空调水系统水力平衡调节

合集下载

浅析通风空调水力平衡调试中的故障常见问题及解决方案

浅析通风空调水力平衡调试中的故障常见问题及解决方案

浅析通风空调水力平衡调试中的故障常见问题及解决方案摘要:水力平衡对于通风空调系统能否正常工作至关重要,在实际应用中应尽可能避免水力失调。

本文阐述了通风空调水系统水力失调的成因和解决方法,并通过中央商务区办公楼供暖系统管网改造,新建局部供热管网以实现水力平衡,解决内部管网水力失调问题,有效地解决了困扰中央商务区办公楼供暖效果不佳这一棘手问题,收到业主和管理方双方均满意的结果。

关键词:通风空调水系统;水力平衡;平衡调试1、引言随着社会经济的迅速发展和人民生活水平的日益提高,通风空调已经成为人们生活中一种重要的设备,它可以在四季中给人们提供更舒适的温度和湿度。

通风空调水系统内部水力平衡是保证各地区流量合理配置的重点,但通风空调系统在实际运行过程中水力失衡现象也较为普遍,这不仅给人们生活造成了很大不便,还易导致电力资源浪费,影响装置使用寿命。

所以通风空调系统中水力失衡问题备受关注。

2、水力平衡综述对建筑物通风空调系统而言,若运行时由于某一个或某一部分使用者制冷或制热之需求变化,导致系统管路之流量分配偏离每个热使用者之所需流量,造成每个使用者供冷供热量无法满足要求,此现象即为之水力失调。

相对来说,水力平衡是指在通风空调制冷或制热时,系统中任何一个用户制冷制热需求的改变都不会对系统中其他用户制冷制热造成影响,这就意味着该系统水力学稳定性较高。

空调行业一般采用水力稳定系数作为通风空调水力平衡程度的量度,其系数用y来表示。

在通风系统热用户规定流量及工况发生变化时,水力稳定性系数y的极限值是1和0。

y越接近1水力失调度越大,水力稳定性越好。

y越接近0水力失调度越小,水力稳定性越差。

尽管有人主张y值应尽可能增大,但过高的y值可能会导致投资方出现资金浪费,因此y值不可能无限扩大。

当水处于y值为1时,其稳定性达到最优状态,水力达到最平衡状态,而其他值则表明水力失调。

3、水力失调与水力平衡划分3.1静态水力失调与静态水力平衡静态水力失调指暖通空调系统中存在的自带,稳态和根本性失调,产生这类水力失调的主要原因在于系统管道的特性阻力数与设计所需的管道特性阻力数存在偏差,且系统管道的特性阻数比受设计,施工和设备材料等多重因素的影响。

浅谈空调水系统水力平衡

浅谈空调水系统水力平衡

浅谈空调水系统水力平衡摘要:随着空调在建筑中变得越来越普遍,空调水系统中选用水力平衡,则通过水力平衡的特点来进行介绍水力平衡调节的步骤和详细的方式,通过空调水系统水力平衡调节的各个方面进行分别的介绍和总结分析,对于空调的各个部分,对人类生活的各部分的影响都有着非常大的作用。

它使人们在生活中变得更舒适,说明人们的生活在不断的进步,社会在不断的向好的方向发展。

关键词:空调水系统;水利平衡1 空调水系统平衡概述空调水系统的平衡是保证空调系统正常运转,水系统的平衡是保证一种能量的低消耗,由于设计中存在的某些问题常常会导致系统存在着误差,在空调水系统中,由于各支路及末端设备的水流量都各不相同,所以需进行水系统的平衡调节;设置有效合理的方案来满足客户使用的最大效益。

2空调水系统对于现在大部分空调水系统都分为两用形式,夏天可以制冷,冬天可以制暖。

空调可以冬夏两种共同使用,水系统可以分为同程或异程系统,根据自己需要进行选择。

3平衡阀的特点在空调调节过程中调节平衡的过程需要平衡阀(静态或动态)来进行实现,它在其中起着一个非常重要的作用,有着非常准确开度指标,不是专业的人员不能随便的进行改变开度的数值。

在进行安装时,必须需要平衡阀的存在,在空调方面的使用能变得更加简单容易。

4空调水系统水力平衡空调水系统水力平衡在运行过程中,利用水作为媒介,实现空调的运作,平衡调节决定空调运行的整体效率,是否能正常地发挥其作用,它的传输需要一个完善的循环水系统,进行各部分的流入和流出,不会导致空调温度过高或者过低而造成一种不平衡的现象;这种水系统平衡的调节能使能量利用达到最大化,运行费用降到最低节约运行成本,是一种低碳环保的形式。

5水力平衡调节概况通过空调水力平衡调节,分析过程中虽然其中对于阀门的调节存在着一定的影响,但是这种调节只能说是不太精准,常常给安装的工人带来一定后期的影响和麻烦,因此需要进一步的改进,特别对于一些设计,需要大量的工作人员进行相关的设计,并进行一些改装。

空调水系统水力平衡调试施 工工法

空调水系统水力平衡调试施 工工法

空调水系统水力平衡调试施工工法空调水系统水力平衡调试施工工法一、引言随着空调设备在生活和工业领域中的广泛应用,空调水系统的设计和施工变得越来越重要。

水力平衡调试是保证空调系统正常运行的关键步骤之一。

本文将介绍一种常用的空调水系统水力平衡调试施工工法。

二、水力平衡调试的意义空调系统的水力平衡调试是指通过合理分配和调整水流量,在空调系统中达到供水和回水相等,各个水路分支水流量分配合理的状态。

实施水力平衡调试的目的是确保系统在各种负荷条件下的高效和平衡运行,减少能源消耗和运维成本,提高空调设备的使用寿命。

三、水力平衡调试施工工法的步骤1. 设计阶段在空调水系统的设计阶段,需要合理地选择和布置水力调节阀、流量计、压力表等设备。

同时,还需根据实际情况确定系统中各个支路的水流量、压力设计值,以便后续施工阶段进行水力平衡调试。

2. 施工准备施工前,需要对系统中的阀门、流量计和压力表进行检查和校准,确保设备的灵敏度和准确度。

3. 初始调试系统完成安装后,首先进行初始调试。

在初始调试阶段,需要逐一开启系统中的阀门,并观察各个支路的压力和流量变化。

通过调整支路阀门的开度,使得各个支路的水流量逐渐接近设计值,并保证系统中各个支路的回水压力与供水压力相等。

4. 动态调试完成初始调试后,开始进行动态调试。

动态调试时,需要调整系统中各个支路阀门的开度,使得各个支路的水流量达到设计值,并保持一定的压力稳定度。

通过反复调整阀门开度,逐步实现系统的水力平衡。

5. 维护和监测水力平衡调试完成后,并不代表工作的结束。

为了确保系统的长期稳定运行,需要定期对系统进行维护和监测。

维护工作包括定期检查和清洗阀门、流量计和压力表,确保其正常工作;监测工作包括定期监测各个支路的流量和压力,及时发现并排除故障。

四、调试过程中的注意事项1. 施工工人必须具备一定的专业技术和经验,了解水力平衡调试的原理和操作方法。

2.调试过程中需仔细观察和记录各个支路的水流量、压力和温度变化情况,及时发现并解决问题。

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案暖通空调系统是建筑中关键的基础设施之一,而水力平衡则是暖通空调系统中最为重要的技术之一。

水力平衡指的是各个部分的流量、压力和温度等物理量在系统内达到协调统一的状态,使整个系统运行稳定、节能、舒适。

本文将介绍暖通空调系统全面水力平衡解决方案。

水力平衡问题暖通空调系统的水力平衡问题主要体现在管道系统中。

管道系统的水力平衡问题,属于流体力学的范畴,具有复杂性、时变性和非线性等特点。

在管道系统中,水流的速度、流量、压力和温度等物理量会因系统的长度、管径、流量、节流器等因素而不同,这些因素的差异会导致系统中的局部水力失衡。

这种失衡会导致流量的变化、压力的不均匀和能量的浪费,从而影响系统的运行效率和舒适度。

解决方案为了解决暖通空调系统中的水力平衡问题,需要采取以下解决方案:管道设计管道设计是解决暖通空调系统水力平衡问题的关键。

在设计管道系统时,需要考虑到管径、管道长度、管道材质、弯头角度等因素,以确保系统可以满足流量和压力的要求。

设计流量控制流量控制是暖通空调系统中流量平衡的关键。

通过使用节流器、流量控制阀、平衡阀等设备,可以控制管道中的流量,达到水力平衡的目的。

管道调试管道调试是水力平衡实现的重要环节之一。

调试过程中需要测试流量、压力和温度等参数,根据实际情况对管道中的设备进行调整和改进,以实现水力平衡。

建立水力网络模型建立水力网络模型可以帮助工程师更好地理解管道系统中的水力平衡问题,优化系统设计和调试方案。

水力网络模型可以通过计算机模拟来实现,这种方法可以减少试错成本,并提高系统设计的精度。

定期维护系统维护是确保水力平衡可以持续有效的关键。

定期检查管道系统中的设备、清洗管道内部的沉积物、更换老化的管道等操作,可以保持系统的正常运行,并有效减少系统的故障率。

结论暖通空调系统的全面水力平衡是建筑节能和舒适性的关键环节。

通过管道设计、流量控制、调试、建立水力网络模型和定期维护等措施,可以解决水力平衡问题,使系统运行更加节能、稳定和舒适。

暖通空调水系统中的水力失调及应对措施

暖通空调水系统中的水力失调及应对措施

暖通空调水系统中的水力失调及应对措施前言暖通空调系统在冬季供暖和夏季制冷中被广泛应用。

水是系统中最常用的工质,用于传递和储存能量。

然而,在系统运行过程中,由于各种原因,水力失调现象时有发生。

本文将简要介绍水力失调的原因及对应的应对措施。

水力失调的原因1.管网设计不当:管网设计不当,导致热水、冷水进出口流量失衡,影响整个系统的供暖或制冷效果。

2.系统调节不当:系统调节时,由于人为原因或设备故障,未能满足流量平衡的要求,导致水力失调。

3.泵站运行不正常:泵站的运行状态及参数不正常,例如泵流过大或过小、泵站数量不足等,均会导致系统的水力平衡失控。

4.管道不清洁:管道四周的污垢和杂物会导致管道狭窄,影响水的流动,进而导致水力失调。

5.附加装置安装不当:例如阀门和节流装置,如果安装不当或清洗不及时,也会导致管道阻力增大,进而影响水力平衡。

水力失调的应对措施1.管网优化设计:针对管网设计不当,可以进行优化的设计,使热水、冷水进出口流量平衡。

可以通过实验测量和计算的方法,确定合适的管径、道路总长度和道路流量比例,从而达到相对平衡。

2.系统调节及检修:在系统运行过程中,需要定期对系统进行检修和调节,确保流量平衡和系统的正常运行。

例如能耗分析法、定常法、非定常法和调节矩阵法等方法可以用来调节系统。

3.泵站参数调整:泵站的运行状态及参数需要进行调整。

针对泵流过大或过小、泵站数量不足等问题,需要借助与技术人员,调整泵站的运行参数。

4.管道清洗:定期对管道进行清洗,去除污垢和杂物,保持管道畅通,从而保证水力平衡。

5.附加装置检修:针对阀门和节流装置,要定期进行检修和清洗,确保其运行正常,从而保证管道阻力不至于变大。

水力失调问题在暖通空调系统的运行过程中时常出现,但是只要采取正确的手段,可以较好地应对,使得系统运行正常,达到预期的效果。

因此,在暖通空调系统的设计、运行和维护中,务必要持续注重水力平衡方面的问题。

空调水系统的水力平衡调试

空调水系统的水力平衡调试
m s( / 3)
例。 显然, 对于已经设计和安装完毕的管路, 只能通过改变 局部阻力当量长度 的手段来改变管段的阻 力数 , 而改变局 部阻力最常用的方法就是调整管路上的阀门。
上述分析 结论 ,为在水 力平衡调试 中提供 了一定的 理论依据 ,使我们在调试方法选择上更趋于合理 。

采 用 同程 式管 路 ,并在 各 主要支 干 管上安 装平衡 调 节
阀 ,以利 于将来 的水量调 节分 配。

每米管长的沿程损 失 ( 阻 ) P / ; 比摩 , a m
管路长 度 , m;
l水力工况分析
大家 知道 ,在 空调 系统 中 ,各 空调设 备 ( 空调 机 组 、风机 盘管等 ) 中的实际流量与设计流量之间 的不一
往给 系统平衡调试带来许 多困难 ,有时甚 至无法满足设 计要求。 因此建议在大型 的空调 系统设计 时水 平支 干管
式 中 : A P一 计算 管路 的阻 力损失 , Pa ; A 尸 一 计 算管路 的沿程损失 , Pa ; A ,- P。 管路 的局部损 失 , Pa _ ;
维普资讯

通 风 空 调 技 术 ・
空调水系统的水力平衡调试
丁希 文
( 北京市设备安 装工程公 司,北京 10 4 ) 05 0

要: 本文是根据本人多年 的施 工实践, 对空调水系统的水力失调进行分析, 找出原因 , 并进行调 试 , 以满足 空调水 量
d一 管子 内径 ,m;
() 2 当并联管段中任一分支管段的阻力状况 ( 5 ) 即 值 发生变化时, 网路总阻力数必然随着变化 , 而且网路总流量 在各分支管段 中的分配比例也相应地发 生变化 。 () 3 可以通过改变管段的管径 、 长度、 管段 的摩擦阻 力系数以及管段 局部 阻力当量 长度大 小, 来改 变管段的 阻力数 , 从而改 变网路总流量在各分支管段中的分配的比

空调水系统调试过程中水力平衡问题

空调水系统调试过程中水力平衡问题

空调水系统调试过程中水力平衡问题摘要:近年来我国大型公建迅猛发展,中央空调供热/制冷日益普及,然而空调系统运行中存在诸多问题,水力失调便是其中的突出问题,所以保证空调系统的水力平衡是其运行中的重要环节。

本文归纳了供热/供冷管网水力平衡失调的原因,并提出了调节水力平衡的几种方法一、供冷/热管网水里平衡失调的表现及原因(一)供冷/热管网水力平衡失调的表现在中央空调系统中,水里失衡的表现主要是:各环路的流量输配不均衡,致使各用户冷热输配不均,距循环泵近的房间供热时室温偏高,供冷时室温偏低,据循环泵较远的用户供热时室温偏低,供冷时室温偏高。

另外还产生一些其他问题,如系统在大流量小温差的工况下运行,冷/热源难以达到其额定出力,投入运行的设备超过实际负荷需要,水泵工作点偏离高效区,燃料和电能消耗过高,水里平衡失调已成为空调系统中普遍存在又难以根治的难题。

(二)中央空调水力平衡失调的原因1实际施工与设计存在偏差设计人员在进行设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但施工人员在施工过程中未严格按图施工,造成实际施工情况和理论设计之间出现较大偏差2设计人员设计时存在设计不合理现象供热管网一般采用异程式枝状管网,在异程管网中各环路的路程不同,阻力不同,这种方式使得热水流经近端用户的路程短,而流经远端用户的路程长,使得近端用户作用压差大,而远端用户作用压差小,这种管网如果设计、调节不合理就会造成近端用户流量远超过设计流量,远端用户流量远小于设计流量,造成近热远冷的现象,二、供热管网水里平衡调解原理1. 水力工况的基本公式供热管网水力平衡调节就是通过调节管路的阻力使各用户的流量接近于设计流量,对于简单管路来说,压力降和阻力系数、流量之间有如下关系:ΔP=S×G2其中,ΔP为管段两端的压力降,G为流经该管段的流量,S为该管段的阻力系数,只与管段的材料,管径,内壁粗造度等有关可见,作用压力一定情况下管路阻力与流量的平方成反比,对于空调管网来说,各系统是并联的,存在如下流量分配关系阻力系数S大的支管其流量小,阻力S小的支管其流量大。

空调水系统水平衡调试方案

空调水系统水平衡调试方案

暖通空调水系统平衡调节方案准备工作:1、校核水系统各个分支的空调冷热水设计流量是否合理;2、检查水泵新风机组空调机组和风机盘管的水过滤器是否已清洗干净3、检查空调冷热水管路的手动阀门(包括蝶阀、闸阀、静态平衡阀)是否处于全部打开状态且阀门开度可调;4、检查水泵冷水机组新风机组空调机组和风机盘管的手动阀门(包括蝶阀、闸阀、水力平衡阀)是否处于全部打开状态且阀门开度可调;5、检查新风机组空调机组和风机盘管的冷热水电动阀是否可以正常工作且处于完全开启状态;6、收集整理水泵、平衡阀、电动阀样本;7、检查水泵的开启台数是否符合设计要求;8、将各管路的控制阀进行分组及编号,绘制简图,并标注设计流量;以该图为例,此系统为一个2级并联和一个2级串联组成的,V1-V3,V4-V5…V16-V18为一级并联系统,G1、G2…G6为二级并联系统,V1-V3,V4-V5…V16-V18又分别与G1、G2…G6组成一级串联系统,G1、G2…G6又与G组成二级串联系统。

方案一:。

若(1)保持整个系统所有阀门全开,测量总管阀G的流量,计算流量比Q总Q总<1,则是因为手动阀、平衡阀、电动阀、风机盘管的电动两通阀未打开,或=1.0。

是管路中有气体,或是过滤器堵塞,或设计扬程不足;调节Q总(2)逐一测量G1、G2…G6的实际流量,计算Q值。

测量时无顺序要求。

为基准,(3)根据Q值大小排序,若Q1<Q2<Q3<Q4<Q5<Q6,以主管流量比Q总按照Q值由大到小,依次调节各个阀门(G6→G5→G4→G3→G2→G1),使分别达到主管的流量比Q。

总,若变化≥5%,则需按照(1)-(3)再次微调。

(4)测量主管Q总(5)按照(1)-(3)的步骤调节1-6阀组的流量平衡。

以第1组为例(6)测量记录V1、V2、V3的流量比值q1、q2、q3,以G1的流量比值Q1为基准。

假设q1<q2<q3,则暂时保持V1阀的全开状态,调节两外2个阀;(7)调节V3开度,使q3=Q1(8)调节V2开度,使q2=Q1(9)测量V1的流量和q1,若q1>Q1,则调节V1使q1=Q1。

空调水系统水力平衡调试施 工施工工法(2)

空调水系统水力平衡调试施 工施工工法(2)

空调水系统水力平衡调试施工施工工法空调水系统水力平衡调试施工工法一、前言随着空调系统的发展和应用范围的扩大,空调水系统的水力平衡调试工作变得越来越重要。

水力平衡调试是指对空调水系统中的水流进行合理分配,使不同分支的水流达到设计要求,以确保整个系统的运行稳定、节能高效。

本文将介绍空调水系统水力平衡调试的施工工法。

二、工法特点空调水系统水力平衡调试施工工法的特点包括:1. 高精度:该工法采用现代化的仪器设备和先进的调试方法,可以实现精细调节,使水力平衡达到较高的精度要求。

2. 快速高效:施工工法提供了一套系统、标准化的调试程序,能够快速、高效地完成水力平衡调试工作,减少施工周期。

3. 全面考虑:该工法在施工中充分考虑了空调系统的结构、流量、水头等参数,以及系统中的各种元件和附件,将调试工作进行全面、细致的规划和设计。

4. 实用可行:该工法基于多年的实践经验,已在大量的实际工程中得到了验证,具有较高的可行性和可靠性。

三、适应范围该工法适用于各类空调水系统的水力平衡调试工作,包括中央空调系统、冷热水供暖系统、制冷系统等,适用于新建工程和改造工程。

四、工艺原理施工工法的工艺原理主要包括施工工法与实际工程之间的联系、采取的技术措施。

工法与实际工程之间的联系是指将调试工艺与实际工程进行对接,确保调试过程符合实际情况。

技术措施包括采用适当的工具和设备进行测量和调试,制定合理的调试方案和步骤,以及做好调试记录和数据分析,为后续工作提供参考。

五、施工工艺施工工法的施工工艺包括以下几个阶段:1. 准备工作:包括对空调水系统的初步检查和了解,制定调试方案和计划,准备调试所需的仪器设备和材料。

2. 流量测量:根据调试计划,对系统中的不同分支进行流量测量,确定实际流量与设计流量的差异,并记录下来。

3. 水头测量:使用合适的仪器设备对系统中的水头进行测量,根据测量结果进行调整和优化。

4. 阀门调节:根据测量结果,对系统中的各个阀门进行调节,使水流达到设计要求,实现水力平衡。

超高层空调水系统水力平衡调试

超高层空调水系统水力平衡调试

超高层空调水系统水力平衡调试发布时间:2021-07-05T15:50:02.313Z 来源:《基层建设》2021年第10期作者:李敏高松涛张宏深翟洪昆高维杨洪[导读] 摘要:为了保障建筑物的日常使用的安全性、舒适性,建筑设计时要考虑设置完善舒适的空调系统,以满足建筑日常使用的舒适性。

中国建筑第八工程局有限公司总承包公司摘要:为了保障建筑物的日常使用的安全性、舒适性,建筑设计时要考虑设置完善舒适的空调系统,以满足建筑日常使用的舒适性。

如今高层建筑的建设越来越多,这也给暖通空调系统的设计、安装和调试提出来更高要求。

系统通过数据采集并控制,利用水泵变频技术、静态与动态平衡阀组的结合技术、压差旁通阀组技术、末端设备支路调节与平衡技术,达到主干管道、支干管道、支管、末端设备分级水力平衡。

通过介绍水力平衡系统中主要的几种阀门特性和控制原理,探讨在超高层建筑中空调水系统中为达到水力平衡的设计、安装和调试。

关键词:空调水系统;分级式;水力平衡;调试一、引言目前我国正在大力发展新能源、环保节能工程,中央空调水系统水力是否平衡关系到整个系统的性能表现和运行成本的高低。

目前国内空调系统的平衡能耗占建筑体总能耗的40%~60%,而此项数据在发达国家约为20%,其中系统水力达不到理想的水力平衡条件是造成能耗比有如此差距的重要原因之一。

以前国内大部分工程中,广泛采用的水力平衡技术为定流量水力平衡技术。

在定流量水力系统中只考虑静态水力失调,而一般进行水力平衡的措施为采用节流板、设置手动调节阀、安装静态平衡阀等元器件的方式来控制空调水系统的管路和元器件阻力和流量,系统在各元器件设置完成后将不做其它动作,以理想的工况状态保持系统各种流量恒定。

而超高层空调水系统分级式水力平衡技术,不仅延续了以前的定流量水力平衡技术,更多的加入了变流量系统的水力平衡技术,变流量系统更多考虑在综合工况下,各主干、支干、支路、末端水力是相互影响的。

在运行过程中不但要求各末端设备的流量达到要求流量,而且要求各末端设备只随负荷的变化而变化,而不受其它末端的影响。

空调冷热水温度、水力计算和管路平衡

空调冷热水温度、水力计算和管路平衡

空调冷热水温度、水力计算和管路平衡舒适性空调的冷热媒参数的确定舒适型空调的冷热媒参数,应考虑对冷热源装置、末端设备、循环水泵功率的影响等因素的确定,并应保证技术可靠、经济合理:1、 空调冷水供回水温差不应小于5℃;冷水机组直接供冷系统的空调冷水供回水温度可按冷水机组空调额定工况取7/12℃;循环水泵功率较大的工程,宜适当降低供水温度,加大供回水温差,但应校核降低水温对冷水机组性能系数和制冷量的影响。

2、 采用蓄冷装置的供冷系统,空调冷水供水温度应根据采用的蓄冷介质和蓄冷、取冷方式等参考表5.8.1确定;当采用冰蓄冷装置能获得较低的供水温度时,应奖励加大供回水温差;3、 采用换热器加热空调热水时,其空调热水供水温度宜采用60~65℃,供回水温差不应小于10℃;4、 采用直燃式冷(温)水机组、空气源热泵、地源热泵等作为热源,供回水温度和温差应按设备要求确定;5、 当空调冷水或热水采用大温差时,应校核流量减少对采用定型盘管的末端设备(如风机盘管等)传热系数和传热量的影响,所用的风机盘管机组的性能应经过测试。

空调系统的水流量1、 计算管段的水量应按下式计算:tQ G ∆=163.1(5.8.2) 式中 G ——计算管段的水量(m 3/h);Q ——计算管段的空调符合(kW );t ∆——供回水温差(℃)。

2、 计算管段的水量可按所接空气处理机组和风机盘管的额定流量的叠加值进行简化计算,当其总水量达到与水泵流量相等时,干管水流量值不再增加。

空调冷水系统的阻力计算1、 管道每米长摩擦阻力可按下式计算:85.187.485.1105s j h i q d C H --=(5.8.3-1)式中i H ——计算管段的比摩阻(kPa/m );d ——管道计算内径(m );q ——设计秒流量(m 3/s );C ——海澄-威廉系数,钢管闭式系统取C=120,开式系统取C=100。

2、 比摩阻宜控制在100~300Pa/m ,不应大于400Pa/m ;且空调房间内空调管道流速不宜超过表5.8.3-1的限值。

暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节暖通空调水系统的平衡调节在集中供热和中央空调的水系统运行中,水力失调是常见的问题。

水力系统的失调有两方面的含义。

一方面是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的,称之为稳态失调。

另一方面是指系统运行中,当一些用户的水流量改变时,会使其它用户的流量随之变化,这涉及到水力稳定性的概念。

对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。

管网水力失调的原因是多方面的,归纳起来主要有两种情况。

一种是管网中流体流动的动力源提供的能量与设计要求不符,例如泵的型号、规格的变化及其性能参数的差异、动力电源的波动、流体自由液面差的变化等,导致管网中压头和流量偏离设计值。

另一种是管网的流动阻力特性发生变化,例如在管路安装中管材实际粗糙度的差别、焊接光滑程度的差别、存留于管道中泥沙、焊渣多少的差别、管路走向改变而使管长度的变化、弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。

尤其是一些在管网设置的阀门,改变其开度即可能改变管网的阻力特性。

水力失调对管网系统运行会产生不利影响。

管网系统往往是多个循环环路并联在一起的管路系统。

各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。

如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。

当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。

在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。

在水力失调发生的同时,管网中的压力分布也发生了变化。

在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。

为了解决水力失调问题,可以采用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀等阀门进行平衡调节。

空调水系统平衡阀调试方案

空调水系统平衡阀调试方案

空调水系统平衡阀调试方案空调水系统平衡阀调试方案一、项目概况该空调水系统为集中新风系统,不分高低区,由冷、热源机房直供。

制冷工况供回水温12/18℃,制热工况供回水温46/40℃。

二次侧采用一级泵闭式变流量双管制水系统。

换热机组(含补水定压装置)设在地下室新风机房内。

每层每户环路分支处设水流静态平衡阀。

二、平衡方案1、每层每户环路分支处回水管上安装静态平衡阀。

2、立管回水管上安装静态平衡阀。

3、每组板式换热器一次侧总管回水管上安装静态平衡阀。

4、集水器主管上安装静态平衡阀。

三、调试前准备工作1、平衡阀安装前,厂家安排技术人员到现场做安装指导工作,并提交详细的安装指导说明文件。

现场负责人必须按照厂家提供说明进行平衡阀安装。

2、平衡阀正确安装完毕系统运行后,项目负责人须提前联系厂家技术人员,确认系统运行情况,并提供系统调试所需资料:水系统原理图、平面图、设备设计参数(流量、水阻、冷量、温差)以及各平衡阀设计流量,协商调试前准备工作及确认调试时间。

3、现场须满足以下运行条件,才能进行水力平衡调试工作:平衡阀是否安装完毕:是/否平衡阀的安装位置是否符合设计规范要求:是/否空调水系统是否通过了强度实验和严密性实验:是/否/未定空调水系统内循环水泵是否能正常运转:是/否/未定空调水系统是否通过整体试运行24小时:是/否/未定空调水系统内的循环水质情况:好/一般/差/未定管路中是否出现堵塞:是/否/未定在以上对该系统调试前的调查中,若第1、2、3、4、6其中任意一项为“否”或“未定”则该系统需将此问题解决后,方可进行调试。

若第5项条件不满足,也需在调试前及时处理,以免影响调试测量精度。

在进行平衡阀调试前,请先检查系统中是否有细渣,如有请进行排污和清洗过滤器,以免堵塞仪器口和阀门,影响调试结果和仪器损坏。

调试前应派专人检查系统管路、阀门、设备等是否有异常情况,并作好笔录以免干扰调试。

在调试之前请将水系统中除旁通阀门外的所有阀门按设计要求全部打开,按照设计要求打开所有末端设备系统,满负荷运转。

中央空调冷冻水系统的水力平衡调试

中央空调冷冻水系统的水力平衡调试

中央空调冷冻水系统的水力平衡调试摘要:近年来由于中国大中型建筑的迅猛发展,中央空调供暖/制冷已经越来越普遍,但是在中央空调系统运行中面临一系列重大问题,而水力失衡就是当中的重要主要问题,所以提高中央空调系统的水力平衡就是其运作中的关键。

关键字:中央空气;冷冻水体系;水力平衡前言在空调水设计中,尽管设计中采用了水力控制、合理配管等手段,以尽可能地实现系统的水力平衡,但因为空调水设计的复杂性"系统水力失衡仍是很普遍的现象。

水力失调导致系统中各管道、系统流体不合理分布,从而导致流经末端系统的水流量与设备流量不符出现在不同空调区域产生冷暖不均的状况,严重危害了中央空调系统的节能安全工作。

随着科学技术进步和社会节约意识的日益增强,各种水力平衡装置也在空调式给水系统中获得了日益普遍的使用。

根据不同的中央空调控制系统标准,在管路控制系统中设置的静止、移动水力平衡装置都是处理管路的水力失调的最普遍方式,而控制系统的水力平衡调试也就成为了空调控制系统中调试的最主要内容之一。

但是由于在实际施工实践中,施工人员往往对水力平衡的意义缺乏充分的了解,对系统水力平衡的标准模糊不清,加之目前也缺乏一个统一的完善的调试方式,从而造成注重于产品的配置,而忽略了水力平衡调试,使得控制系统中设置了许多平衡阀,但水力失调的现象却经常发生。

1供冷/热管网水里温度平衡下降的现象以及成因1.1供冷/热管网水力平衡失调的表现在中央空调控制系统中,水里失衡的现象主要有:各回路的水流输配不平衡,造成各系统冷热输配不平衡,距循环泵最近的房间在供暖时温度偏高,供冷时温度偏低,据循环泵较远的用户供暖时温度较少,供冷时温度也偏高。

此外还出现若干特殊情况,如设备在大流量小温度的情况下运转,冷/热难以达到其额定出力,投入工作的系统超出实际负载要求,水泵运行位置远离有效区域,功率耗费过多,水里平衡紊乱等是空调设备中普遍存在的无法根除的问题。

1.2中央空调水力平衡失调的原因1)实际施工和设计出现了误差。

中央空调水力平衡分配器工作原理

中央空调水力平衡分配器工作原理

中央空调水力平衡分配器是一种用于调节和平衡中央空调系统中不同分区间冷热水流量的设备。

它能够有效地提高中央空调系统的运行效率,并且能够保证不同区域的舒适度。

下面,我们将详细介绍中央空调水力平衡分配器的工作原理。

一、水力平衡的概念1. 水力平衡的定义水力平衡是指在给定的管网系统中,通过调节流体的流量、压力和速度等参数,使得管网中各个分支的流量和压力达到一定的平衡状态。

在中央空调系统中,不同区域的冷热负荷是不同的,因此需要通过水力平衡来保证冷热水在各个分支管道中的流量和压力达到平衡。

2. 水力平衡的重要性水力平衡是中央空调系统中至关重要的一环,它能够有效地提高系统的热效率,减少能源消耗,并且能够保证系统稳定运行,延长设备使用寿命,提高设备的舒适度和环境适应性。

二、中央空调水力平衡分配器的工作原理1. 结构组成中央空调水力平衡分配器通常由主体壳体、流量计、流量调节阀、阀门、调节手柄等部件组成。

主体壳体上安装有多个分支出口,每个分支出口连接着对应的区域冷热水供应管道。

2. 工作原理(1)进水分配中央空调系统的冷热水由主体壳体的进水口进入水力平衡分配器,流经流量计进行计量,并且经过流量调节阀进行调节,然后进入分支供应管道,根据不同区域的冷热负荷需求分配到各个分支管道中。

(2)流量调节在分支供应管道上的流量调节阀能够根据实际需要对流量进行调节,进而保证各个分支管道中的冷热水流量达到平衡状态,不因区域冷热负荷变化而产生过热或者过冷现象。

(3)压力平衡水力平衡分配器在分流冷热水的还能够通过阀门进行压力平衡,确保各分支管道中的冷热水压力均衡,不会因管道长度和材质的差异而导致部分区域的供水压力过大或者过小。

(4)平衡调整水力平衡分配器上的调节手柄可以根据实际需要对各个分支管道的流量进行微调,能够动态地根据实际情况对系统进行平衡调整,确保系统运行效率和能源利用率最优化。

三、中央空调水力平衡分配器的优势1. 提高运行效率水力平衡分配器能够有效地平衡不同区域的冷热水流量和压力,提高冷热水的利用率,减少能源浪费,提高系统的运行效率。

空调水系统平衡及节能建议

空调水系统平衡及节能建议

空调水系统平衡及节能建议
空调管路的系统的环路划分应遵循满足空调系统的要求,以节能、运行管理方便、节省管材等为原则,按照建筑物不同的使用功能,不同的使用时间、不同的负荷特性等设置空调管路。

本项目现空调水支干管设计为异程系统,需通过调节阀来实现管路的平衡调节,建议采用同程三管式的设计理念来实现管路平衡。

异程系统
以本项目5#三层空调水系统为例,下图为现设计异程系统:
5#三层局部中温水空调系统调整前-异程系统
各并联环路中的流程各不相同,及各环路的总长也不一样。

特点:由于流动阻力不易平衡,常导致水流量分配不均。

同程系统
5#三层局部中温水空调系统调整后-同程系统
各并联环路中水的流程基本相同,即各个环路的管路总长基本相等。

特点:系统各环路间的流动阻力容易平衡,因此系统的水力稳定性好,流量分配均匀,避免水力失调及冷热不均、大流量小温差的问题造成能源的浪费。

先设计的调节方式为调节阀调节,调节阀是通过关小阀门增加支路的阻力从而调节系统的平衡,因此增加了管道阻力。

且通过实际调查,调节阀用处不大,可调节范围十分有限。

虽然可以通过增设平衡阀,使通过每个阀组空调水流量的可调范围增大,但使用平衡阀后系统的阻力也会显著增大,且阀门的增设同时也增加了漏水点的风险。

因此,建议采用同程系统,可在更加节能的运行工况下达到系统的平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调水系统水力平衡调节
作者:胡健
来源:《城市建设理论研究》2012年第29期
摘要:本文阐述了暖通空调水系统中水力平衡阀的特性,以及应用水力平衡阀对水系统进行水力平衡调节的步骤、方法
关键词:水力失调平衡调试水力平衡阀
中图分类号:TB657.2 文献标识码:A 文章编号:
引言:
在建筑物暖通空调水系统中,水力失调是最常见的问题。

由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。

因此,必须采用相应的调节阀门对系统流量分配进行调节
一.水力平衡阀两个特性:
1.具有良好的调节特性。

一般质量较好的水力平衡阀都具有直线流量特性,即在阀两端压差不变时,其流量与开度成线性关系;
2.流量实时可测性。

通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。

对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。

这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢?
二.水力失调和水力平衡的分类
2.1静态水力失调和静态水力平衡
由于设计、施工、设备材料等原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。

静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。

通过在管道系统中增设静态水力平衡设备( 水力平衡阀) 对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。

2.2动态水力失调和动态水力平衡
当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的水力失调,叫做动态水力失调。

动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。

通过在管道系统中增设动态水力平衡设备( 流量调节器或压差调节器) ,当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,此时系统实现动态水力平衡。

三.产生水力失调的原因和结果
水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。

静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。

这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。

3.1水力不平衡常会导致:
3.1.1系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。

3.1.2.由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。

3.1.3水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。

能量输配效率低下,无法进行整体调控和节能运行。

3.1.4在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。

3.2解决水力失调的办法
3.2.1加节流孔板
在热力入口或空调靠近冷源环路的部分管段上增加节流孔板。

采用这种办法解决水力失调的前提是:水系统阻力计算准确、热力或空调末端流量不能发生变化。

因此在末端流量变化时仍会造成水力失调及能源上的浪费。

3.2.2 安装手动调节阀
对大型空调系统而言,采用手动调节阀调节过程复杂,手动调节前端阀门,后端流量会受影响。

对于复杂系统,要求调节阀门的工程师经验丰富。

并且一旦系统压力或负荷发生变化仍需要重新调整水力系统。

四.系统水力平衡调节
水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。

4.1单个水力平衡阀调节
单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。

4.2已有精确计算的水力平衡阀的调节
对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。

这时水力平衡阀的调节步骤如下:⑴、在设计资料中查出水力平衡阀的设计压降;⑵、根据设计图纸,查出(或计算出)水力平衡阀的设计流量;⑶、根据设计压降和设计流量以及阀口径,查水力平衡阀压损列线图,找出这时水力平衡阀所对应的设计开度;⑷、旋转水力平衡阀手轮,将其开度旋至设计开度即可。

4.3一般系统水力平衡阀的联调
对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。

这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢?
4.3.1 系统水力平衡调节的分析:
①并联水系统流量分配的特点:并联系统各个水力平衡阀的流量与其流量系数KV值成正比(由于管道中水流速度较低,假定各并联支路上平衡阀两端的压差相等),如图1所示,调节阀V1、V2、V3组成的并联系统,则QV1 :QV2 :QV3= KV1 :KV2 :KV3(Q为流量,KV为流量系数)。

当调节阀V1、V2、V3调定后,KV1、KV2 、KV3保持不变,则调节阀V1、V2、V3的流量QV1 、QV2 、QV3的比值保持不变。

如果将调节阀V1、V2、V3流量的比值调至与设计流量的比值一致,则当其中任何一个平衡阀的流量达到设计流量时,其余平衡阀的流量也同时达到设计流量。

②串联水系统流量分配的特点:串联系统中各个平衡阀的流量是相同的,调节阀G1和调节阀V1、V2、V3组成一串联系统,则
QG1= QV1 +QV2 +QV3;
③串并联组合系统流量分配的特点:实际上是一个串并联组合系统。

其中平衡阀V1、
V2、V3组成一并联系统,平衡阀V1、V2、V3又与平衡阀G1组成一串联系统。

图一
根据串并联系统流量分配的特点,实现水力平衡的方式如下:
首先将平衡阀组V1、V2、V3的流量比值调至与设计流量比值一致;再将调节阀G1的流量调至设计流量。

这时,平衡阀V1、V2、V3、G1的流量同时达到设计流量,系统实现水力平衡。

结语:
通过以上论述我们可以得出结论,在暖通空调水系统中,合理地安装水力平衡阀以及采用正确的方法进行系统联调,可以极大地改善系统的水力特性,使系统接近或达到水力平衡,从而既为系统的正常运行提供了保证,同时又节省了能源,使系统经济高效地运行。

参考文献:
[1]邹瑜.供热空调系统水力平衡技术及其应用[J].中国建设信息.2000,(17).
[2]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,2008.
[3]于晓明.对平衡阀功能与技术特点及其应用等问题的探讨[J].暖通空调(增刊),2007,(37).
[4]周毅峰,黄木新.平衡阀在建筑住宅空调系统中的应用[J].中国住宅设施,2006,(8).。

相关文档
最新文档