2011-2013年北京市高考数学总复习 考点专项汇总 专题十 直线与圆 理

合集下载

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结
1.直线方程⑴点斜式;⑵斜截式;⑶截距式;⑷两点式;⑸一般式(A,B不全为0)。

(直线的方向向量,法向量)
2.求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:
4.直线系。

5.几个公式⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G是:();⑵点P(x0,y0)到直线Ax+By+C=0的距离:;⑶两条平行线Ax+By+C1=0与Ax+By+C2=0的距离是;
6.圆的方程:⑴标准方程:①;②。

⑵一般方程:(注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆A=C0且B=0且D2+E2-4AF
7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:⑴;注:当时表示两圆交线。

⑵。

9.点、直线与圆的位置关系:(主要掌握几何法)⑴点与圆的位置关系:(表示点到圆心的距离)①点在圆上;②点在圆内;③点在圆外。

⑵直线与圆的位置关系:(表示圆心到直线的距离)①相切;②相交;③相离。

⑶圆与圆的位置关系:(表示圆心距,表示两圆半径,且)①相离;②外切;③相交;④内切;⑤内含。

高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结

高中数学直线和圆知识点复习总结
高中数学中的直线和圆的总结有很多知识点,本文就针对这些知识点进行一个总结,同学们可以查阅,以便加深对直线和圆的理解。

首先,在直线方面需要知道的是什么?
一、直线的定义
直线是平面上双等距平行的两条线,可以用一元二次方程来表示。

二、直线的性质
1、平等的距离及同一平面的
直线的夹角相等,距离也相等,两直线交于一点,其中一条直线经过这一点,另一条不经过,而在同一平面上的两直线是相互垂直的。

2、直线的交点
当两条直线在有限空间内相交时,这种相交是称之为直线的交点。

三、直线的位置关系
1、平行
当两条直线从同一个方向平行可以认为这两条直线平行。

接下来,要总结一下圆知识点了。

圆是位于平面中心点到圆上任一点的距离相等的一种曲线,而圆的半径则是指这种距离。

1、圆心在圆的任一点的距离是一致的
2、圆的封闭图形
圆是一种封闭的曲线,无论是确定它的定义还是它的性质,都建立在它是一种封闭图形的基础之上。

1、圆内和内接四边形外接圆
内接四边形外接圆是指圆心和任意两个顶点形成的距离都相等的圆,这圆就是内接四边形外接圆。

当一条直线与圆的关系有六种:即相切、相交、内切、外切、内含和外公切线,因此理解这一关系也是重要的。

以上就是高中数学直线和圆知识点复习总结,希望可以帮助读者们更加深入理解这些概念,提升高中数学学习的能力,顺利通过高考。

高中直线与圆题型归纳总结

高中直线与圆题型归纳总结

高中直线与圆题型归纳总结直线与圆是高中数学中的重要知识点,涉及到的题型较为广泛。

在这篇文章中,我将对高中直线与圆题型进行归纳总结,以帮助同学们更好地掌握和应用这些知识。

一、直线与圆的基本性质在解题过程中,掌握直线与圆的基本性质是非常重要的。

下面列举了一些常见的性质:1. 直线与圆的位置关系:a. 若直线与圆有两个交点,则该直线称为切线;b. 若直线与圆相交于两个不重合的交点,则该直线称为割线;c. 若直线与圆不相交,则该直线称为外切线或外割线;d. 若直线完全在圆内,则该直线称为内切线或内割线。

2. 判定直线与圆的位置关系的方法:可以通过直线的方程与圆的方程进行联立,进而判断位置关系。

二、直线与圆的相交性质1. 两条直线与圆的相交性质:a. 相交弧的性质:两条直线与圆相交,相交的弧度数相等;b. 垂直切线的性质:切线与半径垂直;c. 切线长度的性质:切线长的平方等于切点到圆心的距离与圆半径的乘积。

2. 直线与圆的切线性质:a. 切线定理:切线与半径垂直;b. 外切角性质:切线与半径的夹角等于其对应的弧所对圆心角的一半。

三、直线与圆的方程1. 圆的一般方程:(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为圆半径。

2. 直线的一般方程:Ax + By + C = 0,其中A、B、C为实数且不全为零。

3. 判定直线与圆的位置关系的方法:将直线方程代入圆的方程,求解该二次方程的判别式,进而判断位置关系。

四、直线与圆的应用题1. 判断两个圆的位置关系:比较两个圆的圆心距离与两个圆半径之和的大小来判断位置关系。

2. 直线与圆的垂直与切线问题:通过证明直线与半径的斜率乘积为-1,判定直线与圆的垂直关系;通过判定直线与圆的切点的情况,判定直线与圆的切线关系。

3. 直线与圆的联立方程求解问题:列出直线方程与圆方程,通过解联立方程,求解直线与圆的交点坐标。

4. 直线与圆的面积问题:求直线与圆所形成的图形的面积,可以通过计算扇形面积与三角形面积之和来完成。

北京市各地市2013年高考数学 最新联考试题分类汇编(9)直线与圆

北京市各地市2013年高考数学 最新联考试题分类汇编(9)直线与圆

北京市各地市2013年高考数学 最新联考试题分类汇编(9)直线与圆一、选择题:(5)(北京市朝阳区2013年4月高三第一次综合练习文)若直线y x m =+与圆22420x y x +++=有两个不同的公共点,则实数m 的取值范围是A .(22,22B .()4,0-C .(22,22--- D . ()0,4【答案】D(2)(北京市东城区2013年4月高三综合练习一文)“1a =”是“直线20x y +=与直线(1)40x a y +++=平行”的(A ) 充分不必要条件 (B ) 必要不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件 【答案】C8.(北京市丰台区2013年高三第二学期统一练习一理)动圆C 经过点F(1,0),并且与直线x=-1相切,若动圆C 与直线221y x =+总有公共点,则圆C 的面积(A) 有最大值8π (B) 有最小值2π (C) 有最小值3π (D) 有最小值4π 【答案】D(2)(北京市昌平区2013年1月高三期末考试理)“2a =”是“直线214ay ax y x =-+=-与垂直”的A. 充分不必要条件 B 必要不充分条件 C. 充要条件 D.既不充分也不必要条件 【答案】A【解析】若直线214a y ax y x =-+=-与垂直,则有=14aa -⨯-,即24a =,所以2a =±。

所以“2a =”是 “直线214ay ax y x =-+=-与垂直”的充分不必要条件,选A.二、填空题:(14)(北京市朝阳区2013年4月高三第一次综合练习文理)在平面直角坐标系xOy 中,点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=u u u r u u u r时,则点C 的纵坐标的取值范围是 .【答案】[]5,5-11.(北京市丰台区2013年高三第二学期统一练习一文)直线x-3y+2=0被圆224x y +=截得的弦长为_________。

2011高考数学知识点汇总精编——直线和圆-高考生必备

2011高考数学知识点汇总精编——直线和圆-高考生必备

概念、方法、题型、易误点及应试技巧总结直线和圆一.直线的倾斜角:1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0;2.倾斜角的范围[)π,0。

如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)二.直线的斜率:1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=; 3.直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线: AB BC k k =。

如 (1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要); (2)实数,x y 满足3250x y --= (31≤≤x ),则xy的最大值、最小值分别为______(答:2,13-)三.直线的方程:1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。

3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

高三高考数学总复习《直线与圆》题型归纳与汇总

高三高考数学总复习《直线与圆》题型归纳与汇总

高考数学总复习题型分类汇《直线与圆》篇经典试题大汇总目录【题型归纳】题型一倾斜角与斜率 (3)题型二直线方程 (3)题型三直线位置关系的判断 (4)题型四对称与直线恒过定点问题 (4)题型五圆的方程 (5)题型六直线、圆的综合问题 (6)【巩固训练】题型一倾斜角与斜率 (7)题型二直线方程 (8)题型三直线位置关系的判断 (9)题型四对称与直线恒过定点问题 (10)题型五圆的方程 (11)题型六直线、圆的综合问题 (12)高考数学《直线与圆》题型归纳与训练【题型归纳】题型一 倾斜角与斜率例1 直线l 310y +-=,则直线l 的倾斜角为( )A. 0150B. 0120C. 060D. 030【答案】 A【解析】由直线l 的方程为310y +-=,可得直线的斜率为33-=k ,设直线的倾斜角为[)πα,0∈,则33tan -=α,∴︒=150α. 故选:A .【易错点】基础求解问题注意不要算错【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2π,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值.【答案】2=a 或92=a 【解析】597,35a k a k CB AB +=-= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即59735a a +=-,解得2=a 或92=a .题型二 直线方程例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ).A. 2x y +=B. 1x y +=C. 1x =或1y =D. 2x y +=或x y =【答案】D【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m+=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D .【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。

(完整)高三专题复习:直线与圆知识点及经典例题(含答案),推荐文档

(完整)高三专题复习:直线与圆知识点及经典例题(含答案),推荐文档

专题:圆的方程、直线和圆的位置关系知识要点】圆的定义: 平面内与一定点距离等于定长的点的轨迹称为圆 一)圆的标准方程形如: (x a )2 (y b )2 r 2 这个方程叫做圆的标准方程 。

王新敞说明: 1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x 2 y 2 r 2。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a,b,r 三个量确定了且 r >0,圆的方程就给定了。

圆的一般方程的特点: (i ) x 2和y 2 的系数相同,不等于零; (ii )没有 xy 这样的二次项。

三)直线与圆的位置关系1、直线与圆位置关系的种类 (1)相离 --- 求距离;2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断 : 当 d>r 时,直线与圆相离;当 d =r 时,直线与圆相切 ;当 d<r 时,直线与圆相交。

代数方法主要步骤:就是说要确定圆的方程,必须具备三个独立的条件王新敞确定 a,b,r ,可以根据 3 个条件,利用 待定系数法 来解决。

将圆的标准方程(x a)2 (y 的方 程都可以写成: x 2 2 y Dx问题: 形 如x 22 y Dx Ey将方程x 22yDx Ey F (1)当 D 2 E 24F 0时,方程D 2E 24F 为半径 的圆。

心以2(2)当 D 2 E 24F 0时,方程点( D , E)22(3)当 D2E 24F 0时, 方程圆的 一般方程的 定义:当 D 2 E 22 2 2 r ,展开可得 x y 2ax 2by 222a b r 0 。

可见,任何一个圆0 的方程的曲线是不是圆? 0左边配方得: (x 与标准方程比较,y 2 Dx Eyy 2 Dx Ey 20 时,方程 x 2 D 2 E D 2)2 (y E 2)D 2E 2 4F )2方程 x 2 y 2 Dx Ey F 0 只有实数解,解为 x0表示以 ( D, E)为圆22DE2,y 2, 所以表示一个F 0 没有实数解,因而它不表示任何图形。

直线与圆-高考理科数学压轴题分析详解

直线与圆-高考理科数学压轴题分析详解

重点增分专题十 直线与圆[全国卷3年考情分析](1)圆的方程近几年成为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式考查.(2)直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时也会出现在压轴题的位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.考点一 直线的方程 保分考点·练后讲评 1.[两直线平行]已知直线l 1:(k -3)x +(4-k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2解析:选C 当k =4时,直线l 1的斜率不存在,直线l 2的斜率存在,所以两直线不平行;当k ≠4时,两直线平行的一个必要条件是3-k4-k =k -3,解得k =3或k =5,但必须满足1k -4≠32(截距不等)才是充要条件,经检验知满足这个条件. 2.[两直线垂直]已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足为P (1,p ),则m -n +p 的值是( )A .24B .20C .0D .-4解析:选B ∵直线mx +4y -2=0与2x -5y +n =0互相垂直, ∴m -4×25=-1,∴m =10. 直线mx +4y -2=0,即5x +2y -1=0, 将垂足(1,p )代入,得5+2p -1=0,∴p =-2. 把P (1,-2)代入2x -5y +n =0,得n =-12, ∴m -n +p =20,故选B.3.[对称问题]坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( ) A.⎝⎛⎭⎫-45,85 B.⎝⎛⎭⎫-45,-85 C.⎝⎛⎭⎫45,-85 D.⎝⎛⎭⎫45,85解析:选A 直线x -2y +2=0的斜率k =12,设坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是(x 0,y 0),依题意可得⎩⎪⎨⎪⎧x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85. 4.[两直线的交点与距离]已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为_________________.解析:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=0[解题方略]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法考点二 圆的方程 保分考点·练后讲评 [大稳定——常规角度考双基]1.[由圆的方程求参数范围]若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A .(-∞,-2) B.⎝⎛⎭⎫-23,0 C .(-2,0)D.⎝⎛⎭⎫-2,23 解析:选D 若方程表示圆,则a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.2.[求圆的标准方程]已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________. 解析:设C (a,0)(a >0),由题意知|2a |5=455,解得a =2,所以r =22+(5)2=3,故圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=9[解题方略] 求圆的方程的2种方法几何法 通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程 代数法 用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程[小创新——变换角度考迁移]1.[与平面向量交汇]已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),则圆M 的半径为( )A. 5B. 6C.7D .2 2解析:选C 圆M 的标准方程为(x -1)2+y 2=1-a (a <1),圆心M (1,0),则|OM |=1,圆的半径r =1-a ,因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7,故选C.2.[与概率的交汇]向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =23π-34π=16-34π.答案:16-34π考点三 直线与圆的位置关系 增分考点·广度拓展 [分点研究]题型一 圆的切线问题[例1] (1)(2019届高三·苏州高三调研)在平面直角坐标系xOy 中,已知过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,则实数a =________.(2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.[解析] (1)由题意得,直线l 的斜率存在,设过点M (1,1)的直线l 的方程为y -1=k (x-1),即kx -y +1-k =0.因为直线l 与圆(x +1)2+(y -2)2=5相切,所以圆心(-1,2)到直线l 的距离d =|-k -2+1-k |k 2+1=5,整理得k 2-4k +4=0,解得k =2.又直线l 与直线ax +y-1=0垂直,所以-2a =-1,解得a =12.(2)圆心O 到直线3x +4y =25的距离d =259+16=5, 则|OM |≥d =5, 所以切线长|MB |=|OM |2-2≥d 2-2=23,所以S 四边形OBMC =2S △OBM ≥2×12×23×2=46.[答案] (1)12(2)46[变式1] 本例(2)变为:过点A (1,3),作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBAC 的面积为________.解析:由相切可得S 四边形OBAC =2S △OBA ,因为△OAB 为直角三角形,且|OA |=10,|OB |=2, 所以|AB |=22,即S △OBA =12×22×2=2,所以S 四边形OBAC =2S △OBA =4. 答案:4[变式2] 本例(2)变为:设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线l 1,l 2,则l 1与l 2的最大夹角的正切值是________.解析:设一个切点为B ,圆心O 到直线3x +4y =25的距离为d =259+16=5, 则tan ∠OMB =|OB ||MB |≤223,所以tan 2∠OAB =2tan ∠OAB1-tan 2∠OAB=21tan ∠OAB-tan ∠OAB≤24621.故所求最大夹角的正切值为24621. 答案:24621[解题方略] 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.题型二 圆的弦长问题[例2] 已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PM Q N 面积的最大值.[解] (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r ,解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PM Q N 的面积为S . 因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1.又|P Q |=2×4-d 2,|MN |=2×4-d 21,所以S =12|P Q |·|MN |,即S =12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PM Q N 面积的最大值为7. [解题方略] 求解圆的弦长的3种方法[多练强化]1.(2018·全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2.答案:2 22.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________. 解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1,由R 2=d 2+⎝⎛⎭⎫|MN |22,得1=(2k -2)2k 2+1+15,解得k =2或12,故所求直线l 的方程为y =2x +1或y =12x +1.答案:y =2x +1或y =12x +13.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为________.解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径r = 2.因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO所在直线的方程为2x +y =0时,|PM |的值最小,此时点P 为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎨⎧x =-310,y =35,故当|PM |取最小值时点P 的坐标为⎝⎛⎭⎫-310,35. 答案:⎝⎛⎭⎫-310,35数学建模——直线与圆最值问题的求解[典例] 已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OP Q 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0[解析] 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OP Q =12×2×25=25,当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线l 的距离d =|1-2k |1+k 2,所以|P Q |=29-d 2,S △OP Q =12×|P Q |×d =12×29-d 2×d= (9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OP Q 取得最大值92,因为25<92,所以S △OP Q 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0,故选D.[答案] D [素养通路]本题考查了直线与圆的最值问题,结合题目的条件,设元、列式、建立恰当的函数,利用基本不等式模型解决相关的最值问题.考查了数学建模这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b 2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a 2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,可得d max =22+r =32,d min =22-r = 2. 由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6].5.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]解析:选A 由圆的方程可知圆心为(0,0),半径为2.因为圆O 上到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).6.在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM ―→=OA ―→+OB ―→,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C 法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM ―→=OA ―→+OB ―→,故M ⎝⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0. 法二:由直线与圆相交于A ,B 两点,OM ―→=OA ―→+OB ―→,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k 2=1,解得k =0.二、填空题7.已知直线l :x +my -3=0与圆C :x 2+y 2=4相切,则m =________.解析:因为圆C :x 2+y 2=4的圆心为(0,0),半径为2,直线l :x +my -3=0与圆C :x 2+y 2=4相切,所以2=31+m 2,解得m =±52 .答案:±528.过点C (3,4)作圆x 2+y 2=5的两条切线,切点分别为A ,B ,则点C 到直线AB 的距离为________.解析:以OC 为直径的圆的方程为⎝⎛⎭⎫x -322+(y -2)2=⎝⎛⎭⎫522,AB 为圆C 与圆O :x 2+y 2=5的公共弦,所以AB 的方程为x 2+y 2-⎣⎡⎦⎤⎝⎛⎭⎫x -322+(y -2)2=5-254,化简得3x +4y -5=0,所以C 到直线AB 的距离d =|3×3+4×4-5|32+42=4.答案:49.(2018·贵阳适应性考试)已知直线l :ax -3y +12=0与圆M :x 2+y 2-4y =0相交于A ,B 两点,且∠AMB =π3,则实数a =________.解析:直线l 的方程可变形为y =13ax +4,所以直线l 过定点(0,4),且该点在圆M 上.圆的方程可变形为x 2+(y -2)2=4,所以圆心为M (0,2),半径为2.如图,因为∠AMB =π3,所以△AMB 是等边三角形,且边长为2,高为3,即圆心M 到直线l 的距离为3,所以|-6+12|a 2+9=3,解得a =±3.答案:±3 三、解答题10.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B . (1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值. 解:(1)把直线ax -y +5=0代入圆的方程, 消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0, 由于直线ax -y +5=0交圆于A ,B 两点, 故Δ=4(5a -1)2-4(a 2+1)>0, 即12a 2-5a >0,解得a >512或a <0,所以实数a 的取值范围是(-∞,0)∪⎝⎛⎭⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a , 则直线l 的斜率为-1a,所以直线l 的方程为y =-1a (x +2)+4,即x +ay +2-4a =0,由于l 垂直平分弦AB , 故圆心M (1,0)必在l 上,所以1+0+2-4a =0, 解得a =34,由于34∈⎝⎛⎭⎫512,+∞, 所以a =34.11.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .因为圆A 与直线l 1:x +2y +7=0相切,所以R =|-1+4+7|5=2 5.所以圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.由于|MN |=219,于是⎝ ⎛⎭⎪⎪⎫|-k -2+2k |k 2+12+(19)2=20,解得k =34, 此时,直线l 的方程为3x -4y +6=0.所以所求直线l 的方程为x =-2或3x -4y +6=0.12.在平面直角坐标系xOy 中,直线x -y +1=0截以原点O 为圆心的圆所得的弦长为6.(1)求圆O 的方程;(2)若直线l 与圆O 相切于第一象限,且直线l 与坐标轴交于点D ,E ,当线段DE 的长度最小时,求直线l 的方程.解:(1)因为点O 到直线x -y +1=0的距离为12, 所以圆O 的半径为⎝⎛⎭⎫122+⎝⎛⎭⎫622=2, 故圆O 的方程为x 2+y 2=2.(2)设直线l 的方程为x a +yb =1(a >0,b >0),即bx +ay -ab =0, 由直线l 与圆O 相切,得|-ab |b 2+a2=2,即1a 2+1b 2=12,则|DE |2=a 2+b 2=2(a 2+b 2)⎝⎛⎭⎫1a 2+1b 2=4+2b 2a 2+2a 2b2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.B 组——大题专攻补短练1.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求. (2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝⎛⎭⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0, 解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3.2.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. 解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0, 所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有 x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D , 所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点, 所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125. 3.在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝⎛⎭⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,x 22+mx 2-2=0可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.4.(2018·广州高中综合测试)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k .当k 1k 2=3时,求k 的取值范围.解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2·(x -1)2+y 2.整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0, 所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为 [-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。

高考直线与圆知识点

高考直线与圆知识点

高考直线与圆知识点直线与圆是高中数学中重要的几何概念之一,也是高考中常考的知识点。

了解直线和圆的性质,能够灵活运用相关定理和公式,对解题和理解几何问题有很大帮助。

本文将介绍高考直线与圆的一些重要知识点,帮助同学们更好地掌握相关内容。

一、直线的斜率直线的斜率是指直线在平面直角坐标系中与$x$轴正方向夹角的正切值。

设直线L的斜率为$k$,则有斜率公式:\[k = \tan \theta = \dfrac{y_2 - y_1}{x_2 - x_1}\]其中$(x_1, y_1)$和$(x_2, y_2)$为直线上的两个点。

直线的斜率决定了其在平面直角坐标系中的倾斜程度。

二、直线的方程直线的方程可以由直线上的一点和其斜率求得。

直线的一般方程形式为$Ax + By + C = 0$,其中$A$、$B$、$C$为常数。

而直线的斜截式方程为$y = kx + b$,其中$k$为斜率,$b$为截距。

根据已知信息,可以通过这两种形式的方程来确定直线的位置和性质。

三、圆的方程圆的方程可以用不同的方式表示。

设圆的圆心坐标为$(a, b)$,半径为$r$,则有以下三种常见的圆的方程形式:标准方程、一般方程和截距方程。

1. 标准方程:$(x-a)^2 + (y-b)^2 = r^2$2. 一般方程:$x^2 + y^2 + Dx + Ey + F = 0$,其中$D$、$E$、$F$为常数。

3. 截距方程:$\left(\dfrac{x}{a}\right)^2 + \left(\dfrac{y}{b}\right)^2 = 1$,其中$a$、$b$分别是$x$轴和$y$轴上的截距。

四、直线与圆的位置关系1. 直线与圆的位置关系主要有以下三种情况:- 直线与圆相离,即直线不交圆。

- 直线与圆相切,即直线与圆只有一个交点。

- 直线与圆相交,即直线与圆有两个交点。

2. 判断直线和圆的位置关系的方法有很多,常用的是判别式法和距离关系法。

北京高三(期末)理数】8.直线与圆

北京高三(期末)理数】8.直线与圆

【解析分类汇编系列一:北京2013高三期末】:8直线与圆一、选择题1.(北京市房山区2013届高三上学期期末考试数学理试题 )已知圆22:21C x y x +-=,直线:(1)1l y k x =-+,则与C 的位置关系是 ( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心【答案】C 圆的标准方程为22(1)2x y -+=,圆心为(1,0),半径为2。

直线恒过定点(1,1),圆心到定点(1,1)的距离12d =<,所以定点(1,1)在圆内,所以直线和圆相交.定点(1,1)和圆心(1,0)都在直线1x =上,且直线的斜率k 存在,所以直线一定不过圆心,选C.二、填空题2 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知圆C :22680x y x +-+=,则圆心C 的坐标为 ;若直线y kx =与圆C 相切,且切点在第四象限,则k = .【答案】(3,0) 24- 【解析】圆的标准方程为22(3)1x y -+=,所以圆心坐标为(3,0),半径为1。

要使直线y kx =与圆C 相切,且切点在第四象限,所以有0k <。

圆心到直线0kx y -=的距离为2311k k =+,即218k =,所以24k =-。

3 .(北京市丰台区2013届高三上学期期末考试数学理试题 )12,l l 是分别经过A (1,1),B(0,1)两点的两条平行直线,当12,l l 间的距离最大时,直线1l 的方程是 . 【答案】230x y +-=4.(北京市丰台区2013届高三上学期期末考试 数学理试题 )圆22()1x a y -+=与双曲线221x y -=的渐近线相切,则a 的值是 _______. 【答案】【解析】双曲线221x y -=的渐近线为y x =±,不妨取y x =,若直线y x =与圆相切,则有圆心(,0)a 到直线0x y -=的距离1d ==,即a =所以a =5.(北京市昌平区2013届高三上学期期末考试数学理试题 )在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则① 到坐标原点O 的“折线距离"不超过2的点的集合所构成的平面图形面积是_________;② 坐标原点O 与直线20x y --=上任意一点的“折线距离"的最小值是_____________. 【答案】【解析】①根据定义可知,如图:则图象的面积为124282⨯⨯⨯=.②2230x y --=与两坐标轴的交点坐标为(0,23),(3,0)A B -,设(,)P x y ,则223y x =-,所以OP 的折线距离为23d x y x x =+=+-323,0,23,03,323, 3.x x x x x x ⎧-+<⎪⎪=-+≤≤⎨⎪->⎪⎩,作出分段函数的图象如图,由函数的单调性可知当3x =时,函数有最小值为32333d =+-=。

高三总复习直线与圆的方程知识点总结及典型例题(K12教育文档)

高三总复习直线与圆的方程知识点总结及典型例题(K12教育文档)

(完整word版)高三总复习直线与圆的方程知识点总结及典型例题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高三总复习直线与圆的方程知识点总结及典型例题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高三总复习直线与圆的方程知识点总结及典型例题(word版可编辑修改)的全部内容。

直线与圆的方程一、直线的方程1、倾斜角:,范围0≤α<π,若x l //轴或与x 轴重合时,α=00。

2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。

当0≥κ时,α=arctank ,κ<0时,α=π+arctank3、截距(略)曲线过原点⇔横纵截距都为0。

4、直线方程的几种形式几种特殊位置的直线①x 轴:y=0②y 轴:x=0③平行于x 轴:y=b④平行于y 轴:x=a⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。

②任何一个关于x 、y 的二元一次方程都表示一条直线.5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0)特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

高考数学复习备忘录(十)直线和圆

高考数学复习备忘录(十)直线和圆

高考数学备忘录(十)直线和圆【知识要点】1.直线的有关问题(1)直线的斜率公式①已知直线的倾斜角为α(α≠90°),则直线的斜率为k =tan α.倾斜角的范围[)π,0②已知直线过点A (x 1,y 1),B (x 2,y 2)(x 2≠x 1),则直线的斜率为k =y 1-y 2x 1-x 2 (x 2≠x 1). (2)三种距离公式①两点间的距离:若A (x 1,y 1),B (x 2,y 2),则|AB |=(x 2-x 1)2+(y 2-y 1)2.②点到直线的距离:点P (x 0,y 0)到直线Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. ③两平行线的距离:若直线l 1,l 2的方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,则两平行线的距离d =|C 2-C 1|A 2+B 2.(3)直线方程的五种形式①点斜式:y -y 0=k (x -x 0). ②斜截式: y =kx +b .③两点式: y -y 1y 2-y 1=x -x 1x 2-x 1. ④截距式:x a +y b=1 (a ≠0,b ≠0).⑤一般式:Ax +By +C =0(A ,B 不同时为0). (4)直线的两种位置关系①当不重合的两条直线l 1和l 2的斜率存在时:(ⅰ)两直线平行:l 1∥l 2⇔k 1=k 2. (ⅱ)两直线垂直:l 1⊥l 2⇔k 1·k 2=-1.②当两直线方程分别为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0时:(ⅰ)l 1与l 2平行或重合⇔A 1B 2-A 2B 1=0.(ⅱ)l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.圆的有关问题(1)圆的三种方程①圆的标准方程: (x -a )2+(y -b )2=r 2.②圆的一般方程: x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --的圆 ③圆的直径式方程: (x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).(2)判断直线与圆的位置关系的方法①代数方法.(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.②几何方法.(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.(主要掌握几何方法).③直线与圆相交时弦长公式设圆的半径为R ,圆心到弦的距离为d ,则弦长l (在直角三角形用勾股定理解决)(3)两圆圆心距与两圆半径之间的关系与两圆的位置关系设圆O 1半径为r 1,圆O 2半径为r 2.1.知直线纵截距b ,常设其方程为y kx b =+;2.知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);3.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4.过直线l 1:A 1x +B 1y +C 1=0和直线l 2:A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2),求含参直线系过定点问题,可分离参数联立方程组解之。

2011年高考数学第一轮复习各个知识点攻破7-5直线与圆的位置关系.

2011年高考数学第一轮复习各个知识点攻破7-5直线与圆的位置关系.

高三总复习
数学 (大纲版)
高三总复习
数学 (大纲版)
1.直线与圆的位置关系 相离、相交和相切 . (1)直线与圆的位置关系有三种: (2)直线l:Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0) 的位置关系的判定方法有两种:
高三总复习
数学 (大纲版)
①几何方法 直线l与圆M ⇔|MN| = 其中 |MN)
(2)当两圆内切时,因定圆的半径 11小于两圆圆心间距离 5,故只有 61-m- 11=5. 6-3 3 解得 m=25-10 11.因为 kMN= = 4, 5-1 4 所以两圆公切线的斜率是-3. 4 设切线方程为 y=-3x+b,则有 4 |3×1+3-b| 13 5 = 11,解得 b= 3 ± 11. 3 42 (3) +1
|AB|=
.
高三总复习
数学 (大纲版)
2.圆与圆的位置关系的判定
|C1C2|>r1+r2
|C1C2|=r1+r2
⇔⊙C1与⊙C2相离; ⇔⊙C1与⊙C2相切;
|r1-r2|<|C1C2|<r1+r2 ⇔⊙C1与⊙C2相交; |C1C2|=|r1-r2| ⇔⊙C1与⊙C2内切;
|C1C2|<|r1-r2| ⇔⊙C1与⊙C2内含.
答案:B
高三总复习
数学 (大纲版)
高三总复习
数学 (大纲版)
1 . 解决直线与圆或圆与圆的位置关系问题,一般有 两种方法,即几何法和代数法,从运算的合理、简明的要 求选择,通常采用几何法,但代数法具有一般性. 2.数形结合法(如几何法)是解决直线与圆的位置关系 的重要方法. 3.OA⊥OB(O为原点)或 在解决垂直关系中是常用的. = 0可转化为 x1x2 +y1y2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档