稳态冲击风作用下高层建筑风荷载特性试验研究
(完整版)高层建筑在风荷载作用下的相关研究
高层建筑在强风作用下由于脉动风的影响将产生振动,这种振动有可能使在高层建筑内生活或工作的人在心理上产生不舒适的感觉,从而影响建筑物的正常使用”由于风是一种经常性的荷载作用,因此有必要将风引起的高层建筑的振动限制在人体舒适的感觉范围之内”重现期的选择也最大风速样本的取法影响着平均风速的数值”如果以口最大风速为样本,则一年有365个样本,平时低风速的口子的风速值占有很大的权,而最大风速那一天的风速只占1/365的权,因而最大风速重要性大大降低了,统计出的平均风速必将大大偏低"如果采用月最大风速,则每年最大风速在整个数列中也只占1/12的权,也降低了最大风速所起的重要性,所得结果也是偏低的"对十工程结构应该能承受一年中任何口子的极大风速,因此取年最大风速为样本”最大风速有它的自然周期,每年季节性地重复一次,因而采用年最大风速作为一个样本,较为合适”世界各国基本上是取年最大风速作为统计样本的”平均风的时距平均风速的数值与时距的取值有很大的关系”如果时距取得很短,例如3秒钟,则必定将记录中最大值附近的较大数据都突出反映在计算中,较低风速在平均风速中的作用难以得到反映,因而平均风速值很高”如果取得很长,例如1天,则必定将1天中大量的小风平均进去,较高风速在该长时距中起不到显著作用,其值一般偏低”一般来说,时距愈短,平均风速愈大,时距愈长,平均风速也就愈小"风速记录表明,阵风的卓越周期约为1min,通常认为10min(约10个周期)至1小时(约60个周期,由于阵风有较长的持续性,衰减较慢)其平均值基本上是一个稳定值,因而我国规范规定以10分钟作为取值标准”一般我们所研究的对象不会出现异常风的气候,称为良态气候"对十这种气候,我们可以认为年最大风速的每一个数据都对极值的概率特性起作用,因此,世界上许多国家把年最大风速作为概率统计的样本,由重现期和风速的概率分布获得该地区的设计最大风速,或者称为基本风速"我国规定基本风速采用极值I型概率分布函数进行统计分析"对于多层建筑和高层建筑的风致响应问题,连续体系,采用随机振动理论进行分析。
超高层建筑结构风振响应分析与抑制技术研究
超高层建筑结构风振响应分析与抑制技术研究超高层建筑是现代城市的标志性建筑之一,然而,随着建筑高度的增加,其在强风环境下存在严重的风振问题。
风振现象不仅会导致超高层建筑剧烈的摇摆,甚至可能引发结构破坏和安全隐患。
因此,研究超高层建筑结构风振响应分析与抑制技术具有重要的工程应用价值。
首先,针对超高层建筑结构风振问题的研究,需要进行风洞试验和数值模拟分析。
风洞试验可以通过模拟真实的风场环境,获取结构在风力作用下的响应。
通过风洞试验可以确定结构的风荷载分布及其对结构的力学性能的影响。
同时,数值模拟分析也是研究超高层建筑结构风振响应的重要手段。
基于ANSYS等有限元软件,可以对超高层建筑进行模拟,预测结构的风振响应。
其次,为了减小超高层建筑的风振响应,需采取有效的抑制技术。
目前,常用的抑制技术主要包括被动控制、主动控制和半主动控制。
被动控制技术是通过优化结构的刚度和阻尼特性,减小结构对风荷载的响应。
常见的被动控制技术包括质量调节、增加剪力墙等。
主动控制技术则是通过使用传感器和执行器,对结构进行实时监测和调节,以抑制结构的振动。
而半主动控制技术则是被动和主动控制的结合,兼具两者的优点。
在具体研究超高层建筑结构风振响应分析与抑制技术的过程中,需要考虑多方面的因素。
首先,要充分地了解超高层建筑的结构特点和风动力学特性。
超高层建筑的结构比较复杂,一般由钢结构和混凝土结构组成。
其风动力学特性则受到结构形态和风洞效应的影响。
因此,在进行风振响应分析时,需要综合考虑这些因素,并建立准确的数学模型。
此外,对于超高层建筑的风振响应抑制技术研究,还需考虑经济性和可行性。
抑制技术的实施会增加工程的投资成本,因此,需要权衡抑制效果与成本。
同时,超高层建筑已经建成,抑制技术的实施需要考虑施工的可行性和结构的可操作性。
因此,在研究过程中还需要充分考虑这些实际问题,并提出合理的解决方案。
总结而言,超高层建筑结构风振响应分析与抑制技术研究是一个复杂且具有挑战性的课题。
基于风洞实验的高层建筑风荷载特性分析与计算
基于风洞实验的高层建筑风荷载特性分析与计算高层建筑是现代城市的地标性建筑物,其在设计和建设过程中需要考虑各种外部荷载,其中风荷载是一个重要因素。
为了确保高层建筑的结构安全和稳定性,基于风洞实验的风荷载特性分析与计算成为必要的工作。
一、绪论高层建筑的风荷载特性分析与计算是为了确定结构所受风荷载的大小和作用形式,以及其对结构产生的影响。
通过风洞实验可以模拟真实的气候条件和风场,准确测量和分析风对建筑物的作用。
二、风荷载计算方法1. 风洞实验的意义和必要性风洞实验可以提供真实的风荷载数据,是研究高层建筑风荷载特性的最有效方法之一。
通过风洞实验,可以模拟不同风速、风向和风场条件,并对结构产生的风压力、扭矩和横向力进行测量和分析。
2. 风洞模型的设计与制备风洞模型的设计与制备需要考虑建筑物的几何形状、比例尺和材料特性等因素。
模型的设计应尽可能接近真实建筑物的几何形状和尺寸,以及结构特点。
材料的选择应具备与真实建筑物相似的性能和力学特性。
3. 风洞实验数据采集与分析风洞实验过程中需要采集和记录模型所受的风荷载数据。
通过合适的传感器和测量设备,可以准确测量和记录模型所受的风压力和结构响应。
实验数据的分析可以得到风对建筑物产生的扭矩、横向力和变形等信息。
三、风荷载特性分析1. 风荷载的作用形式风荷载主要表现为风压力、扭矩和横向力。
风压力是主要的作用形式,会引起结构的变形和应力集中。
扭矩和横向力会对结构的整体稳定性产生影响。
2. 风对结构的影响风荷载会引起建筑物产生震动和变形,对结构的稳定性和安全性造成挑战。
通过风动力学分析,可以确定结构所受风压力的分布和变化规律,为结构设计提供依据。
同时,通过调整结构形式和风阻系数等参数,可以减小风荷载对结构的影响。
四、风荷载计算结果与结构设计基于风洞实验得到的风荷载数据可以作为结构设计的依据。
结构设计应考虑风荷载对结构的影响,通过合理的结构布局和设计优化,提高结构的稳定性和安全性。
双塔高层建筑风荷载与风致响应研究的开题报告
双塔高层建筑风荷载与风致响应研究的开题报告一、选题背景及意义随着人们生活水平的提高,城市建设也愈加密集,高层建筑层出不穷。
在高楼林立的城市中,高层建筑常常会受到强风的袭击,容易出现倾斜、断裂、倒塌等安全隐患。
因此,研究高层建筑的风荷载及风致响应是非常必要的。
此次研究选取的是双塔高层建筑,该类型建筑特点是结构简单,高度较高,风荷载及风致响应会对其稳定性产生影响。
通过研究建筑物在不同风速下的荷载变化及响应,可以为该类建筑的设计及安全评估提供科学依据。
二、研究内容1. 国内外双塔高层建筑的研究现状及趋势通过查阅文献、资料等方式,了解目前国内外双塔高层建筑研究的现状及趋势,为后续的研究提供基础知识。
2. 双塔高层建筑的风荷载计算方法根据相关标准,对双塔高层建筑的风荷载进行计算,包括静风载、动风荷载等。
3. 风荷载对双塔高层建筑的影响通过数值模拟等手段,研究不同风速下风荷载的变化及其对双塔高层建筑的影响,探究其稳定性及安全隐患。
4. 双塔高层建筑的风致响应分析利用有限元软件等工具,对双塔高层建筑在风荷载作用下的响应进行分析,研究其振动特性及结构变形情况,为其结构设计提供参考。
三、研究方法1. 文献梳理法:通过查阅资料、文献等方式收集、整理与本课题相关的信息和资料。
2. 数值模拟法:利用CFD等数值模拟软件对双塔高层建筑在不同风速下的荷载进行计算和分析。
3. 有限元分析法:通过有限元软件对建筑物在风荷载作用下的响应进行分析,探究其振动特性及结构变形情况。
四、预期结果通过对双塔高层建筑的风荷载及风致响应研究,预期可以得到以下结果:1. 分析不同风速下双塔高层建筑的风荷载变化规律。
2. 分析风荷载对双塔高层建筑的影响及其稳定性。
3. 研究双塔高层建筑在风荷载作用下的振动特性及结构变形情况。
4. 提出优化设计建议,为该类建筑的安全性和稳定性提供科学的参考和依据。
五、研究进度安排第1-2周:查阅文献,了解双塔高层建筑的研究现状及趋势。
雷暴冲击风作用下高层建筑风荷载频域特性
雷暴冲击风作用下高层建筑风荷载频域特性摘要:在水平荷载作用下,结构抗水平的侧向刚度是高层建筑(尤其超高层建筑)结构设计的关键,为满足结构弹性工作状态,应加强对结构层间位移角的控制。
建筑受到风荷载的受力图呈倒三角形分布,而剪力呈正三角形分布,据此高层结构刚度分布应为上小下大的渐变分布特征。
本文基于雷暴冲击风作用下高层建筑风荷载频域特性展开论述。
关键词:雷暴冲击风作用;高层建筑;风荷载频域特性引言对高度不小于150m的高层建筑,结构应满足风振舒适度的要求。
对住宅、公寓类建筑,结构顶点风振加速度不得超过0.15m/s2,对办公、旅馆类建筑,结构顶点风振加速度不得超过0.25m/s2。
正常条件下,高层建筑物处于弹性状态,还应考虑结构整体变形对幕墙围护结构的影响。
因此,需合理布置结构的抗侧力构件,如框架梁、连梁、剪力墙、框架柱、筒体等。
不同结构形式可采用不同的抗侧力构件或组合构件,以满足结构抗侧刚度、风振舒适度及围护结构变形要求。
1高层住宅建筑结构设计特点在高层住宅建筑中,主要采用框架结构、剪力墙结构和框剪结构。
其中,框架结构由杆件刚性连接构成,能够灵活进行空间布置。
但梁柱截面较小,使得结构刚度小,侧移大,抵抗力较差,不适用于地震区。
剪力墙结构则是首选结构形式,能够利用钢筋混凝土墙体对水平力、竖向力进行承载,利用剪力墙对墙体和楼板进行较好连接。
该种结构刚度较大,具有较强抗震能力。
框剪结构是利用大剪力墙对部分框架结构进行替代,利用楼板和连梁构成结构体系,使结构整体刚度得到提升,受水平荷载作用可以产生较高承载力。
实际在高层住宅建筑结构设计中,需要考虑结构延性,确保结构进入塑性阶段依然维持较强变形能力,以免建筑发生坍塌问题。
结构侧移需要控制在一定限度范围内,避免水平荷载作用下结构发生过大侧移变形。
由于竖向荷载基本为确定数值,风荷载、地震作用等将有所变化,水平荷载变化幅度较大,设计时应确保引发的轴力、弯矩能够与楼房高度成正比,以免结构受到过大影响。
极端风荷载下超高层施工附属设施安全性态分析评定
极端风荷载下超高层施工附属设施安全性态分析评定2 中和华丰建设集团有限公司宁波 315043摘要:超高层建筑的建设周期较为漫长,则极易受到极端风荷载的袭击,造成巨大破坏,尤其在我国的东南沿海一带。
风荷载会随着建筑的施工进度发变化,附着于超高层建筑的塔吊、电梯结构表面,风场的复杂性越发加大,超高层建筑的结构及施工附属实施的安全性能就越发不可控。
为此,利用CFD数值仿真模型对超高层建筑在施工期间的风环境特性及规律开展研究,分析不同极端风荷载的风向、风速对主体结构和塔吊的风场影响规律,并进一步结合施工监测的技术对极端风荷载下的附属设施进行易损性的安全评估。
关键词:超高层;施工塔吊;数值模拟;极端风荷载;安全评估;Analysis and assessment of safety performance of construction auxiliary facilities of super high-rise building under extreme wind loadAbatract:The construction period of super high-rise buildings is relatively long, so they are vulnerable to extreme wind loads andcause huge damage, especially in the southeast coastal areas of China. The wind load will change with the construction progress of the building, and the tower crane attached to the super high-rise building, On the surface of the elevator structure, the wind field is becoming more and more complex, and the safety performance of the structure and construction of super high-rise buildings is becoming more and more uncontrollable. Therefore, the CFD numerical simulation model is usedto study the characteristics and laws of the wind environment duringthe construction of super high-rise buildings, analyze the influence of wind direction and speed under different extreme wind loads on the wind field of the main structure and tower crane, and further assess the vulnerability of ancillary facilities under extreme wind loads combined with construction monitoring technology.Keyword:super high-rise building; construction tower crane; numerical simulation; extreme wind load; safety assessment;随着社会经济的发展,超高层的建筑得到了广泛的设计应用,主要分布于我国经济发达的东南沿海地区。
关于高层建筑结构抗风可靠性的研究
关于高层建筑结构抗风可靠性的研究作者:李智平吕恒来源:《科技资讯》2015年第04期摘要:在高层建筑结构的总荷载效应中风荷载效应占有较大比重,且从某种程度上而言具有决定性作用。
当前施工技术与现代材料学发展迅速,新型建筑结构得以涌现,且一般柔性较好,具有阻尼小与重量轻的特点。
这种结构对于风有较强敏感性,因此当前人们对于高层建筑结构的安全性、适用性以及可靠性要求更高。
因此需开展高层建筑结构抗风可靠性研究,以提升设计者对于风影响力度的重视。
关键词:高层建筑结构抗风可靠性中图分类号:TU208.3 文献标识码:A 文章编号:1672-3791(2015)02(a)-0071-01结构对于人类而言是基于自身生存满足、工农业生产与文化活动所需出现的构筑物或者建筑物。
结构工程存在历史较长,其发展密切关联于人类文明,且可将时代科技水平体现出来。
随着社会经济的快速发展与科学技术的不断提升,土地资源逐渐稀缺且城市人口愈发密集,同时商业竞争也逐渐激烈,由于出现了高层建筑,可提升土地利用率并对城市人口居住问题予以有效解决。
荷载可直接影响结构的实用性与安全性,而风荷载在高层结构中存在瞬时与累积作用,对于结构可靠性有着影响。
1 风荷载对高层建筑结构产生的作用与特点1.1 风荷载对高层建筑结构产生的作用高层建筑结构若长时间受到风力作用会诱发结构疲劳现象,导致建筑物摇晃,增强建筑物使用者的不适感;风力作用会导致高层建筑结构出现规模较大的结构开裂或者残余变形现象;强风会破坏高层建筑主体或者装修,不仅损失建设方效益也为使用者带来不便。
风主要产生于地球大气层中空气的流动。
高层建筑结构受到风力作用后会出现结构反应。
尽管风荷载对高层建筑结构造成的影响可能比地震要小,但是由于风荷载出现频率要高于地震,故而高层建筑承受风荷载后其灾害要多于地震灾害。
虽然迄今为止世界上尚未出现由于风力作用导致高层建筑结构被严重破坏或者出现倒塌事件,但是部分建筑物经受台风侵袭后其残余变形通常比较明显。
高层建筑结构抗风振性能分析与设计
高层建筑结构抗风振性能分析与设计高层建筑抗风振是指建筑物在强风作用下抵抗风振的能力。
由于高层建筑的高度和细长形状,容易受风的作用,产生结构的振动。
因此,为了确保高层建筑的安全和稳定,必须对其抗风振性能进行分析和设计。
一、风振分析高层建筑抗风振性能的分析是通过计算建筑物在风场中受到的风压力,分析建筑结构的振动特性,以及评估结构的稳定性和安全性。
主要包括以下几个方面:1. 风压力计算:根据建筑物高度、形状和所在地的风速,计算出建筑物在不同高度和不同方向上受到的风压力大小。
这需要考虑的因素包括建筑物的表面积、气动力系数和风压力系数等。
2. 结构振动特性分析:通过数学模型和计算方法,分析建筑结构在风作用下的振动特性。
包括自振频率、阻尼比和模态形式等参数。
这些参数能够帮助工程师判断结构的振动情况,进而评估其稳定性和抗风能力。
3. 结构响应分析:根据建筑结构的振动特性,进行结构响应分析,即模拟建筑物在风场中的受力和变形情况。
通过有限元分析等方法,定量计算结构的应力、位移和变形等参数,为结构的抗风设计提供依据。
二、设计原则与方法在高层建筑抗风振的设计过程中,需要遵循一些基本的原则和方法,以保证结构的稳定性和安全性。
1. 抵抗风压力:结构的设计应考虑到不同高度和不同方向上的风压力变化。
采用适当的结构形式和截面尺寸,以抵抗风压力的作用,并保证结构的整体稳定性。
2. 减小结构振动:通过合理的结构抗振措施,减小结构在风作用下的振动。
常用的方法包括增加结构的坚固性、增加阻尼装置、优化结构参数和采用风洞试验等。
3. 考虑风-结构相互作用:在风振设计中,需要考虑风-结构相互作用的影响。
即风场的作用对结构的响应造成的影响,以准确评估建筑物的受力和变形情况。
4. 断面设计:根据结构的受力特点和抗振要求,进行断面的设计。
选择合适的材料和截面形式,以满足结构的抗风要求和使用寿命。
5. 工程实践经验:高层建筑抗风振的设计需考虑到实际工程施工和运行中的各种影响因素。
高层建筑连体结构风振反应分析方法研究的开题报告
高层建筑连体结构风振反应分析方法研究的开题报告一、研究背景及意义随着城市化进程的加快和人口密集度的增加,高层建筑数量逐年增多,高层建筑连体结构也随之出现并越来越广泛地应用于实际工程中,例如写字楼、酒店、医院等公共建筑。
连体结构的风振反应研究是设计和施工过程中需要重点考虑的内容之一,尤其是在高层建筑中。
风是高层建筑结构中最主要的荷载之一,它对建筑的横向和纵向刚度的分布、地震桥梁的抗震能力和建筑层间隔振动的影响等均具有明显的影响和作用。
因此,对高层连体结构风振反应进行研究具有重要的实际应用价值和科学研究意义。
二、研究目标本研究旨在采用现代数字分析技术,分析高层建筑连体结构在风荷载作用下的风振反应,确定其振动特性和响应规律,并制定相应的减振措施,以提高结构的安全性和可靠性。
三、研究内容1.了解现有高层建筑连体结构的风振反应分析方法和理论,总结其优缺点。
2.根据风荷载的作用特点,建立高层建筑连体结构的风振反应数学模型,包括结构的初始状态、基础参数和风荷载等。
3.采用有限元分析方法,分析高层建筑连体结构在风荷载作用下的动态响应,并研究振动特性和响应规律。
4.提出高层建筑连体结构风振控制的减振措施,包括物理结构调整、降低建筑自然频率等方法,并进行分析比较。
五、研究方法1.文献查阅法:对国内外高层建筑连体结构风振反应分析方法和理论进行综述和总结。
2.数值模拟法:运用有限元分析方法,建立高层建筑连体结构风振反应的数值模型,并进行动态响应分析。
3.减振措施比较:根据分析结果,提出并比较常见的高层建筑连体结构风振控制减振措施。
六、预期成果本研究将设计并优化高层建筑连体结构风振反应数学模型,对其进行数值模拟分析,深入研究风振响应规律和振动特性,并提出合理的高层建筑连体结构风振控制减振措施,为实际工程提供科学可行的设计和施工参考,提高高层连体结构的安全性和可靠性。
超高层建筑的风振响应及等效静风荷载研究
用在结构层上 ,因此需要把风洞试验得到的 12 个测
点层的数据插值到 42 个结构层上 。得到每层的风
荷载时程 Fjx 、Fjy 后 ,通过傅里叶变换求得每层风荷 载的自功率荷载谱密度和互功率谱密度 , 以此作为
高层结构风振响应随机振动求解的荷载输入项 。
3 计算结果与分析
3. 1 位移响应 由于周围建筑物的干扰作用明显 ,较难区分来
190. 24 10
)
0.
44
CPi
(
t)
(2)
高层建筑的计算采用简化层模型 , 作用于该建
筑上的风荷载以集中力的形式作用于各结构层上 ,
并且与结构层的自由度相对应 , 将沿建筑周向分布
的风荷载合成为水平方向的合力 Fx 、Fy 。结构第 j 测点层的水平力 F jx 、Fjy 分别为
n
∑ Fjx =
中国规范对于造型独特且有相邻建筑干扰的高 层建筑风荷载缺乏体型系数和干扰因子的规定 ,因 此为了得到合理的风致效应 ,确定等效静风荷载用 于主体结构抗风设计 ,同时也为了考察动力风荷载 作用下的人体舒适度 ,有必要对此类超高层建筑进 行风压测定的风洞试验和结构风致动力效应分析 。
1 风洞试验
广州珠江新城 B127 地块项目的建筑物总高度 为 190. 24 m ,标准层平面为椭圆形 ,如图 1 所示 ,该 建筑物结构对风荷载的作用较为敏感 ,同时该建筑 物还受到周围多栋建筑的气动干扰 。其风洞试验模 型用工程塑料制成 ,比例为 1 ∶300 ,根据该建筑外 形特征 ,在四周立面布置有代表性的测压点测试风 压分布 ,典型测点布置和测试风向角如图 2 所示 ,整 栋建筑共布置测点 345 个 。试验在广东省建筑科学 研究院 C GB21 建筑风洞的大试验段进行 ,试验考虑 了周边半径 500 m 范围的建筑 ,同时考虑了 24 个不 同风向角的影响 ,风洞试验模型如图 3 所示 。试验 风向角在 0°~360°之间 ,每间隔 15°共 24 个风向角 下进 行 。计 算 试 验 风 压 时 以 建 筑 物 顶 部 高 度 190. 24 m为参考高度 。本文中定义的 x 方向与椭 圆形的短轴方向一致 , y 方向和椭圆形的长轴方向 一致 。
雷暴冲击风作用下高层建筑风荷载频域特性
雷暴冲击风作用下高层建筑风荷载频域特性
方智远 1,汪之松 1,2覮,李正良 1,2
(1. 重庆大学 土木工程学院,重庆 400045;2.山地城镇建设与新技术教育部重点实验室(重庆大学),重庆 400045)
摘 要:为研究雷暴冲击风作用下高层建筑风荷载的频域特性,采用冲击射流装置模拟雷
暴冲击风,对 5 个不同深宽比(D/B)的矩形高层建筑模型进行测压试验. 根据试验数据,对模
L型截面高层建筑风荷载特性及其优化设计研究中期报告
L型截面高层建筑风荷载特性及其优化设计研究中期报告本研究旨在探究L型截面高层建筑在风荷载下的特性,进而进行优化设计。
本篇中期报告主要介绍了研究的背景、研究目的、研究内容和进展、以及下一步工作计划。
1. 研究背景高层建筑在风荷载下易受到振动和破坏,对建筑结构和人员安全造成威胁。
因此,高层建筑的风荷载研究和优化设计成为建筑工程领域的重要研究方向之一。
L型截面是一种常见的高层建筑结构形式,通过对其风荷载特性的研究,可以为高层建筑的结构设计提供更优化的方案。
2. 研究目的本研究旨在探究L型截面高层建筑在风荷载下的特性,并从结构设计的角度出发,提出优化建议和方案,为高层建筑的结构安全和稳定性提供技术支持。
3. 研究内容和进展3.1 研究内容本研究的重点内容包括:(1)分析L型截面高层建筑在风荷载下的受力特性;(2)探究L型截面高层建筑在不同风速下的振动规律和幅值变化情况;(3)比较不同结构参数下的风荷载响应特性,确定最优结构参数;(4)设计并优化L型截面高层建筑的结构方案,提高其风荷载承受能力和稳定性。
3.2 研究进展目前,已完成了L型截面高层建筑在风荷载下的受力特性分析和不同风速下的振动规律研究。
结果表明,L型截面结构在风荷载下存在较大的振动幅值,需要采取一定的结构措施来提高其稳定性。
下一步将进行不同结构参数下的风荷载响应特性比较研究,并设计并优化L型截面高层建筑的结构方案。
4. 下一步工作计划下一步,本研究将重点进行以下工作:(1)比较不同结构参数下的风荷载响应特性,确定最优结构参数;(2)设计并优化L型截面高层建筑的结构方案;(3)对优化后的结构方案进行仿真模拟,验证其有效性;(4)完善研究报告,总结研究结果和贡献。
高层建筑结构在风荷载下的响应与抗震分析研究
高层建筑结构在风荷载下的响应与抗震分析研究引言:高层建筑由于其高度、特殊的设计要求以及复杂的结构特征,在面对自然灾害及其他外力作用时,需要进行精密的分析研究。
其中,风荷载是影响高层建筑结构的一项重要因素,对高层建筑的结构稳定性和抗震性能具有重要影响。
在本文中,将探讨高层建筑结构在风荷载下的响应和抗震分析研究的相关内容,以帮助我们更好地理解和应对这一问题,确保高层建筑的安全性。
一、风荷载对高层建筑结构的影响1. 风荷载的特点:风荷载是由大气层中产生的气流对建筑物施加的一种力,具有无规律、随机性强、变化快的特点。
风荷载的大小受到建筑的高度、形状、材料等因素的影响。
2. 风荷载对高层建筑的影响:风荷载会导致高层建筑产生荷载响应,如结构的位移变形、应力增加等。
长期的风荷载作用还会造成结构疲劳及损伤,降低建筑物的使用寿命。
二、高层建筑结构的响应分析1. 风荷载下的结构位移响应:高层建筑结构在风荷载作用下会产生位移,通过数值模拟分析可以计算出不同位置的位移响应,帮助工程师了解结构的稳定性及承载能力。
2. 结构的应力分析:风荷载会导致高层建筑结构产生应力集中现象,通过应力分析,可以判断结构的抗风能力,进而确定是否需要进行加强设计。
3. 动力响应分析:风荷载作用下的结构会受到周期性的振动,通过动力响应分析,可以确定结构在不同风速下的振动频率和阻尼比,以便设计师优化结构设计。
三、高层建筑结构的抗震分析1. 结构的地震反应分析:高层建筑需要根据所处地区的地震活动性质、频率和强度等因素进行地震反应分析。
通过模拟不同地震荷载下的反应,可以评估结构的稳定性和安全性,并确定结构的抗震设计参数。
2. 抗震设计的优化:在进行抗震分析的基础上,可以对高层建筑结构进行优化设计,以提高结构的抗震能力,如使用钢筋混凝土框架结构、增加横向抗剪墙等。
3. 结构的减震与隔震措施:为了减小地震对高层建筑结构的影响,可以采用减震和隔震措施,如设置减震器、隔震基础等,以减少地震荷载对建筑物的损害程度。
高层建筑风效应及风振控制分析
高层建筑风效应及风振控制分析摘要:科技的发展与应用,使高层建筑被普遍应用,在设计高层建筑的时候,需要注意风效应对其的影响。
既要满足居住需求,又要满足减少振动的要求,一般高层建筑风振控制有耗能减振系统、吸振减振系统、锚索控制、主动控制与混合控制系统等。
关键词:高层建筑;风效应;风振控制随着经济的飞速发展与科学技术的广泛应用,高强度材料在高层建筑行业被普遍应用,使高层建筑与高耸结构不断出现,为建筑行业带来新的革命,也为城市居民生产生活带来了新形式。
高层建筑师在设计过程中,注意力多集中于建筑的平面功能布置、外观合理与空间的有效利用上,很少考虑到高层建筑间气流的影响问题。
如果高层建筑群之间的布局不合理,会为业主带来极大的不便。
高层建筑的主要荷载为水平风荷载,相比于地震等振动作用,风力作用频繁且持续时间长,影响力要大得多,为防止高层建筑在风力作用下出现倒塌、结构开裂等问题,必然要对高层建筑的风效应及风振控制进行合理的分析,使高层建筑结构抗风设计满足实际生活使用需求、安全需求、舒适度需求等。
一、高层建筑风效应的数值分析以高层建筑小区风效应进行分析,常见高层建筑小区的布局有三种形式:行列式、错列式和周边式,针对这三种布局的高层建筑,利用计算机进行模拟数值分析,得出高层建筑群内气流流动速度,并分析其影响度。
数据举例:行列式为4排每排4栋,共计16栋;错列式为五排交错排列,共计18栋;周边式为4排,呈口字形排列,共计12栋。
行列式错列式周边式拟定风向为正北和正西北两种,风速5m/s。
按人在1.8米位置进行计算。
其数值结果对比分析如下:(一)正北风向时:行列式第三、四排的风速达最高;错列式在第一、二列的第四排侧;周边式在第一、三列第四排。
其涡流形式,除错列式中间位置出现涡流外,其他二种不出现或很少出现。
通过对风速的变化趋势进行对比发现:三种布局风速会沿建筑高速而增大,行列式排末高层的高速区可达5.8m/s;错列式高层高速区达7.7m/s;周边区则达6.8m/s。
高层建筑风振响应分析与控制研究
高层建筑风振响应分析与控制研究引言在现代城市的发展中,高层建筑已成为城市景观的一部分。
然而,高层建筑在面临强风的情况下可能出现风振问题,对建筑结构的稳定性和人员生命安全带来威胁。
因此,高层建筑风振响应分析与控制研究变得至关重要。
1. 高层建筑风振现象高层建筑的结构相比于传统建筑更加灵活,在面对风力时容易产生振动现象。
这主要归因于风作用在建筑物上所产生的涡流及压力变化。
当风速超过一定阈值时,建筑结构开始出现共振现象,振幅逐渐增大,进而影响建筑的安全性和舒适性。
2. 高层建筑风振响应分析方法为了研究高层建筑的风振响应,需要进行风洞试验和数值模拟。
风洞试验能够模拟不同风速和风向条件下的风场,以获取风作用下的建筑振动响应数据。
同时,数值模拟方法如计算流体力学(CFD)和有限元分析(FEA)也成为研究的重要手段。
3. 高层建筑风振控制技术为了减轻高层建筑的风振响应,研究者们提出了一系列控制技术。
其中一种是主动控制技术,通过在结构上设置反馈控制系统,动态地修正结构的响应。
另一种是被动控制技术,通过在结构上设置阻尼器、质量调整器等装置,改变结构的固有特性,从而减小振动幅度。
此外,还有一些其他的技术,如涂层减振、断层结构等,也在一定程度上缓解了高层建筑的风振问题。
4. 实例分析及案例研究以某个高层建筑为例,对其进行风振响应分析和控制研究。
通过在风洞中进行试验,获取了建筑在不同风速下的振动数据。
同时,通过有限元分析,分析了建筑结构的固有频率和模态振型。
在此基础上,设计了一种主动控制系统,通过调整反馈参数,使建筑的振动响应受到有效控制。
进一步,对比了不同风振控制技术的效果,评估了各种技术的优缺点。
结论高层建筑风振响应的研究和控制对于保障建筑结构的安全和居民的生命安全具有重要意义。
通过风洞试验和数值模拟分析,可以全面了解风作用下建筑结构的振动响应。
在此基础上,采用主动或被动的控制技术,可以有效减小高层建筑的风振响应,提高其在强风环境下的稳定性和舒适性。
超高层建筑风荷载和效应控制的研究及应用进展_黄剑
Abstract:
Supertall buildings are subject to considerable wind loading and windinduced effects as height
increases,which has become one of main factors to influence the safety,the occupants' comfort and the expenditure of structures,so it is of particular importance to control the wind loading and effects of supertall buildings. In general, methods to control wind loading and effects of tall buildings are the application of aerodynamic measures and the installation of supplementary damping systems. An overview was presented regarding the past / recent work on aerodynamic wind and torsional directions,as measures for suppression of loading and effects of tall buildings in the acrosswind,alongwell as on the control of local pressure,and then supplementary damping systems in controlling windinduced vibration were briefly introduced. Application examples of aerodynamic measures and supplementary damping systems to control wind loading and effects of typical supertall buildings were given out. Issues worthy of attention were proposed for future researches. Key words: supertall building; suppression of wind loading and effects; aerodynamic measure; supplementary damping system 随着社会和经济的发展, 世界各国正在兴起建设 大量的超高层建筑。建筑高度的增加将导致作用在建 同时上部较高的风速仍存在较高 筑上部的风速增加, [1 ] 的湍流 ; 此外, 超高层建筑在风作用下会产生分离及 旋涡脱落。 这些原因导致高层建筑承受 很 大 的 风 荷 载。再加上建筑自振周期大、 阻尼小, 风振响应将特别 显著, 常常影响到结构的安全性和舒适性
高层建筑的风振分析与控制
高层建筑的风振分析与控制在现代城市的天际线中,高层建筑如林立的巨人般引人注目。
然而,这些高耸的建筑在面对自然界的风力作用时,面临着严峻的挑战。
风振现象可能导致结构的损坏、使用者的不适,甚至威胁到建筑的安全性。
因此,对高层建筑进行风振分析与控制是至关重要的。
风对于高层建筑的影响是多方面的。
首先,风会在建筑表面产生压力分布的不均匀,从而导致水平方向的力和扭矩。
这种水平力可能引起建筑的整体晃动,尤其是在强风条件下。
其次,风的脉动特性会激发建筑的振动,类似于风吹过琴弦产生的振动。
如果这种振动的频率与建筑的固有频率接近,就会发生共振现象,使振动幅度急剧增大。
为了准确分析高层建筑的风振特性,工程师们采用了多种方法和技术。
风洞试验是其中一种常用且有效的手段。
在风洞中,可以模拟不同风速和风向条件下的风场,将缩小比例的建筑模型放置其中,通过测量模型表面的压力和模型的响应来获取风振相关的数据。
计算流体动力学(CFD)也是一种重要的分析方法,它通过数值模拟来计算风场和建筑表面的相互作用。
此外,基于结构动力学的理论分析方法,可以建立建筑的数学模型,计算其固有频率、振型和响应等。
在风振分析中,建筑的外形和结构形式对风振特性有着显著的影响。
流线型的建筑外形通常能够减少风的阻力和压力差,从而降低风振响应。
例如,一些现代化的高层建筑采用了逐渐收分的外形或者带有弧形边缘的设计。
结构的刚度和质量分布也会影响固有频率和振型,从而改变风振的响应特性。
增加结构的刚度,如使用更强大的梁柱体系或增加剪力墙,可以提高建筑抵抗风振的能力。
当分析出高层建筑可能存在较大的风振风险时,就需要采取相应的控制措施。
一种常见的方法是增加结构的阻尼。
阻尼可以消耗振动能量,减小振动的幅度。
通过在结构中安装阻尼器,如粘滞阻尼器、调谐质量阻尼器(TMD)或调谐液体阻尼器(TLD)等,可以有效地控制风振响应。
以 TMD 为例,它通常由质量块、弹簧和阻尼器组成,其固有频率被调整到接近建筑的主要振动频率,当建筑发生振动时,TMD 产生相反的力来抵消振动。
强风作用下超高层建筑风场特性的实测研究
1 2 工 程概 况 .
该 超高 层 建 筑 是 位 于 青 岛 西 海 岸 的 青 岛 泽 润 广 场, 距离 海边大 约 3公 里 , 场地 粗糙度 为 A类 。该 建筑
基金项 目:国家 自然科学基金资助项 目( o 5 5 89 ) N . 0 70 2
收稿 日期 :2 0 0 0 9— 2—1 修改稿 收到 日期 :09— 5—1 0 20 0 7 第一作者 申建红 男 , 博士生 ,9 0年 l 17 O月生
成 了特殊 的依 山傍 海 的城 区地 理环 境 。青 岛泽 润广 场
位 于大涧 山南侧 1 8k . m处 。
困难 和高 昂的测试费 用大 大地 限制 了大 型工 程结 构尤 其是 超高层 建 筑 风 场 实测 的研 究 , 别 作 为 强 风 ( 特 台
风) 效应之一的超高层建筑墙面风压的现场实测研究 更 是缺 乏。 因此 , 文对 一 超 高 层 建 筑进 行 了强 风 作 本
者广 泛地开 展 了土木 工 程 领域 的风 场 实 测 研究 工 作 , 并取 得 了大 量 的研究 成果 J 。风 场全 尺 度测 量实 施 的
形 成距离 测试地 点约 8k 半 径 的弧形 峰线 。城 区东 m
侧 为海拔 161 4 3的大 涧 山 ,与小 珠 山山脉 遥相 呼应 形 1
振 第2 9卷第 5期
动
与
冲
击
J OURNAL OF VI ATI AND HOC BR ON S K
强风 作 用下超 高层 建筑 风 场特性 的 实测研 究
申建红 ,李春祥
( .青岛理工大学 土木工程学 院,青岛 1 26 2 ; .上海大学 土木工程系 , 6 50 2 上海 20 7 ) 0 0 2
风向对某超高层建筑等效静风荷载的影响
第 2期
王钦华 等 :风向对某超 高层建筑等效静风荷载的影 响
4 9
本 文结 合各 个风 向上 的设 计 风速 .基 于 刚性 模 型测 验 风洞 试验 结 果 ,用 随机 风振理 论 计算 某超 高层 建筑 的 等效风 荷 载 .所 得 的结论 为超 高层 建筑 结构 设计 提供 参考 .
的基础 上 .给 出了建筑结 构设 计 基本 风速 的折减 风 向因子 .张建 国在其博 士论 文 中初 步
研 究 了风速 风 向对 建筑 物效 应 的影响 以及对 应 的结构设 计方 法㈣ .
收稿 日期 :2 1 一 一 9 0 2 叭 0
作者 简介:王钦华( 99 ,男 ,博士 ,讲师.研究方 向:高层建筑和大跨结 构抗风研究 、风振疲劳可靠度 、结构随 17 一) 机振动理论等研究.Ema :qn uw n @s .d n - i iha ag t e u l u 石 碧青 (9 5 ) 17 一 ,男 ,硕士 ,高级实验师.研究方 向:工程结构抗风
中 图分 类 号 :T 7 U9 3 文献 标 识 码 :A
O 引 言
现行的中国《 建筑结构荷载规范}G 509 20 ) (B 00— 0 1Ⅲ中给出的各地 1 、 0年及 10 0年 5 0
年重 现期 相 应 的 基本 风 压均 没 有 考虑 风 向因素 .即认 为 所 有 风 向上 的基 本 风压 是 相 同 的 .这 种做 法显然 是保 守 的.而 实际上 风 向和平 均风 速是联 合 分布 函数 ,各 个风 向 上 的 基本 风压 应 根据 风 向风 速联 合 分布 函数 求 得 .本文 作 者在 文 献 『 ] 2 中对 风 向风速 联 合分 布方 面进行 研究 .根 据气象 站位 置和 建筑物 位 置处 的梯度 风速 相 同 ,并 假设 以上两个 位 置处 风 向相 同 ,提 出了 由气 象站 位置 处 的风速 风 向联 合分 布 函数得 到建 筑 物位 置处 联合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳态冲击风作用下高层建筑风荷载特性试验研究作者:邹鑫汪之松李正良来源:《湖南大学学报·自然科学版》2016年第01期摘要:雷暴冲击风风场与大气边界层风场差异较大.为研究雷暴冲击风作用下高层建筑风荷载特性,采用静止型冲击射流装置模拟稳态雷暴冲击风风场,进行高层建筑刚性模型测压试验,讨论了不同径向位置处高层建筑局部和整体风荷载时域和频域特性.结果表明:建筑表面平均风压最大值出现的位置与径向风速峰值一致.同时,迎风面风压最大值出现在底部,明显不同于大气边界层风场中最大值靠近顶部位置的风压分布特性;径向层风荷载均值最大值出现在建筑中部,横风向和扭转向层风荷载均值为0.径向和横风向层风荷载谱沿高度不变,而扭转向层风荷载谱沿高度变化明显.关键词:冲击射流模型;高层建筑;刚性模型;风荷载特性;雷暴冲击风中图分类号:TU312.1; TU973.32 文献标识码:AAbstract:Downbursts are dramatically different from the atmospheric boundary layer. To investigate the wind load characteristics of highrise building in thunderstorm downbursts, a static impinging jet was used to simulate the thunderstorm downburst. Rigid model manomeric test was carried on a highrise building. Both local and overall wind load characteristics were discussed in time domain and frequency domain. The results indicate that the position of the maximum mean surface pressure is consistent with the peak radial velocity. Meanwhile, the maximum surface pressure on the windward side is located at the bottom of the building, obviously different from the top part tested in atmospheric boundary layer wind field. The maximum mean radial wind load of each layer is located at the middle of the building. And the mean wind load is 0 at the crosswind and torsional direction. Wind load spectrums of each layer keep unchanged along the height at the radial and crosswind direction. But wind load spectrums changes obviously at the twist direction.Key words: impinging jet model; highrise building; rigid mode; wind load characteristic; thunderstorm downburst目前结构抗风设计一般依照大气边界层风场进行,对建筑结构风荷载特性的研究也主要集中在边界层风场作用下[1-2].然而根据相关统计资料[3],一个地区的极值风速往往不是由大气边界层风场决定的,而是产生于雷暴冲击风等极端天气气候.因此,对雷暴冲击风作用下建筑风荷载特性的研究显得尤为重要.近几十年来,国内外学者对雷暴冲击风的研究着重于风场特性方面[4-8],对建筑结构风荷载特性的研究相对较少.Letchford和Chay[9-10]分别测试了静止型冲击射流风场和运动型冲击射流风场中,小立方体表面压力分布.陈勇[11-12]对球壳型屋盖和拱形屋面进行稳态冲击射流试验,研究了不同结构参数对表面风压分布的影响,并采用kε湍流模型进行数值模拟,结果与试验较为吻合.汤卓[13]通过静止型冲击射流试验研究了双坡屋面在雷暴冲击风作用下风压分布特性.以上研究主要以低矮结构为主,而对于高层建筑的风荷载特性研究则相对较少.Sengupta和Sarkar[14]通过冲击射流试验研究了立方体高层结构表面风压情况,并与数值模拟结果进行了对比.赵杨[15]利用主动控制风洞模拟下击暴流风速剖面,并通过刚性模型测压试验研究了高层结构空气动力学参数变化情况.Kyle和曹曙阳[16]同时进行大气边界层风场和雷暴冲击风风场作用下高层建筑测压试验,试验结果表明两种风场作用下高层建筑表面压力分布特征差异明显.吉柏锋、瞿伟廉[17]以CAARC高层建筑标准模型为研究对象,采用数值模拟的方式模拟了下击暴流风场中高层建筑表面风压分布情况.本文采用静止型冲击射流装置模拟雷暴冲击风风场.进行高层建筑刚性模型测压试验,考察了高层建筑风荷载特性.对试验结果进行统计分析,为实际高层建筑雷暴冲击风抗风设计提供一定参考.1试验概况1.1冲击射流装置冲击射流装置如图1所示.控制射流直径Djet=600 mm,射流高度H=1 160 mm,射流速度vjet≈12 m/s.1.2刚性模型及地形参数刚性模型几何缩尺比1∶1 000,模型尺寸0.05 m(b)×0.05 m(d)×0.1 m(h).刚性模型四面(A,B,C,D面)及顶面(S面)均匀布置105个测压孔.模型表面测压孔布置如图2所示.2试验结果及讨论2.1径向风速剖面采用热线风速仪测试不同径向位置处径向风速.图4给出了试验测得的不同径向位置处无量纲风速剖面与国外学者试验和现场实测结果的对比.由图可见,风场测试结果与国外学者的研究结论较为吻合.图6给出了刚性模型位于不同径向位置时,沿来流方向中心线上测孔的平均压力系数.横坐标0-1代表迎风面,1-2为顶面,2-3代表背风面.总体来说,建筑表面风压特性与其所处风场位置相关.建筑所处径向位置越远,建筑表面压力系数绝对值越小.迎风面压力系数均为正值,随着高度的增加,压力系数先增大,之后减小.迎风面中线压力系数最大值出现在建筑底部,与建筑所处径向位置风场一致,明显有别于边界层风场中典型高层建筑表面风压最大值靠近顶部位置的分布形式.顶面和背风面均为负压,顶面压力系数绝对值在靠近迎风面一侧较大,随着位置远离迎风面,压力系数绝对值逐渐减小.背风面压力系数绝对值呈现出下部小,上部大的分布特征.建筑在r=1Djet位置处表面风压最大,图7给出了建筑位于该位置时,平均和根方差压力系数云图.由图7(a)可以发现,迎风面均为正压,平均压力系数底部大,上部小,中间大,两侧小.最大平均压力系数接近1.0,与射流口速度压力相当.侧风面和背风面均为负压.侧风面平均压力系数绝对值上部大,下部小,靠近迎风面一侧较小,靠近背风面一侧较大.背风面平均压力系数分布较为均匀,压力系数绝对值呈现上部大,下部小的趋势.由图7(b)可知,迎风面根方差压力系数分布规律与平均压力系数分布相似,根方差压力系数最大值约为0.15.侧风面根方差压力系数在靠近迎风面一侧较小,靠近背风面一侧较大.背风面根方差压力系数底部较小,而上部较大.压力系数根方差最大值出现在侧风面底部,靠近背风面一侧.实际雷暴冲击风风场近地面风速远远高于大气边界层风场,并且计算冲击射流试验压力系数的参考点与常规大气边界层也不一致,难以在数值上对两者进行比较.本文对两种风场中平均和根方差压力系数分布情况进行对比.图8为文献[21]给出的大气边界层风场中高层建筑表面压力系数分布.对于平均风压系数,雷暴冲击风作用下迎风面风压下部大,上部小,其分布形式与大气边界层风场正好相反.侧风面负压绝对值在靠近迎风面一侧较小,靠近背风面一侧较大,也与大气边界层风场不同.边界层风场中背风面风压均值较为均匀,沿高度变化很小,而雷暴冲击风风场中背风面风压均值沿高度变化明显.两种风场作用下,根方差压力系数分布同样具有明显差别.雷暴冲击风风场中,迎风面根方差压力系数下部大,而上部小,与边界层风场相反.边界层风场中背风面脉动压力系数沿高度变化较小,而雷暴冲击风风场下背风面脉动风压沿高度变化明显.定义建筑表面两测点相关系数为:cor=σij/σiσj (3)式中:σij为i,j两测点的风压协方差;σi,σj分别为i,j两测点风压根方差.图9给出了建筑各面中心线上测点相对于该面底层测点的脉动风压相关系数.总体来讲,脉动风压竖向相关系数随着两点间距离的增加而减小.迎风面测点相关系数在较低的2~4层几乎完全相关,而在较高位置处,相关程度逐渐降低,直至在7,8层位置处出现与底层测点负相关.侧风面测点相关系数均为正值,且随着高度的增加线性递减.在较低2~4层,相关性小于迎风面测点,而在较高位置处,侧风面测点脉动风压相关性要高于迎风面测点.背风面测点相关系数均为正值,并且在底部衰减速度高于迎风面和侧风面,但5~8层测点相关系数几乎不变.2.3建筑整体风荷载特性以建筑中段第5层测点为对象来考察建筑表面风压水平相关性.表1给出了第5层各测点相关系数,测点编号见图2所示.由表1可知,同面测点相关系数均为正值,侧风面的水平相关性最高,迎风面次之,背风面最低.迎风面测点与侧风面和背风面测点均为负相关,且负相关程度相近.侧风面和背风面各测点压力相关系数均为正,且同面测点压力相关性较高,侧风面测点与背风面测点之间压力相关性较低.图11给出了建筑位于不同径向位置时,各层径向层阻力系数.建筑处于不同径向位置时,径向层阻力系数沿高度方向均呈现先增大后减小的趋势.随着建筑远离射流中心,各层径向层阻力系数逐渐减小.在r=1Djet处,径向层阻力系数最大值出现在第5层,而该处风场最大值出现在高度较低的第2层附近,说明径向风阻力除包含来流风场的能量外,还同时包含了由于建筑断面产生的扰流涡旋能量.对各层层风荷载系数时程进行功率谱变换,得到高层建筑不同高度处层风荷载系数谱.当建筑位于r=1Djet处,各层层风荷载系数谱如图14所示.径向层风荷载系数谱形状沿高度基本不变.各层径向谱均存在单一峰值,且峰值均出现在相同折算频率附近.横风向谱沿高度几乎不变,各层峰值频率略微高于径向谱.在建筑下部1~5层,扭转向谱“尖峰”不明显,峰值附近谱曲线较为平缓.而在较高的6~8层,谱存在明显单一峰值,带宽变窄.若σij为i,j两层的风压协方差;σi,σj分别为i,j两层风压根方差,则式(3)可以表示建筑层风荷载竖向相关系数.图15给出了最底层层风荷载相对于其他各层荷载的竖向相关系数.总体来讲,层风荷载竖向相关系数均为正,并且均随着层间距离的增加而减小.横风向相关系数沿高度衰减较慢,扭转向相关系数衰减最快,径向相关系数衰减速度介于前两者之间.3结论通过静止型冲击射流试验模拟雷暴冲击风风场,对位于不同径向位置的高层建筑刚性模型进行测压试验,研究稳态雷暴冲击风作用下高层建筑风荷载特性,结果表明:1)随着建筑远离冲击射流中心,建筑所受风荷载逐渐减小.平均风荷载最大值出现在r=1 Djet径向位置处,与径向风速最大值位置相同.2)雷暴冲击风作用下建筑表面压力均值和根方差分布与大气边界层风场作用下相比差异较大.3)建筑各高度处径向层风荷载最大值与径向极值风速出现的高度有差异,大致出现在建筑中部.这个现象表明径向风阻力除了包含来流风场的贡献外,同时还包含了由建筑扰流产生的作用.另外,在各个径向位置下,建筑在横风向和扭转向各层风荷载均值均为0.4)径向和横风向层脉动风荷载系数谱形状沿高度几乎不变.各层径向荷载谱均存在单一峰值,且峰值对应的折算频率较为接近.横风向谱各层峰值频率略微高于径向谱.建筑下部扭转向谱峰值附近较为平缓,上部“尖峰”明显,带宽变窄.5)建筑表面脉动风压的竖向相关性随着距离的增加而减小.同面测点之间的脉动风压水平相关系数均为正值,侧风面的水平相关性最高,迎风面次之,背风面最低.参考文献[1]李正农,郝艳峰,刘申会. 不同风场下高层建筑风效应的风洞试验研究[J]. 湖南大学学报:自然科学版,2013,40(7):9-15.LI Zhengnong, HAO Yanfeng, LIU Shenhui. Wind tunnel test of building wind effect in different geomorphologic terrain categories[J]. Journal of Hunan University: Natural Sciences,2013, 40(7):9-15.(In Chinese)[2]沈国辉,钱涛,罗蒋皓,等. 不同长宽比矩形截面高层建筑的风荷载研究[J]. 湖南大学学报:自然科学版,2015,42(3):77-83.SHEN Guohui, QIAN Tao, LUO Jianghao, et al. Study of wind loading on rectangular highrise buildings with various lengthtowidth ratios [J]. Journal of Hunan University: Natural Sciences, 2015, 42(3):77-83. (In Chinese)[3]LETCHFORD C W, MANS C M, CHAY M T. Thunderstormstheir importance in wind engineering: a case for the next generation wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15):1415-1433.[4]FUJITA T T. The downburst: microburst and macroburst:report of projects NIMROD and JAWS[R]. Chicago: University of Chicago, 1985.[5]OSEGUERA R M, BOWLES R L. A simple analytic 3dimensional downburst model based on boundary layer stagnation inflow,NASA technical memorandum 100632[R]. Hampton:Longlay Research Center,NASA,1988.[6]HOLMES J D, OLIVER S E. An empirical model of a downburst [J]. Engineering Structures, 2000, 22:1167-1172.[7]SENGUPTA A, SARKAR P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96(3): 345-365.[8]ZHANG Yan,HU Hui, SARKAR P P. Modeling of microburst outflows using impinging jet and cooling source approaches and their comparison [J].Engineering Structures,2013, 56:779-793.[9]CHAY M T, LETCHFORD C W. Pressure distributions on a cube in a simulated thunderstorm downburst. Part A: Stationary downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7):711-732.[10]LETCHFORD C W, CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7):733-753.[11]陈勇,崔碧琪,余世策,等. 雷暴冲击风作用下球壳型屋面模型风压特性试验研究[J]. 建筑结构学报, 2011, 32(8):26-33.CHEN Yong, CUI Biqi, YU Shice, et al. Experimental investigation of spherical roof subjected to thunderstorm downbursts [J]. Journal of Building Structures, 2011, 32(8):26-33. (In Chinese)[12]陈勇,崔碧琪,余世策,等. 稳态冲击风作用下拱形屋面风压分布试验研究[J].工程力学,2013,30(7):91-99.CHEN Yong, CUI Biqi, YU Shice, et al. Experimental studyon the pressure distribution over archroof sunjected to stationary downbursts[J]. Engineering Mechanics, 2013, 30(7):91-99. (In Chinese)[13]汤卓,王兆勇,卓士梅,等. 雷暴冲击风作用下双坡屋面风压分布[J]. 东南大学学报:自然科学版,2014, 44(1):168-172.TANG Zhuo, WANG Zhaoyong, ZHUO Shimei, et al. Pressure distribution on gable roofs in thunderstorm downburst [J]. Journal of Southeast University:Natural Science Edition,2014,44(1): 168-172.(In Chinese)[14]SENGUPTA A, HAAN F L, SARKAR P P. Transient loads on buildings in microburst and tornado winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11):2173-2187.[15]赵杨,曹曙阳,YUKIO Tamura,等. 雷暴冲击风模拟及其荷载的风洞试验研究[J]. 振动与冲击,2009,28(4):1-5.ZHAO Yang, CAO Shuyang, YUKIO Tamura,et al. Simulation of downburst and its loads with wind tunnel test[J]. Journal of Vibration and Shock, 2009, 28(4):1-5. (In Chinese)[16]KYLE Butler, CAO Shuyang, KAREEM Ahsan,et al. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field [J]. Journal of Wind Engineering and Industrial Aerodynamics,2010, 98:299-316.[17]吉柏锋,瞿伟廉. 下击暴流作用下高层建筑表面风压分布特性[J]. 华中科技大学学报:自然科学版,2012,40(9): 89-94.JI baifeng, QU Weilian. Mean wind pressure distribution characteristics on tall building inder downburst[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2012, 40(9):89-94. (In Chinese)[18]MARK R, HJELMFELT. Structure and life cycle of microburst outflows observed in colorado[J]. Journal of Applied Meteorology, 1988,27(8):900-927.[19]LETHFORD C W, ILLIDGE G. Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet[C]// Proceedings of the Tenth International Conference on Wind Engineering. Rotterdam, 1999:1907-1912.[20]WOOD G S, KWOK K C S, KWOK N A, et al. Physical and numerical modeling of thunderstorm downbursts[J]. Wind Eng Ind Arodyn,2001, 89:535-552.[21]日本建筑学会. 建筑风荷载流体计算指南[M]. 孙瑛,孙晓颖,曹曙阳译.北京:中国建筑工业出版社,2010.Architectural Institute of Japan. Guide for numerical prediction of wind loads on buildings [M]. Translated by SUN Ying, SUN Xiaoying, CAO Shuyang. Beijing:China Architecture & Building Press, 2010. (In Chinese)。