2018九江事业单位数量关系解题:与众不同的容斥问题

合集下载

公考容斥问题解题技巧

公考容斥问题解题技巧

公考容斥问题解题技巧
一、理解问题背景
容斥问题在公务员考试中是一种常见的题型,主要考察考生对于集合概念的理解和应用。

在解决这类问题时,首先要明确问题的背景和涉及的集合。

了解题目所给的各个集合的元素以及它们的属性,以便更好地分析问题。

二、识别关键信息
在阅读题目时,要迅速识别出关键信息,尤其是涉及到集合关系和数量关系的语句。

这些信息将有助于确定解题思路和方向,避免在解题过程中出现混乱。

三、使用公式计算
解决容斥问题需要使用到一定的公式进行计算。

考生应熟练掌握基本的公式,如容斥原理公式:∣A∪B∣=∣A∣+∣B∣−∣A∩B∣(∣A∪B∣表示集合A和集合B的并集的元素数量,∣A∣和∣B∣分别表示集合A和集合B的元素数量,∣A∩B∣表示集合A和集合B的交集的元素数量)。

通过合理运用公式,可以快速准确地得出答案。

四、避免重复和遗漏
在解题过程中,要注意避免重复计数和遗漏。

当分析两个集合之间的关系时,要特别小心,确保每个元素只被计算一次,并且所有的元素都被考虑在内。

通过仔细分析集合之间的关系,可以有效地避免重复和遗漏。

五、提高运算速度
在考试中,时间是非常宝贵的。

为了提高解题速度,考生需要熟练掌握各种运算技巧和方法。

通过练习和总结经验,考生可以逐渐提高自己的运算速度,从而在考试中更加从容地应对各种问题。

综上所述,解决公考容斥问题需要考生具备一定的数学基础和逻辑思维能力。

通过理解问题背景、识别关键信息、使用公式计算、避免重复和遗漏以及提高运算速度等技巧,考生可以更加高效地解决这类问题,提高自己的考试成绩。

行测数学运算16种题型之容斥原理问题

行测数学运算16种题型之容斥原理问题

行测数学运算16种题型之容斥原理问题核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:A.22人 B.28人 C.30人 D.36人【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)B∩C=既喜欢看电影又喜欢看戏剧的人(16)A∩B∩C=三种都喜欢看的人(12)A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩CC∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)=148-(100+18+16-12)=26所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C=52-16-26+12=22【例2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22B.18C.28D.26【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22所以,答案为A。

【例3】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人A.57B.73C.130D.69【解析】设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B=A+B-A∪B=130-73=57所以,答案为A。

数量关系容斥问题

数量关系容斥问题

对于容斥问题,解题的关键是首先找到题目中存在的各个集合,然后理清各集合之间的关系,再通过两大核心方法解决,两大核心方法为:
1、将所有区域都变为一层
2、结合文氏图解题
容斥问题考察的题型包括求定值、求极值,求定值通常考察两种题型——两者容斥、三者容斥,接下来中公教育专家进行一一讲解。

一、两者容斥问题
例:大学四年级某班有50名同学,其中奥运会志愿者10人,全运会志愿者17人,30人两种志愿者都不是,则班内是全运会志愿者且奥运会志愿者的同学是多少?
A.6
B.7
C.8
D.9
中公解析:第一步:根据题意画文氏图,描述出题中所涉及到的几个集合之间的容斥关系:
第二步:在集合当中把每一个独立的封闭区间,都用一个单独的字母来表示。

A表示是奥运会自愿者
B表示是全运会志愿者
I表示是全班人数
X表示全运会且奥运会志愿者
Y表示非奥运会且非全运会志愿者
第三步:根据题意建立等量关系,根据把重复数的次数变为只数1次,或者说把重叠的面积变为一层,做到不重不漏的原则。

I=A+B-X+Y,所以X=A+B+Y-I=7(利用尾数法)。

行测数量关系技巧:容斥问题求极值

行测数量关系技巧:容斥问题求极值

行测数量关系技巧:容斥问题求极值在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面为你精心准备了“行测数量关系技巧:容斥问题求极值”,持续关注本站将可以持续获取的考试资讯!行测数量关系技巧:容斥问题求极值对于绝大部分考生而言,行测数量关系一直是比较难的专项,但是要想真正在笔试中遥遥领先数量部分还是要去攻破的。

因此,针对数量所考察的所有题型我们也要由易到难的逐步攻破,在考场考试时学会挑出自己平时擅长的题型先入手。

所以,今天就给大家分享下容斥这一考点。

容斥问题常规的考点有二者容斥和三者容斥问题,利用一些公式以及文氏图能够轻松地解决。

今天我们就把这个题型深入挖掘探讨。

容斥问题也会涉及到求极值的问题,接下来我们就以题目为例讲解下容斥中求极值问题怎么处理。

例题1、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少人?A.165B.203C.267D.199【答案】C。

读完题目我们就能判断出考察容斥问题中的二者容斥问题,但是有涉及到求极值问题。

解极值问题我们可以通过逆向思维来求解,题目要求两种课程都选的至少,即求没选课程的人数最多。

通过这个表格我们可以得出要想不选课程的人数最多,即未选数学的141人和未选文学的92人不重复,因此不选课程的人数最多为141+92,因此题目所求的两种都选的最少=500-(141+92)=267人,故选C。

例题2、阅览室有100本杂志。

小赵借阅过其中75本,小王借阅过70本,小刘借阅过60本,则三人共同借阅过的杂志最少有()本。

A.5B.10C.15D.30【答案】A。

读完题目我们也可以判断出事考察三者容斥中的极值问题,那么我们也可以利用逆向思维来求解,所以我们也能知道未借阅的杂志最多=25+30+40,那么题目所求=100-(25+30+40)=5,因此选A。

通过这2道例题的讲解我们了解到容斥问题的极值问题其实也可以很简单,求N部分都包含的至少=(A+B+C+D+...+N)-(N-1)×I,后期我们碰到这样的问题直接带入公式求解就可以啦。

事业单位考试数量关系:容斥问题

事业单位考试数量关系:容斥问题

容斥问题是考试中比较偏向技巧性和公式性的问题, 大部分同学对容斥问题是比较熟悉的。

但是其中容斥中的极值问题, 确实考试中一个难点和出题的方向。

何为容斥极值问题, 简而言之就是将容斥问题和极值问题结合起来进行考察的题目。

主要包含以下两种:一、公式法求解容斥极值问题, 如果我们求解的是几个集合公共部分的最小值问题, 下面给出了相应的公式, 我们只需要讲数据代入即可。

其中, 公式中的A.B.C.D分别集合,I代表的是全集。

例1、某班30人, 数学22人优秀, 语文25人优秀, 英语20人优秀, 这三科全部优秀的学生至少有多少人?A.7B.6C.5D.4【答案】A。

解析: 根据题意可得全集为30;将数学、语文以及英语分别看成是A.B.C三个集合, 每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人, 即求三个集合相交的最小值, 直接用三集合相交的最小值。

三集合相交的最小值=A+B+C-2*I=22+25+20-2*30=7二、极限思想在容斥极值问题中, 若并非求得是几个集合公共部分的最小值问题, 那就不能直接使用上面的公式解决, 要结合具体题目运用极限思想分析, 下面通过一道例题进行说明:例2参加某部门招聘考试的共有120人, 考试内容共有6道题。

1至6道题分别有86人, 88人, 92人, 76人, 72人和70人答对, 如果答对3道题或3道以上的人员能通过考试, 那么至少有多少人能通过考试?A .72B .61 C.58 D .44【答案】D。

解析: 要使通过的人最少, 那么就是对1道, 2道的人最多, 并且应该是对2道的人最多(这样消耗的总题目数最多), 假设都只对了2道, 那120人总共对了240道, 而现在对了86+88+92+76+72+70=484, 比240多了244道, 每个人还可以多4道(这样总人数最少),244/4=61。

3.一次考试共有五道试题, 做对第1.2、3、4、5题的分别占考试人数的81%、91%、85%、79%、74%, 如果做对三道或三道以上为及格, 那么这次考试的及格率至少是多少?(参考第二题的思想, 一个类型)100-81,91,85,79,74=19+9+15+21+26=90 90/3=30, 100-30=70。

行测技巧:两种方法巧解数量关系“容斥问题”

行测技巧:两种方法巧解数量关系“容斥问题”

⾏测技巧:两种⽅法巧解数量关系“容斥问题” ⾏测数量的运算⼀直是⾏测考试的重点题型,下⾯由店铺⼩编为你精⼼准备了“⾏测技巧:两种⽅法巧解数量关系“容斥问题””,持续关注本站将可以持续获取更多的考试资讯!⾏测技巧:两种⽅法巧解数量关系“容斥问题” 容斥问题其实是⼀种在考试中⽐较常见且简单的题型,它考察的是集合之间彼此的交集问题,⼀般来说解决容斥问题最常⽤的两种⽅法就是⽂⽒图法和公式法。

下⾯⼩编为⼤家讲解。

让我们先从⼀个⽣活上的⼩例⼦来理解什么是容斥:AB是两个同居室友,有⼀天A下班回家时在路上买了⾹蕉、苹果、菠萝三种⽔果,B回家路上买了菠萝、葡萄、西⽠三种⽔果,那么家⾥现在⼀共有多少种⽔果?答案很简单,因为尽管两个⼈各买了三种⽔果,但其中菠萝是重复的,所以我们在3+3之后还需要把多算了⼀遍的菠萝减下去,⽽这就是容斥问题的本质:减去多算的,补上空⽩的。

在⾏测的容斥问题⾥,较常考的是三者容斥,也就是三个集合之间的关系,我们把三个集合分别称作A、B、C,三个集合的总集称作U,就可以得到三者容斥的公式: U=A+B+C-A∩B-B∩C-A∩C+A∩B∩C+三者都没有的 在做题的时候只需要找到题⼲中给定的各个条件,选择直接套⽤,然后就可以求出公式中缺少的项,从⽽快速得到答案。

以⼀道题⽬为例:18名游泳运动员中,有8名参加仰泳,有10名参加蛙泳,有12名参加⾃由泳,有4名既参加仰泳⼜参加蛙泳,有6名既参加蛙泳⼜参加⾃由泳,有5名既参加仰泳⼜参加⾃由泳,有两名这三个项⽬都参加。

三个项⽬都没有参加的有多少名? 在题⽬中,ABC即对应仰泳、蛙泳、⾃由泳,那么A、B、C、A∩B,B∩C,A∩B∩C都是已知的,求都没有参加,即求剩下的项,⾸先,我们先把题⽬中已经给的数据填⼊公式: 18=8+10+12-4-6-2+2+x 在这个⽅程中,我们解得x=1,也就是三个项⽬都没有参加的有⼀个⼈。

⽽公式法虽然简单,但有的时候可能会觉得有些眼花缭乱,这种时候⽂⽒图法就显得更为直观,我们⼀起来感受⼀下⽂⽒图法在题⽬中的应⽤: 按照从内向外依次填充的⽅式,在⽂⽒图中填写不同区域对应的数据,这样题⽬⽆论是求哪个部分,⼜或是其中⼀些部分的和、差关系(⽐如只会游⼀种泳的、只会游两种泳的、只会⾃由泳的⼈⽐只会蛙泳的多多少),我们就都不怕了。

2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理容斥原理问题是公务员考试中一类常考题型,常见的容斥原理问题有三种:两集合容斥原理,三集合容斥原理标准型,三集合容斥原理非标准型。

在审题时大家要牢牢把握住题型的特征:当题目中出现“都满足”,“都不满足”时,就可以归为容斥问题。

河北省考中容斥问题相对来说不是太难,基本上直接套用公式就能解决,属于易于拿分的题型。

下面给大家整理一下容斥原理这三种题型的公式以及用法。

一、两集合容斥原理公式:A+B-AB=总个数- 两者都不满足的个数。

其中A、B分别代表满足不同条件的数量,AB代表两个条件都满足的数量。

【例1】某班有60人,参加物理竞赛的有30人,参加数学竞赛的有32人,两者都没有参加的有20人。

同时参加物理、数学两科竞赛的有多少人?()A.28人B.26人C.24人D.22人D【解析】这是一道两集合的容斥问题。

根据公式:60-20=30+32-两者都参加的人,解得答案为D。

二、三集合容斥原理标准型公式:A+B+C-(AB+BC+AC)+ABC=总个数-都不满足的个数。

其中A、B、C代表满足不同条件的数量,AB、BC、AC代表分别满足其中两个条件的数量,ABC代表三个条件都满足的数量。

【例2】100个学生只有2人没学过外语,学过英语的有40人,学过德语的有45人,学过法语的有43人,学过英语也学过德语的有15人,学过英语也学过法语的有12人,学过法语也学过德语的有10人。

问:三种语言都学过的有多少人?()A.4 B.6C.7 D.5C【解析】运用容斥原理可得:40+45+43-(15+12+10)+三种语言都学过的人数=100-2。

解得三种语言都学过的数量为7,因此,本题答案为C选项。

三、三集合非标准型容斥原理公式:A+B+C-只满足两个条件的数量-2×满足三个条件的数量=总个数-都不满足的个数。

【例3】为丰富职工业余文化生活,某单位组织了合唱、象棋、羽毛球三项活动。

国家公务员考试行测:数量关系容斥问题

国家公务员考试行测:数量关系容斥问题

国家公务员行测考试中会考察到容斥问题,容斥问题的实质就是数数,在数数的时候能准确将题目中所涉及的量明确分类,而且分类的时候不能重复,也不能遗漏。

下面专家为大家讲解容斥问题的几种题型及解题方法,希望能对考生有所帮助。

一、两者容斥问题如上图所示,一个班级的总人数为I人,其中喜欢语文的有A人,喜欢数学的有B人,两者都不喜欢的有Y人,问两者都喜欢的至少有多少人?解析:这个例题很经典,当我们用一般方法去思考时很容易把自己绕进去,所以在这里专家给大家一个很好用的公式,只要把这个模板套进去,式子自然就列出来了,对于这道题,显然题目让求得量是X,那么根据图可得I = A + B - X + Y,在这里要减去X就是因为,A 和B里边都含有X,相加完之后X重复了一次,所以要把多余的这一次减掉,此时,对应着题目所给的量代入,即可求出X的值。

强化练习:电视台向100个人调查昨天收看电视情况,有62人看过一频道,有34人看过六频道,有11个人两个频道都看过,问:两个频道都没有看过的有多少人?A 4B 15C 17D 25解析:这道题和上面讲述的例题一样,只要明白这道题让求得量是Y就可以了,所以直接套公式I = A + B - X + Y,I、A、B、X分别对应100、62、34、11,代入就能求出Y为15,所以答案选B。

二、三者容斥问题如上图所示,这个模型表示的含义是:一个班一共有学生I人,喜欢语文的有A人,喜欢数学的有B人,喜欢英语的有C人,只喜欢语文和数学的有e人,只喜欢语文和英语的有f人,只喜欢数学和英语的有g人,三科都喜欢的有X人,三科都不喜欢的有Y人,对于这个模型可以表示为I = A + B + C - ( e + f + g ) -2X + Y,对于这个式子一定要明白每一个量表示的是什么意思,这样做题的时候就容易知道让我们求得量是谁,到时候直接套公式就行了。

强化练习:某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,其中有89人看过甲片,47人看过乙片,63人看过丙片,24人三部电影全看过,20人一部也没看过,则只看过其中两部电影的人数是( )A 69人B 65人 C57人 D 46人解析:这道题的文法跟例题有一点点出入,但变化不大,在公式I = A + B + C - ( e + f + g ) -2X + Y中, e + f + g作为一个整体来看,表示的量就是只看过两部电影的人数,也就是要求的量,所以直接把题目所给出的量代入即可,所求答案为46人,选D。

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及⽅法 ⼀、知识点 1、集合与元素:把⼀类事物的全体放在⼀起就形成⼀个集合。

每个集合总是由⼀些成员组成的,集合的这些成员,叫做这个集合的元素。

如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。

2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A∪B,记号“∪”读作“并”。

A∪B读作“A 并B”,⽤图表⽰为图中阴影部分表⽰集合A,B的并集A∪B。

例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A∪B={1,2,3,5,6,10} 3、交集:A、B两个集合公共的元素,也就是那些既属于A,⼜属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表⽰: 例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。

4、容斥原理(包含与排除原理): (⽤|A|表⽰集合A中元素的个数,如A={1,2,3},则|A|=3) 原理⼀:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进⾏: 第⼀步:先求出∣A∣+∣B∣(或者说把A,B的⼀切元素都“包含”进来,加在⼀起); 第⼆步:减去∣A∩B∣(即“排除”加了两次的元素) 总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣ 原理⼆:给定三个集合A,B,C。

要计算A∪B∪C中元素的个数,可以分三步进⾏: 第⼀步:先求∣A∣+∣B∣+∣C∣; 第⼆步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣; 第三步:再加上∣A∩B∩C∣。

即有以下公式: ∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣ ⼆、例题分析: 例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求∣A∪B∣。

公考行测数量关系-容斥原理

公考行测数量关系-容斥原理

1、某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。

其中,两项同时不合格的5种,三项同时不合格的2种。

问三项全部合格的食品有多少种:答:本题注意按照不合格得到三个类,进行容斥原理分析,分别设三项全部合格、仅一项不合格的产品有、种,根据题意可得:,,联立解得,,因此三项全部合格的食品有23种。

2、某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个:答:设三种上网方式都使用的客户有x人,根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程1258+1852+932-(352-x)-2x=3542,解得x=148.3、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。

那么,50位游客中有多少位恰好去了两个景点:答:方法一:设去A、C景点的游客有人,根据容斥原理标准公式可得:,可得;因此恰好去了两个景点的有人(可根据尾数法选择)。

方法二:设有名游客恰好去了两个景点,根据容斥原理非标准公式可得:(可根据尾数法选择),可得人。

4、工厂组织工人参加技能培训,参加车工培训的有17人,参加钳工培训的有16人,参加铸工培训的有14人,参加两项及以上培训的人占参加培训总人数的2/3,三项培训都参加的有2人,问总共有多少人参加了培训?答:设参加培训的总人数为n。

根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程17+16+14-(n-2)-2×2=n,解得n=27。

数量关系:轻松识解集合容斥

数量关系:轻松识解集合容斥

数量关系:轻松识解集合容斥
在行测考试的题目当中有一种比较有趣的题型,令考生百思不得其解,那就是容斥问题,如何判断容斥问题的题型?又该如何解决这类题型,本篇带领考生梳理容斥问题的基本知识点。

容斥问题的题型特征:容斥问题即包含与排斥问题,它是一种计数问题。

这类题目题干特点显著:题目中给出多个概念,概念之间有集合关联。

解题原理:把重复数的次数变为只数1次,或者说把重叠的面积变为1层,做到不重不漏。

首先我们先了解容斥问题的核心公式有哪些
两集合标准公式:总数-两个集合都不包含=A+B-A∩B
三集合标准公式:①总数-三个集合都不包含=A+B+C-A∩B-A∩C -B∩C+A∩B∩C
②总数-三个集合都不包含=A+B+C-只包含于两个集合的元素-2×包含于三个集合的元素
下面通过例题来进行熟悉
【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,那么两种实验都做对的有( )。

A.27人
B.25人
C.19人
D.10人
【中公解析】B。

解析:设A={物理实验做正确的学生},B={化学实验做正确的学生}。

根据容斥原理,总数-两个集合都不包含=A+ B-A∩B,代入得50-4=40+31-A∩B,则A∩B=25。

即两种实验都做对的有25人。

数量关系容斥问题公式

数量关系容斥问题公式

数量关系容斥问题公式咱来聊聊数量关系里的容斥问题公式。

先说说啥是容斥问题,简单来讲,就是在一些集合的计算中,要考虑重叠部分,别重复计算也别漏算。

这容斥问题的公式就像是一把神奇的钥匙,能帮咱们打开解决这类问题的大门。

比如说,有个班级组织活动,喜欢语文的有 20 人,喜欢数学的有30 人,既喜欢语文又喜欢数学的有 10 人。

那咱们怎么算这个班级喜欢语文或者数学的总人数呢?这就得用到容斥问题公式啦。

容斥问题的基本公式是:A∪B = A + B - A∩B 。

就拿刚才班级的例子来说,喜欢语文的是 A 集合,有 20 人;喜欢数学的是 B 集合,有30 人;既喜欢语文又喜欢数学的就是A∩B ,有 10 人。

那喜欢语文或者数学的总人数就是 20 + 30 - 10 = 40 人。

再复杂一点的,三个集合的容斥问题公式是:A∪B∪C = A + B + C - A∩B - B∩C - C∩A + A∩B∩C 。

我之前遇到过这么个事儿,学校组织兴趣小组,有绘画组、音乐组和书法组。

参加绘画组的有 50 人,参加音乐组的有 60 人,参加书法组的有 40 人。

同时参加绘画组和音乐组的有 20 人,同时参加绘画组和书法组的有 15 人,同时参加音乐组和书法组的有 10 人,三个组都参加的有5 人。

那这时候,咱们用公式来算算参加兴趣小组的总人数。

绘画组是 A 集合,50 人;音乐组是 B 集合,60 人;书法组是 C 集合,40 人。

A∩B 就是同时参加绘画组和音乐组的 20 人,B∩C 是同时参加音乐组和书法组的 10 人,C∩A 是同时参加绘画组和书法组的 15 人,A∩B∩C 是三个组都参加的 5 人。

代入公式就是:50 + 60 + 40 - 20 - 10 - 15 + 5 = 100(人)所以,参加兴趣小组的总人数就是 100 人。

通过这些例子,是不是觉得容斥问题公式没那么难啦?其实啊,只要多做几道题,多琢磨琢磨,这公式就能被咱们用得得心应手。

2018年国考行测指导:二者容斥问题解题技巧

2018年国考行测指导:二者容斥问题解题技巧

2018年国考行测指导:二者容斥问题解题技巧公务员考试频道为您整理《2018年国考行测指导:二者容斥问题解题技巧》,希望广大考生们都能及时报考2018年国家公务员考试,并好好复习,通过考试!2018年国考行测指导:二者容斥问题解题技巧在我们公务员考试的过程中,容斥问题是行测数量关系中比较常考的一道题。

这类题型总是令很多考生头疼不已,因为容斥问题看起来复杂多变,让考生一时找不到头绪。

但是这类题还是有着非常明显的内在规律,只要大家能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解。

对于二者容斥问题一般可以用文氏图或者直接用公式来解决,下面总结一下二者容斥的公式。

容斥问题是一种计数类问题,在计数的过程中重点是每个部分只能计一次,不能重复,如下图I表示全集也就是总数,A、B表示两个集合,A、B重叠的部分我们叫做集合的交集,用A∩B表示,Y表示在整体中但不在A、B里面的部分,那么全集I就可以表示成A+B-A∩B+Y,这就是二者容斥的简单公式。

【例1】公司某个部门有80%的员工有硕士以上学历,有50%的员工有销售经验,该部门既有硕士以上学历,又有销售经验的员工至少占员工的( )?A 20%B 30%C 40%D 50%【答案】选B【解析】此题考查的是二者容斥极值问题,求两个集合交集的最小值,用两个集合相加减去全集,所求=80%+50%-100%=30%。

【例2】现有50名学生都做物力、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( )A 27人B 25人C 19人D 10人【答案】选B【解析】根据二者容斥的公式直接带入数值,两种实验都做对的=(40+31+4)-50=25。

【例3】体育课上老师要求全班50名同学按顺序报数,报4的倍数的同学向后转,报6的倍数的同学再向后转,那么现在面向老师的有几人( )A 26人B 30人C 34人D 38人【答案】选D【解析】在报数之后面向老师的学生分为两类,一类是报的数字既不是4也不是6的倍数,一类是报的数字既是4也是6的倍数的同学。

国家公务员考试行测容斥问题详解

国家公务员考试行测容斥问题详解

国家公务员考试行测容斥问题详解国家公务员考试行测容斥问题详解:容斥问题容斥问题即包含与排斥问题,它是一种计数问题。

在计数时,几个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分,采用这种计数方法的题型称为容斥问题。

国家公务员考试行测容斥问题详解:题目特点题目中给出多个概念,概念之间存在交叉关系。

国家公务员考试行测容斥问题详解:常考题型1、二者容斥问题公式:覆盖面积=A+B-A与B的交集例1:大学四年级某班有50名同学,其中奥运会志愿者10人,全运会志愿者17人,30人两种志愿者都不是,则班内是全运会志愿者且奥运会志愿者的同学是多少?A.6B.7C.8D.9解析:两个概念分别的奥运会志愿者和全运会志愿者,设班内是全运会志愿者且奥运会志愿者的同学有X人,则有10+17-X+30= 50,所以X=7,即班内是全运会志愿者且奥运会志愿者的同学有7人。

2.三者容斥问题公式:覆盖面积=A+B+C-两者交-2三者交例2:某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影都看过,20人一部也没有看过,则只看过其中两部电影的人数是多少人?A、69B、65C、57D、46解析:三个概念分别是甲片、乙片、丙片,假设只看过其中两部电影的人数有X人,则89+47+63-X-224+20=125.所以X=46.即只看过其中两部电影的人数有46人。

3.容斥极值问题容斥极值最常考的就是容斥交集的最小值,我们可以套用公式解决。

①(AB)=A+B-I (I表示全集)②(ABC)=A+B+C-2I③(ABCD)=A+B+C+D-3I例3:小明、小刚、小红、小英四人一起参加一次英语考试,已知考试共有100道题,且小明做对了79题,小刚做对了88题,小红做对了91题,小英作对了89.问题:①小明和小刚都最对的题目至少有几题?②小明、小刚、小红都最对的题目至少有几题?③小明、小刚、小红、小英四人最对的题目至少有几题?解析:①小明和小刚都最对的题目至少有79+88-100=67人②小明、小刚、小红都最对的题目至少有79+88+91-2100=58人③小明、小刚、小红、小英四人最对的题目至少有79+88+91+89-3100=47人。

数量关系之容斥原理的解题技巧

数量关系之容斥原理的解题技巧

数量关系之容斥原理的解题技巧容斥原理是公务员考试中常考的题型。

我们知道容斥原理包含两集合标准型、三集合标准型和三集合非标准型,主要解题方法是应用公式和文氏图法。

如何判定是标准型还是非标准型呢?什么时候应用公式,什么时候采用文氏图呢?首先,当题目中的公式设计的各个元素都能够找到时,采用公式法;当出现“只一个元素...”时,采用文氏图法;当出现“只两个因素...”时,采用非标准型公式。

以上是关于容斥原理的相关理论知识,下面我们看一下例题,这是2012年春季联考54题。

某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人通过读题,招聘职位有:甲、乙、丙,及各个岗位报名人数,可知这是一个三集合容斥问题,要求的是报乙、丙职位的人数。

三集合标准型公式:总数-都不=符合A的+符合B的+符合C的-符合AB-符合BC-符合AC+符合ABC,设报乙、丙职位的人数为x,将题中信息代入公式,得:42-0=22+16+25-8-6-x+0,解得,x=7。

这是一个比较简单的三集合标准型问题,近两年比较常出现的是三集合非标准型,下面我们看一下例题,2015年国考73题。

某企业调查用户从网络获取信息的习惯,问卷回收率为90%。

调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?( )A.310B. 360C. 390D. 410通过读题,调查对象分为三类:使用搜索引擎获取信息、官方网站获取信息、社交网络获取信息,可知这是一个容斥原理的问题。

值得注意的是,“同时使用这三种方式的有115人,使用其中两种的有24人”,告诉我们“只使用两种的是...”,说明这是三集合非标准型容斥问题。

数量关系解题技巧:容斥原理问题

数量关系解题技巧:容斥原理问题

行测数量关系解题技巧:容斥原理问题【京佳教育】通过对近年来公务员考试和各地市公务员考试行政职业能力测验真题的分析,不难发现,计数性质的试题经常出现在数量关系部分的数学运算中。

而此类试题在运算的过程中又因为容易遗露某个条件而漏计或重复计数出现错误。

今天,京佳教育专家结合具体的试题来和大家一起探讨解决此类试题的方法。

例题:某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。

则三项全部合格的建筑防水卷材产品有多少种?()A. 34B. 35C. 36D. 37为便于解决此类计数问题,不妨先让我们引入小学奥数中经常用到的一个原理,即容斥原理:在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先容纳(计算)进去,然后再把计数时重复计算的数目排斥出去(减去),使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

容斥原理中经常用到的有如下两个公式:两集合的容斥关系公式:A∪B=A+B-A∩B。

如果被计数的事物有A、B两类。

那么所有属于A类或属于B类的元素个数总和=A类元素个数+属于B类元素个数-既属于A类又属于B类的元素个数。

用文氏图表示为:三个集合的容斥关系公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。

如果被计数的事物有A、B、C三类,那么所有属于A类或属于B类或属于C类的元素的个数总数=A 类元素的个数+B类元素的个数+C类元素的个数-既是A类又是B类元素的个数-既是B类又是C类元素的个数-既是A类又是C类元素的个数+同时是A类B类C类元素的个数。

用文氏图表示为:运用上述两个公式需要注意以下情况:这两个公式分别主要针对两种情况:第一个公式是针对涉及到计算两类事物的个数,第二个公式是针对涉及到三类事物的个数。

数量关系容斥问题

数量关系容斥问题

数量关系容斥问题嘿,朋友!咱们今天来聊聊数量关系里的容斥问题。

这容斥问题啊,就像是一个神秘的迷宫,刚开始走进去可能会晕头转向,但只要掌握了诀窍,那就是小菜一碟!你想想看,一群人参加各种活动,有的喜欢这个,有的喜欢那个,还有的啥都喜欢,怎么把他们的情况弄清楚?这就是容斥问题要解决的事儿。

比如说,一个班级里,有喜欢数学的,有喜欢语文的,还有两者都喜欢的。

那怎么算出喜欢至少一科的同学有多少呢?这可不能瞎猜,得有方法。

咱们就拿个简单的例子来讲。

假设一个班有 50 个同学,喜欢数学的有 30 人,喜欢语文的有 25 人,同时喜欢数学和语文的有 10 人。

那只喜欢数学的是不是 30 - 10 = 20 人?只喜欢语文的就是 25 - 10 = 15 人。

所以喜欢至少一科的同学就是 20 + 15 + 10 = 45 人。

这是不是有点像把不同颜色的珠子分类,然后再数数?再复杂点,三个集合的容斥问题。

比如一个学校组织活动,参加唱歌的有 20 人,参加跳舞的有 30 人,参加朗诵的有 15 人,既参加唱歌又参加跳舞的有 8 人,既参加唱歌又参加朗诵的有 5 人,既参加跳舞又参加朗诵的有 3 人,三种都参加的有 2 人。

那参加活动的总人数是多少呢?这就得一步步来,先分别算出只参加一项的人数,再加上参加两项和三项的人数。

只参加唱歌的是 20 - 8 - 5 + 2 = 9 人,只参加跳舞的是30 - 8 - 3 + 2 = 21 人,只参加朗诵的是 15 - 5 - 3 + 2 = 9 人。

所以参加活动的总人数就是 9 + 21 + 9 + 8 + 5 + 3 - 2 = 54 人。

你说这是不是就像把一堆杂乱的拼图一点点拼凑完整?容斥问题看起来挺麻烦,其实只要咱们耐心点儿,细心点儿,多画画图,多列列式子,总能把答案找出来。

总之,数量关系中的容斥问题并不可怕,只要掌握方法,多练习,就能轻松应对!。

数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧

数量关系之三集合容斥问题解题技巧:公式法2011-08-30 09:29 作者:罗姮来源:华图教育分享到: 1在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。

究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。

其实,掌握好公式法对于解决三集合容斥问题很有帮助。

本篇就对三集合容斥问题的解题技巧之公式法进行阐释。

一、三集合标准型公式集合A、B、C,满足标准型公式:三集合标准型公式适用于题目中各类条件都明确给出的情况。

另外,可使用尾数法,判断个位数的相加减快速确定正确答案。

例1、某专业有学生50人,现开设有甲、乙、丙三门选修课。

有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()(2009年浙江公务员考试行测试卷第55题)A、1人B、2人C、3人D、4人答案:B 各类条件明确给出,直接使用公式法。

三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。

例2、如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

问图中阴影部分的面积为多少()?(2009年国家公务员考试行测第116题)A、14B、15C、16D、17答案:C 直接使用三集合标准型公式,=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。

二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。

容斥原理之三者容斥问题

容斥原理之三者容斥问题

容斥原理之三者容斥问题浙江行测答题技巧:容斥原理之三者容斥问题中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。

容斥原理是指在计数时,必须注意无一重复,且无遗漏。

这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人?中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。

三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。

所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。

三者容斥问题有一个基本公式:A,B,C代表三个集合,则有A∪BUC=A+B+C-A∩B-A∩C-B∩C+ A∩B∩C这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即A∩B∩C)这部分被减没了。

而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个A∩B∩C。

例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。

结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。

篮球和排球都喜欢的多少人?中公教育解析:由题意可画图如下:则有上述公式可知:58+68+62-45-33-篮球和排球都喜欢+12=100人故喜欢篮球和排球的人有22人。

例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。

数量关系交集和人数

数量关系交集和人数

数量关系交集和人数
事业单位考试中数量关系题型中的容斥问题是比较常考的的类型题,但是这类题目比较简单,基本上大家学习过理论之后都可以做对,容斥问题在事业单位考试中主要考察两类题型,分别是二者容斥和三者容斥问题,下面分别介绍下这两类题型。

首先二者容斥指的是两个集合的相交问题,如果一个集合记为A,另一个集合为B,两者交集为A∩B,补集为M,A集合和B集合中包含的所有对象记为A∪B,所有对象的集合记全集I,则几者之间的关系一是I=A∪B+M,二是A∪B=A+B-A∩B。

在题目中的如何去应用这两个公式我们可以看下下面的这道题目,例如全班同学接受调查,发现班级中喜欢学习语文的有20人,喜欢学习数学的有30人,两者都喜欢的有10人,两者都不喜欢的有5人,求全班一共多少人?首先这个题目是在求全集,所以可以先把A∪B出来,即
20+30-10=40人,其次全班人数即等于40+5=45人。

这就是一个简单的二者容斥的题目,当然还有一些变形,需要同学多做练习,熟练应用公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018九江事业单位数量关系解题:与众不同的容斥问题
【导读】
中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系解题:与众不同的容斥问题。

容斥问题在平时考试中算得上是一种比较简单的题型了,正因为如此也深受大家的喜爱。

但是,考试如果一味的千篇一律,那也就失去了考试的意义,所以近年来出题人也在不断地寻求变化,而容斥问题其中的一个变化就是与其它题型相结合。

这种变化是很高明,既保留了容斥这个知识点,又提升了题目的难度,把简单的一个容斥知识点变成了与其它考点相结合的综合性题目。

说了这么多,那么具体的考法会是怎么样的呢,大家来看几道例题:
例1.用1-7七个数字进行不能重复的排列,组成一个七位数,但是组合的过程中不能出现142、231 、314这三种连续的组合情况,例如:4567231不可以,则满足条件的七位数有多少个?
A.2379
B.3446
C.4728
D.5038
这道题是容斥问题、排列组合、整除相结合的新型题目,题目有相当的难度,要想答对十分不易:首先,利用排列组合原理,设A1为出现142的排列的全体情况,将142看成一个整体捆绑起来,情况总数=5!,同理A2为出现231的排列的全体情况=5!,A3为出现314的排列的全体情况=5!,A4为出现3142的排列的全体情况=A1∩A3=4!,A5为出现2314的排列的全体情况=A2∩A3=4!。

此时,根据容斥原理,我们用间接法:结果总数-不满足要求的结果数,剩下的就是符合要就的结果数,也就是答案了。

最后的结果=7!-5!-5!-5!+4!+4!=4728。

注意:此计算不可硬算,要运用整除法,计算结果能够被12整除,选项中只有C能被12整除,所以答案为C。

例2.在一次食品竞赛中,每个企业拿出10包零食进行参赛,其中13家企业获得味道好评、7家企业获得外观好评、8家企业获得价钱好评,至少获得两种好评的有6家企业,三种好评均获得的有2家企业,还有一家企业飒羽而归。


果一位小朋友任意在零食堆里拿零食,至少拿多少包才能保证一定有5包零食来自于同一商家?
A.80
B.85
C.90
D.95
本道题目是容斥问题与最不利原则相结合的题目,大家看出来了么?首先,利用容斥原理可得企业总数=13+7+8-4-2×2+1=21。

接下来分析题目,题目想要拿的食品包数尽量少且保证满足条件,符合最不利原则体型,可以在每家企业拿4包产品,最后再加1。

所以答案为21×4+1=85,选择B。

例3.“爱眼”国际机构要到小明所在的学校抽取一些同学进行视力检测,全校200名学生在操场集合报数(1-200),首先报数为3的倍数的同学向后转,接下来报数5、7的倍数的同学依次向后转,此时所有处于向后转状态的同学返回教室,依然留在操场上的同学接受视力检测,则小明被留下做视力检测的概率为多少。

A.5/12
B.21/50
C.7/12
D.29/50
最后看第三题,本道题目是容斥问题、概率问题、最小公倍数相结合的综合性题目。

解析:200以内,3的倍数有66人,5的倍数有40人,7的倍数有28人,既是3又是5的倍数有13人,既是7又是5的倍数有5人,既是3又是7的倍数有9人,同时是3、5、7倍数的有1人。

根据容斥原理,转身三次的1人,最终是处于转身状态;转身两次的=13+5+9-3=24人,相当于没转身,转身一次的=66+40+28-24×2-1×3=83人。

所以此时留在操场上等待检测的同学有
200-83-1=116人。

则小明被留下的概率为116/200=29/50。

经过几道题目的练习相信大家对于容斥问题的这种变化已经有了一定的了
解了,怎么样少年,是不是觉得要学的东西还有很多,加油吧,你的路就在前方!。

相关文档
最新文档