泸州市2020中考数学试题

合集下载

2020年四川省泸州市中考数学试卷及答案

2020年四川省泸州市中考数学试卷及答案

2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.(3分)2的倒数是( ) A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( ) A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( ) A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( ) A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时) 0.511.52人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( ) A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( ) A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等 10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( ) A .3B .4C .5D .611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( ) A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 . 14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 .15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x+1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.(3分)2的倒数是( ) A .12B .−12C .2D .﹣2【解答】解:2的倒数是12. 故选:A .2.(3分)将867000用科学记数法表示为( ) A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105, 故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线. 故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( ) A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位, ∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3). 故选:C .5.(3分)下列正多边形中,不是中心对称图形的是( )A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,AB̂=AĈ,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵AB̂=AĈ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( ) A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( ) A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题; B 、矩形的对角线互相相等,不是垂直,原命题是假命题; C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题; 故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( ) A .3B .4C .5D .6【解答】解:去分母,得:m +2(x ﹣1)=3, 移项、合并,得:x =5−m2, ∵分式方程的解为非负数, ∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个, 故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MGMN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图, ∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5, ∵D ,E 是边BC 的两个“黄金分割”点, ∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4, ∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5. 故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( ) A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点, ∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c2,即,c =b ﹣1 ②,②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2, c =b ﹣1=2﹣1=1, ∴b +c =2+1=3, 故选:C .二、填空题(本大题共4个小题,每小题3分,共12分). 13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 . 【解答】解:根据题意得,x ﹣2≥0, 解得x ≥2. 故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 .【解答】解:∵x a +1y 3与12x 4y 3是同类项,∴a +1=4, 解得a =3, 故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2 故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为43.【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6, ∴∠BAD =90°,AD =BC =6,AD ∥BC , ∵F 为AD 中点, ∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5, ∵AD ∥BC , ∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4, ∴AE =BE =2, 在△QAE 和△CBE 中 {∠QEA =∠BEC∠Q =∠ECB AE =BE∴△QAE ≌△CBE (AAS ), ∴AQ =BC =6, 即QF =6+3=9, ∵AD ∥BC , ∴△QMF ∽△CMB , ∴FM BM=QF BC=96,∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5, ∵AB ∥CD , ∴△BNE ∽△WND , ∴BN NF=BE DW,∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1.【解答】解:原式=5﹣1+2×12+3 =5﹣1+1+3 =8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC , 又∵AB =AD ,AC =AC , ∴△ABC ≌△ADC (SAS ), ∴BC =CD . 19.(6分)化简:(x+2x+1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率. 【解答】解:(1)12÷30%=40,即n =40, B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆), 补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x的图象相交于A ,B 两点,且点A 的坐标为(a ,6). (1)求该一次函数的解析式; (2)求△AOB 的面积.【解答】解:(1)如图,∵点A (a ,6)在反比例函数y =12x 的图象上, ∴6a =12, ∴a =2, ∴A (2,6),把A (2,6)代入一次函数y =32x +b 中得:32×2+b =6,∴b =3,∴该一次函数的解析式为:y =32x +3; (2)由{y =32x +3y =12x 得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CM BM,∴BM=CMtan37°=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60°=303=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴∠DAB +∠DBA =90°, ∵BC 是⊙O 的切线, ∴∠ABC =90°, ∴∠C +∠CAB =90°, ∴∠C =∠ABD , ∵∠AGD =∠ABD , ∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C , ∴△ABC ∽△BDC , ∴BC AC =CD BC ,∴6AC=46,∴AC =9,∴AB =√AC 2−BC 2=3√5, ∵CE =2AE , ∴AE =3,CE =6, ∵FH ⊥AB , ∴FH ∥BC , ∴△AHE ∽△ABC , ∴AH AB =EH BC =AE AC ,∴3√5=EH 6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0), ∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4,∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4, 过点E 作EF ⊥x 轴于F , ∴OD ∥EF , ∴△BOD ∽△BFE , ∴OB BF=BD BE,∵B (4,0), ∴OB =4, ∵BD =5DE , ∴BD BE=BD BD+DE=5DE 5DE+BE=56,∴BF =BEBD ×OB =65×4=245, ∴OF =BF ﹣OB =245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−12 n=2,∴直线BD的解析式为y=−12x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。

泸州2020年中考数学试题含答案

泸州2020年中考数学试题含答案

泸州市2020年初中毕业考试暨高中阶段学校招生统一考试数学试卷(考试时间:只完成A卷90分钟,完成A、B卷120分钟)说明:1.本次考试试卷分为A、B卷,只参加毕业考试的考生只需完成A卷,要参加升学考试的学生必须加试8卷。

2.A卷分为第I卷和第Ⅱ卷两部分.第I卷(1至2页)为选择题,第Ⅱ卷(3至6页)为非选择题,满分l00分;B卷(7至l0页)为非选择题,满分50分。

A、B卷满分共150分。

3.本卷中非选择题部分的试题,除题中设计有横线的题目外,解答过程都必须有必要的文字说明、演算步骤或推理证明。

A 卷第Ⅰ卷选择题(共30分)注意事项:1第I卷共2页,答第I卷前.考生务必将自己的姓名、准考证号、考试科目填写在答题卡上。

考试结束后,监考人员将试卷和答题卡一并收回。

2.每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后再选潦其它答案。

不能答在试卷上。

一、选择题(本大题l0个小题,共30分.每小题3分)在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在5,3,1 .0.001这四个数中,小于0的数是()222.如图1,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角0后与△AED重合,则θ的取值可能为()A. 90°B.60° C. 45° D. 30°图13.据媒体报道,5月l5日,参观上海世博会的人数突破330000,该数用科学记数法表示为()A.4⨯ D. 73.310⨯0.3310⨯ C. 6⨯ B. 53.31033104.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学习水平一样B. 成绩虽然一样,但方差大的班学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D. 方差较小的学习成绩不稳定,忽高忽低5.计算422÷的结果是()a a()A.2aB. 5a C.6a D. 7a6.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.若2+-=的解,则m的值为()x=是关于x的方程2310x m38.已知⊙1O ,与⊙2O 的半径分别为2和3,若两圆相交.则两圆的圆心距m 满足( )A. 5m = B .1m = C. 5m > D. 15m <<9.已知函数y kx =的函数值随x 的增大而增大,则函数的图象经过( ) A.第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限10.已知O 为圆锥的顶点,M 为底面圆周上一点,点P 在OM 上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P 时所经过的最短路径的痕迹如图2,若沿OM 将圆锥侧面剪开并展平,所得侧面展开图是( )第Ⅱ卷(非选择题共70分)注意事项:1. 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试卷上。

2020年四川省泸州市中考数学试卷(含详细解析)

2020年四川省泸州市中考数学试卷(含详细解析)
A. B. C. D.
4.在平面直角坐标系中,将点 向右平移4个单位长度,得到的对应点 的坐标为()
A. B. C. D.
5.下列正多边形中,不是中心对称图形的是()
A. B. C. D.
6.下列各式运算正确的是()
A. B. C. D.
7.如图, 中, , .则 的度数为()
A.100°B.90°C.80°D.70°
【详解】
解:867000=8.67×105,
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.B
【解析】
【分析】
根据主视图的意义和几何体得出即可.
【详解】
解:几何体的主视图是:
故选:B.
【点睛】
本题考查了简单几何体的三视图的应用,能理解三视图的意义是解此题的关键.
4.C
【解析】
【分析】
根据横坐标,右移加,左移减可得点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).
【详解】
解:点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3),
即(2,3),
故选:C.
【点睛】
此题主要考查了坐标与图形的变化—平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
5.B
【解析】
【分析】
根据中心对称图形的概念求解.
【详解】
解:A、是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项正确;
C、是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项错误;

2020年泸州市中考数学试题、试卷(解析版)

2020年泸州市中考数学试题、试卷(解析版)

2020年泸州市中考数学试题、试卷(解析版)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( )A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2人数 2 3 4 1 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 .14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 . 15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x +1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣2 【解答】解:2的倒数是12.故选:A .2.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105,故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位,∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3).故选:C .5.(3分)下列正多边形中,不是中心对称图形的是( )A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,AB̂=AĈ,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵AB̂=AĈ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2; 学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 【解答】解:去分母,得:m +2(x ﹣1)=3,移项、合并,得:x =5−m 2, ∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个,故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点,∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b 2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c 2,即,c =b ﹣1 ②,②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2,c =b ﹣1=2﹣1=1,∴b +c =2+1=3,故选:C .二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 .【解答】解:根据题意得,x ﹣2≥0,解得x ≥2.故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 . 【解答】解:∵x a +1y 3与12x 4y 3是同类项, ∴a +1=4,解得a =3,故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 43 .【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC ,∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠QEA =∠BEC ∠Q =∠ECBAE =BE∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴FM BM =QF BC =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴BN NF =BE DW , ∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43. 三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 【解答】解:原式=5﹣1+2×12+3=5﹣1+1+3=8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,又∵AB =AD ,AC =AC ,∴△ABC ≌△ADC (SAS ),∴BC =CD .19.(6分)化简:(x+2x +1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n =40,B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x 的图象相交于A ,B 两点,且点A 的坐标为(a ,6). (1)求该一次函数的解析式;(2)求△AOB 的面积.【解答】解:(1)如图,∵点A (a ,6)在反比例函数y =12x 的图象上,∴6a =12,∴a =2,∴A (2,6),把A (2,6)代入一次函数y =32x +b 中得:32×2+b =6, ∴b =3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CM BM,∴BM=CMtan37°=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60°=303=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠DBA =90°,∵BC 是⊙O 的切线,∴∠ABC =90°,∴∠C +∠CAB =90°,∴∠C =∠ABD ,∵∠AGD =∠ABD ,∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C ,∴△ABC ∽△BDC ,∴BC AC =CD BC , ∴6AC =46,∴AC =9,∴AB =√AC 2−BC 2=3√5,∵CE =2AE ,∴AE =3,CE =6,∵FH ⊥AB ,∴FH ∥BC ,∴△AHE ∽△ABC ,∴AH AB =EH BC =AE AC , ∴3√5=EH 6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−12 n=2,∴直线BD的解析式为y=−12x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。

2020年四川省泸州中考数学试卷及答案解析

2020年四川省泸州中考数学试卷及答案解析

2020年四川省泸州中考数学试卷及答案解析2020年四川省泸州市初中学业水平考试数学部分共分为第Ⅰ卷和第Ⅱ卷,全卷共6页,满分120分,考试时间为120分钟。

在答题前,考生需在答题卡上填写姓名、准考证号和座位号,并在考试结束时一并交回。

选择题需使用2B铅笔在答题卡上涂黑对应题目的答案标号,非选择题需使用.5毫米黑色墨迹铅笔在答题卡上对应题号位置作答。

第Ⅰ卷(选择题共36分)共有12道小题,每小题3分。

其中,第一题是求2的倒数,正确答案为B。

-1/2;第二题是将用科学记数法表示,正确答案为C。

8.67×10^5;第三题是找出几何体的主视图,答案为D。

ABCD;第四题是在平面直角坐标系中将点A(-2,3)向右平移4个单位长度,得到的对应点A'的坐标为A。

(2,7);第五题是找出不是中心对称图形的正多边形,正确答案为A。

ABCD;第六题是判断各式运算的正确性,正确答案为B。

x-x=x;第七题是求出角BOC的度数,正确答案为C。

80°;第八题是根据给定数据求出10名学生平均每天的课外阅读时间的平均数和众数,正确答案为D。

1.25和4;第九题是判断假命题,正确答案为C。

菱形的对角线互相垂直平分;第十题是求解分式方程的正整数解个数,正确答案为D。

6;第十一题是关于分线段的“中末比”问题,无明显错误;第十二题是求解不等式,无明显错误。

G将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足$MG/GN=(\sqrt{5}+1)/2$,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点。

如图,在△ABC中,已知$AB=AC=3$,$BC=4$,若D、E是边BC的两个“黄金分割”点,则△ADE的面积为()解:首先,根据已知条件,可以求出$AB=AC=3$,$BC=4$,因此△ABC是一个等腰直角三角形,且$AB=AC<BC$。

2020年四川省泸州市中考数学试题和答案

2020年四川省泸州市中考数学试题和答案

2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.﹣C.2D.﹣22.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6 7.(3分)如图,⊙O中,=,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时0.51 1.52间(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4 9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足==,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.3﹣5C.D.20﹣8 12.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y=的自变量x的取值范围是.14.(3分)若x a+1y3与x4y3是同类项,则a的值是.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.(6分)化简:(+1)÷.四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=x+b 的图象与反比例函数y=的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈,cos37°≈,tan37°≈).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD =5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.参考答案解:2的倒数是.故选:A.2.参考答案解:867000=8.67×105,故选:C.3.参考答案解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.4.参考答案解:∵将点A(﹣2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(﹣2+4,3),即(2,3).故选:C.5.参考答案解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.参考答案解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.参考答案解:∵=,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.参考答案解:10名学生的每天阅读时间的平均数为=1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.9.参考答案解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.10.参考答案解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.11.参考答案解:作AH⊥BC于H,如图,∵AB=AC,∴BH=CH=BC=2,在Rt△ABH中,AH==,∵D,E是边BC的两个“黄金分割”点,∴BE=BC=2(﹣1)=2﹣2,∴HE=BE﹣BH=2﹣2﹣2=2﹣4,∴DE=2HE=4﹣8∴S △ADE=×(4﹣8)×=10﹣4.故选:A.12.参考答案解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,由抛物线的对称轴x=﹣=b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),b=,即,c=b﹣1 ②,②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,c=b﹣1=2﹣1=1,∴b+c=2+1=3,故选:C.二、填空题(本大题共4个小题,每小题3分,共12分).13.参考答案解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.14.参考答案解:∵x a+1y3与x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.15.参考答案解:根据题意得x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.16.参考答案解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD∥BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF===5,∵AD∥BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,在△QAE和△CBE中∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD∥BC,∴△QMF∽△CMB,∴==,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DW=4,CW=8,BF=FM=5,∵AB∥CD,∴△BNE∽△WND,∴=,∴=,解得:BN=,∴MN=BN﹣BM=﹣2=,故答案为:.三、本大题共3个小题,每小题6分,共18分.17.参考答案解:原式=5﹣1+2×+3=5﹣1+1+3=8.18.参考答案证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.19.参考答案解:原式=.四、本大题共2个小题,每小题7分,共14分.20.参考答案解:(1)12÷30%=40,即n=40,B组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为=.21.参考答案解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.参考答案解:(1)如图,∵点A(a,6)在反比例函数y=的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y=x+b中得:=6,∴b=3,∴该一次函数的解析式为:y=x+3;(2)由得:,,∴B(﹣4,﹣3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO==9.23.参考答案解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=,∴BM==CM,∵AB=70=AM+BM=CM+CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN===10,∴CD=MN=MB+BN=×30+10=40+10,答:C,D两点间的距离为(40+10)米,六、本大题共2个小题,每小题12分,共24分.24.参考答案(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.25.参考答案解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴==,∴BF=×OB=×4=,∴OF=BF﹣OB=﹣4=,将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,∴E(﹣,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,﹣x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,∴R(﹣x2+x+4,2﹣x)由①知,直线BD的解析式为y=﹣x+2,∴﹣(﹣x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,﹣x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y=﹣x+2,∴﹣(x2﹣x﹣2)+2=x,∴x=﹣1+或x=﹣1﹣(舍),当x=﹣1+时,y=﹣x2+x+4=2﹣4,∴P'(﹣1+,2﹣4),即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).。

2020年四川省泸州市中考数学试卷

2020年四川省泸州市中考数学试卷

2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( )A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2人数 2 3 4 1 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 .14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 . 15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x +1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣2 【解答】解:2的倒数是12.故选:A .2.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105,故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位,∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3).故选:C .5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.̂=AĈ,∠ABC=70°.则∠BOC的度数为()7.(3分)如图,⊙O中,ABA.100°B.90°C.80°D.70°̂=AĈ,【解答】解:∵AB∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2 人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2; 学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 【解答】解:去分母,得:m +2(x ﹣1)=3,移项、合并,得:x =5−m 2, ∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个,故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5. 故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点,∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b 2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c 2,即,c =b ﹣1 ②, ②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2,c =b ﹣1=2﹣1=1,∴b +c =2+1=3,故选:C .二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 .【解答】解:根据题意得,x ﹣2≥0,解得x ≥2.故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 . 【解答】解:∵x a +1y 3与12x 4y 3是同类项,∴a +1=4,解得a =3,故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 43 .【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC ,∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠QEA =∠BEC ∠Q =∠ECB AE =BE∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴FM BM =QF BC =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴BN NF =BE DW , ∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43. 三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 【解答】解:原式=5﹣1+2×12+3=5﹣1+1+3=8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,又∵AB =AD ,AC =AC ,∴△ABC ≌△ADC (SAS ),∴BC =CD .19.(6分)化简:(x+2x +1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n =40,B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)如图,∵点A(a,6)在反比例函数y=12x的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y=32x+b中得:32×2+b=6,∴b=3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C ,D 两点间的距离.在河的岸边与CD 平行的直线EF 上取两点A ,B ,测得∠BAC =45°,∠ABC =37°,∠DBF =60°,量得AB 长为70米.求C ,D 两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C 、D 分别作CM ⊥EF ,DN ⊥EF ,垂足为M 、N ,在Rt △AMC 中,∵∠BAC =45°,∴AM =MC ,在Rt △BMC 中,∵∠ABC =37°,tan ∠ABC =CM BM ,∴BM =CM tan37°=43CM ,∵AB =70=AM +BM =CM +43CM ,∴CM =30=DN ,在Rt △BDN 中,∵∠DBN =60°,∴BN =DN tan60°=30√3=10√3, ∴CD =MN =MB +BN =43×30+10√3=40+10√3, 答:C ,D 两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB 是⊙O 的直径,点D 在⊙O 上,AD 的延长线与过点B 的切线交于点C ,E 为线段AD 上的点,过点E 的弦FG ⊥AB 于点H .(1)求证:∠C =∠AGD ;(2)已知BC =6.CD =4,且CE =2AE ,求EF 的长.【解答】(1)证明:连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠DBA =90°,∵BC 是⊙O 的切线,∴∠ABC =90°,∴∠C +∠CAB =90°,∴∠C =∠ABD ,∵∠AGD =∠ABD ,∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C ,∴△ABC ∽△BDC ,∴BC AC =CD BC , ∴6AC =46,∴AC =9,∴AB =√AC 2−BC 2=3√5,∵CE =2AE ,∴AE =3,CE =6,∵FH ⊥AB ,∴FH ∥BC ,∴△AHE ∽△ABC ,∴AH AB =EH BC =AE AC , ∴3√5=EH6=39,∴AH =√5,EH =2,连接AF ,BF ,∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠AEH +∠BFH =∠AFH +∠F AH =90°,∴∠F AH =∠BFH ,∴△AFH ∽△FBH ,∴FH AH =BH FH , ∴√5=2√5FH, ∴FH =√10,∴EF =√10−2.25.(12分)如图,已知抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245−4=45, 将x =−45代入直线AC :y =2x +4中,得y =2×(−45)+4=125,∴E (−45,125),设直线BD 的解析式为y =mx +n ,∴{4m +n =0−45m +n =125, ∴{m =−12n =2, ∴直线BD 的解析式为y =−12x +2;②Ⅰ、当点R 在直线l 右侧时,∵抛物线与x 轴的交点坐标为A (﹣2,0)和B (4,0), ∴抛物线的对称轴为直线x =1,∴点Q (1,1),如图2,设点P (x ,−12x 2+x +4)(1<x <4),过点P 作PG ⊥l 于G ,过点R 作RH ⊥l 于H ,∴PG =x ﹣1,GQ =−12x 2+x +4﹣1=−12x 2+x +3,∵PG ⊥l ,∴∠PGQ =90°,∴∠GPQ +∠PQG =90°,∵△PQR 是以点Q 为直角顶点的等腰直角三角形,∴PQ =RQ ,∠PQR =90°,∴∠PQG +∠RQH =90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。

2020年四川省泸州市中考数学试卷

2020年四川省泸州市中考数学试卷

A'的坐标为( )
A.(2,7)
B.(﹣6,3)
C.(2,3)
D.(﹣2,﹣1)
5.(3 分)下列正多边形中,不是中心对称图形的是( )
A.
B.
C.
D.
6.(3 分)下列各式运算正确的是( )
A.x2+x3=x5
B.x3﹣x2=x
C.x2•x3=x6
D.(x3)2=x6
7.(3 分)如图,⊙O 中,
———————欢迎下载,祝您学习进步,成绩提升———————
(1)求 n 的值,并补全频数分布直方图; (2)若该汽车公司有 600 辆该型号汽车.试估计耗油 1L 所行使的路程低于 13km 的该型 号汽车的辆数; (3)从被抽取的耗油 1L 所行使路程在 12≤x<12.5,14≤x<14.5 这两个范围内的 4 辆 汽车中,任意抽取 2 辆,求抽取的 2 辆汽车来自同一范围的概率. 21.(7 分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共 30 件.其 中甲种奖品每件 30 元,乙种奖品每件 20 元. (1)如果购买甲、乙两种奖品共花费 800 元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的 3 倍.如何购买甲、乙两种奖品,使 得总花费最少? 五、本大题共 2 个小题,每小题 8 分,共 16 分. 22.(8 分)如图,在平面直角坐标系 xOy 中,已知一次函数 y x+b 的图象与反比例函数 y 的图象相交于 A,B 两点,且点 A 的坐标为(a,6). (1)求该一次函数的解析式; (2)求△AOB 的面积.
D.4
13.(3 分)函数 y
的自变量 x 的取值范围是

14.(3 分)若 xa+1y3 与 x4y3 是同类项,则 a 的值是

2020年四川省泸州市中考数学试卷及答案

2020年四川省泸州市中考数学试卷及答案

2020年四川省泸州市中考数学试卷及答案一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.C.2D.﹣22.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6 7.(3分)如图,⊙O中,,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:0.51 1.52课外阅读时间(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4 9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程2的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN 的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC =3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.35C.D.20﹣812.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A (1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y的自变量x的取值范围是.14.(3分)若x a+1y3与x4y3是同类项,则a的值是.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.(6分)化简:(1).四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y x+b的图象与反比例函数y的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°,cos37°,tan37°).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.C.2D.﹣2【解答】解:2的倒数是.故选:A.2.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106【解答】解:867000=8.67×105,故选:C.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)【解答】解:∵将点A(﹣2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(﹣2+4,3),即(2,3).故选:C.5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间0.51 1.52(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4【解答】解:10名学生的每天阅读时间的平均数为 1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等【解答】解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.10.(3分)已知关于x 的分式方程2的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x,∵分式方程的解为非负数,∴5﹣m≥0且1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC =3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.35C.D.20﹣8【解答】解:作AH⊥BC于H,如图,∵AB=AC,∴BH=CH BC=2,在Rt△ABH中,AH,∵D,E是边BC的两个“黄金分割”点,∴BE BC=2(1)=22,∴HE=BE﹣BH=22﹣2=24,∴DE=2HE=48∴S△ADE(48)10﹣4.故选:A.12.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A (1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4【解答】解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,由抛物线的对称轴x b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),b,即,c=b﹣1 ②,②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,c=b﹣1=2﹣1=1,∴b+c=2+1=3,故选:C.二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y的自变量x的取值范围是x≥2.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.14.(3分)若x a+1y3与x4y3是同类项,则a的值是3.【解答】解:∵x a+1y3与x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是2.【解答】解:根据题意得则x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.【解答】解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD∥BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF5,∵AD∥BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,在△QAE和△CBE中∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD∥BC,∴△QMF∽△CMB,∴,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DM=4,CW=8,BF=FM=5,∵AB∥CD,∴△BNE∽△WND,∴,∴,解得:BN,∴MN=BN﹣BM2,故答案为:.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.【解答】解:原式=5﹣1+23=5﹣1+1+3=8.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.19.(6分)化简:(1).【解答】解:原式.四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n=40,B组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y x+b的图象与反比例函数y的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)如图,∵点A(a,6)在反比例函数y的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y x+b中得:6,∴b=3,∴该一次函数的解析式为:y x+3;(2)由得:,,∴B(﹣4,﹣3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°,cos37°,tan37°).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC,∴BM CM,∵AB=70=AM+BM=CM CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN10,∴CD=MN=MB+BN30+1040+10,答:C,D两点间的距离为(40+10)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴,∴AC=9,∴AB3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴,∴AH,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴,∴,∴FH,∴EF2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a,∴抛物线的解析式为y(x+2)(x﹣4)x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴,∴BF OB4,∴OF=BF﹣OB4,将x代入直线AC:y=2x+4中,得y=2×()+4,∴E(,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ x2+x+4﹣1x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ x2+x+3,QH=PG=x﹣1,∴R(x2+x+4,2﹣x),由①知,直线BD的解析式为y x+2,∴(x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y x2+x+44+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q x2+x+4﹣1x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y x+2,∴(x2﹣x﹣2)+2=x,∴x=﹣1或x=﹣1(舍),当x=﹣1时,y x2+x+4=24,∴P'(﹣1,24),即满足条件的点P的坐标为(2,4)或(﹣1,24).。

2020年四川省泸州市中考数学试卷及答案解析

2020年四川省泸州市中考数学试卷及答案解析

2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( )A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2人数 2 3 4 1 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 .14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 . 15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x +1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣2 【解答】解:2的倒数是12.故选:A .2.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105,故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位,∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3).故选:C .5.(3分)下列正多边形中,不是中心对称图形的是( )A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,AB̂=AĈ,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵AB̂=AĈ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2; 学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 【解答】解:去分母,得:m +2(x ﹣1)=3,移项、合并,得:x =5−m 2, ∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个,故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点,∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b 2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c 2,即,c =b ﹣1 ②,②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2,c =b ﹣1=2﹣1=1,∴b +c =2+1=3,故选:C .二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 .【解答】解:根据题意得,x ﹣2≥0,解得x ≥2.故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 . 【解答】解:∵x a +1y 3与12x 4y 3是同类项, ∴a +1=4,解得a =3,故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 43 .【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC ,∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠QEA =∠BEC ∠Q =∠ECBAE =BE∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴FM BM =QF BC =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴BN NF =BE DW , ∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43. 三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 【解答】解:原式=5﹣1+2×12+3=5﹣1+1+3=8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,又∵AB =AD ,AC =AC ,∴△ABC ≌△ADC (SAS ),∴BC =CD .19.(6分)化简:(x+2x +1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n =40,B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x 的图象相交于A ,B 两点,且点A 的坐标为(a ,6). (1)求该一次函数的解析式;(2)求△AOB 的面积.【解答】解:(1)如图,∵点A (a ,6)在反比例函数y =12x 的图象上,∴6a =12,∴a =2,∴A (2,6),把A (2,6)代入一次函数y =32x +b 中得:32×2+b =6, ∴b =3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CM BM,∴BM=CMtan37°=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60°=30√3=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠DBA =90°,∵BC 是⊙O 的切线,∴∠ABC =90°,∴∠C +∠CAB =90°,∴∠C =∠ABD ,∵∠AGD =∠ABD ,∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C ,∴△ABC ∽△BDC ,∴BC AC =CD BC , ∴6AC =46,∴AC =9,∴AB =√AC 2−BC 2=3√5,∵CE =2AE ,∴AE =3,CE =6,∵FH ⊥AB ,∴FH ∥BC ,∴△AHE ∽△ABC ,∴AH AB =EH BC =AE AC , ∴3√5=EH 6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−12 n=2,∴直线BD的解析式为y=−12x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。

四川省泸州市2020年中考数学试卷

四川省泸州市2020年中考数学试卷

四川省泸州市2020年中考数学试卷一、单选题(共12题;共24分)1.2的倒数是()A. 2B.C.D. -22.将867000用科学记数法表示为()A. B. C. D.3.如下图所示的几何体的主视图是()A. B. C. D.4.在平面直角坐标系中,将点向右平移4个单位长度,得到的对应点的坐标为()A. B. C. D.5.下列正多边形中,不是中心对称图形的是()A. B. C. D.6.下列各式运算正确的是()A. B. C. D.7.如图,中,,.则的度数为()A. 100°B. 90°C. 80°D. 70°8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和49.下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等10.已知关于x的分式方程的解为非负数,则正整数m的所有个数为()A. 3B. 4C. 5D. 611.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为()A. B. C. D.12.已知二次函数(其中x是自变量)的图象经过不同两点,,且该二次函数的图象与x轴有公共点,则的值()A. -1B. 2C. 3D. 4二、填空题(共4题;共4分)13.函数y= 中,自变量x的取值范围是________;实数2﹣的倒数是________.14.若与是同类项,则a的值是________.15.已知是一元二次方程的两个实数根,则的值是________.16.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.三、解答题(共9题;共75分)17.计算:.18.如图,AB平分∠CAD,AC=AD.求证:BC=BD.19.化简:.20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车,试估计耗油所行使的路程低于的该型号汽车的辆数;(3)从被抽取的耗油所行使路程在,这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?22.如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.23.如图,为了测量某条河的对岸边C,D两点间的距离,在河的岸边与平行的直线上取两点A ,B,测得,,量得长为70米.求C,D两点间的距离(参考数据:,,).24.如图,是的直径,点D在上,的延长线与过点B的切线交于点C,E为线段上的点,过点E的弦于点H.(1)求证:;(2)已知,,且,求的长.25.如图,已知抛物线经过,,三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段于点E,若.①求直线的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.答案解析部分一、单选题1.【解析】【解答】∵2× =1,∴2的倒数是,故答案为:B .【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案2.【解析】【解答】解:867000=8.67×105,故答案为:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.【解析】【解答】解:几何体的主视图是:故答案为:B.【分析】根据主视图的意义和几何体得出即可.4.【解析】【解答】解:点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3),即(2,3),故答案为:C.【分析】根据横坐标,右移加,左移减可得点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).5.【解析】【解答】解:A、是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故答案为:B.【分析】根据中心对称图形的概念求解.6.【解析】【解答】解:A、,A不合题意;B、,B不合题意;C 、,C不合题意;D、,符合题意,D符合题意.故答案为:D.【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方运算法则逐一判断即可.7.【解析】【解答】解:∵,∴AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°-70°×2=40°,∵圆O是△ABC的外接圆,∴∠BOC=2∠A=40°×2=80°,故答案为:C.【分析】首先根据弧、弦、圆心角的关系得到AB=AC,再根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠BOC=2∠A,进而可得答案.8.【解析】【解答】解:在这一组数据中1.5是出现次数最多的,故众数是1.5,平均数= =1.2,故答案为:A.【分析】根据平均数和众数的定义即可得出答案.9.【解析】【解答】解:A、平行四边形的对角线互相平分,不符合;B、应该是矩形的对角线相等且互相平分,符合;C、菱形的对角线互相垂直且平分,不符合;D、正方形的对角线相等且互相垂直平分,不符合;故答案为:B.【分析】利用平行四边形、矩形、菱形、正方形的性质解题即可.10.【解析】【解答】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x= ,∵分式方程的解为非负数,∴≥0且≠1,解得:m≤5且m≠3,∵m为正整数∴m=1,2,4,5,共4个,故答案为:B.【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.11.【解析】【解答】解:过点A作AF⊥BC,∵AB=AC,∴BF= BC=2,在Rt ,AF= ,∵D是边的两个“黄金分割”点,∴即,解得CD= ,同理BE= ,∵CE=BC-BE=4-( -2)=6- ,∴DE=CD-CE=4 -8,∴S△ABC= = = ,故答案为:A.【分析】作AF⊥BC,根据等腰三角形ABC的性质求出AF的长,再根据黄金分割点的定义求出BE、CD的长度,得到中DE的长,利用三角形面积公式即可解题.12.【解析】【解答】解:∵二次函数的图像经过,,∴对称轴x= ,即x= ,∵对称轴x=b,∴=b,化简得c=b-1,∵该二次函数的图象与x轴有公共点,∴△====∴b=2,c=1,∴b+c=3,故答案为:C.【分析】根据二次函数的图像经过,,可得到二次函数的对称轴x= ,又根据对称轴公式可得x=b,由此可得到b与c的数量关系,然后由该二次函数的图象与x轴有公共点列出不等式解答即可二、填空题13.【解析】【解答】解:y= 中,自变量x的取值范围是x≥2;实数2﹣的倒数是2+ ,故答案为:x≥2,2+ .【分析】根据被开方数是非负数,倒数的定义,可得答案.14.【解析】【解答】解:∵与是同类项,∴a-1=4,∴a=5,故答案为:5.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a的值.15.【解析】【解答】解:∵是一元二次方程的两个实数根,∴=4,= -7,∴===2,故答案为:2.【分析】由已知结合根与系数的关系可得:=4,= -7,= ,代入可得答案.16.【解析】【解答】解:过点E作EH∥AD,交点BF于点G,交CD于点H,由题意可知:EH∥BC,∴△BEG∽△BAF,∴,∵AB=4,BC=6,点E为AB中点,F为AD中点,∴BE=2,AF=3,∴,∴EG= ,∵EH∥BC,∴△EGN∽△DFN,△EGM∽△CBM,∴,,∴,,即,,∴,,∵E为AB中点,EH∥BC,∴G为BF中点,∴BG=GF= BF= ,∴NG= = ,MG= BG= ,∴MN=NG+MG= ,故答案为:.【分析】过点E作EH∥AD,交点BF于点G,交CD于点H,证明△BEG∽△BAF,求出EG的长,再证明△EGN∽△DFN,△EGM∽△CBM,得出,,再求出BG=GF= BF= ,从而求出NG和MG,可得MN的长.三、解答题17.【解析】【分析】根据绝对值的化简、零指数幂、特殊角的三角函数值以及负整数指数幂的计算方法运算.18.【解析】【分析】由AB平分∠CAD可知∠BAC=∠BAD,再根据AC=AD,AB=AB可判断出△ABC≌△ABD,从而得到BC=BD.19.【解析】【分析】首先进行通分运算,进而利用因式分解变形,再约分化简分式.20.【解析】【分析】(1)根据D所占的百分比以及频数,即可得到n的值;(2)根据A,B所占的百分比之和乘上该汽车公司有600辆该型号汽车的总数,即可得到结果.(3)从被抽取的耗油所行使路程在的有2辆,记为A,B,行使路程在的有2辆,记为1,2,任意抽取2辆,利用列举法即可求出抽取的2辆汽车来自同一范围的概率.21.【解析】【分析】(1)设甲购买了x件乙购买了y件,利用购买甲、乙两种奖品共花费了800元列方程组,然后解方程组计算即可;(2)设甲种奖品购买了a件,乙种奖品购买了(30-a)件,利用购买乙种奖品的件数不超过甲种奖品件数的3倍,然后列不等式后确定x的范围即可得到该校的购买方案.22.【解析】【分析】(1)由点A在反比例函数图像上,求出a的值得到点A坐标,代入一次函数解析式即可;(2)联立两个函数的解析式,即可求得点B的坐标,然后由S△AOB=S△AOC+S△BOC求得答案.23.【解析】【分析】过点C作CH⊥AB,垂足为点H,过点D作DG⊥AB,垂足为点G,,先求出CH的长,然后在Rt△BCH中求得BH的长,则CD=GH=BH+BG即可求出24.【解析】【分析】(1)根据题意得到∠ODA=∠OAD,∠ABC=90°,再利用三角形内角和得到∠C=∠AGD;(2)连接BD,求出BD的长,证明△BOD≌AOG,得到AG=BD= ,再证明△AEG≌△DCB,得到EG=BC=6,AE=CD=4,再利用面积法求出AH,再求出HG,最后用EF=FG-EG求出结果.25.【解析】【分析】(1)根据待定系数法求解即可;(2)①过点E作EG⊥x轴,垂足为G,设直线BD 的表达式为:y=k(x-4),求出直线AC的表达式,和BD联立,求出点E坐标,证明△BDO∽△BEG,得到,根据比例关系求出k值即可;②根据题意分点R在y轴右侧时,点R在y轴左侧时两种情况,利用等腰直角三角形的性质求解即可.。

2020年四川省泸州市中考数学试卷(附答案详解)

2020年四川省泸州市中考数学试卷(附答案详解)

2020年四川省泸州市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.(2021·山东省枣庄市·历年真题)2的倒数是()A. 12B. −12C. 2D. −22.(2021·河南省·其他类型)将867000用科学记数法表示为()A. 867×103B. 8.67×104C. 8.67×105D. 8.67×1063.(2021·湖北省襄阳市·历年真题)如图所示的几何体的主视图是()A.B.C.D.4.(2021·浙江省·单元测试)在平面直角坐标系中,将点A(−2,3)向右平移4个单位长度,得到的对应点A′的坐标为()A. (2,7)B. (−6,3)C. (2,3)D. (−2,−1)5.(2021·广西壮族自治区南宁市·月考试卷)下列正多边形中,不是中心对称图形的是()A. B. C. D.6.(2021·全国·单元测试)下列各式运算正确的是()A. x2+x3=x5B. x3−x2=xC. x2⋅x3=x6D. (x3)2=x67.(2021·宁夏回族自治区吴忠市·模拟题)如图,⊙O中,AB⏜=AC⏜,∠ABC=70°.则∠BOC的度数为()A. 100°B. 90°C. 80°D. 70°8.(2021·广西壮族自治区·其他类型)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和49.(2021·江西省九江市·模拟题)下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等10.(2021·山西省太原市·同步练习)已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A. 3B. 4C. 5D. 611.(2021·全国·单元测试)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足MGMN =GNMG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若D,E 是边BC的两个“黄金分割”点,则△ADE的面积为()A. 10−4√5B. 3√5−5C. 5−2√52D. 20−8√512.(2021·湖南省娄底市·模拟题)已知二次函数y=x2−2bx+2b2−4c(其中x是自变量)的图象经过不同两点A(1−b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A. −1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)13.(2018·湖北省十堰市·期末考试)函数y=√x−2的自变量x的取值范围是______.14.(2021·河北省·期末考试)若x a+1y3与12x4y3是同类项,则a的值是______.15.(2021·江苏省常州市·模拟题)已知x1,x2是一元二次方程x2−4x−7=0的两个实数根,则x12+4x1x2+x22的值是______.16.(2020·安徽省安庆市·期中考试)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为______.三、解答题(本大题共9小题,共72.0分))−1.17.(2021·山东省济南市·模拟题)计算:|−5|−(π−2020)0+2cos60°+(1318.(2021·全国·单元测试)如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.(2021·河南省·期末考试)化简:(x+2x +1)÷x2−1x.20.(2020·四川省泸州市·历年真题)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(2021·广西壮族自治区河池市·模拟题)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?22. (2020·四川省·月考试卷)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x的图象相交于A ,B 两点,且点A 的坐标为(a,6). (1)求该一次函数的解析式; (2)求△AOB 的面积.23. (2020·四川省泸州市·历年真题)如图,为了测量某条河的对岸边C ,D 两点间的距离.在河的岸边与CD 平行的直线EF 上取两点A ,B ,测得∠BAC =45°,∠ABC =37°,∠DBF =60°,量得AB 长为70米.求C ,D 两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).24.(2020·四川省泸州市·历年真题)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(2020·四川省泸州市·历年真题)如图,已知抛物线y=ax2+bx+c经过A(−2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.答案和解析1.【答案】A【知识点】倒数【解析】解:2的倒数是1.2故选:A.根据倒数的概念求解.主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:867000=8.67×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【知识点】简单几何体的三视图【解析】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.找到从几何体的正面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.4.【答案】C【知识点】平移中的坐标变化【解析】解:∵将点A(−2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(−2+4,3),即(2,3).故选:C.直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查坐标与图形变化−平移,平移中点的变化规律是:左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.5.【答案】B【知识点】中心对称图形【解析】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.根据中心对称图形的概念结合选项的图形进行判断即可.本题考查了中心对称图形的知识,要注意中心对称图形是要寻找对称中心,旋转180度后重合.6.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与x2不是同类项,所以不能合并,故本选项不合题意;C.x2⋅x3=x5,错误,故本选项不合题意;D.(x3)2=x6,正确,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的乘法法则以及幂的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方,熟记相关运算法则是解答本题的关键.7.【答案】C【知识点】圆周角定理【解析】解:∵AB⏜=AC⏜,∴∠ABC=∠ACB=70°,∴∠A=180°−70°−70°=40°,∴∠BOC=2∠A=80°.故选:C.先根据圆周角定理得到∠ABC=∠ACB=70°,再利用三角形内角和计算出∠A=40°,然后根据圆周角定理得到∠BOC的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】A【知识点】加权平均数、众数=1.2;【解析】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.根据中位数、众数的计算方法求出结果即可.本题考查平均数、众数的意义和计算方法,掌握平均数的计算方法是正确计算的前提.9.【答案】B【知识点】菱形的性质、矩形的性质、平行四边形的性质、定义与命题、正方形的性质【解析】解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相平分且相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.根据平行四边形、矩形、菱形和正方形的性质判断即可.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.【答案】B【知识点】分式方程的解【解析】解:去分母,得:m+2(x−1)=3,,移项、合并,得:x=5−m2∵分式方程的解为非负数,≠1,∴5−m≥0且5−m2解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.本题考查了分式方程的解,先求出分式方程的解,再求出不等式的解.11.【答案】A【知识点】勾股定理、数学传统文化-几何类、黄金分割、等腰三角形的性质【解析】【分析】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段ABAB≈0.618AB,并且线段AB的黄金分割点有两个.也的黄金分割点.其中AC=√5−12考查了等腰三角形的性质.BC=2,则根据勾股作AH⊥BC于H,如图,根据等腰三角形的性质得到BH=CH=12BC=定理可计算出AH=√5,接着根据线段的“黄金分割”点的定义得到BE=√5−122√5−2,则计算出HE=2√5−4,然后根据三角形面积公式计算.【解答】解:作AH⊥BC于H,如图,∵AB=AC,BC=2,∴BH=CH=12在Rt△ABH中,AH=√32−22=√5,∵D,E是边BC的两个“黄金分割”点,∴BE=√5−1BC=2(√5−1)=2√5−2,2∴HE=BE−BH=2√5−2−2=2√5−4,∴DE=2HE=4√5−8×(4√5−8)×√5=10−4√5.∴S△ADE=12故选A.12.【答案】C【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、二次函数图象与系数的关系【解析】解:由二次函数y=x2−2bx+2b2−4c的图象与x轴有公共点,∴(−2b)2−4×1×(2b2−4c)≥0,即b2−4c≤0①,=b,抛物线经过不同两点A(1−b,m),B(2b+c,m),由抛物线的对称轴x=−−2b2b=1−b+2b+c,即,c=b−1②,2②代入①得,b2−4(b−1)≤0,即(b−2)2≤0,因此b=2,c=b−1=2−1=1,∴b+c=2+1=3,故选:C.求出抛物线的对称轴x=b,再由抛物线的图象经过不同两点A(1−b,m),B(2b+c,m),,可得b=c+1,再根据二次函数的图象与x轴有公共点,也可以得到对称轴为1−b+2b+c2得到b2−4c≤0,进而求出b、c的值.本题考查二次函数的图象和性质,理解抛物线的对称性、二次函数与一元二次方程的关系是解决问题的关键.13.【答案】x≥2【知识点】二次根式有意义的条件【解析】解:根据题意得,x−2≥0,解得x≥2.故答案为:x≥2.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.【答案】3【知识点】同类项【解析】解:∵x a+1y3与12x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得a的值.本题考查了同类项的概念,同类项与系数的大小无关;同类项与它们所含的字母顺序无关.15.【答案】2【知识点】一元二次方程的根与系数的关系*【解析】解:根据题意得则x1+x2=4,x1x2=−7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16−14=2故答案为2.根据根与系数的关系求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.16.【答案】43【知识点】矩形的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质【解析】【分析】延长CE、DA交于Q,延长BF和CD,交于W,根据勾股定理求出BF,根据矩形的性质求出AD,根据全等三角形的性质得出AQ=BC,AB=DW,根据相似三角形的判定得出△QMF∽△CMB,△BNE∽△WND,根据相似三角形的性质得出比例式,求出BN 和BM的长,即可得出答案.本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,相似三角形的性质和判定,能综合运用定理进行推理是解此题的关键.【解答】解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD//BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF=√AB2+AF2=√42+32=5,∵AD//BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,在△QAE和△CBE中{∠QEA=∠BEC ∠Q=∠ECB AE=BE∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD//BC,∴△QMF∽△CMB,∴FMBM =QFBC=96,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DW=4,CW=8,BF=FW=5,∵AB//CD,∴△BNE∽△WND,∴BNNW =BEDW,∴BN5−BN+5=24,解得:BN=103,∴MN=BN−BM=103−2=43,故答案为:43.17.【答案】解:原式=5−1+2×12+3=5−1+1+3=8.【知识点】特殊角的三角函数值、负整数指数幂、零指数幂、实数的运算【解析】直接利用绝对值以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=DC.【知识点】全等三角形的判定与性质【解析】由“SAS”可证△ABC≌△ADC,可得BC=DC.本题考查了全等三角形的判定和性质,证明△ABC≌△ADC是本题的关键.19.【答案】解:原式=2x+2x ×x(x+1)(x−1)=2(x+1)x×x(x+1)(x−1)=2x−1.【知识点】分式的混合运算【解析】根据分式的混合运算顺序和运算法则进行计算.本题主要考查了分式的混合运算,熟记分式混合运算的顺序和各类运算法则是解题的关键.20.【答案】解:(1)12÷30%=40,即n=40,B组的车辆为:40−2−16−12−2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=13.【知识点】扇形统计图、用样本估计总体、用列举法求概率(列表法与树状图法)、频数(率)分布直方图【解析】本题考查了列表法或画树状图法、频数分布直方图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.(1)由D组的车辆数及其所占百分比求得n的值;求出B组的车辆数,补全频数分布直方图即可;(2)用样本估计总体,由总车辆数乘以耗油1L所行使的路程低于13km的汽车的辆数所占的比例即可;(3)画出树状图,由概率公式求解即可.21.【答案】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30−x)件,根据题意得30x+20(30−x)=800,解得x=20,则30−x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30−x)件,设购买两种奖品的总费用为w 元,根据题意得30−x≤3x,解得x≥7.5,w=30x+20(30−x)=10x+600,∵10>0,∴w随x的增大而减小,又x是整数,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.【知识点】一元一次不等式的应用、一元一次方程的应用、一次函数的应用【解析】(1)设甲种奖品购买了x件,乙种奖品购买了(30−x)件,利用购买甲、乙两种奖品共花费了800元列方程30x+20(30−x)=800,然后解方程求出x,再计算30−x 即可;(2)设甲种奖品购买了x件,乙种奖品购买了(30−x)件,设购买两种奖品的总费用为w 元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于x的一元一次不等式,解之可得出x的取值范围,再由总价=单价×数量,可得出w关于x的函数关系式,利用一次函数的性质即可解决最值问题.本题考查了一元一次不等式与一元一次方程、一次函数的应用,属于中等题.22.【答案】解:(1)如图,∵点A(a,6)在反比例函数y =12x 的图象上, ∴6a =12,∴a =2,∴A(2,6), 把A(2,6)代入一次函数y =32x +b 中得:32×2+b =6,∴b =3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x 得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B(−4,−3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.【知识点】一次函数与反比例函数综合【解析】(1)根据反比例函数y =12x 可得点A 的坐标,把A(2,6)代入一次函数y =32x +b 中可得b 的值,从而得一次函数的解析式;(2)利用面积和可得△AOB 的面积.本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是确定一次函数的解析式.23.【答案】解:过点C 、D 分别作CM ⊥EF ,DN ⊥EF ,垂足为M 、N ,在Rt △AMC 中,∵∠BAC =45°,∴AM =MC ,在Rt △BMC 中,∵∠ABC =37°,tan∠ABC =CMBM ,∴BM=CMtan37∘=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60∘=30√3=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,【知识点】解直角三角形的应用【解析】通过作辅助线,在三个直角三角形中,根据边角关系,分别求出CM、BM、DN、BN,进而求出答案.本题考查直角三角形的边角关系的应用,掌握直角三角形的边角关系以及几个直角三角形之间的关系是正确解答的关键.24.【答案】(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴BCAC =CDBC,∴6AC =46,∴AC=9,∴AB=√AC2−BC2=3√5,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH//BC,∴△AHE∽△ABC,∴AHAB =EHBC=AEAC,∴3√5=EH6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.【知识点】勾股定理、圆周角定理、相似三角形的判定与性质、切线的性质【解析】(1)连接BD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠ABC= 90°,得到∠C=∠ABD,根据圆周角定理即可得到结论;(2)根据相似三角形的判定和性质以及勾股定理即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,勾股定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx+c经过A(−2,0),B(4,0),第21页,共23页 ∴设抛物线的解析式为y =a(x +2)(x −4),将点C 坐标(0,4)代入抛物线的解析式为y =a(x +2)(x −4)中,得−8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x −4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b′,将点A(−2,0),C(0,4),代入y =kx +b′中,得{−2k +b′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD//EF ,∴△BOD∽△BFE , ∴OB BF =BD BE ,∵B(4,0),∴OB =4,∵BD =5DE ,∴BDBE =BDBD+DE=5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245, ∴OF =BF −OB =245−4=45, 将x =−45代入直线AC :y =2x +4中,得y =2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−1 2n=2,∴直线BD的解析式为y=−12x+2;②∵抛物线与x轴的交点坐标为A(−2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x−1,GQ=−12x2+x+4−1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x−1,∴R(−12x2+x+4,2−x),由①知,直线BD的解析式为y=−12x+2,则−12(−12x2+x+4)+2=2−x,解得x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,第22页,共23页∴P(2,4).【知识点】待定系数法求一次函数解析式、二次函数综合、相似三角形的判定与性质、待定系数法求二次函数解析式、全等三角形的判定与性质【解析】此题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数的解析式,相似三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;②先确定出点Q的坐标,设点P(x,−12x2+x+4)(1<x<4),得出PG=x−1,GQ=−12x2+x+3,再利证明△PQG≌△QRH(AAS),得出RH=GQ=−12x2+x+3,QH=PG=x−1,进而得出R(−12x2+x+4,2−x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.第23页,共23页。

2020年四川省泸州市中考数学试卷

2020年四川省泸州市中考数学试卷

2020年四川省泸州市中考数学试卷一、选择题(大题共12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣2.(3分)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.(3分)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x4.(3分)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.5.(3分)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5 B.﹣5 C.3 D.﹣36.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.87.(3分)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.(3分)下列曲线中不能表示y是x的函数的是()A.B.C.D.9.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.10.(3分)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1611.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P 是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共4小题,每题3分,共12分)13.(3分)在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.14.(3分)分解因式:2m2﹣8=.15.(3分)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.16.(3分)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.三、解答题(本大题共3小题,每题6分,共18分)17.(6分)计算:(﹣3)2+20200﹣×sin45°.18.(6分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC ∥EF,求证:AB=DE.19.(6分)化简:•(1+)四、本大题共2小题,每小题7分,共14分20.(7分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.(7分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.五、本大题共2小题,每小题8分,共16分.22.(8分)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.(8分)一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=的图象相交,求使y1<y2成立的x的取值范围.六、本大题共两个小题,每小题12分,共24分24.(12分)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.25.(12分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y 轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(大题共12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•泸州)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(3分)(2020•泸州)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:567000=5.67×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•泸州)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2020•泸州)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行,每行一个小正方体.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2020•泸州)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5 B.﹣5 C.3 D.﹣3【分析】根据关于原点的对称点,横纵坐标都变成相反数,可得a、b的值,根据有理数的加法,可得答案.【解答】解:由A(a,1)关于原点的对称点为B(﹣4,b),得a=4,b=﹣1,a+b=3,故选:C.【点评】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律:关于原点的对称点,横纵坐标都变成相反数.6.(3分)(2020•泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OB﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.7.(3分)(2020•泸州)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【分析】根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选D.【点评】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2020•泸州)下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数是在一个变化过程中有两个变量x,y,一个x只能对应一个y.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x 是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x 的值对应,因而不是函数关系.故选C.【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.9.(3分)(2020•泸州)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.10.(3分)(2020•泸州)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.16【分析】由根与系数的关系可得出m+n=2t、mn=t2﹣2t+4,将其代入(m+2)(n+2)=mn+2(m+n)+4中可得出(m+2)(n+2)=(t+1)2+7,由方程有两个实数根结(n+2)合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m+2)的最小值.【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.【点评】本题考查了根与系数的关系、根的判别式以及二次函数的最值,根据根与系数的关系找出(m+2)(n+2)=(t+1)2+7是解题的关键.11.(3分)(2020•泸州)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)(2020•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6【分析】过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,由PF=PE结合三角形三边关系,即可得出此时△PMF周长取最小值,再由点F、M的坐标即可得出MF、ME的长度,进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF 周长最小值,∵F(0,2)、M(,3),∴ME=3,FM==2,∴△PMF周长的最小值=ME+FM=3+2=5.故选C.【点评】本题考查了二次函数的性质以及三角形三边关系,根据三角形的三边关系确定点P的位置是解题的关键.二、填空题(本大题共4小题,每题3分,共12分)13.(3分)(2020•泸州)在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;袋子中球的总数为:4+2=6,∴摸到白球的概率为:=,故答案为:.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(3分)(2020•泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣8,=2(m2﹣4),=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.(3分)(2020•泸州)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.16.(3分)(2020•泸州)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为4cm.【分析】连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE==2,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=4,O是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=BC=2,∵O是△ABC的重心,∴AO=2OH=4,故答案为:4.【点评】本题考查的是重心的概念和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.三、解答题(本大题共3小题,每题6分,共18分)17.(6分)(2020•泸州)计算:(﹣3)2+20200﹣×sin45°.【分析】首先计算乘方、开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣3)2+20200﹣×sin45°=9+1﹣3×=10﹣3=7【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2020•泸州)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(6分)(2020•泸州)化简:•(1+)【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.四、本大题共2小题,每小题7分,共14分20.(7分)(2020•泸州)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?【分析】(1)根据题意列式计算得到D类书的人数,补全条形统计图即可;(2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【解答】解(1)捐D类书的人数为:30﹣4﹣6﹣9﹣3=8,补图如图所示;(2)众数为:6 中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500,即该单位750名职工共捐书约4500本.【点评】此题主要考查了中位数,众数,平均数的求法,条形统计图的画法,用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.21.(7分)(2020•泸州)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.【分析】(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20﹣m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.【解答】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数,所以m可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【点评】本题主要考查二元一次方程组、不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.五、本大题共2小题,每小题8分,共16分.22.(8分)(2020•泸州)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.【分析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC•sin30°=x,CD=BC•cos30°=x;∴AD=30x,∵AD2+CD2=AC2,即:(30+x)2+(x)2=702,解之得:x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.23.(8分)(2020•泸州)一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=的图象相交,求使y1<y2成立的x的取值范围.【分析】(1)根据点B的纵坐标利用反比例函数图象上点的坐标特征可求出点B 的坐标,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据“上加下减”找出直线l的解析式,联立直线l和反比例函数解析式成方程组,解方程组可找出交点坐标,画出函数图象,根据两函数图象的上下位置关系即可找出使y1<y2成立的x的取值范围.【解答】解:(1)∵反比例函数y=﹣的图象过点B(a,4),∴4=﹣,解得:a=﹣3,∴点B的坐标为(﹣3,4).将A(2,﹣6)、B(﹣3,4)代入y=kx+b中,,解得:,∴一次函数的解析式为y=﹣2x﹣2.(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8.联立直线l和反比例函数解析式成方程组,,解得:,,∴直线l与反比例函数图象的交点坐标为(1,6)和(3,2).画出函数图象,如图所示.观察函数图象可知:当0<x<1或x>3时,反比例函数图象在直线l的上方,∴使y1<y2成立的x的取值范围为0<x<1或x>3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组,解题的关键是:(1)根据点A、B的坐标利用待定系数法求出直线AB的解析式;(2)联立两函数解析式成方程组,通过解方程组求出两函数图象的交点坐标.六、本大题共两个小题,每小题12分,共24分24.(12分)(2020•泸州)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC 边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.【分析】(1)欲证明DF∥OA,只要证明OA⊥CD,DF⊥CD即可;(2)过点作EM⊥OC于M,易知=,只要求出EM、FM、FC即可解决问题;【解答】(1)证明:连接OD.∵AB与⊙O相切与点D,又AC与⊙O相切与点,∴AC=AD,∵OC=OD,∴OA⊥CD,∴CD⊥OA,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.【点评】本题考查切线的性质、直径的性质、切线长定理、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.25.(12分)(2020•泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y 轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D 点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH 的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(4﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出D点的位置是解题的关键,在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.。

2020年四川省泸州市中考数学真题(教师版含解析)

2020年四川省泸州市中考数学真题(教师版含解析)

泸州市二○二○年初中学业水平考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分120分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试卷和答题卡一并交回.2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试题上作答无效.第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的倒数是()A. 2B. 12C.12- D. -2【答案】B【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.【详解】∵2×12=1,∴2的倒数是12,故选B .【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.将867000用科学记数法表示为()A. 386710⨯ B. 48.6710⨯ C. 58.6710⨯ D. 68.6710⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:867000=8.67×105, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如下图所示的几何体的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据主视图的意义和几何体得出即可.【详解】解:几何体的主视图是:故选:B .【点睛】本题考查了简单几何体的三视图的应用,能理解三视图的意义是解此题的关键. 4.在平面直角坐标系中,将点(2,3)A -向右平移4个单位长度,得到的对应点A '的坐标为( ) A. ()2,7 B. ()6,3-C. ()2,3D. ()2,1-- 【答案】C【解析】【分析】根据横坐标,右移加,左移减可得点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3). 【详解】解:点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3),即(2,3), 故选:C .【点睛】此题主要考查了坐标与图形的变化—平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.5.下列正多边形中,不是中心对称图形的是( )A.B. C. D. 【答案】B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A 、是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项正确;C 、是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项错误;故选:B .【点睛】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.下列各式运算正确的是( )A. 235x x x +=B. 32x x x -=C. 236x x x ⋅=D. ()236x x = 【答案】D【解析】【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方运算法则逐一判断即可.【详解】解:A 、235x x x +≠,故选项A 不合题意;B 、32x x x -≠,故选项B 不合题意;C 、235x x x ,故选项C 不合题意; D 、()236x x =,正确,故选项D 符合题意.故选:D .【点睛】本题主要考查了合并同类项的方法,同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.7.如图,O中,AB AC=,70ABC∠=︒.则BOC∠的度数为()A. 100°B. 90°C. 80°D. 70°【答案】C【解析】【分析】首先根据弧、弦、圆心角的关系得到AB=AC,再根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠BOC=2∠A,进而可得答案.【详解】解:∵AB AC=,∴AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°-70°×2=40°,∵圆O是△ABC的外接圆,∴∠BOC=2∠A=40°×2=80°,故选C.【点睛】此题主要考查了弧、弦、圆心角的关系、圆周角定理、等腰三角形的性质,熟练掌握等腰三角形的性质,由圆周角定理得出结果是解决问题的关键.8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和4【答案】A【解析】【分析】根据平均数和众数的定义即可得出答案.【详解】解:在这一组数据中1.5是出现次数最多的,故众数是1.5,平均数=()10.5213 1.542110⨯⨯+⨯+⨯+⨯=1.2, 故选:A .【点睛】本题考查了众数及平均数的知识,掌握概念和算法是解题关键.9.下列命题是假命题的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等 【答案】B【解析】【分析】利用平行四边形、矩形、菱形、正方形的性质解题即可.【详解】解:A 、正确,平行四边形的对角线互相平分,故选项不符合;B 、错误,应该是矩形的对角线相等且互相平分,故选项符合;C 、正确,菱形的对角线互相垂直且平分,故选项不符合;D 、正确,正方形的对角线相等且互相垂直平分,故选项不符合;故选:B .【点睛】本题考查命题与定理、特殊四边形的性质等知识,解题的关键是熟练掌握特殊四边形的性质,属于中考常考题型.10.已知关于x 的分式方程3211m x x +=---的解为非负数,则正整数m 的所有个数为( ) A. 3B. 4C. 5D. 6 【答案】B【解析】【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.【详解】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=52m , ∵分式方程的解为非负数, ∴52m ≥0且52m ≠1, 解得:m≤5且m≠3,∵m 为正整数∴m=1,2,4,5,共4个,故选:B .【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.11.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的段GN 的比例中项,即满足51MG GN MN MG -==,后人把51-这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE的面积为( )A. 1045-B. 355 525- D. 205-【答案】A【解析】【分析】 作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出BE 、CD 的长度,得到ADE 中DE 的长,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF 2222325AB BF -=-=∵D 是边BC 的两个“黄金分割”点,∴512CD BC =即5142CD =, 解得CD=252,同理BE=252,∵CE=BC-BE=4-(25-2)=6-25,∴DE=CD-CE=45-8,∴S △ABC=12DE AF ⨯⨯=()145852⨯-⨯=1045-, 故选:A.【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DE 和AF 的长是解题的关键。

2020泸州中考数学试题及参考答案

2020泸州中考数学试题及参考答案

泸州市2020年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.2的倒数是23456C .236x x x ⋅= D .326()x x = 7.如图,⊙O 中,AB AC =,∠ABC=70°,∠BOC 的度数为 A .100° B .90° C .80° D .70°8A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25和4 9.下列命题是假命题的是A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等 2的值是 .15.已知1x ,2x 是一元二次方程2470x x --=的两实数根,则2211224x x x x ++的值是 .16.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知AB=4,BC=6,则MN 的长为 .三、(每小题6分,共18分)17. 计算:011|5|(2020)2cos60()3π----+︒+.18.如图,AC 平分∠BAD ,AB=AD .求证:BC=DC .辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件,其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?FEDCB A六、(每小题12分,共24分)24.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E 为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;25.如图,已知抛物线2y ax bx c =++经过A(-2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD=5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧.点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.。

2020年泸州市中考数学试卷-含答案

2020年泸州市中考数学试卷-含答案

2020年泸州市中考数学试卷1.2的倒数是(3. 如下图所示的几何体的主视图是(4. 在平面直角坐标系中,将点A ( 2,3)向右平移4个单位长度,得到的对应点A 的坐标为()5. 下列正多边形中,不是中心对称图形的是(、选择题(本大题共12个小题,每小题3分,共36分.)B. 2 2.将867000用科学记数法表示为( A. 2C. D. -2A. 867 103B. 8.67 104C.8.67 105D. 8.67 106A.B.A. 2,7B. 6,3C. 2,3D.2, 16.下列各式运算正确的是( B. x 3C. 2 3 6XXXD.ABC 70 .则BOC 的度数为B. 90°C. 80D. 70D.D.x 3 2 x 6AB AC ,A. x 2 x 3 x 5A. 1008.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时} 0,5 1 L5 7人数2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是(9.下列命题是假命题的是(为( )C. 5 A. 3 B. 11.古希腊数学家欧多比”问题:点G全长MN 与较短白 个数称为“黄金“黄金分割”点.如图,在BC 的两个“黄金分割”点,ABC 中,已知AC 3,C 则&ADE 的面积为B A. 10 45B. 3、5 5D EC 5 2亦2MG MNGN 的比D. 6例理论时,提出了分线段的“中末,使得其中较长的一段MG 是,,即满足G 称为MN4,若D, E 曰MG 号,后人把呼这D. 20A. 1.2 和 1.5B. 1.2 和 4C. 1.25 禾口 1.5D. 1.25 禾口 4A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形对角线互相垂直平分D.正方形的对角线互相垂直平分且相等10.已知关于x 的分式方程 ?x 1—的解为非负数,则正整数m 的所有个数1 x12.已知二次函数y x 2 2bx 2b 2 4c (其中x 是自变量) 图象经过不同两点A (1 b,m ) ,B (2b c,m ),且该二次函数的图象与x 轴有公共点,则bc 的值(A. 1B. 2C. 3 二、填空题(本大题共4个小题,每小题3分,共12分)13. 函数y厂2中,自变量x 的取值范围是14. 若x a1y 3与2x 4y 3是同类项,贝a 值是_15. 已知X1M 是一元二次方程 16.如图,在矩形ABCD 中,交于点M N.已知AB 4 ,Z ?AECD. 4BF 与6分,共 分.1BC= BDx ; 4x-i曰x 2 4x 7 0的两个实数根,则E,F 分别为边AB , AD 的中点,BC 6,贝卩MN 的长为三、本大题共3个小题,每小题17.计算:| 5| (2020)0 2cos6018如图,AB 平分/ CAD AC= AD 求证: x 2 . x 2 1 x19.化简:四、本大题卜小题,每小题7分,共14 分.X 2的值20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了以下不完整的频数分布直方 图和扇形统计图.根据题中已有信息,解答下列问题:(1) 求n 的值,并补全频数分布直方图;(2) 若该汽车公司有600辆该型号汽车,试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3) 从被抽取的耗油1L 所行使路程在12 x 12.5 , 14 x 14.5这两个范围内的4 辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1) 如果购买甲、乙两种奖品共花费 800元,那么这两种奖品分别购买了多少 件? (2)若购买乙种奖品的件数不超过甲种奖品件数的 3倍,如何购买甲、乙两种 奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.”:13.5沪 14322. 如图,在平面直角坐标系xOy中,已知一次函数y -x b的图象与反比例函12数y —的图象相交于A, B两点.且点A的坐标为a,6 .x(2)求&AOB的面积.23. 如图,为了测量某条河的对岸边C, D两点间的距离,在河的岸边与CD平行的直线EF上取两点A,B,测得BAC 45,ABC 37,DBF 60,量得AB长3 4 3 为70米.求C, D两点间的距离(参考数据:sin37 -,cos37 -,tan37 -).5 5 4六、本大题共2个小题,每小题12分,共24分.24. 如图,AB是0O的直径,点D在0O 上, AD的延长线与过点B的切线交于点C, E为线段AD上的点,过点E的弦FG AB于点HG(1)求证: C AGD;(2)已知BC 6 , CD 4,且CE 2AE,求EF 的长.c 经过A( 2,0) , B(4,0) , C(0,4)三点.(2)经过点B直线交y轴于点D,交线段AC于点E,若BD 5DE .①求直线BD的解析式;②已知点Q在该抛物线的对称轴I上,且纵坐标为1,点P是该抛物线上位于第勺动点,若EPQR是以点Q为直角一象限的动点,且在I右侧.点R是直线BD顶点的等腰直角三角形,求点"P的坐标.2020年泸州市中考数学试卷答案1. B .2. C .3. B .4. C .5. B .6. D .7. C .8. A .9. B . 10. B12. C.413. x 2 . 14. 5.15. 2 . 16. 3.117. 解:原式=5-1 + 2 —+32=5-1 + 1+3=818. 证明:T AB平分/ CAD•••/ BAC=Z BADv AC=AD, AB = AB,•△ABC^A ABD( SAS .•B C=BD..11. A.19.解:原式二mxx x2 12 8 5(2)600 石=150 (辆),答:耗油1L所行使的路程低于13km的该型号汽车的有150辆;(3)从被抽取的耗油1L所行使路程在12 x 12.5的有2辆,记为A, B,行使路程在14 x 14.5的有2辆,记为1, 2,任意抽取2辆的可能结果有6种,分别为:(A, 1),(A, 2),(A,B),(B, 1),(B, 2),(1,2)其中抽取的2辆汽车来自同一范围的的结果有2种,所以抽取的2辆汽车来自同一范围的的概率P=f =£ .6 321. 解:(1)设甲购买了x件,乙购买了y件,x y 30解得%2030x 20y 800 y 10'答:甲购买了20件,乙购买了10件;(2)设购买甲奖品为a件.则乙奖品为(30-a)件,根据题意可得:30- a W 3a,解得a>㊇,2又T甲种奖品每件30元,乙种奖品每件20元,总花费=30a+20 (30-a)=10a+600,总花费随a的增大而增大•••当a=8时,总花费最少,答:购买甲奖品8件,乙奖品22件,总费用最少.22. 解:•••点A在反比例函数y 上,x12二—6,解得a=2, a二A点坐标2,6,3•••点A在一次函数y尹b上,32 b 6,解得b=3,3•••该一次函数的解析式为y 3x 3;2(2)设直线与x轴交于点C,• 一次函数与x轴的交点坐标C (- 2 , 0),• B (- 4 , -3 ),• • S AO=S\ AOc+S^ BOC,=丄OC h i 1 OC h22 21二丄OC h h223y x 3212yx解得y1X2y21=2 6 32=923. 解:过点C作CH L AB垂足为点H,过点D作DGL AB,垂足为点G4同理可得BH=-CH3v AH+BH二AB-••• — CH+CH=70解得CH= 30,3CH在厶BCH中, tan / ABC=C^ ,,BH,3 30即;討,解得BH=40又v DG=CH=30同理可得BG=103 ,•CD=GH=BH+BG=—0+10(米),答:C D两点之间的距离约等于40+10鳥米.2—.解:(1)v OA=OP•/ ODA h OAPv BC和AB相切,•/ ABC=90 ,v DG为圆O直径,•••/ DAG=90 ,vZ C=180 - / CAB-/ ABC / AGD=180 - / DAG-Z ADO •/ C=Z AGD(2)连接BDv AB为直径,•Z ADB Z CDB=90 ,v BC 6 , CD 4,•BD= 62422 5 ,v OA=OB=OD=,OG AOG Z BOD•△ BO 坠AOG( SAS,..AG=BD=\ 5 ,v FG丄AB, BC1 AB•FG// BC,•Z AEG/ C,vZ EAG Z CDB=90 , AG二BD•△AEG^A DCB( AAS,•EG=BC=6 AE=CD=4v AH L FG, AB 为直径,•AH=A K AS EG=^ , FH=GH4 5 310 3• EF=FG-EG=-6=-.4a 2b c 016a 4b c 0,解得:c 4(2)①过点E作EG!x轴,垂足为G,•- B(4, 0),设直线BD的表达式为:y=k(x-4),设AC表达式为:y=mx+n将A和C代入, 二直线AC的表达式为:y=2x+4,联立:y k x 4 y 2x 4 ,4k 4x解得:k 212k ,y k 24k 4 12k k 2,k 2c R25. 解: ( 1)V抛物线y ax2bx c 经过点A( 2,0) , B(4,0) , C(0,4),代入,抛物线表达式为:y^x2 x 4 ;2 ,得: 2m n 0 ” /口n 4 ,解得:0),4k 4TT , BG=^2 3 k 2 V EG! x 车由,• △ BD 3A BEG.BDBO …BE BG 'V BD 5DE ,.BD BO5 …BE BG6 , 4 5• 126 , k 2解得:k= 2,.直线BD 的表达式为:y *x 2 ;2②由题意:设 P (s , -s s 4), 1<s V 4,•••△ PQR 是以点Q 为直角顶点的等腰直角三角形,•••/ PQR=90 , PQ=RQ当点R 在y 轴右侧时,如图,分别过点P, R 作I 的垂线,垂足为M 和N,VZ PQR=90 ,•••/ PQM% RQN=90 ,vZ MPQ% PQM=9° ,•/ RQN Z MPQ 又PQ=RQ Z PMQ Z RNQ=90 ,•△ PMW QNR•MQ=NRPM=QJNv Q在抛物线对称轴I上,纵坐标为1,•Q( 1, 1),•QN=PM=1MQ=RN则点P的横坐标为2,代入抛物线得:y=4,如图,分别过点P, R作I的垂线,垂足为M和N,同理:△ PM@A QNR•NR=QJMNQ=PM5 1 设R(t, 2f 4 5),4 1•R N二一t 2 1 t 仁QM5 2NQ=1-t=PM•P(夕2 , 2-t ),代入抛物线,解得:t= 2.13 6 或 2 13 6 (舍),二点P的坐标为(.13 1 , 2 13 4 ),1/ 、|/»£*/A G O综上:点P的坐标为(2, 4)或(•帀1 , 2、、13 4 )2=x 120. 解:(1) n=12- 30%=40(辆),B: 40-2-16-12-2=8 ,补全频数分布直方图如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泸州市二〇一四年高中阶段学校招生考试数学试卷(考试试间:120分钟,试卷满分120分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.5的倒数为 A.15B .5C .15- D . 5-2.计算23x x ⋅的结果为 A .22x B .22x C .22x D . 22x 3.如右下图所示的几何图形的俯视图为A .B .C .D .4.某校八年级(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是A .38B .39C .40D .425.如图,等边ABC △中,点D 、E 分别为边AB 、AC 的中点,则DEC ∠的度数为 A .30 B .60 C .120 D .150 6.已知实数x 、y 满足130x y -++=,则x y +的值为A .2-B .2C .4D .4- 7.一个圆锥的底面半径是6cm ,其侧面展开图为半圆,则圆锥的母线长为 A .9cm B .12cm C .15cm D .18cm 8.已知抛物线221y x x m =-++与x 轴有两个不同的交点,则函数my x=的大致图象是A .B .C .D . 9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是A .2小时B .2.2小时C .2.25小时D .2.4小时lO 2O 1→第5题图ABCDE10.如图,⊙1O 、⊙2O 的圆心1O 、2O 都在直线l 上,且半径分别为2cm 、3cm ,128cm O O =.若⊙1O 以 1cm/s 的速度沿直线l 向右匀速运动(⊙2O 保持静止),则在7s 时刻⊙1O 与⊙2O 的位置关系是A .外切B .相交C .内含D .内切1190, AC BC ⊥,AC BC =,ABC ∠的平分A1 B .2 C 1 D12二、填空题(本大题共4小题,每小题3分,共12分) 13.分解因式:2363a a ++= .14.使函数1(1)(2)y x x=-+有意义的自变量x 的取值范围是 .15.一个平行四边形的一条边长为3,则它的面积为 . 16.如图,矩形AOBC 的顶点坐标分别为A 动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题: ①若4k =,则OEF △的面积为83;②若218k =,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤; ④若2512DE EG ⋅=,则1k =. 其中正确的命题的序号是 (写出所有正确命题的序号). 三、(本大题共3小题,每题6分,共18分) 170214sin 60(2)()2π-+++. 18.化简:221()a ba b b aa b -÷+--.第11题图A B C D E F19.如图,正方形ABCD 中,E 、F 分别为BC 、CD 上的点,且AE ⊥BF ,垂足为点G . 求证:AE=BF .四、(本大题共2小题,每题7分,共14分) 20.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按02t <≤,23t <≤,34t <≤,4t ≥分为四个等级,并分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:各种等级人数占调查总人数的百分比统计图x%15%10%DCB45%A(1)求出x 的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足24t <≤的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率. 五、(本大题共2小题,每题8分,共16分). 21.某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B 产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A 、B 两种产品总利润为y 元,其中A 种产品生产件数是x .(1)写出y 与x 之间的函数关系式;(2)如何安排A 、B 两种产品的生产件数,使总利润y 有最大值,并求出y 的最大值.22.海中两个灯塔A 、B ,其中B 位于A 的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A 在西北方向上,灯塔B 在北偏东30方向上,渔船不改变航向继续向东航行30海里到达点D ,这是测得灯塔A 在北偏西60方向上,求灯塔A 、B 间的距离.(计算结果用根号表示,不取近似值).GF A B C ED第19题图第22题图C DA B23.已知1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根.(1)若12(1)(1)28x x --=,求m 的值;(2)已知等腰ABC △的一边长为7,若1x ,2x 恰好是ABC △另外两边的边长,求这个三角形的周长. 六、(本大题共2小题,每小题12分,共24分) 24.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AC 和BD 相交于点E ,且2DC CE CA =⋅. (1)求证:BC CD =;(2)分别延长AB ,DC 交于点P ,过点A 作AF ⊥CD 交CD 的延长线于点F ,若PB=求DF 的长.25.如图,已知一次函数112y x b =+的图象l 与二次函数22y x mx b =-++的图象'C 都经过点(0,1)B 和点C,且图象'C 过点(2A .(1)求二次函数的最大值;(2)设使21y y >成立的x 取值的所有整数和为s ,若s 是关于x 的方程13(1)013x a x ++=--的根,求a 的值;(3)若点F 、G 在图象'C DE 在线段BC 上移动,EF 与DG 始终平行于y 轴,当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD PE +最小,求出点P 的坐标.A参考答案一.选择题(本题共12小题,每小题3分,共36分):题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCBCABDCDCB二.填空题(本题共4小题,每小题3分,共12分). 13.23(1)a +; 14.21x x >-≠且;15.45;16.②④.三.(本大题共3个小题,每小题6分,共18分).) 17.解:原式3234142=-⨯++ =5.18.解:原式()()()()a a bb a a b a b a b a b b ⎡⎤--=-⨯⎢⎥+-+-⎣⎦()()b b aa b a b b-=⨯+- 1a b=-+. 19.证明:∵AE ⊥BF ,∴90BAE ABF ∠+∠=,在正方形ABCD 中,90ABF CBF ∠+∠=,∴BAE CBF ∠=∠,∴在BAE △和CBF △中,BAE CBF AB BCABE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BAE CBF ≅△△, ∴AE BF =.三.(本大题共2个小题,每小题7分,共14分).) 20.解:(1)10045101530x =---=, 补全条形统计图如图所示;(2)该校共有学生2500人,估计每周课外阅读时间量满足24t <≤的人数为:2500⨯(30﹪+10﹪)=1000(人); (3)树状图如图所示:B 1A A 2AB 2A 3A A A AB 1B 2B 2B 1A 3A A 2A 3B 1B 2开始B 1B 2A 3A 2A 1由图知,共有20种不同情况,其中符合的有12种.∴123205P == 21.解:(1)因为A 种产品生产件数是x ,所以生产B 种产品(50)x -件,根据题意的:7001200(50)y x x =+⨯-即50060000y x =-+;GF ABCED第19题图(2)依题意得:94(50)380310(50)290x x x x +-≤⎧⎨+-≤⎩,解这个不等式组,得3036x ≤≤,且x 是整数,在50060000y x =-+中,y 随x 的增大而减小,因此,当x 取最小值时,y 有最大值, 故生产A 种产品30件,B 种产品20件获利最大, 最大利润为:500306000045000y =-⨯+=(元).22. 解:作AE ⊥DC ,交CD 的延长线于点E ,过点C 作CF AB ⊥,垂足为F , ∵45ACE ∠=,∴ACE △为等腰直角三角形, ∴AE CF CE AF ===,30, 33=30, 3tan3015(3=⨯=∴30AB AF FB =+=+(海里), ∴灯塔A 、B 间的距离是(30+海里.23. 解:(1)∵1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根,∴1222x x m +=+,2125x x m =+, ∵12(1)(1)28x x --=,∴1212()270x x x x -+-=, 22240m m --=,解得6m =,或4m =-,∵一元二次方程222(1)50x m x m -+++=的两实数根,[]222(1)4(5)8160m m m ∆=-+-+=-≥,∴2m ≥, ∴6m =;(2)①若7是ABC △的一腰长,则7是方程222(1)50x m x m -+++=的一个实数根.∴22727(1)50m m -⨯+++=, ∴214400m m -+=, ∴4m =,或10m =,当4m =时,方程为210210x x -+=,解得17x =,23x =,等腰三角形的周长为7+7+3=17; 当10m =时,方程为2221050x x -+=,解得17x =,215x =,BADC第22题图∵7715+<,所以此时ABC △不存在,②若7是ABC △的底边长,则222(1)50x m x m -+++=有两相等实数根,∴8160m ∆=-=,∴2m =, ∴123x x ==,∵337+<,此时不能构成三角形,综上,符合题意的等腰△ABC 的周长为17.24.(1)证明;∵2DC CE CA =⋅,∴DC CACE DC=, ∵DCE ACD ∠=∠, ∴CDE CAD △△,∴DAC BDC ∠=∠,又DAC DBC ∠=∠, ∴DBC CDB ∠=∠, ∴BC =CD ;(2)解:连接OC ,∵DC BC =,∴OC BD ⊥,又∵AB 是⊙O 的直径,∴AD BD ⊥, ∴//OC AD ,∴PADPCB ∠=∠,又∵P P ∠=∠, ∴PADPCB △△,∵//OC AD ∵AF DF ⊥,AC BC ⊥,∴ACB F ∠=∠,又∵ABC ADF ∠=∠, ∴ABC ADF △△,A25.解:(1)∵112y x b =+过点(0,1)B , ∴1b =,∵图象'C过点(2A ,∴2(2(210m -++=, 解得m =4,∴2224125y x x x =-++=--+(),∴二次函数的最大值为5;(2)由1112y x =+与2241y x x =-++联立 ,得711(,)24C , 结合图象l 与图象'C 得使21y y >成立的x 的取值范围是702x <<, 满足21y y >的x 的取值的所有整数和为6s =, ∵6是方程13(1)013x a x ++=--的根, ∴136(1)0163a ++=-- ∴a =17;(3)过点D 作DM x ⊥轴,垂足为点M ,过点E 作EN x ⊥轴,垂足为点N,过点D 作DH EN ⊥轴,垂足为点,过点D 作BI DM ⊥轴,垂足为点I , 设点001(,1)2D x x +,∵BID DHE △△, ∴2DH =,1EH =,∴点E 的坐标为001(2,2)2E x x ++,又点G 的坐标为22000(,41)E x x x -++,点F 的坐标为200(2,5)F x x +-+, ∴22000001741(1)22GD x x x x x =-++-+=-+, ∴220000115(2)322EF x x x x =-+-+=--+, ∴四边形DEFG 的面积:2200001171()[()(3)22222S EF DG DH x x x x =+⨯=-++--+⨯,200233x x =-++,∵DE 在线段BC 上移动,∴000722x x >⎧⎪⎨+<⎪⎩,∴点0302x <<,∴当034x =时,四边形DEFG 的面积有最大值, 此时点311(,)48D ,点1119(,)48E , 设E 关于x 轴的对称点为1119(,)48E '-, 连接PE ',则PE PE '=,PD PE PD PE DE ''++≥≥,当且仅当D 、P 、E 共线时取等号, 又直线DE '的解析式为:1589832y x =-+,当0y =时,点P 的坐标为89(,0)60.第25题图。

相关文档
最新文档