高一数学抽象函数的周期与对称轴人教版知识点分析
高一数学函数的对称性和周期性精讲
f (a x) f (a x)
函数 y f (x) 的图象关于点 (a,0) 对称 f (x) f (2a x)
举例:已知 y f (x 1) 为奇函数,求 y f (x) 的对称中心?
解:令 g(x) f (x 1) ,则 g(x) 为奇函数,故 g(x) g(x) 0 ,
2
2
函数 是奇函数 6.
y f (x a) b
f (a x) b [ f (a x) b] f (a x) f (a x) 2b
函数 y f (x) 的图象关于点 (a,b) 对称 f (x) 2b f (2a x)
举例:已知 y f (x 1) 1为奇函数,求 y f (x) 的对称中心?
(1,1) .
二.两个函数的对称性(高一现阶段暂时不说!)
---2---
高一数学:关于函数的周期性
一.周期函数的定义:函数 f (x) 在其定义域内,对任意的 x 都存在一个常数T , (T 0)
使得 f (x T) f (x) 成立,则称函数 f (x) 是周期函数,
T 叫做函数 f (x) 的一个周期.(注:以后T 专指最小正周期)
解:令 g(x) f (x 1) 1,则 g(x) 为奇函数,故 g(x) g(x) 0 ,
即 , g(x) g(x) f (x 1) 1 f (x 1) 1 0
即 ,故 的对称中心为 f (x 1) f (x 1) 2 y f (x)
故 y f (x) 的周期为T 8 .
(2)若 f (x) 对定义域内的任意 x 都有 f (x a) 1 ,则T 2 | a | . f (x)
抽象函数的周期性与对称性(精)
抽象函数的周期性与对称性(精)抽象函数的周期性和对称性问题可以通过恒等式简单判断。
如果函数满足f(x+a)=f(-x+a),那么它是偶函数,对称轴为x=a,周期为T=2a。
如果函数满足f(x+a)=-f(-x+a),那么它是奇函数,对称中心为(a,0)。
如果函数满足f(a-x)=f(b+x),那么它的对称轴为x=(a+b)/2,周期为T=|b-a|。
如果函数满足f(x+a)=-f(x-a),那么它的对称中心为(a,0),周期为T=2a。
需要注意区分一个函数的对称性和两个函数的对称性的区别,对称轴或对称中心的位置可以通过对应法则求得。
例如,对于已知定义在实数集上的奇函数f(x),满足f(x+2)=-f(x),则f(6)的值为-1.又如,如果函数f(x)对于任意实数x都有f(1+2x)=f(1-2x),则f(2x)的图像关于x=1对称。
练1:如果函数y=f(x+1)是偶函数,则y=f(x)的图像关于x=1对称。
练2:如果函数y=f(x)满足11f(x+3)=-f(x),且f(3)=1,则f(2010)=-1/2.23、已知函数f(x)是定义在实数集上的奇函数,且当x>2时,f(x)=2x-3,则f(1)+f(2)+f(3)+f(4)+f(5)= 2f(3)+f(1)+f(5)=2(2×3-3)+2×1-3+2×5-3= 8.4、已知函数f(x)是定义在实数集上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x。
要求求出f(7.5)的值。
由奇函数的定义可知,f(5.5)=f(-5.5),即f(7.5)=f(-7.5)。
又因为f(x+4)=-f(x+2)=-(-f(x))=f(x),所以f(x+4k)=f(x),其中k为整数。
故f(-7.5)=f(-7.5+4×2)=f(0)=-f(0),即f(0)=0.又f(1)+f(-1)=0,所以f(1)=-f(-1)。
抽象函数的周期与对称轴-推荐下载
[例 3] 设 f (x) 是定义在 R 上的函数, x R 均有 f (x) f (x 2) 0 当 1 x 1 时 f (x) 2x 1,求当1 x 3 时, f (x) 的解析式。
解:由 x R 有 f (x) f (x 2) 得T 4
学习改变命运 学乐助你成功
由①②得: f [x (a b)] f [x (b a)]
∴ f [x (a b)] f [x (b a)] ∴ T 2 b a
4. 若 f (a x) f (b x) 则 f (x) 图象的对称轴为 x a b 2
f ( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
抽象函数周期性对称性相关定理全总结
抽象函数周期性对称性相关定理全总结1. Fourier级数定理:Fourier级数定理是抽象函数周期性对称性的基本理论定理之一、它表明,任何以L为周期的可积函数f(x)都可以展开成正弦函数与余弦函数的无穷级数形式,即Fourier级数。
这个级数可以表示为:f(x) = a0 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,L是函数周期,a0是常数项,an和bn分别是系数。
2.奇偶周期性与对称性:奇周期性与对称性是周期性对称性的两种特例。
如果一个函数满足f(x) = -f(-x),则称其为奇函数。
奇函数可以展开成sin函数的Fourier级数形式。
如果一个函数满足f(x) = f(-x),则称其为偶函数。
偶函数可以展开成cos函数的Fourier级数形式。
3. 对称函数的Fourier级数展开与傅里叶定理:对称函数的Fourier级数展开是指将一个以L为周期的对称函数展开成cos函数的Fourier级数形式。
傅里叶定理表明,对于一个以L为周期的函数f(x),如果f(x)是一个对称函数,则其Fourier级数展开只包含cos函数;如果f(x)是一个奇函数,则其Fourier级数展开只包含sin函数。
4. 函数的周期拓展与周期函数的Fourier级数:函数的周期拓展是指将一个以L为周期的函数f(x)拓展成以2L为周期的函数。
周期拓展后的函数可以用以L为周期的函数的Fourier级数展开。
具体而言,如果将f(x)的周期拓展后的函数记作F(x),则对于周期拓展后的函数F(x),存在一个以L为周期的函数g(x),使得F(x) = g(x)在[-L, L]上成立。
所以,F(x)的Fourier级数展开实际上是以L为周期的函数g(x)的Fourier级数展开。
综上所述,抽象函数周期性对称性相关定理涉及四个方面:Fourier级数定理、奇偶周期性与对称性、对称函数的Fourier级数展开与傅里叶定理、函数的周期拓展与周期函数的Fourier级数。
高三函数周期性和对称性知识点
高三函数周期性和对称性知识点在高三数学中,函数的周期性和对称性是一个重要的知识点。
了解和掌握函数的周期性和对称性可以帮助我们更加深入地理解和应用函数的性质。
本文将从周期函数、对称函数以及函数的应用等方面来介绍高三函数周期性和对称性的知识点。
一、周期函数周期函数是指在一定的区间内,函数的图像在某一特定规律下重复出现。
周期函数的特点是在一定的区间内有着相同的函数值。
常见的周期函数有正弦函数、余弦函数和正切函数等。
首先,我们来了解正弦函数和余弦函数。
正弦函数的图像是一条上下震荡的曲线,它的周期为2π。
也就是说,当自变量增加2π时,函数值会重新回到原来的值。
而余弦函数的图像也是一条上下震荡的曲线,它的周期也是2π。
正弦函数和余弦函数是非常常见的周期函数,在物理学、工程学等领域中有广泛的应用。
接下来,我们再来介绍一下正切函数。
正切函数的图像是一条摆动不定的曲线,它的周期为π。
也就是说,当自变量增加π时,函数值会重新回到原来的值。
正切函数相比于正弦函数和余弦函数而言,其周期要小一些。
二、对称函数对称函数是指函数的图像具有某种对称性质。
常见的对称函数有偶函数和奇函数。
偶函数是指函数的图像关于y轴对称。
也就是说,如果函数f(x)是一个偶函数,那么对于任意的x值,有f(-x) = f(x)成立。
一个简单的例子就是二次函数y = x^2,它的图像关于y轴对称。
奇函数是指函数的图像关于原点对称。
也就是说,如果函数f(x)是一个奇函数,那么对于任意的x值,有f(-x) = -f(x)成立。
一个简单的例子就是一次函数y = x,它的图像关于原点对称。
三、函数的应用周期性和对称性的函数在实际问题中有很广泛的应用。
例如,振动现象的描述常常使用正弦函数、余弦函数或正切函数。
另外,对称函数的特点也为问题的求解提供了方便。
以周期函数为例,我们来看一个具体的应用。
假设有一个正弦函数表示一个物体的振动情况,我们希望求出物体完成一次振动的时间。
高中数学函数的对称和周期性知识点精析
高中数学函数的对称和周期性知识点精析1.周期函数的定义周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.2.函数的轴对称:定理1:如果函数()y f x =满足()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称.定理2:如果函数()y f x =满足()()2f x f a x =-,则函数()y f x =的图象关于直线x a =对称.定理3:如果函数()y f x =满足()()2f x f a x -=+,则函数()y f x =的图象关于直线x a =对称.定理4:如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a b x +=对称. 定理5:如果函数()y f x =满足()()f x f x =-,则函数()y f x =的图象关于直线0x =(y 轴)对称.3.函数的点对称:定理1:如果函数()y f x =满足()()2f a x f a x b ++-=,则函数()y f x =的图象关于点(,)a b 对称.定理2:如果函数()y f x =满足()()22f x f a x b +-=,则函数()y f x =的图象关于点(,)a b 对称.定理3:如果函数()y f x =满足()()22f x f a x b -++=,则函数()y f x =的图象关于点(,)a b 对称.定理4:如果函数()y f x =满足()()0f a x f a x ++-=,则函数()y f x =的图象关于点(,0)a 对称.定理5:如果函数()y f x =满足()()0f x f x +-=,则函数()y f x =的图象关于原点(0,0)对称.4.函数的对称性与周期性的联系定理3:若函数()y f x =在R 上满足()()f a x f a x +=-,且()()f b x f b x +=-(其中a b ≠),则函数()y f x =以2()a b -为周期. 定理4:若函数()y f x =在R 上满足()()f a x f a x +=--,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以2()a b -为周期. 定理5:若函数()y f x =在R 上满足()()f a x f a x +=-,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以4()a b -为周期. 以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.5.几种特殊抽象函数的周期:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数; ⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;6.判断一个函数是否是周期函数的主要方法1.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x恒有()()+=;f x T f x二是能找到适合这一等式的非零常数T,一般来说,周期函数的定义域均为无限集.2.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值。
00抽象函数周期与对称公式
抽象函数周期与对称公式主要知识:1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.2.几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数),(1)()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;(2)()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数;(3)()()1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; (4)()()f x a f x b +=-,则()f x 是以T a b =+为周期的周期函数;以上(1)-(4)比较常见,其余几种题目中出现频率不如前四种高,并且经常以数形结合的方式求解。
(5)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.(6)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;(7)函数()y f x =()x ∈R 的图象关于两点(),0A a 、(),0B b ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;(8)函数()y f x =()x ∈R 的图象关于(),0A a 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;(9)有些题目中可能用到构造,类似于常数列。
高中数学中的函数图像的周期与对称
高中数学中的函数图像的周期与对称函数是数学中的重要概念之一,它描述了数学对象之间的关系。
在高中数学中,我们经常会遇到各种各样的函数,其中函数图像的周期与对称是一个重要的概念。
本文将探讨高中数学中函数图像的周期与对称性质,并通过具体例子来加深理解。
首先,我们来讨论函数图像的周期性。
周期是指函数在一定范围内重复出现的性质。
在函数图像中,周期性可以通过函数的定义域和值域来判断。
例如,正弦函数sin(x)的周期为2π,即在每个2π的区间内,函数图像会重复出现。
这意味着,如果我们将函数图像沿x轴平移2π的距离,得到的图像与原图像完全一样。
除了正弦函数,还有许多其他函数也具有周期性。
例如,余弦函数cos(x)、正切函数tan(x)等都是周期函数。
而指数函数和对数函数则不具备周期性。
其次,我们来讨论函数图像的对称性。
对称性是指函数图像在某个轴或点上的镜像性质。
常见的对称性包括关于x轴对称、关于y轴对称和关于原点对称。
关于x轴对称的函数图像具有特点:对于任意一个点(x, y),如果(x, y)在函数图像上,那么(x, -y)也在函数图像上。
例如,二次函数y = x²就是关于x轴对称的。
如果我们将函数图像沿x轴翻转,得到的图像与原图像完全一样。
关于y轴对称的函数图像具有特点:对于任意一个点(x, y),如果(x, y)在函数图像上,那么(-x, y)也在函数图像上。
例如,绝对值函数y = |x|就是关于y轴对称的。
如果我们将函数图像沿y轴翻转,得到的图像与原图像完全一样。
关于原点对称的函数图像具有特点:对于任意一个点(x, y),如果(x, y)在函数图像上,那么(-x, -y)也在函数图像上。
例如,双曲线函数y = 1/x就是关于原点对称的。
如果我们将函数图像沿原点翻转,得到的图像与原图像完全一样。
通过理解函数图像的周期性和对称性,我们可以更好地理解和分析函数的性质。
例如,当我们在解方程时,如果能够发现函数图像的周期性和对称性,就可以通过观察图像来得到解的信息。
高中数学函数对称性和周期性小结
高中数学函数对称性和周期性小结高中数学中,函数对称性和周期性是重要的概念。
它们在数学理论和实际应用中都扮演着重要的角色。
本文将对函数的对称性和周期性进行详细的介绍和总结。
首先,我们来讨论函数的对称性。
对称性是指函数在某种变换下具有保持不变的性质。
在数学中,常见的函数对称性有对称、反对称和轴对称等。
对称函数是一种在镜像变换下保持不变的函数。
对称函数的概念可以延伸到两种情况:关于y轴对称和关于原点对称。
关于y轴对称的函数满足 f(x) = f(-x),这意味着函数的图像在y轴上对称。
而关于原点对称的函数满足 f(x) = -f(-x),这意味着函数的图像在原点上对称。
常见的对称函数有偶函数和奇函数。
偶函数是指关于y轴对称的函数,即满足 f(x) = f(-x) 的函数。
这种函数的图像关于y轴对称,例如 y = x^2 就是一个典型的偶函数。
偶函数的特点是在定义域的对称位置的函数值相等。
对偶函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。
偶函数的性质还包括:偶函数相加仍为偶函数,偶函数与任意常数先乘后加仍为偶函数,偶函数乘以奇函数得到奇函数。
奇函数是指关于原点对称的函数,即满足f(x) = -f(-x) 的函数。
这种函数的图像关于原点对称,例如 y = x^3 就是一个典型的奇函数。
奇函数的特点是在定义域的对称位置的函数值互为相反数。
对奇函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。
奇函数的性质还包括:奇函数相加仍为奇函数,奇函数与偶函数相加得到一个新的函数,既不是偶函数也不是奇函数。
反对称函数是指既不关于y轴对称也不关于原点对称的函数,而是在镜像变换下呈现一种特殊的关系。
即满足 f(x) = -f(-x)的函数。
这种函数的图像在关于y轴和原点的对称位置的函数值互为相反数。
例如 y = x 就是一个典型的反对称函数。
其次,我们来讨论函数的周期性。
周期性是指函数在某个特定的区间内,满足一个特定的周期性关系。
高中数学函数的对称性和周期性知识点精析新人教B版必修
高中数学函数的对称性和周期性知识点精析新人教B版必修Document serial number【KKGB-LBS98YT-BS8CB-BSUT-函数的对称性和周期性知识点精析1.周期函数的定义周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.2.函数的轴对称:定理1:如果函数()y f x =满足()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称.定理2:如果函数()y f x =满足()()2f x f a x =-,则函数()y f x =的图象关于直线x a =对称.定理3:如果函数()y f x =满足()()2f x f a x -=+,则函数()y f x =的图象关于直线x a =对称.定理4:如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a b x +=对称. 定理5:如果函数()y f x =满足()()f x f x =-,则函数()y f x =的图象关于直线0x =(y 轴)对称.3.函数的点对称:定理1:如果函数()y f x =满足()()2f a x f a x b ++-=,则函数()y f x =的图象关于点(,)a b 对称.定理2:如果函数()y f x =满足()()22f x f a x b +-=,则函数()y f x =的图象关于点(,)a b 对称.定理3:如果函数()y f x =满足()()22f x f a x b -++=,则函数()y f x =的图象关于点(,)a b 对称.定理4:如果函数()y f x =满足()()0f a x f a x ++-=,则函数()y f x =的图象关于点(,0)a 对称.定理5:如果函数()y f x =满足()()0f x f x +-=,则函数()y f x =的图象关于原点(0,0)对称.4.函数的对称性与周期性的联系定理3:若函数()y f x =在R 上满足()()f a x f a x +=-,且()()f b x f b x +=-(其中a b ≠),则函数()y f x =以2()a b -为周期. 定理4:若函数()y f x =在R 上满足()()f a x f a x +=--,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以2()a b -为周期. 定理5:若函数()y f x =在R 上满足()()f a x f a x +=-,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以4()a b -为周期.以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.5.几种特殊抽象函数的周期:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数; ⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;6.判断一个函数是否是周期函数的主要方法1.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x 恒有()()f x T f x +=;二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集.2.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值。
抽象函数周期性对称性相关定理全总结
抽象函数周期与对称轴的相关结论一、教学内容 抽象函数的周期与对称轴二、教学重、难点 重点:抽象函数周期与对称轴的相关结论。
难点:结论的推导证明,利用结论解决问题三、具体内容1. 若)()(T x f x f +=则)(x f 的周期为T 。
2. 若)()(b x f a x f +=+则)(x f 的周期为a b T -=。
证:令a x x -= ∴ )()(a b x f x f -+=3. 若)()(b x f a x f +-=+则)(x f 的周期a b T -=2。
证:令a x x -= ∴ )()(a b x f x f -+-= ①令b x x -= ∴ )()(x f b a x f -=-+ ②由①②得: [][])()(a b x f b a x f -+-=-+-∴[][])()(a b x f b a x f -+=-+ ∴ a b T -=24. 若)()(x b f x a f -=+则)(x f 图象的对称轴为2b a x +=。
证:要证原结论成立只需证)2()2(x b a f x b a f -+=++ 令x a b x +-=2代入)()(x b f x a f -=+ 则)2()2(x b a f x b a f -+=++ 5. 若)()(x b f x a f --=+则)(x f 的图象,以⎪⎭⎫⎝⎛+0,2b a 为对称中心。
证:方法一:要证原结论成立只需证)2()2(x b a f x b a f -+-=++ 令x a b x +-=2代入)()(x b f x a f --=+ 则)2()2(x b a f x b a f -+-=++ 方法二:设)(x f y =它的图象为CC y x P ∈∀),(00 则P 关于点⎪⎭⎫ ⎝⎛+0,2b a 的对称点),(00'y x b a P --+‘[][])()()()(0000x f x b b f x b a f x b a f -=---=-+=-+∵ 00)(y x f = ∴ 00)(y x b a f -=-+ ∴ C '∈P【几个重要的结论】(一)函数图象本身的对称性(自身对称)1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。
高中数学讲义: 函数的对称性与周期性
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+Û()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+Û关于2a bx +=轴对称在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a bx +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x Þ=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
①要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+éùëû:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+éùëû②本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+Û()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+Û关于,02a b +æöç÷èø轴对称在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a bx +=为所给对称中心即可。
高中数学函数的对称性和周期性知识点精析新人教B版必修1(K12教育文档)
高中数学函数的对称性和周期性知识点精析新人教B版必修1(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学函数的对称性和周期性知识点精析新人教B版必修1(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学函数的对称性和周期性知识点精析新人教B版必修1(word版可编辑修改)的全部内容。
函数的对称性和周期性知识点精析1.周期函数的定义周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.函数的轴对称:定理1:如果函数()y f x =满足()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称.定理2:如果函数()y f x =满足()()2f x f a x =-,则函数()y f x =的图象关于直线x a =对称.定理3:如果函数()y f x =满足()()2f x f a x -=+,则函数()y f x =的图象关于直线x a =对称。
定理4:如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a bx +=对称。
定理5:如果函数()y f x =满足()()f x f x =-,则函数()y f x =的图象关于直线0x =(y 轴)对称.3。
高中函数对称性和周期性全解析
高中函数对称性和周期性全解析一、单个函数的对称性性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2a b x +=对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线 2a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a b x +=对称。
(注:特别地,a =b =0时,该函数为偶函数。
)性质2:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b +,2c )对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点 (2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时, 1111()[()]()f a b x c f b b x c f x c y +-=---=-=-即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点(2a b +,2c )对称。
(注:当a =b =c =0时,函数为奇函数。
)性质3:函数()y f a x =+的图象与()y f b x =-的图象关于直线2b a x -=对称。
证明:在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b a x -=对称点(1b a x --,y 1)。
人教版高中数学函数的周期性与对称性
函数的周期性与对称性函数的对称性1. 对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2. 轴对称:()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)3. 中心对称(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数)(2)()(2)2f x f a x b +-=⇔函数()y f x =图象关于点(,)A a b 中心对称练习1:已知()y f x =的图象关于点(1,2)-成中心对称,写出该函数几何特征的代数形式。
解:()y f x =的图象关于点(1,2)-成中心对称的代数含义:()f x 取和为2-的两个值,如x 和2x --,其对应的函数值的和为4符号语言:()(2)4f x f x +--=函数的周期性1. 定义:设()f x 的定义域为D ,若对x D ∀∈,存在一个非零常数T ,有()()f x T f x +=,则称函数()f x 是一个周期函数,称T 为()f x 的一个周期。
对定义的理解:周期为T 的函数()f x 的自变量取差为T 或-T 的两个值x T +和x 时,对应的函数值相等。
例1:若函数()y f x =满足(1)(1)f x f x -=+,怎么理解?分析:这个等式从左往右看,可以理解为函数()y f x =取了两个自变量1x -、1x +,当自变量增加2个单位时,对应的函数值相等,这两个自变量的特征也可以理解为差为常数(这里是2或-2)根据周期函数概念,我们知道()y f x =的一个正周期为2例2:若函数()y f x =满足(1)(1)2f x f x -++=,则()y f x =有什么性质呢?分析:(1)等式变形为(1)2(1)f x f x -=-+ ①∴()y f x =的自变量增加2个单位后所得到的函数值的相反数加2与原函数值相等(2)据此性质,我们不难得出,(1)2(3)f x f x +=-+ ②(3)由①②可知,[](1)22(3)(3)f x f x f x -=--+=+这个等式的含义是()y f x =取1x -和3x +这两个自变量的值的时候,其对应的函数值总相等。
复习专题5--抽象函数的奇偶性周期性对称性
复习专题5--抽象函数的奇偶性周期性对称性抽象函数的奇偶性、周期性和对称性是数学中重要的概念,它们用来描述函数的特点和性质。
在本文中,我们将对这些概念进行复习和详细解释。
首先,我们来复习抽象函数的奇偶性。
奇函数是指满足f(-x)=-f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)有相反的符号。
奇函数的图像关于原点对称,通常呈现出关于原点对称的特点。
例如,f(x)=x^3是一个奇函数,因为f(-x)=-x^3、对于奇函数,如果其函数图像在原点通过,则其图像也必然经过一些关于原点对称的点。
与奇函数相对的是偶函数。
偶函数是指满足f(-x)=f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)相等。
偶函数的图像关于y轴对称,通常呈现出关于y轴对称的特点。
例如,f(x)=x^2是一个偶函数,因为f(-x)=(-x)^2=x^2、对于偶函数,如果其函数图像在y轴通过,则其图像在整个y轴上对称。
接下来,我们来复习抽象函数的周期性。
周期函数是指满足f(x+T)= f(x)的函数,其中T是一个常数,称为函数的周期,函数定义域内的任意x都满足这个条件。
周期函数的特点是其函数图像在横坐标上以一定的间隔重复出现。
例如,f(x) = sin(x)是一个周期函数,它的周期是2π,即对于任意x,f(x+2π) = sin(x)。
最后,我们来复习抽象函数的对称性。
对称函数是指满足f(x)=f(-x)的函数,即对于函数的定义域内的任意x,函数值f(x)与f(-x)相等。
对称函数的图像有一个对称轴,即对于任意在对称轴上的点x,其关于对称轴的对称点也属于函数的图像。
例如,f(x)=x^4是一个对称函数,因为f(x)=f(-x)=x^4、对称函数的对称轴可以是y轴、原点或其他直线。
综上所述,奇偶性、周期性和对称性是抽象函数重要的特性。
它们可以帮助我们更好地理解函数的性质和图像,并在解决问题中起到指导作用。
函数的周期性与对称性-高一数学上学期(人教A版2019必修第一册)(解析版)
函数专题:函数的周期性与对称性一、周期函数的定义1、周期函数:对于函数()=y f x ,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()+=f x T f x ,那么就称函数()f x 为周期函数,称T 为这个函数的周期.2、最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.3、函数的周期性的常用结论(a 是不为0的常数) (1)若()()+=f x a f x ,则=T a ; (2)若()()+=-f x a f x a ,则2=T a ; (3)若()()+=-f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=-f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=-T a b (≠a b ); 二、函数的对称性 1、函数对称性的常用结论(1)若()()+=-f a x f a x ,则函数图象关于=x a 对称; (2)若()()2=-f x f a x ,则函数图象关于=x a 对称; (3)若()()+=-f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22-=-f a x b f x ,则函数图象关于(),a b 对称; 2、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=-f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=-f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22-=-f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()-=-f x f x ,函数为奇函数,即奇函数为特殊的点对称函数;三、函数对称性与周期性的关系1、若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2-b a ;2、若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2-b a ;3、若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4-b a . 四、函数的奇偶性、周期性、对称性的关系1、①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a .2、①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a .3、①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a .4、①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a . 其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学抽象函数的周期与对称轴人教版【本讲教育信息】一. 教学内容:抽象函数的周期与对称轴二. 教学重、难点重点:抽象函数周期与对称轴的相关结论。
难点:结论的推导证明,利用结论解决问题。
三. 具体内容1. 若)()(T x f x f +=则)(x f 的周期为T 。
2. 若)()(x b f a x f +=+则)(x f 的周期为a b T -= 证:令a x x -= ∴ )()(a b x f x f -+=3. )()(b x f a x f +-=+则)(x f 的周期a b T -=2 证:令a x x -= ∴ )()(a b x f x f -+-= ① 令b x x -= ∴ )()(x f b a x f -=-+ ②由①②得:)]([)]([a b x f b a x f -+-=-+- ∴ )]([)]([a b x f b a x f -+=-+ ∴ a b T -=24. 若)()(x b f x a f -=+则)(x f 图象的对称轴为2ba x += 证:要证原结论成立,只需证)2()2(x ba f xb a f -+=++令x a b x +-=2代入)()(x b f x a f -=+则)2()2(x b a f x b a f -+=++5. 若)()(x b f x a f --=+则)(x f 的图象,以)0,2(ba +为对称中心。
证:方法一:要证原结论成立只需证)2()2(x b a f x b a f -+-=++令2ab x x -+=代入)()(x b f x a f --=+则)2()2(x ba f xb a f -+-=++ 方法二:设)(x f y =它的图象为C C y x P ∈∀),(00则P 关于点)0,2(ba +的对称点),(00y xb a P --+' )()]([)]([)(0000x f x b b f x b a f x b a f -=---=-+=-+ ∵ 00)(y x f = ∴ 00)(y x b a f -=-+ ∴ C P ∈'【典型例题】[例1] 对于)(x f y =,R x ∈有下列命题。
(1)在同一坐标系下,函数)1(x f y +=与)1(x f y -=的图象关于直线1=x 对称。
(2)若)1()1(x f x f -=+且)2()2(x f x f +=-均成立,则)(x f 为偶函数。
(3)若)1()1(+=-x f x f 恒成立,则)(x f y =为周期函数。
(4)若)(x f 为单调增函数,则)(xa f y =(0>a 且1≠a )也为单调增函数,其中正确的为? 解:(2)(3)[例2] 若函数3)()(a x x f +=R x ∈∀有)1()1(x f x f --=+求)2()2(-+f f 。
解:R x ∈∀,)1()1(x f x f --=+知)(x f 的图象关于)0,1(对称而3)()(a x x f +=的对称中心)0,(a P - ∴ 1-=a ∴ 3)1()(-=x x f 则26)3(1)2()2(3-=--=-+f f[例3] 设)(x f 是定义在R 上的函数,R x ∈∀均有0)2()(=++x f x f 当11≤<-x 时12)(-=x x f ,求当31≤<x 时,)(x f 的解析式。
解:由R x ∈∀有)2()(+-=x f x f 得4=T设]3,1(∈x 则]1,1()2(-∈-x)()2()42()2(x f x f x f x f -=+=+-=-∴ 52]1)2(2[)2()(+-=---=--=x x x f x f ∴ 31≤<x 时52)(+-=x x f[例4] 已知)(x f 是定义在R 上的函数且满足1)1()(=-+x f x f ,当]1,0[∈x 时有2)(x x f =则(1))(x f 是周期函数且周期为2 (2)当]2,1[∈x 时,22)(x x x f -= (3)43)5,2004(=-f 其中正确的是? 解:(1)(2)(3)[例5] 已知)(x f 满足)2()2(-=+x f x f ,)4()4(x f x f -=+,当26-≤≤-x 时,c bx x x f ++=2)(且13)4(-=-f ,若)3(b f m =,)2(cf n =,)11(f p =求m 、n 、p的大小关系?解:由已知得4=T ,对称轴4=x ∴ 4-=x 也为一条对称轴∴ 42-=-b ∴8=b 由13)4(-=-f ∴ 134644-=-c ∴ 3=c ∴ )38(f m =,)23(f n =,)3()11(f f p == ∴ p m n >>[例6] 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=求)35(πf 的值。
解:233sin )3()3()32()32()35(===-==+=πππππππf f f f f[例7] 设)(x f y =定义在R 上,R n m ∈∀,有)()()(n f m f n m f ⋅=+且当0>x 时,1)(0<<x f(1)求证:1)0(=f 且当0<x 时,1)(>x f (2)求证:)(x f 在R 上递减。
解:(1)在)()()(n f m f n m f ⋅=+中,令1=m ,0=n 得)0()1()1(f f f = ∵ 1)1(0<<f ∴ 1)0(=f设0<x ,则0>-x 令x m =,x n -=代入条件式有)()()0(x f x f f -=而1)0(=f ∴ 1)(1)(>-=x f x f (2)设21x x <则012>-x x ∴ 1)(012<-<x x f令1x m =,2x n m =+则12x x n -=代入条件式得)()()(1212x x f x f x f -=即1)()(012<<x f x f ∴ )()(12x f x f < ∴ )(x f 在R 上递减【模拟试题】一. 选择1. 已知)(x f 满足)()3(x f x f =+,R x ∈且)(x f 是奇函数,若2)1(=f 则=)2000(f ( )A.2 B. 2- C. 23+ D. 23-2. 已知)(x f 是定义在R 上的偶函数,且)()4(x f x f =+对任何实数均成立,当20≤≤x 时,x x f =)(,当400398≤≤x 时,=)(x f ( )A. 400-xB. 398-xC. x -400D. x -398 3. 若函数)sin(3)(ϕω+=x x f ,R x ∈∀都有)6()6(x f x f -=+ππ则)6(πf 等于( )A. 0B. 3C. 3-D. 3或3- 4. 函数)223cos(x y -=π是( ) A. 周期为π2的奇函数 B. 周期为π的偶函数 C. 周期为π的奇函数D. 周期为π4的奇函数5. )2sin(2)(θ+=x x f 的图象关于y 轴对称的充要条件是( ) A. 22ππθ+=k B. ππθ+=k 2 C. 2ππθ+=k D. ππθ+=k6. 如果)()(x f x f -=+π且)()(x f x f -=则)(x f 可以是( )A. x 2sinB. x cosC. x sinD. x sin 7. )cos(3)sin(θθ-++=x x y 为偶函数的充要条件是( ) A. 32ππθ-=k B. 6ππθ-=k C. 62ππθ±=k D. 6ππθ+=k8. 设)(x f 是R 上的奇函数,)()2(x f x f -=+当10≤≤x 时,x x f =)(,则=)5.7(f ( )A. 0.5B. 5.0-C. 1.5D. 5.1-9. 设c bx x x f ++=2)(,t x ∈∀有)2()2(t f t f -=+那么( ) A. )4()1()2(f f f << B. )4()2()1(f f f << C. )1()4()2(f f f <<D. )1()2()4(f f f <<10. )(x f y =定义在R 上,则)1(-=x f y 与)1(x f y -=的图象关于( ) A. 0=y 对称 B. 0=x 对称 C. 1=y 对称 D. 1=x 对称二. 填空1. )(x f 是R 上的奇函数,且)()2(x f x f =+π,则)3()2()(πππf f f ++)2003(πf ++Λ= 。
2. 函数)32sin(π+=x y 的图象的对称轴中最靠近y 轴的是 。
3. )(x f 为奇函数,且当0>x 时,2)(-=x x x f 则当0<x 时=)(x f 。
4. 偶函数)(x f 的定义域为R ,且在)0,(-∞上是增函数,则(1))1()43(2+->-a a f f (2))1()43(2+-≥-a a f f(3))1()43(2+-<-a a f f(4))1()43(2+-≤-a a f f 中正确的是 。
三. 解答题1. 设)(x f 是定义在R 上的偶函数,图象关于1=x 对称,1x ∀、]21,0[2∈x 都有)()()(2121x f x f x x f =+且0)1(>=a f(1)求)21(f 、)41(f (2)证明:)(x f 是周期函数2. 如果函数)(x f y =的图象关于a x =和)(b a b x <=都对称,证明这个函数满足)(])(2[x f x b a f =+-3. 已知c bx x x f ++=2)(对任意实数t 都有)1()1(t f t f -=+,比较)21(f 与)2(f 的大小。
4. 定义在实数集上的函数)(x f ,对一切实数x 都有)2()1(x f x f -=+成立,若方程0)(=x f 仅有101个不同实根,求所有实根之和。
试题答案一.1. B2. C3. D4. C5. C6. D7. B8. B9. A 10. D 二.1. 02. 12π=x 3. 2+x x 4.(2)三. 1. 解:(1)∵ ]21,0[,21∈∀x x 都有)()()(2121x f x f x x f ⋅=+ ∴ 0)2()2()(≥⋅=xf x f x f ]1,0[∈x∵ 2)]21([)21()21()2121()1(f f f f f =⋅=+=∵ 21)21(a f =,2)]41([)4141()21(f f f =+=∴ 41)41(a f =(2)由已知)(x f 关于1=x 对称∴ )11()(x f x f -+=即)2()(x f x f -=,R x ∈ 又由)(x f 是偶函数知)()(x f x f =-,R x ∈∴ )2()(x f x f -=-,R x ∈将上式中x -以x 代换得)2()(+=x f x f ∴ )(x f 是R 上的周期函数,且2是它的一个周期 2.证:∵ )(x f 关于a x =和b x =对称 ∴ )2()(x a f x f -=,)2()(x b f x f -= ∴ )2()2(x b f x a f -=-令A x b =-2,则A b a x a +-=-)(22 ∴ )(])(2[A f A b a f =+-即)(])(2[x f x b a f =+- 3.解:由)1()1(t f t f -=+知抛物线c bx x x f ++=2)(的对称轴是1∴ )23()21(f f =而232>根据)(x f 在),1(∞+上是增函数得)23()2(f f >即)21()2(f f > 4.解:设x u -=2即u x -=2 ∴ )3()(u f u f -=∴ R x ∈∀有)3()(x f x f -= ∴ 所有实根之和为230323101=⨯ 注:一个结论:设)(x f y =,R x ∈∀都有)2()(x a f x f -=且0)(=x f 有k 个实根)2(≥k ,则所有实根之和为ka。