶到达火焰的传递等会引起的原子吸收强度的变化。

非选择性干扰。

消除方法:配制被测试样组成相近溶液,或用标准化加入法。

浓度高可用稀释法化学干扰: 化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化。

电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰. 消除的方法是加入过量消电离剂, 所谓的消电离剂, 是电离电位较低的元素, 加入时, 产生大量电子, 抑制被测元素电离.光谱干扰:吸收线重叠待测元素分析线与共存元素的吸收线重叠背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。

分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。

光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。

背景干扰,一般使吸收值增加。

产生正误差。

标准加入法: Ax = k C A0 = k(C0 + Cx) Cx = AxC0/(A0-Ax)标准加入法能消除基体干扰,不能消背景干扰。

使用时,注意要扣除背景干扰。

习惯灵敏度现定义:特征浓度,是指产生1%吸收时,水溶液中某元素的浓度。

通常用mg/ml/1%表示半反应式的写法及电极符号: Ox + ne- = Red以还原形式表示,规定金属电极与标准氢电极组成电池时,金属带静电的符号为正电荷时,则其电极电位为正值,金属带负电荷时,则其电极电位为负值。

推广之,任何两电极组成的电池,正者即为“正极”,负者即为“负极”。

化学电池是化学能与电能互相转换的装置.能自发地将化学能转变成电能的装置称为原电池;而需要从外部电源提供电能迫使电流通过,使电池内部发生电极反应的装置称为电解电池。

当电池工作时,电流必须在电池内部和外部流通,构成回路。

电流是电荷的流动,外部电路是金属导体,移动的是带负电荷的电子。

电池内部是电解质溶液,移动的是分别带正、负电荷的离子。

为使电流能在整个回路中通过,必须在两个电极的金属/溶液界面处发生有电子跃迁的电极反应,即离子从电极上取得电子,或将电子交给电极。

通常将发生氧化反应的电极(离子失去电子)称为阳极,发生还原反应的电极(离子得到电子)称为阴极。

写电池式的规则:(1)左边电极进行氧化反应,右边电极进行还原反应。

(2)电极的两相界面和不相混的两种溶液之间的界面、都用单竖线“︱”表示。

当两种溶液通过盐桥连接时,已消除液接电位时,则用双竖线“‖”表示。

(3)电解质位于两电极之间。

(4)气体或均相电极反应,反应本身不能直接作电极,要用惰性材料作电极,以传导电流,在表示图中要指出何种电极材料(如Pt, Au, c等)。

(5)电池中的溶液应注明浓(活)度,如有气体则应注明压力,温度,若不注明系指摄氏25oC 和1大气压。

发生氧化反应的电极称为阳极,发生还原反应的电极称为阴极。

而电极的正和负是由两电极二者相比较,正者为正,负者为负。

也就是说,阳极不一定是正极,负极也不一定是阴极。

膜电位: 膜电位是膜内扩散电位和膜与电解质溶液形成的内外界面的Dinann电位的代数和。

φM = φD外 + φd + φD内选择电极电位φISE:φISE=φ内参+φM=k* ±RT/FlnαI外k*内包括了φd,φ内参,αⅡ,αI内常数。

E电= φ SCE —φISE对参比电极的要求要有“三性”(1)可逆性有电流流过(μA)时,反转变号时,电位基本上保持不变。

(2)重现性溶液的浓度和温度改变时,按Nernst 响应,无滞后现象。

(3)稳定性测量中电位保持恒定、并具有长的使用寿命。

抗原是一种进入机体后能刺激机体产生免疫反应的物质.它可能是生物体(如各种微生物),也可能是非生物体(如各种异类蛋白、多糖等).设在铂电极上电解硫酸铜溶液(装置见图15k-l)。

当外加电压较小时,不能引起电极反应,几乎没有电流或只有很小电流通过电解池。

如继续增大外加电压,电流略为增加,直到外加电压增加至某一数值后,通过电解池的电流明显变大。

这时的电极位位称析出电位(φ析),电池上的电压称分解电压(E分).而发生的电解现象是,阴极上Cu2+离子比H+离子更易被还原Faraday定律:电解过程中,在电极上析出的物质的重量与通过电解池的电量之间的关系,遵守Faraday定律电流效率ηe为: ηe=ie/(ie+is+iimp)×100%=ie/ iT ×100%由恒电流发生器产生的恒电流通过电解池,被测物质直接在电极上反应或在电极附近由于电极反应产生一种能与被测物质起作用的试剂,当被测物质作用完毕后,由指示终点的仪器发出信号,立即关掉计时器。

由电解进行的时间t(S)和电流强度(A),可求算出被测物质的量W(g)。

相关文档
最新文档