2014年9月份考试高等数学(II-2)第一次作业
2014年考研数学二真题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
1
(1) 当 x 0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无穷小,则 的取值范围是( )
(A) (2, )
()10(A)50 Nhomakorabea10
(B)
100
(C)10 10
(D) 5 10
(5)
设函数
f (x)
arctan x ,若
f
(x)
xf
(
)
,则
lim
x0
x
2 2
()
(A)1
(B) 2 3
(C) 1 2
(D) 1 3
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
()
(A) 当 f (x) 0 时, f (x) g(x) (C) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x) (D) 当 f (x) 0 时, f (x) g(x)
(4)
曲线
x y
t2 t2
7 4t
1
上对应于
t
1的点处的曲率半径是
lim x0
1
1
1 x
2
3x2
1 3
故选 D.
(D) 1 3
()
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
及
2u x2
2014年9月份考试高等数学(II-1)第一次作业
解题方案: 利用导数的几何含义,在某点的导数就是该点切线的斜率
选A
15. 函数在点处取得极大值,则必有( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 2
正确答案: D
解题方案: 函数在某点取得极值,则f′(x0)=0或不存在
A、 可导
B、 不可导
C、 连续但未必可导
D、 不连续
题目信息
难度: 2
正确答案: C
解题方案: 观察f(x)=x在原点的情况,
选C
3. 下列广义积分收敛的是( ) (本题分数:3 分,本题得分:0 分。)
A、
B、
C、
19. 若极限不存在,则极限也不存在。
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 3
正确答案: B
解题方案: 错,看看罗必答法则的使用条件
20. 偶函数的导数为奇函数,奇函数的导数为偶函数。 (本题分数:2 分,本题得分:0 分。)
难度: 2
正确答案: C
解题方案: 奇函数在对称区间上的积分为0,偶函数积分为半区间的两倍。选C
8. 函数的周期是( )。
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 2
正确答案: C
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 3
正确答案: B
解题方案: 不一定,比如有有限个间断点就可以
2014年普通高等学校招生考试课标二理数
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b|a-b,则a ⋅b = ( )A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是1,AB=1,,则AC=( ) A. 5 B. C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良 的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a =A. 0B. 1C. 2D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x=的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为()A. B. C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.D. 12.设函数()x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞ B. ()(),44,-∞-⋃∞ C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题, 每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:123111n ++<…+. 18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ni ii n i i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分)已知函数()f x =2x x e e x ---zxxk(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做, 同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的 取值范围.。
2014年高考试题理科数学真题及答案(新课标II)Word版解析
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-b|=,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】.,8.0,75.06.0,Appp故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027D.13【答案】C【解析】..2710π54π34-π54π.342π944.2342π.546π96321Cvv故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】 D【解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 3【答案】D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(Daffxaxfxaxxf故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 94【答案】 D【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014年全国高考理科数学(全国2)
2014年普通高等学校招生全国统一考试 理科数学(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i 【答案】A.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-ba ⋅b = ( ) A. 1 B. 2 C. 3 D. 5【答案】A.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】 A.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 13【答案】 C..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7 【答案】 D8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】 D..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 94【答案】 D..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.D.【答案】 C..10305641-0||||θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014年9月份考试高等数学(II-1)第二次作业
错
20. 设,则与相同.
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 2
正确答案: B
解题方案: 定义域不同
错
难度: 4
正确答案: B
解题方案: 分别求一阶导数和二阶导数,然后根据这些信息解题
选B
13. 函数在[-2,2]上的最大值为( )
(本题分数:3 分,本题得分:0 分。)
A、 0
B、 1
C、 2
D、 -2
题目信息
难度: 4
正确答案: C
解题方案: 先求极值,再求端点的函数值,将极值和端点的函数值进行比较,大的为最大值,小的为最小值
选C
14. 满足的x的取值范围是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 4
正确答案: D
解题方案: 利用反三角函数定义解题
B、
C、
D、
题目信息
难度: 4
正确答案: C
解题方案: 无穷大的倒数是无穷小
选 C
12. 曲线( )
(本题分数:3 分,本题得分:0 分。)
A、有四个极值
B、有两个极值
C、有三个拐点
D、对称原点
题目信息
难度: 5
正确答案: D
解题方案:
19. 函数的反函数是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
2014考研数学二真题答案
2014年全国硕士研究生入学统一考试数学二试题解析一、选择题 1—8小题.每小题4分,共32分.1.当+→0x 时,若)(ln x 21+α,α11)cos (x - 均是比x 高阶的无穷小,则α的可能取值范围是( )(A )),(+∞2 (B )),(21 (C )),(121(D )),(210 【详解】αααx x 221~)(ln +,是α阶无穷小,ααα211211x x ~)cos (-是α2阶无穷小,由题意可知⎪⎩⎪⎨⎧>>121αα 所以α的可能取值范围是),(21,应该选(B ). 2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin+= (D )x x y 12sin +=【详解】对于xx y 1sin +=,可知1=∞→x y x lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断. 显然x f x f x g )())(()(110+-=就是联接))(,()),(,(1100f f 两点的直线方程.故当0≥'')(x f 时,曲线是凹的,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )4.曲线⎩⎨⎧++=+=14722t t y t x ,上对应于1=t 的点处的曲率半径是( )(A)5010(B)10010 (C)1010 (D)105 【详解】 曲线在点))(,(x f x 处的曲率公式 321)'("y y K +=,曲率半径KR 1=. 本题中422+==t dt dy t dt dx ,,所以t t t dx dy 21242+=+=,3222122tt t dx y d -=-=, 对应于1=t 的点处13-==",'y y ,所以10101132=+=)'("y y K ,曲率半径10101==KR . 应该选(C )5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→220xx ξlim( )(A)1 (B)32 (C)21 (D)31 【详解】注意(1)211xx f +=)(',(2))(arctan ,33310x o x x x x +-=→时. 由于)(')(ξxf x f =.所以可知x x x x f f arctan )()('==+=211ξξ,22)(arctan arctan x x x -=ξ, 3131333020220=+--=-=→→→xx o x x x x x x arx x x x x x )()(lim )(arctan tan lim lim ξ. 6.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足02≠∂∂∂y x u及02222=∂∂+∂∂yux u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上;(B )),(y x u 的最大值点和最小值点必定都在区域D 的内部;(C )),(y x u 的最大值点在区域D 的内部,最小值点在区域D 的边界上;(D )),(y x u 的最小值点在区域D 的内部,最大值点在区域D 的边界上.【详解】),(y x u 在平面有界闭区域D 上连续,所以),(y x u 在D 内必然有最大值和最小值.并且如果在内部存在驻点),(00y x ,也就是0=∂∂=∂∂y ux u ,在这个点处x y u y x u B yu C x u A ∂∂∂=∂∂∂=∂∂=∂∂=222222,,,由条件,显然02<-B AC ,显然),(y x u 不是极值点,当然也不是最值点,所以),(y x u 的最大值点和最小值点必定都在区域D 的边界上.所以应该选(A ).7.行列式dc d c ba ba 00000000等于(A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +- 【详解】20000000000000000)(bc ad dc ba bc d cb a ad dc c ba b d c d b a a dc d c b a b a --=+-=+-=应该选(B ).8.设321ααα,,均是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D ) 非充分非必要条件 【详解】若向量321ααα,,线性无关,则(31ααk +,32ααl +)K l k ),,(),,(3213211001αααααα=⎪⎪⎪⎭⎫ ⎝⎛=,对任意的常数l k ,,矩阵K 的秩都等于2,所以向量31ααk +,32ααl +一定线性无关.而当⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=000010001321ααα,,时,对任意的常数l k ,,向量31ααk +,32ααl +线性无关,但321ααα,,线性相关;故选择(A ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.⎰∞-=++12521dx x x . 【详解】⎰⎰∞-∞-∞-=⎪⎭⎫ ⎝⎛--=+=++=++11122832421212141521πππ)(|arctan )(x x dx dx x x . 10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 【详解】当[]20,∈x 时,C x x dx x x f +-=-=⎰2122)()(,由00=)(f 可知0=C ,即x x x f 22-=)(;)(x f 为周期为4奇函数,故1)1()1()7(=-=-=f f f .11.设),(y x z z =是由方程4722=+++z y x e yz 确定的函数,则=⎪⎭⎫ ⎝⎛2121,|dz .【详解】设4722-+++=z y x e z y x F yz ),,(,1222122+=+==yzz yz y x ye F y ze F F ,,,当21==y x 时,0=z ,21-=-=∂∂z x F F x z ,21-=-=∂∂z y F F y z ,所以=⎪⎭⎫ ⎝⎛2121,|dz dy dx 2121--.12.曲线L 的极坐标方程为θ=r ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线的直角坐标方程为 .【详解】先把曲线方程化为参数方程⎩⎨⎧====θθθθθθθθsin sin )(cos cos )(r y r x ,于是在2πθ=处,20π==y x ,,πθθθθθθππ222-=-+=|sin cos cos sin |dx dy ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为)(022--=-x y ππ,即.22ππ+-=x y13.一根长为1的细棒位于x 轴的区间[]10,上,若其线密度122++-=x x x )(ρ,则该细棒的质心坐标=x .【详解】质心坐标20113512111221021231010==++-++-==⎰⎰⎰⎰dx x x dx x x x dx x dxx x x )()()()(ρρ.14.设二次型3231222132142x x x ax x x x x x f ++-=),,( 的负惯性指数是1,则a 的取值范围是 . 【详解】由配方法可知232232231323122213214242xa x x ax x x x x ax x x x x x f )()()(),,(-+--+=++-=由于负惯性指数为1,故必须要求 042≥-a ,所以a 的取值范围是[]22,-.三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)已知函数)(x y y =满足微分方程''y y y x -=+122,且02=)(y ,求)(x y 的极大值和极小值. 【详解】解:把方程化为标准形式得到2211x dxdyy -=+)(,这是一个可分离变量的一阶微分方程,两边分别积分可得方程通解为:C x x y y +-=+333131,由02=)(y 得32=C , 即32313133+-=+x x y y . 令01122=+-=y x dx dy ,得1±=x ,且可知3222222211212)()()(y x y y x dx y d +--+-=; 当1=x 时,可解得1=y ,01<-="y ,函数取得极大值1=y ; 当1-=x 时,可解得0=y ,02>="y ,函数取得极小值0=y .17.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy yx y x x )sin(22π【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D DD Ddr r r d dxd y x dxdyy x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(18.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u xcos =,则)cos ()(y e f u f z x==,y e u f y e u f xz e u f xzxx y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂, 可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (1) []b a x a x dt t g xa,,)(∈-≤≤⎰0; (2)⎰⎰≤⎰+ba dtt g a adx x g x f dx x f ba )()()()(.【详解】(1)证明:因为10≤≤)(x g ,所以[]b a x dt dt t g dx xax axa,)(∈≤≤⎰⎰⎰10.即[]b a x a x dt t g xa,,)(∈-≤≤⎰0.(2)令⎰⎰⎰-=+xa dtt g a axadu u f du u g u f x F )()()()()(,则可知0=)(a F ,且⎪⎭⎫ ⎝⎛+-=⎰xa dt t g a f x g x g x f x F )()()()()(',因为,)(a x dt t g xa-≤≤⎰0且)(x f 单调增加,所以)()()(x f a x a f dt t g a f xa=-+≤⎪⎭⎫ ⎝⎛+⎰.从而0=-≥⎪⎭⎫ ⎝⎛+-=⎰)()()()()()()()()('x f x g x g x f dt t g a f x g x g x f x F xa , []b a x ,∈也是)(x F 在[]b a ,单调增加,则0=≥)()(a F b F ,即得到⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分) 设函数[]101,,)(∈+=x xxx f ,定义函数列 )()(x f x f =1,))(()(x f f x f 12=, )),(()(,x f f x f n n 1-=设n S 是曲线)(x f y n =,直线01==y x ,所围图形的面积.求极限n n nS ∞→lim .【详解】x x xx x xx f x f x f x x x f 21111111121+=+++=+=+=)()()(,)(, ,)(x xx f 313+=,利用数学归纳法可得.)(nxxx f n +=1))ln(()()(nn n dx nx n dx nx x dx x f S n n +-=+-=+==⎰⎰⎰11111111101010,111=⎪⎭⎫⎝⎛+-=∞→∞→n n nS n n n )ln(lim lim . 21.(本题满分11分) 已知函数),(y x f 满足)(12+=∂∂y yf,且y y y y y f ln )()(),(--+=212,求曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积. 【详解】由于函数),(y x f 满足)(12+=∂∂y yf,所以)(),(x C y y y x f ++=22,其中)(x C 为待定的连续函数. 又因为y y y y y f ln )()(),(--+=212,从而可知y y y C ln )()(--=21, 得到x x y y x C y y y x f ln )()(),(--++=++=212222.令0=),(y x f ,可得x x y ln )()(-=+212.且当1-=y 时,2121==x x ,. 曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积为πππ)ln (ln )()(45222121212-=-=+=⎰⎰dx x x dx y V22.(本题满分11分)设矩阵A =1-23-401-11120-3æèçççöø÷÷÷,E 为三阶单位矩阵.(1) 求方程组0=AX 的一个基础解系; (2) 求满足E AB =的所有矩阵B .【详解】(1)对系数矩阵A 进行初等行变换如下:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---=310020101001310011104321134011104321302111104321A ,得到方程组0=AX 同解方程组⎪⎩⎪⎨⎧==-=43424132xx x x x x 得到0=AX 的一个基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛-=13211ξ.(2)显然B 矩阵是一个34⨯矩阵,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=444333222111z y x z y x z y x z y x B 对矩阵)(AE 进行进行初等行变换如下:⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---=141310013120101621001141310001011100014321101134001011100014321100302101011100014321)(AE由方程组可得矩阵B 对应的三列分别为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011214321c x x x x ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321043624321c y y y y ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011134321c z z z z ,即满足E AB =的所有矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-----=321321321321313431212321162c c cc c c c c c c c c B其中321c c c ,,为任意常数. 23.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似.【详解】证明:设=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 ,=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 . 分别求两个矩阵的特征值和特征向量如下:1111111111--=---------=-n n A E λλλλλλ)(, 所以A 的n 个特征值为0321====n n λλλλ ,;而且A 是实对称矩阵,所以一定可以对角化.且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~A ;1002010--=---=-n n nB E λλλλλλ)(所以B 的n 个特征值也为0321====n n λλλλ ,;对于1-n 重特征值0=λ,由于矩阵B B E -=-)(0的秩显然为1,所以矩阵B 对应1-n 重特征值0=λ的特征向量应该有1-n 个线性无关,进一步矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~B 从而可知n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似.。
2014年高考全国2卷理科数学试题及答案(word精校详细解析版)
2014年高考数学试题(理)第1页【共11页】2014年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合M ={0, 1, 2},N ={}2|320x x x -+£,则MN = A .{1} B .{2} C .{0,1} D .{1,2} 2. 设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5 B .5 C .- 4 + i D .- 4 -i3. 设向量a,b rr 满足10|a b |+=r r ,6|a b |-=r r ,则a b ×r r =A .1 B .2 C .3 D .5 4. 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC = A .5 B .5C .2 D .15. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A .0.8 B .0.75 C .0.6 D .0.45 6. 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C .1027D .137. 执行右面程序框图,如果输入的x ,t 均为2,则输出的S = A .4 B .5 C .6 D .7 8. 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = A .0 B .1 C .2 D .3 9. 设x ,y 满足约束条件70310350x y x y x y +-£ìï-+£íï--³î,则2z x y =-的最大值为A .10 B .8 C .3 D .2 结束输出S 1M =,3S =开始输入x ,t1k =k t£M M xk=S M S=+1k k =+是否10. 设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为的面积为A .334B .938C .6332D .9411. 直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为所成的角的余弦值为A .110B .25C .3010D .2212. 设函数()3sin x f x m p =,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是值范围是A .(,6)(6,+)-¥-¥UB .(,4)(4,+)-¥-¥UC .(,2)(2,+)-¥-¥UD .(,1)(4,+)-¥-¥U第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:(本大题共4小题,每小题5分.)13. 10()x a +的展开式中,7x 的系数为15,则a =________. (用数字填写答案用数字填写答案) 14. 函数()sin(2)2sin cos()f x x x j j j =+-+的最大值为_________. 15. 已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. 16. 设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________. 三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(本小题12分)已知数列{a n }满足a 1 =1,a n +1 =3a n +1. (Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;的通项公式;(Ⅱ)证明:123111 (2)n a a a +++<. 18. (本小题12分)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD =3,求三棱锥E -ACD 的体积. 19. (本小题12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:据如下表:年份年份2007 2008 2009 2010 2011 2012 2013 年份代号t1 2 3 4 5 6 7 人均纯收入y2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程;的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆni i i ni i t t y y bt t ==--=-åå,ˆˆa y bt=-. 20. (本小题12分)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b . 21. (本小题12分)已知函数()2x xf x e e x -=--. (Ⅰ)讨论()f x 的单调性;的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001). 请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.22.(本小题10分)【选修4-1:几何证明选讲】如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B 、C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E . 证明:(Ⅰ)BE = EC ;(Ⅱ)AD ·DE = 2PB 2. 23.(本小题10分)【选修4-4:坐标系与参数方程】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,轴为极轴建立极坐标系,半圆半圆C 的极坐标方程为2cos r q =,[0,]2p q Î. (Ⅰ)求C 的参数方程;的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标. 24. (本小题10分)【选修4-5:不等式选讲】设函数1()||||(0)f x x x a a a=++->. (Ⅰ)证明:f (x ) ≥ 2;(Ⅱ)若f (3) < 5,求,求a 的取值范围. 2014年普通高等学校招生全国统一考试(全国卷Ⅱ)理 科 数 学参考答案一、选择题:1.【答案:D 】 解析:∵2={|320}{|12}N x x x x x -+£=££,∴{1,2}M N =. 2.【答案:A 】解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-. 3.【答案:A 】解析:2222||10||6210,26,a b a b a b a b a b a b +=-=\++×=+-×=,两式相减得:1a b ×=. 4.【答案:B 】 解析:∵1||||sin 2ABC S AB BC B D =××,即:1112sin 22B =×××,∴2sin 2B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-××,∴2||1AC =或5,又∵ABC D 为钝角三角形,∴2||5AC =,即:||5AC =. 5.【答案:A 】解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. 6.【答案:C 】解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427p p =. 7.【答案:D 】解析:输入的x ,t 均为2.判断12£?是,1221M =×=,235S =+=,112k =+=;判断22£?是,2222M =×=,257S =+=,213k =+=,判断32£?否,输7. 8.【答案:D 】解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =. 9.【答案:B 】解析:作出x ,y 满足约束条件70310350x y x y x y +-£ìï-+£íï--³î所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值. 当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=ìí+-=î得C (5,2),此时z 取最大值为2×5-2=8. 10.【答案:D 】解析:∵3(,0)4F ,∴设直线AB 的方程为33()34y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ×=,由弦长公式得221212||(1)[()4]12AB k x x x x =++-=,由点到直线的距离公式得:O 到直线AB 的距离2233|00|33483()(1)3d ´--==+-,∴13912284OAB S D =´´=. 【另解】直线AB 的方程33()34y x =-代入抛物线方程得:2412390y y --=,∴1233y y +=,1294y y ×=-,∴21212139()4244OAB S y y y y D =´´+-=. 11.【答案:C 】解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2,则AN =AP =5,NP =MB=6,∴222||||||cos 2||||AN NP AP ANP AN NP +-Ð=´×l 0l 1 3x-y-5=0yxo 1 2 x-3y+1=0l 2x+y-7=05 2 CAB ACB1A 1C1BNMP222(5)(6)(5)3010256+-==´´. 【另解】如图建立坐标系,令AC =BC =C 1C =2,则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0), (1,1,2)(0,1,2),BM AN \=--=--,01430cos .10||||65BM AN θBM AN ×-+===×12.【答案:C 】 解析:∵()3cosxf x mmpp ¢=,令()3c o s0xf x mm pp ¢==得1(),2x m k k Z =+Î,∴01(),2x m k k Z =+Î,即01|||||()|22m x m k =+³,m x x f πsin 3)(= 的极值为3±,∴3)]([20=x f ,,34)]([22020+³+\mx f x 22200[()]x f x m +<,2234∴m m<+,即:24m >,故:2m <-或2m >. 二、填空题: 13.【答案:12】 解析:∵10110r r rr T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. 14.【答案:1 】解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x j j j j j j j =+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x xj j j j j j j j j j =+++-+=+-+=∵x R Î,∴()f x 的最大值为1. 15.【答案:(1,3)- 】解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->Û->=,又∵()f x 在[0,)+¥单调递减,∴|1|2x -<,解得:13x -<< 16.【答案:[1,1]-】解析:由图可知点M 所在直线1y =与圆O 相切,又1ON =,由正弦定理得sin sin ON OM OMN ONM =ÐÐ,∴1sin 22OM ONM=Ð,即2sin OM ONM =Ð,∵0ONM p £Ð£,2OM 2012x 011x . 【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||sin 45OA OM =o=2||12OM £,解得||2OM £,因为点M (x 0, 1),所以20||12O M x=+£,解得011x -££,故0x 的取值范围是[1,1]-. 三、解答题:17.解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+, 又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=×,即312nn a -=. (Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=£=Î-N*, ∴21211()11111131331[1()]133323213n n n na a a -++×××+£+++×××+==-<-故:1211132n a a a ++×××+< 18.解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形, ∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE Ì平面AEC ,PB Ë平面AEC ,∴PB //平面AEC . (Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则(0,3,0)D ,(0,0,0)A ,31(0,,)22E ,(,3,0)C a ,∴31(0,,)22AE =,(,3,0)AC a =,设(,,)n x y z =是平面AEC 的法向量,则3102230n AE y z n AC ax y ì×=+=ïíï×=+=î,解得:33a y x z y ì=-ïíï=-î,令3x =,得(3,,3)n a a =--,PBCDEA又∵(,0,0)AB a =是平面AED 的一个法向量,∴231|cos ,|cos60234a AB n a a<>===×+, 解得32a =,∴11111313||||||332232228E ACD V AD CD AP -=´´´´=´´´´=. 19.解析:(Ⅰ)由题意得:4t =, 2.9 3.3 3.6 4.4 4.8 5.2 5.9 4.37y ++++++==, ∴2222222(3)(1.4)(2)(1)(1)(0.7)00.110.520.93 1.60.5(3)(2)(1)0123b -´-+-´-+-´-+´+´+´+´==-+-+-++++,∴ˆ 4.30.54 2.3a y bt =-=-´=,故所求线性回归方程为:ˆ0.5 2.3yt =+. (Ⅱ)由(Ⅰ)中的回归方程的斜率0.50k =>可知,2007年至2013年该地区农村居民家庭人均纯收入逐渐增加.令9t =得:0.59 2.3 6.8y =´+=,故预测该地区2015年农村居民家庭人均纯收入为6.8千元。
2014-15-2高等数学(2-2)第一阶段考试答案
2014—2015学年第二学期《高等数学(2-2)》第一阶段考试卷参考答案( 工科类 )专业班级姓名学号开课系室基础数学系考试日期 2015年4月 19 日题号一二三四五六七总分本题满分12 18 14 22 10 12 12本题得分阅卷人注意事项:1.本试卷共七道大题,包括基础达标题(第一到四题),综合提高题(第五、六题),应用拓展题(第七题),满分100分;2.请在试卷正面答题,反面及附页可作草稿纸;3. 本试卷正文共7页;试卷本请勿撕开,否则作废。
一、(共3小题,每小题4分,共计12分)判断下列命题是否正确?在题后的括号内打“√”或“⨯”;如果正确,请给出证明,如果不正确请举一个反例进行说明.1.设0ρρ≠a ,已知c a b a ρρρρ⋅=⋅且c a b a ρρρρ⨯=⨯,则必有c b ρρ=. (√)……(2分) 证明:由c a b a ρρρρ⋅=⋅得0)(=-⋅c b a ρρρ,故)(c b a ρρρ-⊥;由c a b a ρρρρ⨯=⨯得0)(ρρρρ=-⨯c b a ,故a ρ∥)(c b ρρ-;又0ρρ≠a ,故0ρρρ=-c b ,即c b ρρ=. ……(2分)2.若函数),(y x f 在),(00y x 处沿任何方向的方向导数都存在, 则),(y x f 在),(00y x 处的偏导数也存在.(⨯)……(2分) 例如:函数22),(y x y x f +=在)0,0(沿任何方向的方向导数为10)()(lim 220=-∆+∆=∂∂→ρρy x l fρ,但是xx x x f x x x ∆∆=∆-∆='→∆→∆020lim)(lim)0,0(不存在,同理)0,0(y f '也不存在。
……(2分) 3.若点),(y x 沿着无数多条平面曲线趋向于点),(00y x 时,函数),(y x f 都趋向于某一个常数A ,则有A y x f y x y x =→),(lim ),(),(00. (⨯)……(2分)例如:yx xyy x f +=),(,虽然当),(y x 沿着直线kx y =)1(-≠k 趋向于)0,0(时, ),(lim 0y x f kx y x →=→kx x kx x +=→20lim 01lim 0=+=→k kxx ;但是当),(y x 沿着 x x y -=2 趋向于)0,0(时,),(lim02y x f x x y x →-=→x x x x x x -+-=→2230lim 1)1(lim 0-=-=→x x .故 二重极限),(lim 00y x f y x →→不存在. …(2分)或例如:,),(422y x xy y x f +=虽然),(lim 00y x f kx y x →=→4220)()(lim kx x kx x x +=→01lim 2420=+=→x k x k x , 但),(lim 002y x f y x y →=→.21)(lim 422220=+⋅=→y y y y y 故 二重极限),(lim 00y x f y x →→不存在.或例如:,),(263y x y x y x f +=虽然),(lim 00y x f kx y x →=→2630)(lim kx x kxx x +⋅=→,0lim 2420=+=→k x kx x但),(lim 003y x f x y x →=→.21)(lim 236330=+⋅=→x x x x y 故 二重极限),(lim 00y x f y x →→不存在.二、(共3小题,每小题6分,共计18分)1. 求与向量k j i a ρρρρ32--+=共线且满足28-=⋅x a ρρ的向量x ρ.解:设}3,,2{λλλλ--==a x ρρ,……(2分) 又2894-=++=⋅λλλx a ρρ,……(2分) 即2-=λ.故}6,2,4{-=x ρ.……(2分)2.求过直线132211-+=-=-z y x 且垂直于平面0523=--z y 的平面方程. 解:直线的方向向量为}1,2,1{-=s ρ,已知平面的法向量为}2,3,0{-=n ρ,则所求平面的法向量为:}3,2,1{230121-=--=⨯=*kj i n s n ρρρρρρ……(4分)已知平面过点)3,2,1(-,故所求平面方程为:0)3(3)2(2)1(=++-+--z y x 即:0632=---z y x . ……(2分) 3.求由曲面222y x z +=及223y x z --=所围成的立体在xOy 坐标面上的投影区域.解:两曲面的交线为⎪⎩⎪⎨⎧--=+=222232yx z yx z ,消去z 得到交线关于xOy 坐标面的投影柱面:222=+y x ,……(3分)交线在xOy 坐标面上的投影曲线为:⎩⎨⎧==+0222z y x , ……(2分)立体在xOy 坐标面上的投影区域为:⎩⎨⎧=≤+0222z y x . ……(1分)三、(共2小题,每小题7分,共计14分) 1.求曲线⎩⎨⎧=+=++zy x z y x 222226在点)2,1,1(处的切线方程和法平面方程. 解:对方程组每个方程两边分别关于x 求导得,⎪⎪⎩⎪⎪⎨⎧=-+=++0220222dx dz dx dy y x dx dz z dx dy y x ,即⎪⎪⎩⎪⎪⎨⎧-=--=+x dxdz dx dy y x dx dz z dx dy y 22,……(2分) 当0≠--=⎥⎦⎥⎢⎣⎢-=yz y y z yJ 212时yz y xz x yz y x z xdx dy 22212--+=--⎥⎦⎥⎢⎣⎢---=,0222=--⎥⎦⎥⎢⎣⎢--=yzy x y x y dx dz . ……(2分)曲线在点)2,1,1(处的切向量为}0,1,1{},,1{)2,1,1(-==→dxdzdx dy T ,……(1分) 故所求切线方程为:021111-=--=-z y x ,……(1分) 法平面方程为:0)2(0)1(1=-⋅+---z y x ,即:0=-y x . ……(1分)2. 求直线⎩⎨⎧=+-+=-+-01012z y x z y x 在平面02=-+z y x 上的投影直线的方程.解:设过直线的平面束方程为0)1()12(=+-++-+-z y x z y x λ 即:.0)1()1()1()2(=-+-+-++λλλλz y x ……(2分) 又因为该平面垂直于已知平面02=-+z y x ,故.0)1()1(2)1(1)2(=-⋅-+⋅-+⋅+λλλ……(2分)解得41=λ.……(1分) 因此得到投影柱面:.013=-+-z y x所求直线的投影曲线为:.02013⎩⎨⎧=-+=-+-z y x z y x ……(2分)四、计算题(共3小题,前两小题每题7分,第3小题8分,共计22分)1.设)sin ,2(x y y x f z -=,其中f 具有连续的二阶偏导数,求y x z x z ∂∂∂∂∂2,. 解:x y f f xzcos 221⋅'+⋅'=∂∂……(3分)()212cos 2f x y f yy x z '+'∂∂=∂∂∂ ()()x f f x y f x x f f sin )1(cos cos sin )1(2222121211⋅''+-⋅''+'+⋅''+-⋅''=……(3分) ()2221211cos 2sin 21cos sin 22f x f x y f x y x f '+''+''-+''-=……(1分) 2.已知0)(=z x z y -ϕ,其中ϕ为可微函数,求yz y x z x ∂∂+∂∂. 解:设zxzyz y x F -)(),,(ϕ=,则z F x 1-=',z z y F y 1)(⋅'='ϕ,22)()(z x z y z y F z +-⋅'='ϕ.…(3分)当0≠'z F 时,)(z y y x z F F x z z x ϕ'-=''-=∂∂,)()(zy y x z y z F F y z z y ϕϕ'-'-=''-=∂∂. …… (2分) 于是z yzy x z x=∂∂+∂∂.(2分) 3. 设n ρ为曲面632:222=++∑z y x 在点)1,1,1(P 处指向外侧的法向量,求: (1) 函数z e u xy ln +=在点)1,1,1(P 处的梯度;(2) 函数z e u x yln +=在点)1,1,1(P 处沿方向n ρ的方向导数.解:(1)x ye x y x u 2-=∂∂,x ye x y u 1=∂∂, zz u 21=∂∂,……(2分) }21,,{,,)1,1,1()1,1,1(e e z u y u x u gradu -=⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=. ……(2分)(2) }2,6,4{}2,6,4{)1,1,1(==z y x n ρ,}141,143,142{0=n ρ……(2分) 14222141143)(1420ee e n gradu n u +=⋅+⋅+-⋅=⋅=∂∂11ρρ.……(2分)五、(本题10分) 已知b a ρρ⊥,1||=a ρ,2||=b ρ,设b a c ρρρ+=2,b a k d ρρρ-=. 问:(1)k 为何值时,d c ρρ⊥;(2)k 为何值时,以c ρ与d ρ为邻边的平行四边形的面积为6.解:(1)要使d c ρρ⊥,需要0=⋅d c ρρ而2222)()2(b b a k b a a k b a k b a d c ρρρρρρρρρρρ-⋅+⋅-=-⋅+=⋅……(1分) 因为b a ρρ⊥,所以0=⋅b a ρρ.故042222=-=-=⋅k b a k d c ρρρρ……(2分)得2=k .……(1分)(2)b a k b b a b k b a a a b a k b a d c ρρρρρρρρρρρρρρρ⨯--=⨯-⨯+⨯-⨯=-⨯+=⨯)2(22)()2(.……(2分)以c ρ与d ρ为邻边的平行四边形的面积为k b a b a k b a k d c S +=∠+=⨯--=⨯=22),(sin 22ρρρρρρρρ……(2分)故622=+=k S ,解得1=k 或-5.……(2分)六、(本题12分)讨论函数⎪⎩⎪⎨⎧=+≠++=00),(222222y x y x yx xy y x f在)0,0(点处的连续性、偏导数存在性和可微性;并写出多元函数的连续性、偏导数存在性和可微性之间的相互关系. 解:(1) 因为,0210002222−−→−+≤+≤→→y x y x y x xy ……(2分) 故),0,0(0lim),(lim 2200f yx xyy x f y x y x ==+=→→→→ 即),(y x f 在点)0,0(连续;……(1分)(2) ,00lim )0,0()0,0(lim )0,0(00=∆=∆-∆+='→∆→∆xx f x f f x x x同理,0)0,0(='y f ;……(2分) (3) ,)()()0,0()0,0(22y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆……(1分)由(2)知,0)0,0(='x f ,0)0,0(='y f ,22000)()(lim])0,0()0,0([limy x yx y f x f z y x y x ∆+∆∆∆=∆⋅'+∆⋅'-∆→∆→∆→ρρ……(2分)当x k y ∆=∆时,此时222201)()()(lim k kx k x x k x +=∆+∆∆→∆,故二重极限不存在,因此),(y x f 在点)0,0(不可微.……(2分)多元函数在一点处可微,则函数在该点处连续、偏导数存在;反之不成立。
2014年数学二真题及答案解析
2014年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.(22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0. (17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=⎰⎰12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y ∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. 【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭,(I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。
2014年9月份考试高等数学(II-2)第一次作业
2014年9⽉份考试⾼等数学(II-2)第⼀次作业2014年9⽉份考试⾼等数学(II-2)第⼀次作业⼀、单项选择题(本⼤题共60分,共 30 ⼩题,每⼩题 2 分)1. 下列⽅程表⽰抛物⾯的是()A. x2+y2+z2=1B. x+y+z=1C. x+y2+z2=0D. x2-y2+z2=02. ⽅程x=2在空间表⽰( )A. yoz坐标⾯。
B. ⼀个点。
C. ⼀条直线。
D. 与yoz⾯平⾏的平⾯。
3. 已知点 M(1,-4,8) ,则向量的⽅向余弦为()A.B.C.D.4. 设 u=a-b+2c,v=-a+3b-c . 则⽤ a,b,c 表⽰ 2u-3v 为:()A. 5a +11b+7cB. 5a -1b+7cC. 5a -1b-7cD. 5a -1b+7c,则dp=()5. 设p=RTVA.B.C.D. 06. 曲⾯z=F(x, y)的⼀个法向量为()A.B.C.D.7. 曲⾯是()A. zox 平⾯上曲线 z=x 绕 z 轴旋转⽽成的旋转曲⾯B. zoy平⾯上曲线z=|y|绕z轴旋转⽽成的旋转曲⾯C. zox平⾯上曲线z=x绕x轴旋转⽽成的旋转曲⾯D. zoy平⾯上曲线 z=|y|绕y轴旋转⽽成的旋转曲⾯8. 下⾯可以作为⼀条有向直线的⽅向⾓的集合是()A. 45度,60度,60度B. 30度,45度,60度C. 45度,90度,60度D. 0度,30度,150度9. 设空间三点的坐标分别为M(1,-3,4)、N(-2,1,-1)、P(-3,-1,1),则∠MN P=( ) A.B.C.D.10. 设fxx (x,y)=A,fxy(x,y)=B,fyy(x,y)=C,那么在f(x,y)的驻点处(x,y)取得极⼤值的条件是( ).C.D.11. 下列平⾯中,垂直于Z轴的是()A. x+y+z=0B. z=4C. 5x-6y=1D. y-z=112. 设z=arct g xy,则以下结果正确的是:()A.B.C.D.13. 设z=u2v,u=cos x , v=sin x ,则?zx |x=0=()A. 0B. -1C. 1D. 214. 下列平⾯中通过坐标原点的平⾯是( )。
2014年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)
2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( )A.-5B.5C.-4+iD.-4-i3.设向量a,b满足|a+b|=√10,|a-b|=√6,则a·b=()A.1B.2C.3D.54.钝角三角形ABC的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.456.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.137.执行下面的程序框图,如果输入的x,t均为2,则输出的S=( )A.4B.5C.6D.78.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.39.设x,y满足约束条件{x+y-7≤0,x-3y+1≤0,3x-y-5≥0,则z=2x-y的最大值为( )A.10B.8C.3D.210.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A.3√34B.9√38C.6332D.9411.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN 所成角的余弦值为( )A.110B.25C.√3010D.√2212.设函数f(x)=√3sinπxm.若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.(x+a)10的展开式中,x7的系数为15,则a= .(用数字填写答案)14.函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为.15.已知偶函数f(x)在[0,+∞)上单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是.16.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明1a1+1a2+…+1a n<32.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=√3,求三棱锥E-ACD的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年 份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为: b ^=∑i=1n(t i -t )(y i -y )∑i=1n(t i -t )2,a ^=y -b ^t .20.(本小题满分12分)设F 1,F 2分别是椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a,b.21.(本小题满分12分)已知函数f(x)=e x-e-x-2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.414 2<√2<1.414 3,估计ln 2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P是☉O外一点,PA是切线,A为切点,割线PBC与☉O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交☉O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD·DE=2PB2.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标].方程为ρ=2cos θ,θ∈[0,π2(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=√3x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.24.(本小题满分10分)选修4—5:不等式选讲|+|x-a|(a>0).设函数f(x)=|x+1a(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.D 由已知得N={x|1≤x ≤2},∵M={0,1,2},∴M∩N={1,2},故选D.2.A 由题意得z 2=-2+i,∴z 1z 2=(2+i)(-2+i)=-5,故选A.3.A 由|a+b |=√10得a 2+b 2+2a ·b =10,① 由|a-b |=√6得a 2+b 2-2a ·b =6,② ①-②得4a ·b =4,∴a ·b =1,故选A.4.B S △ABC =12AB ·BCsin B=12×1×√2sin B=12,∴sin B=√22,若B=45°,则由余弦定理得AC=1,∴△ABC 为直角三角形,不符合题意,因此B=135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BCcos B=1+2-2×1×√2×(-√22)=5,∴AC=√5.故选B.5.A 由条件概率可得所求概率为0.60.75=0.8,故选A.6.C 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm,高为4 cm;另一个圆柱的底面半径为3 cm,高为2 cm.设零点的体积V 1=π×22×4+π×32×2=34π(cm 3).而毛坯的体积V=π×32×6=54π(cm 3),因此切削掉部分的体积V 2=V-V 1=54π-34π=20π(cm 3),所以V 2V =20π54π=1027.故选C.评析 本题考查了三视图和圆柱的体积,考查了空间想象能力和运算求解能力,正确得到零件的直观图是求解的关键. 7.D k=1,M=11×2=2,S=2+3=5;k=2,M=22×2=2,S=2+5=7; k=3,3>t,∴输出S=7,故选D.8.D y'=a-1x+1,x=0时,y'=a-1=2,∴a=3,故选D.9.B 由约束条件得可行域如图阴影部分所示.由{x +y -7=0,x -3y +1=0得A(5,2).当直线2x-y=z 过点A 时,z=2x-y 取得最大值.其最大值为2×5-2=8.故选B.10.D 易知直线AB 的方程为y=√33(x -34),与y 2=3x 联立并消去x 得4y 2-12√3y-9=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=3√3,y 1y 2=-94.S △OAB =12|OF|·|y 1-y 2|=12×34√(y 1+y 2)2-4y 1y 2=38√27+9=94.故选D.评析 本题考查了直线与抛物线的位置关系,考查了数形结合和运算求解的能力.利用根与系数的关系进行整体运算是求解的关键.11.C 解法一:取BC 的中点Q,连结QN,AQ,易知BM ∥QN,则∠ANQ 即为所求, 设BC=CA=CC 1=2, 则AQ=√5,AN=√5,QN=√6, ∴cos∠ANQ=AN 2+NQ 2-AQ 22AN ·NQ =2√5×√6=2√30=√3010,故选C.解法二:以C 1为坐标原点,建立如图所示的空间直角坐标系,设BC=CA=CC 1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴AN ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),BM ⃗⃗⃗⃗⃗⃗ =(1,-1,-2),∴cos<AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN⃗⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√5×√6=√30=√3010,故选C. 12.C f '(x)=√3πm cos πx m, ∵f(x)的极值点为x 0, ∴f '(x 0)=0,∴√3πm cos πx 0m=0, ∴πm x 0=kπ+π2,k ∈Z , ∴x 0=mk+m2,k ∈Z ,又∵x 02+[f(x 0)]2<m 2,∴(mk +m 2)2+[√3sin (kπ+π2)]2<m 2,k ∈Z , 即m 2(k+12)2+3<m 2,k ∈Z ,∵m≠0,∴(k +12)2<m 2-3m 2,k ∈Z ,又∵存在x 0满足x 02+[f(x 0)]2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>[(k +12)2]min,∴m 2-3m >(12)2,∴m 2-3>m 24,∴m 2>4,∴m>2或m<-2,故选C.评析 本题考查了函数的极值问题,三角函数求值、恒成立等问题.考查分析问题、解决问题的能力. 二、填空题 13.答案12解析 T r+1=C 10r x 10-r a r ,令10-r=7,得r=3, ∴C 103a 3=15,即10×9×83×2×1a 3=15,∴a 3=18,∴a=12.14.答案 1解析 f(x)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ-2sin φcos(x+φ)=sin(x+φ)cosφ-sin φcos(x+φ)=sin(x+φ-φ)=sin x,∴f(x)的最大值为1.15.答案(-1,3)解析∵f(2)=0, f(x-1)>0,∴f(x-1)>f(2),又∵f(x)是偶函数且在[0,+∞)上单调递减,∴f(|x-1|)>f(2),∴|x-1|<2,∴-2<x-1<2,∴-1<x<3,∴x∈(-1,3).评析本题考查了偶函数的性质,利用f(|x|)=f(x)是求解的关键.16.答案[-1,1]解析解法一:当x 0=0时,M(0,1),由圆的几何性质得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A、B.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,OP=OM·sin 45°≤1,,∴OM2≤2,∴x02+1≤2,∴x02≤1,∴-1≤x0≤1.∴OM≤1sin45°评析 本题考查了数形结合思想及分析问题、解决问题的能力.三、解答题17.解析 (Ⅰ)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(Ⅱ)由(Ⅰ)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n-1,所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32. 所以1a 1+1a 2+…+1a n <32. 评析 本题考查了等比数列的定义、数列求和等问题,放缩求和是本题的难点.18.解析 (Ⅰ)连结BD 交AC 于点O,连结EO.因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB.又EO ⊂平面AEC,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)因为PA ⊥平面ABCD,ABCD 为矩形,所以AB,AD,AP 两两垂直.如图,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|AP ⃗⃗⃗⃗⃗ |为单位长,建立空间直角坐标系A-xyz,则D(0,√3,0),E (0,√32,12),AE ⃗⃗⃗⃗⃗ =(0,√32,12).设B(m,0,0)(m>0),则C(m,√3,0),AC⃗⃗⃗⃗⃗ =(m,√3,0). 设n 1=(x,y,z)为平面ACE 的法向量,则{n 1·AC ⃗⃗⃗⃗⃗ =0,n 1·AE ⃗⃗⃗⃗⃗ =0,即{mx +√3y =0,√32y +12z =0, 可取n 1=(√3m ,-1,√3).又n 2=(1,0,0)为平面DAE 的法向量,由题设|cos<n 1,n 2>|=12,即√33+4m 2=12,解得m=32. 因为E 为PD 的中点,所以三棱锥E-ACD 的高为12. 三棱锥E-ACD 的体积V=13×12×√3×32×12=√38.评析 本题考查线面平行的判定,利用空间向量解二面角问题,考查了学生的空间想象能力.19.解析 (Ⅰ)由所给数据计算得 t =17×(1+2+3+4+5+6+7)=4, y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑i=17(t i -t )2=9+4+1+0+1+4+9=28, ∑i=17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3,所求回归方程为y ^=0.5t+2.3.(Ⅱ)由(Ⅰ)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(Ⅰ)中的回归方程,得y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.评析 本题考查了回归直线方程的求解,注意回归直线恒过点(t ,y )是关键,考查了回归系数b ^的几何意义.考查了学生的计算求解能力.20.解析 (Ⅰ)根据c=√a 2-b 2及题设知M (c,b 2a ),2b 2=3ac. 将b 2=a 2-c 2代入2b 2=3ac,解得c a =12或c a =-2(舍去).故C 的离心率为12.(Ⅱ)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.① 由|MN|=5|F 1N|得|DF 1|=2|F 1N|.设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c,-2y 1=2,即{x 1=-32c,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c=√a 2-b 2代入②得9(a 2-4a)4a 2+14a =1. 解得a=7,b 2=4a=28,故a=7,b=2√7.评析 本题考查了椭圆的几何性质,考查用代数方法研究圆锥曲线问题及向量的运算等基础知识.21.解析 (Ⅰ)f '(x)=e x +e -x -2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(Ⅱ)g(x)=f(2x)-4bf(x)=e 2x -e -2x -4b(e x -e -x )+(8b-4)x,g'(x)=2[e 2x +e -2x -2b(e x +e -x )+(4b-2)]=2(e x +e -x -2)(e x +e -x -2b+2).(i)当b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+√b2-2b)时,g'(x)<0.而g(0)=0,因此当0<x≤ln(b-1+√b2-2b)时,g(x)<0.综上,b的最大值为2.-2√2b+2(2b-1)ln 2.(Ⅲ)由(Ⅱ)知,g(ln√2)=32当b=2时,g(ln√2)=3-4√2+6ln 2>0,2>0.692 8;ln 2>8√2-312+1时,ln(b-1+√b2-2b)=ln√2,当b=3√24-2√2+(3√2+2)ln 2<0,g(ln√2)=-32<0.693 4.ln 2<18+√228所以ln 2的近似值为0.693.评析本题考查了导数的应用,同时考查了分类讨论思想和运算能力.22.解析(Ⅰ)连结AB,AC,由题设知PA=PD,故∠PAD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠PAD=∠BAD+∠PAB,∠DCA=∠PAB,⏜=EC⏜.所以∠DAC=∠BAD,从而BE因此BE=EC.(Ⅱ)由切割线定理得PA2=PB·PC.因为PA=PD=DC,所以DC=2PB,BD=PB,由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.评析本题考查了圆的切割线定理,相交弦定理.考查了推理论证能力.23.解析(Ⅰ)C的普通方程为(x-1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cost,y=sint(t为参数,0≤t≤π).(Ⅱ)设D(1+cos t,sin t).由(Ⅰ)知C是以G(1,0)为圆心,1为半径的上半圆. 因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同,tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32,√32).评析本题考查了极坐标化平面直角坐标,普通方程化参数方程的方法,考查了数形结合思想.24.解析(Ⅰ)由a>0,得f(x)=|x+1a |+|x-a|≥|x+1a-(x-a)|=1a+a≥2.所以f(x)≥2.(Ⅱ)f(3)=|3+1a|+|3-a|.当a>3时,f(3)=a+1a ,由f(3)<5得3<a<5+√212.当0<a≤3时,f(3)=6-a+1a ,由f(3)<5得1+√52<a≤3.综上,a的取值范围是(1+√52,5+√212).评析本题考查了含绝对值不等式的解法,考查了分类讨论思想.。
高等数学课程(II-2)(第1次)
第1次作业一、单项选择题(本大题共40分,共 20 小题,每小题 2 分)1. 在空间直角坐标系中,点A(1, −2, 3)在()。
A. 第五卦限 B. 第八卦限C. 第三卦限D. 第四卦限2. 假定某物种的人口数量满足微分方程,则当前的人口数满足()时物种的数量是增长的。
A. 4200>P> 0 B. P < 0 C. P = 0 D. P > 42003. 下列四个微分方程中,()是一阶线性微分方程。
A.B.C.D.4. 下列二阶微分方程中,属于型的微分方程的是() A. B. C.D.5. 点是函数的驻点,则()。
A. P是的极大值点 B. P是的极小值点 C. P不是)的极值点 D. 不能确定P是否为的极值点6. 下列微分方程(1)(2)(3)(4)的阶分别为()。
A. 2,2,2,4B. 2,1,1,4C. 2,2,3,4D. 3,1,1,37. 下面说法正确的是() A.B.C.D.8. 设有两个曲线形构件,密度均为相等的常值,前者是一条长度为l的直线,后者是一条长度为l的半圆弧,则两个构件的质量满足()。
A. 前者大于后者 B. 前者小于后者 C. 两者相等 D. 不能确定9. 设为正项级数,且,则( ) A. 收敛 B.发散 C. 敛散性不定 D. 以上都不对10. 解微分方程是属于()。
A.型的微分方程 B. 型的微分方程 C. 型的微分方程 D. 上述都不对11. 若满足,则交错级数。
A. 一定发散 B. 一定收敛 C. 可收敛也可发散 D. 难以确定12. 设,当a=()时。
A. 1 B.C. D.13. 微分方程的通解是()。
A.B. C.D.14. 曲面的一个法向量为()。
A.B. C.D.15. 下列一阶微分方程中哪个不是可分离变量的微分方程()。
A.B.C. D.16. 下列方程中表示双叶双曲面的是()。
A.B. C.D.17. 方程组所表示的圆的半径为()。
自考(网络教育)高等数学(II-2)作业考试题及答案
自考(网络教育)高等数学(II-2)作业考试题及答案高等数学(II-2) 一、单项选择题(本大题共60分,共 15 小题,每小题 4 分) 1. 设,则=( ) A.B.C.D.2. 设有非零向量,若垂直,则必有( ) A.B.C.D.3. 给定函数与z=x-y则有() 2A. z 和 z 是相同的函数 12B. 当x?y时,两者相同C. 当x?y时,两者相同D. 所有情况下两者都是完全不同的函数234. 设u=ln(x+y+z),则=()A.B.C.D.2225. 方程组x+y+z,25=0,z=4所表示的圆的半径为( )A. ,B. ,C. ,D. ,6. D是由x轴、y轴及直线x+y=1所围成的三角形区域,则等于A. 错误~未找到引用源。
B. 错误~未找到引用源。
C. 错误~未找到引用源。
D. 错误~未找到引用源。
7. 有且仅有一个间断点的函数是( ) A.B. C.D.8. 设D为:,判断的取值为:() A. 负B. 零C. 正D. 小于等于零9. 设函数,则等于( ) A. B. C.D.10. 一条曲线经过点(0,1),它的切线斜率恒为切线横坐标的2倍,则这条曲线的方程为( )A. y=x+1B. y=x-1 2C. y=x+1 2D. y=x-111. 下列无穷级数中发散的是()A.B.C.D.12. 极限的含义是( )A.B.C.D.13. 设则 =( ) A. B. C.D.14. 二平面错误~未找到引用源。
:x+y-11=0,错误~未找到引用源。
:3x+8=0的夹角错误~未找到引用源。
=( )A. 错误~未找到引用源。
/2B. 错误~未找到引用源。
/3C. 错误~未找到引用源。
/4D. 错误~未找到引用源。
/615. 设幂级数在x=1处收敛,则级数在x=-1处( ) A. 条件收敛B. 发散C. 绝对收敛D. 敛散性不定二、判断题(本大题共40分,共 10 小题,每小题 4 分) 1. 任二向量同向。
高等数学(II-2) ( 第1次 )
第1次作业一、单项选择题(本大题共60分,共 20 小题,每小题 3 分)1. 方程的特解为()。
A.B. C.D.2. 微分方程的特征方程有()。
A. 两个互不相等的实根 B. 两个相等的实根 C. 没有实根 D. 有一个实根一个复根3. 点是函数的驻点,则()。
A.P是的极大值点 B. P是的极小值点 C. P不是)的极值点 D. 不能确定P是否为的极值点4. 微分方程是()。
A. 二阶常系数齐次线性微分方程 B. 二阶常系数非齐次线性微分方程 C. 可降阶的微分方程 D. 上述答案都不正确5. 下面说法正确的是() A.B.C.D.6. 有且仅有一个间断点的函数是()。
A. B.C. D.7. 设的三个线性无关的解,则该方程的通解为()。
A.B.C.D.8. 设D为:,判断的取值为()。
A. 负 B. 零 C. 正 D. 小于等于零9. 下列方程中表示双叶双曲面的是()。
A.B. C.D.10. 设是微分方程的解,是微分方程的解,则()是微分方程的解。
A.B. C. D.11. 下列级数中,收敛级数是() A. B.C. D.12. 二重积分= ( ) ,其中。
A. 1 B. C.D. 213. (),其中L为直线y = x 上从点(0,0)到(1,1)的那一段。
A. B. C.D.14. 是微分方程的解,并且,则()。
A.B. C. D.15. 幂级数的和函数为()。
A. B. C. D.16. 二平面,的夹角=( )。
A. B. C. D.17. 直线与直线的夹角为() A. 0° B. 45° C. 60° D. 90°18. ,,则( )。
A. 1B. 0C. 8D. 不能确定19. 二元函数在点处两个偏导数存在是在该点连续的()。
A. 充分条件而非必要条件 B. 必要条件而非充分条件 C. 充分必要条件 D. 既非充分条件又非必要条件20. 设f(x,y)是有界闭区域上的连续函数,则当时,的极限()。
高等数学(II-2)
单项选择题1、级数为( )B、条件收敛但不绝对收敛2、曲线在t=2处的切向量是()。
A、(2,1, 4)3、在)处均存在是在处连续的()条件。
D、既不充分也不必要4、设a为常数,则级数( )A、绝对收敛5、二元函数的定义域是()。
A、6、方程表示的曲面是()。
D、球面7、有且仅有一个间断点的函数是()。
B、8、下列级数中,收敛级数是()A、9、按牛顿冷却定律:物体在空气中冷却的速度与物体的温度和空气的温度之差成正比。
已知空气温度为300C,而物体在15分钟内从1000C冷却到700C,求物体冷却到400C所需的时间为()分钟。
C、5210、平面4y-7z=0的位置特点是()D、通过x轴11、若满足,则交错级数。
C、可收敛也可发散12、下列无穷级数中发散的是()。
C、13、下列说法正确的是()。
C、两向量之间的夹角范围在14、级数收敛,则参数a满足条件()A、a>e15、下列方程中( )是表示母线平行于y轴的双曲柱面。
D、16、求点(1,2,3)到平面的距离是()。
D、17、以下各方程以为解的是()。
A、18、,且收敛,则( )。
A、绝对收敛19、当k =()时,平面与互相垂直。
A、020、设,u=cos x, v=sin x,则=()。
C、121、二元函数的定义域是( )。
A、22、方程x=2在空间表示( )D、与yoz面平行的平面23、设的三个线性无关的解,则该方程的通解为()。
D、24、设和是微分方程的解,则()也是微分方程的解。
D、25、设,当a=()时。
B、26、当D是由()围成的区域时,= 2。
D、|x y|=1,|x-y|=127、(),其中L为直线y = x上从点(0,0)到(1,1)的那一段。
A、28、已知某微分方程的通解和初始条件分别为和,则常数和分别等于()。
A、a,029、设,则以下结果正确的是()。
C、30、设,其中(x>y>0),则=()。
A、31、已知级数的部分和,则该级数的通项为()C、32、总长度为2的一根铁丝,可以围成矩形的最大面积是()。
2012年9月份考试高等数学(II-2)第一次作业.docx
2012年9月份考试高等数学(II-2)第一次作业一、单项选择题(本大题共90分,共 30 小题,每小题 3 分)1. 下列阶数最高的微分方程是()。
A. B.C. D.2. 在空间直角坐标系中,点 A(1,-2,3) 在:()A. 第五卦限B. 第八卦限C. 第三卦限D. 第四卦限3. 下列方程表示抛物面的是()A. x2+y2+z2=1B. x+y+z=1C. x+y2+z2=0D. x2-y2+z2=04. 方程x=2在空间表示( )A. yoz坐标面。
B. 一个点。
C. 一条直线。
D. 与yoz面平行的平面。
5. 微分方程x(y')2-2yy'+x=0是()的。
A. 2阶B. 3阶C. 不能确定D. 1阶6. 下列二重积分的性质不正确的是()A.B.C.D.7. 已知点 M(1,-4,8) ,则向量的方向余弦为()A.B.C.D.8. 设,若则()A. x=0.5 y=6B. x=-0.5 y=-6C. x=1 y=-7D. x=-1 y=-39. 点( 4 , -3 , 5 )到 oy 轴的距离为 ()A.B.C.D.10. 若limn→∞u n=0,则级数u n∞n=1()A. 一定发散B. 一定条件收敛C. 可收敛也可发散D. 一定绝对收敛11. 收敛级数加括号后所成的级数()A. 收敛但级数和改变B. 发散C. 收敛且级数和不变D. 敛散性不确定12. 级数的敛散性为( )A. 收敛B. 不能确定C. 可敛可散D. 可敛可散=5,则C=()13. 函数x2-y2=C初始条件y|x=0A. 0B. 25C. 1D. -2514. 微分方程y'+y=0的通解是()A. y=3sin x-4cos xB. y=Ce-x(C是任意常数)C. y= Ce x(C是任意常数)D. y=3sin x-4cos x+515. 设 u=a-b+2c,v=-a+3b-c . 则用 a,b,c 表示 2u-3v 为:()A. 5a +11b+7cB. 5a -1b+7cC. 5a -1b-7cD. 5a -1b+7c16. 设a为常数,则级数 ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性与a的值有关17. 点 A(1,-1,0) 的位置特征是()A. A 位于 yOz 平面B. A位于xOy平面C. A位于z轴D. A位于x轴18. 微分方程的通解为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年9月份考试高等数学(II-2)第一次作业
一、单项选择题(本大题共60分,共 30 小题,每小题 2 分)
1. 下列方程表示抛物面的是()
A. x2+y2+z2=1
B. x+y+z=1
C. x+y2+z2=0
D. x2-y2+z2=0
2. 方程x=2在空间表示( )
A. yoz坐标面。
B. 一个点。
C. 一条直线。
D. 与yoz面平行的平面。
3. 已知点 M(1,-4,8) ,则向量的方向余弦为()
A.
B.
C.
D.
4. 设 u=a-b+2c,v=-a+3b-c . 则用 a,b,c 表示 2u-3v 为:()
A. 5a +11b+7c
B. 5a -1b+7c
C. 5a -1b-7c
D. 5a -1b+7c
5. 设,则dp=()
A.
B.
C.
D. 0
6. 曲面z=F(x, y)的一个法向量为()
A.
B.
C.
D.
7. 曲面是()
A. zox 平面上曲线 z=x 绕 z 轴旋转而成的旋转曲面
B. zoy平面上曲线z=|y|绕z轴旋转而成的旋转曲面
C. zox平面上曲线z=x绕x轴旋转而成的旋转曲面
D. zoy平面上曲线 z=|y|绕y轴旋转而成的旋转曲面
8. 下面可以作为一条有向直线的方向角的集合是()
A. 45度,60度,60度
B. 30度,45度,60度
C. 45度,90度,60度
D. 0度,30度,150度
9. 设空间三点的坐标分别为M(1,-3,4)、N(-2,1,-1)、P(-3,-1,1),则∠MNP=( )
A.
B.
C.
D.
10. 设f
xx (x
,y
)=A,f
xy
(x
,y
)=B,f
yy
(x
,y
)=C,那么在f(x,y)的驻点处(x
,
y
)取得极大值的条件是( ).
A.
B.
C.
D.
11. 下列平面中,垂直于Z轴的是()
A. x+y+z=0
B. z=4
C. 5x-6y=1
D. y-z=1
12. 设,则以下结果正确的是:()
A.
B.
C.
D.
13. 设,u=cos x , v=sin x ,则=()
A. 0
B. -1
C. 1
D. 2
14. 下列平面中通过坐标原点的平面是( )。
A. x=1
B. x+2z+3y+4=0
C. 3(x-1)-y+(z+3)=0
D. x+y+z=1
15. 点 (a,b,c) 关于坐标面 xOy 的对称点为:()
A. (-a,-b,-c)
B. (-a,b,c)
C. (a,b,-c)
D. (a,-b,c)
16. 设f(x,y)=xy+x2+y3,则=( )
A. 1
B. 2
C. 12
D. -2
17. 设有非零向量,若垂直,则必有( )
A.
B.
C.
D.
18. 给定函数与z
2
=x-y则有()
A. z
1和 z
2
是相同的函数
B. 当x≥y时,两者相同
C. 当x≤y时,两者相同
D. 所有情况下两者都是完全不同的函数
19. 设u=ln(x+y2+z3),则=()
A.
B.
C.
D.
20. 如果函数z=f(x,y)的偏导数y在点(x,y)连续,则函数在该点
( )
A. 不一定可微
B. 一定可微
C. 不一定连续
D. 不能确定情况
21. 设有直线和曲面z=x2-y2+z2在点(1,1,1)处的切平面Π,则直线L和Π的位置关系是()。
A.
B.
C.
D.
22. 函数 f(x,y)=xy(x+y-9) 的极值点是()
A. (0,0)
B. (9,0)
C. (0,9)
D. (3,3)
23. 方程组x2+y2+z2-25=0,z=4所表示的圆的半径为()
A. 4
B. 3
C. 1
D. 2
24. 有且仅有一个间断点的函数是()
A.
B.
C.
D.
25. 设,则=()
A.
B.
C.
D.
26. 设函数,则等于() A. B. C.
D.
27. 二平面:x+y-11=0,:3x+8=0的夹角=( )
A. /2
B. /3
C. /4
D. /6
28. 极限( )
A.
B. 2
C. 0
D. 不存在
29. 直线(x-3)/2=(y-5)/3=(z+1)/4与平面2x-y+3z=1的交点坐标为()
A. (3,5,-1)
B. (45/13,74/13,-1/13)
C. (6,9,1)
D. (6/13,9/13,1/13)
30. 面x2+y2+z2=9与平面x+z=1的交线在xOy坐标面上的投影方程为()
A. 2(z-1/2)2+y2=17/2,z=0
B. 2(z+1/2)2+y2=17/2,z=0
C. 2(x-1/2)2+y2=17/2,z=0
D. 2(x-1/2)2+y2=17/2,z=0
二、判断题(本大题共40分,共 10 小题,每小题 4 分)
1. 点(-1,-2,-3)是在第八卦限
2. z
1=ln[x(x-y)] 与z
2
=lnx+ln(x-y)]是同一个函数。
3. 任二向量。
4. 若是向量的方向角,则是单位向量。
5.
6.
7. 偏导数连续,则函数z=f(x,y)一定可微。
8. 曲面Ax2+By2+Cz2=D上任一点(x
0,y
,z
)处的切平面方程为Ax
x+By
y+Cz
z=D
9. 球面x2+y2+z2=9与平面x+z=1的交线在xoy坐标平面上得投影方程为2x2+y2-z=8。
10. 三点的连线构成一个正三角形。
答案:
一、单项选择题(60分,共 30 题,每小题 2 分)
1. C
2. D
3. A
4. B
5. C
6. A
7. B
8. A
9. D 10. D 11. B 12. C 13. C
14. C 15. C 16. C 17. B 18. B 19. A 20. B 21. C 22. D 23. A 24. B 25.
D 26. A 27. C 28. A 29. B 30. A
二、判断题(40分,共 10 题,每小题 4 分)
1. ×
2. ×
3. ×
4. √
5. √
6. ×
7. √
8. √
9. × 10. √。