三角形(知识点+题型分类练习+基础检测+能力提高)

合集下载

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)三角形的相关概念考点一【三角形的特性】三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形三角形的高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段三角形的底:这条对边叫做三角形的底用字母A、B、C分别表示三角形的三个顶点,这个三角形可以表示成三角形ABC三角形的性质:①物理特性:三角形具有稳定性(不易变形)②三边的特性:三角形任意两边的和大于第三边知识典例题型一:画出三角形的底边上的高例1:画出下面每个三角形底边上的高。

例2:画三条不同的高1题型二:三角形的内角和例1、王爷爷家的屋顶是一个等腰例2、根据三角形的内角和是180°,三角形(如图),求顶角的度数。

你能求出下面五边形的内角和吗?例3、一个三角形两个内角的度数分别为35°,67°,另一个内角的度数是()°,这是一个()三角形。

例4、在一个直角三角形中,一个锐角是75°,另一个锐角是()。

题型三:等腰三角形和等边三角形的性质例1.一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。

例2.等腰三角形的底角是75°,顶角是(),等边三角形的每个内角都是()。

例3.一个等腰三角形的一边长5厘米,另一边长4厘米,围成这个等腰三角形至少需要()厘米长的绳子。

例4.在一个三角形的三个角中,一个是50度,一个是80度,这个三角形既是()三角形,又是()三角形。

题型四、求出三角形各个角的度数。

40°三角形的分类2考点一【三角形的分类】三角形(按角来分)锐角三角形:三个角都是锐角的三角形直角三角形:有一个角是直角的三角形钝角三角形:有一个角是钝角的三角形三角形(按边来分)三边不等三角形:三条边都不相等等腰三角形:有两条边相等等边三角形(正三角形):三条边都相按照角大小来分:三角形,三角形,三角形。

经典初中数学三角形专题训练及例题解析

经典初中数学三角形专题训练及例题解析

经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。

推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有2)3(-n n 条对角线。

9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。

②多边形的外角和等于360°。

三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。

②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。

(完整版)人教版-八年级上册-三角形的知识点及题型总结

(完整版)人教版-八年级上册-三角形的知识点及题型总结

三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾按序相接所构成的图形。

分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题 1图1中共几个三角形。

例题 2以下说法正确的选项是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题 3 已知a、b、c为△ABC的三边长,b、c知足(b-2)2+|c-3|=0,且 a 为方程 |x -4|=2 的解 .求△ ABC的周长,并判断△ ABC的形状 .二、与三角形相关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。

例题 1以以下各组数据为边长,能够成三角形的是(),4,5,4,8,7,10,4,5例题 2已知三角形的两边边长分别为4、5,则该三角形周长L 的范围是()A.1<L<9B.9<L<14C.10<L<18D.没法确立课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()B. 62、等腰三角形的两边长分别为6、13,则它的周长为。

3、等腰三角形的两边长分别为4、已知三角形的两边长为 2 和4、5,则第三边长为。

4,为了使其周长是最小的整数,则第三边的为。

5、若等腰三角形的周长为13cm,此中一边长为 3cm,则等腰三角形的底边为()D.7cm 或3cm6、依据以下已知条件,能独一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠ A=30°C.∠A=60°,∠ B=45°, AB=4D.∠C=90°, AB=68、用7 根火柴棒首尾按序相连摆成一个三角形,能摆成个不一样的三角形。

四年级三角形题型汇总

四年级三角形题型汇总

四年级三角形题型汇总一、三角形的认识基础题型1. 判断三角形类型(按角分)题目:一个三角形的三个角分别为30°、60°、90°,这个三角形是什么三角形?解析:三角形按角分为锐角三角形(三个角都是锐角,即小于90°)、直角三角形(有一个角是90°)、钝角三角形(有一个角大于90°小于180°)。

在这个三角形中,有一个角是90°,所以它是直角三角形。

2. 判断三角形类型(按边分)题目:一个三角形的三条边分别为3cm、3cm、4cm,这个三角形是什么三角形?解析:三角形按边分有等边三角形(三条边都相等)、等腰三角形(至少有两条边相等)、不等边三角形(三条边都不相等)。

这个三角形有两条边相等,都是3cm,所以它是等腰三角形。

二、三角形的内角和题型1. 已知两个角求第三个角题目:在一个三角形中,已知∠1 = 40°,∠2 = 60°,求∠3的度数。

解析:因为三角形的内角和是180°,所以∠3=180°∠1 ∠2。

即∠3 = 180°-40° 60° = 80°。

2. 根据内角和判断三角形类型(间接)题目:一个三角形的三个角的度数比是1:2:3,这个三角形是什么三角形?解析:设三个角分别为x、2x、3x。

因为三角形内角和为180°,所以x +2x+3x = 180°,6x = 180°,x = 30°。

那么三个角分别为30°、60°、90°,所以这个三角形是直角三角形。

三、三角形的边的关系题型1. 判断三条线段能否组成三角形题目:三条线段的长度分别为2cm、3cm、5cm,能否组成三角形?解析:根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

2 + 3 = 5,不满足两边之和大于第三边,所以这三条线段不能组成三角形。

三角形(知识点+题型分类练习+基础检测+能力提高)

三角形(知识点+题型分类练习+基础检测+能力提高)

三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

原创2023学年三角形中角的关系-八年级数学上册检测

原创2023学年三角形中角的关系-八年级数学上册检测

三角形中角的关系知识要点基础练知识点1 三角形按角的分类1.在△ABC中,∠A比∠B大100°,则△ABC的形状是( C )A.直角三角形B.锐角三角形C.钝角三角形D.无法判断2.一个三角形三个内角的度数之比为3∶4∶5,则这个三角形一定是( A )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形知识点2 三角形的内角和3.如图是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板另外一个角∠C的度数为( B )A.30°B.40°C.50°D.60°4.( 滨州中考 )在△ABC 中,若∠A=30°,∠B=50°,则∠C= 100° .5.一个三角形的三个内角度数的比是2∶3∶4,那么这个三角形是 锐角 三角形.( 填“锐角”“钝角”或“直角” )6.在△ABC 中,∠A-2∠B=20°,∠A+∠B=110°,求∠A,∠B,∠C 的大小. 解:因为∠A-2∠B=20°,∠A+∠B=110°,所以∠A=80°,∠B=30°.在△ABC 中,∠C=180°-∠A-∠B=180°-80°-30°=70°.综合能力提升练7.( 合肥包河区期中 )具备下列条件的△ABC,不是直角三角形的是( B )A.∠A-∠B=∠CB.∠A=∠B=2∠CC.∠A ∶∠B ∶∠C=3∶2∶1D.2∠A=2∠B=∠C8.在△ABC 中,∠A=13∠B=15∠C,则△ABC 是( B )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定9.如图,在△ABC中,∠ABC=∠ACB,P为△ABC内的一点,且∠PBC=∠PCA,∠BPC=110°,则∠A的大小为( A )A.40°B.50°C.60°D.70°【变式拓展】如图,已知∠1=20°,∠2=27°,∠A=52°,则∠BDC的度数是99°.10.已知在△ABC中,∠A+∠B=1∠C,则∠C= 120°.211.如图,在△ABC中,∠A=75°,直线DE分别与边AB,AC交于D,E两点,则∠1+∠2= 255°.12.如图,在△ABC中,∠A=155°,第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA;…,则∠A1= 130°;照此继续,最多能进行 6 步.13.( 合肥庐阳区期末 )在△ABC中,∠A+∠B=∠C,∠B-∠A=30°.( 1 )求∠A,∠B和∠C的度数.( 2 )△ABC按角分类,属于什么三角形?△ABC按边分类,属于什么三角形? 解:( 1 )由题意得∠B=∠A+30°,∠C=∠A+∠B=2∠A+30°.又因为∠A+∠B+∠C=180°,所以∠A+∠A+30°+2∠A+30°=180°,所以∠A=30°,∠B=60°,∠C=90°.( 2 )因为∠C=90°,∠A=30°,∠B=60°,所以△ABC按角分类,属于直角三角形;△ABC按边分类,属于不等边三角形.14.( 教材P70例2变式 )如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.解:因为∠C+∠ABC+∠A=180°,∠C=∠ABC=2∠A,所以5∠A=180°,解得∠A=36°,所以∠C=∠ABC=2∠A=72°.因为BD是AC边上的高,所以∠BDC=90°,所以∠DBC=180°-∠BDC-∠C=180°-90°-72°=18°.15.已知AD与BC相交于点O.( 1 )如图1,试探究∠A+∠B与∠C+∠D的数量关系;( 2 )若∠ABC与∠ADC的平分线相交于点E,如图2,试探究∠A,∠C,∠E之间的数量关系.解:( 1 )在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°.又因为∠AOB=∠COD,所以∠A+∠B=∠C+∠D.( 2 )由( 1 )的结论可知∠A+∠ABE=∠E+∠ADE,∠C+∠CDE=∠E+∠EBC,所以∠A+∠ABE+∠C+∠CDE=∠E+∠ADE+∠E+∠EBC.又因为BE平分∠ABC,DE平分∠ADC,所以∠ABE=∠EBC,∠ADE=∠CDE,所以∠A+∠C=2∠E.拓展探究突破练16.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如三个内角分别为120°,40°,20°的三角形是“智慧三角形”. 如图,∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C.( 1 )∠ABO的度数为30 °,△AOB 是( 填“是”或“不是” )智慧三角形;( 2 )当△ABC为“智慧三角形”时,求∠OAC的度数.解:( 2 )因为△ABC为“智慧三角形”,当点C在线段OB上时,∠ABO=30°,所以∠BAC+∠BCA=150°,∠ACB>60°,∠BAC<90°.①当∠ABC=3∠BAC时,∠BAC=10°,所以∠OAC=80°;②当∠ABC=3∠ACB时,∠ACB=10°,所以此种情况不存在;③当∠BCA=3∠BAC时,∠BAC+3∠BAC=150°,所以∠BAC=37.5°,所以∠OAC=52.5°;④当∠BCA=3∠ABC时,∠BCA=90°,所以∠BAC=60°,所以∠OAC=90°-60°=30°;⑤当∠BAC=3∠ABC时,∠BAC=90°,所以此种情况不成立;⑥当∠BAC=3∠ACB时,3∠ACB+∠ACB=150°,所以∠ACB=37.5°,所以此种情况不存在.综上,当△ABC为“智慧三角形”时,∠OAC的度数为80°或52.5°或30°.。

三角形分类练习题

三角形分类练习题

三角形分类练习题一、选择题1. 一个三角形的三个内角分别为45度、45度和90度,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2. 如果一个三角形的两边长分别为3厘米和4厘米,且第三边长小于7厘米,这个三角形的类型可能是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个三角形的两边长分别为5厘米和7厘米,第三边长为6厘米,这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不规则三角形4. 根据三角形的边长,不能确定三角形类型的是:A. 两边长分别为2厘米和3厘米B. 两边长分别为5厘米和5厘米C. 三边长分别为3厘米、4厘米和5厘米D. 三边长分别为6厘米、8厘米和10厘米5. 一个三角形的三个内角都小于90度,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题6. 在一个三角形中,如果有一个角大于90度,这个三角形被称为_________。

7. 如果一个三角形的两边相等,那么这个三角形被称为_________。

8. 当一个三角形的三边长度相等时,这个三角形被称为_________。

9. 根据三角形的边长关系,如果任意两边之和大于第三边,这个三角形被称为_________。

10. 如果一个三角形的最长边的平方等于另外两边平方和,这个三角形被称为_________。

三、判断题11. 一个三角形的内角和总是等于180度。

()12. 等腰三角形的两个底角相等。

()13. 直角三角形的斜边总是最长的边。

()14. 钝角三角形至少有两个锐角。

()15. 等边三角形的每个内角都是60度。

()四、解答题16. 给定一个三角形ABC,其中∠A=60度,∠B=40度,求∠C的度数。

17. 如果一个三角形的三边长分别为a、b和c,且满足a^2 + b^2 =c^2,这个三角形是什么类型的三角形?18. 一个三角形的两边长分别为10厘米和24厘米,如果这个三角形是直角三角形,求第三边的长度。

四年级数学下册三角形单元知识点归纳梳理及单元测试题

四年级数学下册三角形单元知识点归纳梳理及单元测试题

四年级数学下册三角形单元知识点归纳梳理及试题1、由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

3、每一个三角形都可以画三条高。

锐角三角形的三条高在三角形的里面;直角三角形一条高在里面,两条高在三角形的边上;钝角三角形的一条高在三角形里面,两条高在三角形外面。

底和高是一一对应的。

4、三角形具有稳定性,不易变形。

如自行车的三角架、篮球架、电线杆的支架等。

四边形容易变形。

凳子的腿不稳定后,如何让它不再摇晃?5、两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

6、三角形任意两边的和大于第三边。

(只要两条短边的和大于第三边就可以围成三角形。

三角形两边之差小于第三边。

)7、三角形按角分可以分为锐角三角形、直角三角形和钝角三角形三类。

三个角都是锐角的三角形叫做锐角三角形。

有一个角是直角的三角形叫直角三角形。

(另外两个角必定是锐角)有一个角是钝角的三角形叫钝角三角形。

(另外两个角必定是锐角)每个三角形最少两个锐角,最多有一个直角,最多有一个钝角。

8、直角三角形的斜边大于任意直角边。

9、锐角三角形、直角三角形和钝角三角形至少有两个锐角。

直角三角形会不会有两个直角?钝角三角形会不会有两个钝角?10、等腰三角形和等边三角形的关系。

等腰三角形属于锐角三角形、直角三角形和钝角三角形的哪一种?等边三角形属于哪一种三角形?分别画一个等腰锐角、直角、钝角三角形。

等边三角形是什么三角形?11、等腰三角形的腰和底、顶角和底角关系。

(两腰相等,两底角相等。

)12、一个只露出一个角的三角形,你能猜出它是什么三角形吗?露出的角是锐角、直角、钝角,你能判断出来吗?如果露出两个锐角呢?13、两根小棒分别是4厘米和6厘米,第三根小棒是几厘米时可以围成三角形?(小棒取整厘米数)14、把三角形的三个角撕下来,可以拼成一个平角,这说明了三角形的内角和是180度。

三角形知识清单及练习

三角形知识清单及练习

三角形知识清单1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法。

3、三角形的特性:1、物理特性:稳定性。

如:自行车的三角架,电线杆上的三角架。

4、边的特性:任意两边之和大于第三边。

5、为了表达方便,用字母A 、B 、C 分别表示三角形的三个顶点,三角形可表示成三角形ABC 。

6、三角形的分类:按照角大小来分:⎪⎩⎪⎨⎧是钝角的三角形钝角三角形:有一个角是直角的三角形直角三角形:有一个角是锐角的三角形锐角三角形:三个角都按照边长短来分:⎪⎩⎪⎨⎧三条边不相等的三角形相等的三角形等边三角形:三条边都相等的三角形等腰三角形:有两条边 7、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

8、三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是540° 9、图形的拼组:用任意2个完全一样的三角形一定能拼成一个平行四边形。

10、用2个相同的三角形可以拼成一个平行四边形。

11、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。

图形的面积1找底边所对应的高的方法找平行四边形的底所对应的高的方法:以任意一边为底,从对边的一点到底的垂直线段就是平等四边形的高,平行四边形中高与底是相对应的,有无数条高。

找三角形和梯形的底所对应的高的方法:三角形:可以选三角形的任意一边为底,从底所对应的顶点到底边的垂直线段就是三角形的底所对应的高,三角形有三个底、三条高,底与高是相对应的。

梯形:梯形两底之间的垂直线段就是梯形的高,梯形有无数条高。

2用公式求面积平等四边形的面积=底 高。

用字母公式表示为S=a h或S=ah 三角形的面积=底 高÷2 S=ah÷2形的面积=(上底+下底) 高÷2 S=(a+b) h÷2巩固练习(三角形的特征)一、用心选一选。

三角形基础知识及习题

三角形基础知识及习题

三角形基础知识及习题三角形是几何学中最基本的图形之一,其基础知识对于学习几何学和解决几何问题至关重要。

本文将介绍三角形的基本定义、分类和性质,并提供一些习题供读者练习。

一、三角形的定义和分类1. 定义:三角形是由三条线段(边)所围成的图形。

三角形的三个顶点(角)和三个边缘(边)都相互连接。

2. 分类:根据三个角的大小,三角形可以分为三种类型:a. 锐角三角形:三个角都小于90度。

b. 直角三角形:其中一个角为90度。

c. 钝角三角形:其中一个角大于90度。

二、三角形的性质1. 角度和:三角形的三个角的角度和总是等于180度。

无论三角形是锐角、直角还是钝角三角形,其内角之和都是180度。

2. 边长关系:a. 等边三角形:三个边的长度都相等。

b. 等腰三角形:两个边的长度相等。

c. 直角三角形:满足毕达哥拉斯定理,即两直角边的平方和等于斜边的平方。

3. 角度关系:a. 锐角三角形:三个角都是锐角。

b. 直角三角形:其中一个角是直角。

c. 钝角三角形:其中一个角是钝角。

三、三角形的习题下面是几个关于三角形的习题,供读者练习运用三角形的基础知识与技巧。

1. 题目:已知三角形的两边长分别为5厘米和8厘米,夹角为60度,求第三条边的长度。

解法:利用余弦定理,可以得到第三条边的长度:c^2 = a^2 + b^2 - 2abcosC。

带入数值计算得到c≈7.53厘米。

2. 题目:在直角三角形ABC中,AB = 3厘米,BC = 4厘米,求AC的长度。

解法:根据毕达哥拉斯定理,可以得到AC的长度:AC^2 =AB^2 + BC^2。

带入数值计算得到AC = 5厘米。

3. 题目:已知三角形的两边长分别为6厘米和8厘米,以及夹角为30度,求第三条边的长度。

解法:利用正弦定理,可以得到第三条边的长度:a/sinA = b/sinB = c/sinC。

带入数值计算得到第三条边的长度约为7.61厘米。

4. 题目:在锐角三角形ABC中,AB = 7厘米,BC = 9厘米,夹角为45度,求角度C的大小。

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

四年级三角形的知识点总结及练习题

四年级三角形的知识点总结及练习题

四年级三角形的知识点总结及练习题一、三角形的定义在平面内,由三条不在一条直线上的线段连接成的图形叫做三角形。

二、三角形的分类三角形可以根据边长和角度的不同分为以下几种:1.根据边长分类(1)等边三角形三条边都相等的三角形,也叫正三角形。

(2)等腰三角形至少有两条边相等的三角形,其中相等的两边成为两腰,两腰之间的夹角叫做顶角。

(3)普通三角形三条边都不相等的三角形。

2.根据角度分类(1)锐角三角形三个角都小于90度的三角形。

(2)直角三角形三角形中有一个90度的角,这个角所对的边叫做斜边,另外两个角和边分别叫做直角和直角边。

(3)钝角三角形三个角中有一个角大于90度的三角形。

三、三角形的性质1.角的性质三角形的三个内角一定相加等于180度。

2.边的性质(1)任何一条边都小于其它两边之和。

(2)任何一条边都大于其它两边之差。

(3)两边之和大于第三边。

四、三角形的面积1.海龙公式当已知三角形的三边长a、b、c时,海龙公式计算三角形的面积S:s = (a+b+c)/2S = sqrt(s(s-a)(s-b)(s-c))2.高度公式当已知三角形的底边长b和高度h时,高度公式计算三角形的面积S:S = 1/2 * b * h五、练习题1.判断下列各图形是否为三角形。

image1解答:不是三角形,三条线段不在同一平面内。

2.判断下列各图形是否为等边三角形。

image2解答:不是等边三角形,两边长度不相等。

3.已知三角形的三边长分别为3cm、4cm和5cm,求其面积。

解答:s = (a+b+c)/2 = (3+4+5)/2 = 6S = sqrt(s(s-a)(s-b)(s-c)) = sqrt(632*1) = 3√6 所以该三角形面积为3√6(cm²)。

4.已知三角形的底边长为6cm,高度为4cm,求其面积。

解答: S = 1/2 * b * h = 1/2 * 6 * 4 = 12 所以该三角形面积为12(cm²)。

初二三角形知识点总结和常考题

初二三角形知识点总结和常考题

初二三角形知识点总结和常考题一、三角形的基本概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的边、顶点、内角。

- 组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

3. 三角形的表示方法。

- 三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用符号“Rt△”表示,直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

2. 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另外一边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形)。

三、三角形的三边关系。

1. 定理。

- 三角形两边的和大于第三边。

2. 推论。

- 三角形两边的差小于第三边。

四、三角形的高、中线与角平分线。

1. 高。

- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形的三条高所在直线相交于一点。

2. 中线。

- 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点叫做三角形的重心。

3. 角平分线。

- 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

五、三角形的内角和定理及推论。

1. 内角和定理。

- 三角形三个内角的和等于180°。

2. 推论。

- 直角三角形的两个锐角互余。

- 有两个角互余的三角形是直角三角形。

六、三角形的外角。

1. 定义。

- 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

小学数学三角形的知识点归纳、复习

小学数学三角形的知识点归纳、复习

小学数学三角形的知识点归纳、复习
三角形的定义
三角形是由三条线段组成的图形,它有三个顶点、三条边和三个内角。

三角形的分类
按照角度可分为:锐角三角形、钝角三角形和直角三角形;
按照边长可分为:等边三角形、等腰三角形和普通三角形。

三角形的性质
1. 三角形内角和等于180度;
2. 直角三角形中,勾股定理成立;
3. 等腰三角形中,底角、顶角相等;
4. 等边三角形中,三个角都相等;
5. 在锐角三角形中,较长的一条边所对的角比较短的两条边所对的角大;
6. 在钝角三角形中,较长的一条边所对的角比较短的两条边所
对的角小。

三角形的计算
1. 三角形的面积计算:S = 1/2 * 底边长 * 高;
2. 钝角三角形的中线公式:平行于一边的中线等于该边的一半;
3. 等角三角形中,边长成比例。

小学数学的三角形知识点虽然简单,但要掌握这些知识点需要
多次复习和练习。

只要认真掌握了三角形的基本定义、分类、性质
和计算方法,相信大家都能轻松解决与三角形相关的数学问题。

小学五年级下册数学能力提升三角形的性质

小学五年级下册数学能力提升三角形的性质

小学五年级下册数学能力提升三角形的性质三角形是数学中的重要概念之一,它具有许多独特的性质和特点。

在小学五年级下册的数学学习中,我们将继续学习和提升对三角形性质的理解和应用能力。

本文将依次介绍三角形的定义、分类、角度关系以及周长与面积的计算方法。

一、三角形的定义三角形是由三条边和三个内角构成的闭合图形。

其中,三条边分别命名为边AB、边BC和边CA,三个内角分别称为∠ABC、∠BCA和∠CAB。

二、三角形的分类根据三角形的边长关系,可以将三角形分为以下三种类型:1. 等边三角形:三条边的长度相等,记作∆ABC;2. 等腰三角形:两条边的长度相等,记作∆ABC,其中∠B=∠C;3. 普通三角形:三条边的长度都不相等,记作∆ABC。

三、角度关系1. 内角之和:对于任意一个三角形,其内角之和等于180°。

即∠ABC+∠BCA+∠CAB=180°;2. 外角之和:对于任意一个三角形,其外角之和等于360°。

即∠ABD+∠BCE+∠CAF=360°,其中∠ABD、∠BCE和∠CAF是三角形外角。

四、三角形周长的计算三角形的周长是指三条边的长度之和。

对于一般的三角形,周长的计算公式为:周长 = 边AB + 边BC + 边CA五、三角形面积的计算三角形的面积是指三角形内部所围成的区域的大小。

根据三角形的底和高的关系,可以使用以下公式计算三角形的面积:面积 = 底×高÷2其中,底可以是任意一条边的长度,高是从另外一顶点到底边的垂直距离。

六、三角形性质的应用三角形的性质在实际生活中有广泛的应用,例如:1. 在建筑和工程设计中,需要根据三角形的性质计算房屋的面积、角度和边长等参数;2. 在地理测量和导航领域,需要利用三角形性质来确定地点的坐标和距离;3. 在艺术和设计中,三角形的形状和比例经常被用于构图和布局。

总结:通过学习和提升对三角形性质的理解和应用能力,我们可以更好地解决和应用数学问题。

初二三角形所有知识点总结和常考题提高难题压轴题练习含答案解析

初二三角形所有知识点总结和常考题提高难题压轴题练习含答案解析

初二三角形所有知识点总结和常考题知识点:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.常考题:一.选择题(共13小题)1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°3.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180° D.135°4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米9.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.5411.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°12.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16二.填空题(共13小题)14.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.15.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.若一个多边形内角和等于1260°,则该多边形边数是.19.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是.21.若正多边形的一个内角等于140°,则这个正多边形的边数是.22.在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=度.23.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC 和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.24.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.25.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.26.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.三.解答题(共14小题)27.如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.29.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC 于点F、E,求证:∠CFE=∠CEF.30.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.31.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.32.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.33.如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.34.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=,∠XBC+∠XCB=.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.35.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.36.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.37.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.38.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.39.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.40.将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.初二三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2008?福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.2.(2013?河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.3.(2010?西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180° D.135°【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.4.(2015?长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.5.(2014?达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.6.(2009?荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.7.(2004?陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°【分析】根据垂直的定义和四边形的内角和是360°求得.【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE互为对顶角.8.(2009?黑河)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.9.(2014?临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【分析】利用多边形的内角和公式即可求出答案.【解答】解:n边形的内角和是(n﹣2)?180°,n+1边形的内角和是(n﹣1)?180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)?180°﹣(n﹣2)?180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2015?莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【分析】设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.【解答】解:设这个内角度数为x°,边数为n,∴(n﹣2)×180﹣x=1510,180n=1870+x=1800+(70+x),∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.11.(2011春?滨城区期末)一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)?180°,当边数增加一条就变成n+1,则内角和是(n﹣1)?180°,内角和增加:(n﹣1)?180°﹣(n﹣2)?180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n边形是解题的关键.12.(2012?滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【分析】已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.【解答】解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.【点评】本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.13.(2014?毕节市)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.二.填空题(共13小题)14.(2015?资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)?180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)?180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.(2006?镇江)如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.16.(2014?随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.17.(2013?上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.18.(2013?遂宁)若一个多边形内角和等于1260°,则该多边形边数是9.【分析】根据多边形内角和定理及其公式,即可解答;【解答】解:∵一个多边形内角和等于1260°,∴(n﹣2)×180°=1260°,解得,n=9.故答案为9.【点评】本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式.19.(2015?北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE 的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)?180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(2014?自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)?180°,设这个多边形的边数是n,得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)?180°=3×360°+180°,解得:n=9.则这个多边形的边数是9.故答案为:9.【点评】考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.(2015?徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是9.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.22.(2013?黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=60度.【分析】先整理得到∠A+∠C=2∠B,再利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵∠B﹣∠A=∠C﹣∠B,∴∠A+∠C=2∠B,又∵∠A+∠C+∠B=180°,∴3∠B=180°,∴∠B=60°.故答案为:60.【点评】本题考查了三角形的内角和定理,是基础题,求出∠A+∠C=2∠B是解题的关键.23.(2013?达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.【分析】利用角平分线的性质、三角形外角性质,易证∠A1=∠A,进而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2013=∠A=°.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=m°,∵∠A1=∠A,∠A2=∠A1=∠A,…以此类推∠A2013=∠A=°.故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律.24.(2012春?金台区期末)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于D,DF⊥CE,则∠CDF=74度.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.25.(2006?临安市)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=36度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).26.(2015?河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)?180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.三.解答题(共14小题)27.(2013春?临清市期末)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【分析】先根据三角形的内角和定理求出∠A的度数,再根据三角形外角的性质求出∠BDF的度数.【解答】解:因为∠A+∠B+∠ACB=180°,所以∠A=180°﹣67°﹣74°=39°,所以∠BDF=∠A+∠AED=39°+48°=87°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是外角和内角的关系.28.(2013?湖州校级模拟)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F 交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.【点评】三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.29.(2015秋?全椒县期中)已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.30.(2010春?横峰县校级期末)如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角和,∠BED=∠ABE+∠BAE=75°;(2)三角形高的基本作法:用圆规以一边两端点为圆心,任意长为半径作两段弧,交于角的两边,再以交点为圆心,用交轨法作两段弧,找到两段弧的交点,连接两个交点,并过另一端点作所成直线的平行线,叫该边所在直线一点,连接该点和另一端点,则为高线;(3)我们通过证明不难得出三角形中线将三角形分成面积相等的两个三角形,那么可依据D是BC中点,E是AD中点,求出三角形BED的面积.三角形BDE中,E到BD的距离就是BD边上的高,有了三角形BDE的面积,BD的长也容易求得.那么高就求出来了.【解答】解:(1)∠BED=∠ABE+∠BAE=75°;(2)CH为所求的高.(3)解:如图,过点E作EF⊥BD于点F,∵AD是BC的中线∴BD=CD=S△ACD==×60=30∴S△ABD同理S=S△ABE==×30=15△BED=BD?EF=×5EF=15又∵S△BED∴EF=6即点E到BC边的距离为6.【点评】本题主要考查了基本作图中,三角形高的作法,三角形的内角和外角等知识点.31.(2015春?单县期末)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.【分析】(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;(2)中,根据第(1)小题的思路即可推导这些角之间的关系.【解答】解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=30°,∴∠ADC=65°,∴∠E=25°;(2).设∠B=n°,∠ACB=m°,∵AD平分∠BAC,∴∠1=∠2=∠BAC,∵∠B+∠ACB+∠BAC=180°,∵∠B=n°,∠ACB=m°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠3=∠B+∠1=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠E=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠B).【点评】运用了三角形的内角和定理以及角平分线的定义.特别注意第(2)小题,由于∠B和∠ACB的大小不确定,故表达式应写为两种情况.32.(2010春?朝阳区期末)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.【分析】要求∠EDF的度数,只需求出∠BDE和∠FDC的度数即可,由FD⊥BC,得∠FDC=90°;而∠BDE在Rt△BDE中,故只需求出∠B的度数.因∠B=∠C,只需求出∠C 的度数即可.因∠AFD是△CDF的外角,∠AFD=158°∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°.【解答】解:∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°.【点评】考查三角形内角和定理,外角性质,垂直定义等知识.33.(2014春?岱岳区期末)如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.【分析】(1)由于AD平分∠BAC,根据角平分线的概念可得∠BAD=∠CAD,再根据三角形的一个外角等于和它不相邻的两个内角和,结合已知条件可得∠EAC与∠B相等;(2)若设∠CAD=x°,则∠E=3x°.根据(1)中的结论以及三角形的内角和定理及其推论列方程进行求解即可.【解答】解:(1)相等.理由如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的围方法:第三边长度的围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的心”。

要求会的题型:①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。

三、三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

四、与三角形有关的角1. 三角形的角①三角形的角和定理三角形的角和为180°,与三角形的形状无关。

②直角三角形的两个锐角互余(相加为90°)。

有两个角互余的三角形是直角三角形。

2.三角形的外角①三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

②三角形外角的性质三角形的一个外角等于与它不相邻的两个角之和。

三角形的一个外角大于与它不相邻的任何一个角。

③五个基本图形五、多边形及其角和1. 多边形边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

注:一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为12n(n−3).2. 凸多边形画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

3. 正多边形各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三角相等,则必有三边相等,反过来也成立)要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n(n−3). 将方法:一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为12边数带入公式即可。

4.多边形的角和①n边形的角和定理n边形的角和为(n−2)∙180°②n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

BC 三角形的复习题型分类讲解考点一:三角形三边关系的考查: 【基本应用】1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A. 3cm, 4cm, 8cmB. 8cm, 7cm, 15cmC. 13cm, 12cm, 20cmD. 5cm, 5cm, 11cm 2.(2013•)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4 3.图中共有( )个三角形。

A.5B.6C.7D.84.(2013•地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( )A. 16B.20或16C.20D.12 【能力提高】1.(2013·中考)有3cm ,6cm ,8cm ,9cm 四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为 ( )A.1B.2C.3D.42.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是3.等腰三角形两边长分别为3,7,则它的周长为( )A.13B.17C.13或17D.不能确定4.(2013•)等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A.25 B.25或32 C.32 D.195.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为______________6.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定7.(2012·义乌中考)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 ( )A.2B.3C.4D.88.已知a 、b 、c 是三角形的三边,化简c b -+a -c -b -a .9.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.10.若a,b,c分别为三角形的三边,化简:|a−b−c|+|b−c−a|+|c−a+b|.考点、三角形角的考查【基本应用】1.一个三角形中最多有个角是钝角,最多可有个角是锐角.2.若∠A=50°,∠B=∠C,则∠C=_______3.若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.4.已知△ABC的三个角的度数之比∠A:∠B:∠C=1:3:5,则∠B= 0,∠C= 05.(2010)若一个三角形三个角度数的比为2︰3︰4,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6.在Rt△ABC中,∠C=90°.若∠A=48°,则∠B=_______.7.在Rt△ABC中,∠C=90°,∠A=5∠B,则∠A=_______.8.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为( )A.50° B.75° C.100° D.125°9.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .10.如图,则∠α=_______第9题第10题11.如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.【能力提高】1.如图,∠A=40°,∠1+∠2+∠3+∠4=_______.2.在一个三角形中,有一个角等于另外两个角的和,则这个三角形一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形3.如图,∠A、∠1、∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠14.如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为( )A.130° B.230° C.180° D.310°第1题第3题第4题5.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形6.已知△ABC中,∠A,∠B,∠C的外角度数之比为2∶3∶4,则这个三角形是( )A.直角三角形B.等边三角形 C.钝角三角形 D.等腰三角形7.已知三角形的三个外角的度数比为2∶3∶4,则它的最大角的度数( ).A. 90°B. 110°C. 100°D. 120°8.若一个三角形的一个外角小于与它相邻的角,则这个三角形是( ).A.直角三角形B.锐角三角形C.钝角三角形D.无法确定9.已知等腰三角形的一个外角为150°,则它的底角为_______.10.(2013·中考)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为_______ 11.如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( ) A.50° B.60° C.70° D.80°第10题第11题432110题图CB AD12.如图(4),在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABCS = 42cm ,则S 阴影等于( )A .22cm B. 12cm C. 122cm D. 142cm13.如图(5)在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( ) A. ∠B B. ∠ACD C. ∠BCD D. ∠BDC14.如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.15.如图,已知点P 在△ABC 任一点,试说明∠A 与∠P 的大小关系16.如图,∠1+∠2+∠3+∠4等于多少度;PCBADCBA考点二、三角形中线、角平线、高的考查 【基本应用】1.对下面每个三角形,过顶点A 画出中线,角平分线和高.2.下列说法错误的是( ).A .三角形的三条高一定在三角形部交于一点B .三角形的三条中线一定在三角形部交于一点C .三角形的三条角平分线一定在三角形部交于一点D .三角形的三条高可能相交于外部一点3.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定 【能力提高】1.三角形的下列线段中能将三角形的面积分成相等的两部分是() A.中线 B.角平分线 C.高 D.中位线2.(2012·中考)如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=128°,∠C=36°,则∠DAE 的度数是( )A.10°B.12°C.15°D.18°3.如图,已知在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,若∠BOC =140°,求∠A 的度数.4.如图,在△ABC 中,AD 是∠BAC 的平分线,∠B=54°, ∠C=76(1)求∠ADB 和∠ADC 的度数. (2)若DE ⊥AC,求∠EDC 的度数.(1)CBACBA (2)CBA(3)考点三、多边形相关知识【基本应用】1.如果一个多边形的每一外角都是24°,那么它是______边形.2.正n边形的一个外角的度数为60°,则n的值为______.3.若一个多边形的边数为8条,则这个多边形的角和是( )A.900°B.540°C.1080°D.360°4.(2014·模拟)如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4= ______.5.(2013·)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.多边形每一个角都等于150°,则该多边形的边数是( )A.10条 B.11条 C.12条 D.13条7.一个多边形的角和是720°,这个多边形的边数是( )A.4条B.5条C.6条D.7条8.一个多边形角和是10800,则这个多边形的边数为()A.6B.7C.8D.99.若凸n边形的角和为1260°,则从一个顶点出发引的对角线条数是______.10.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形11.下列正多边中,能铺满地面的是()A.正方形B.正五边形C.等边三角形D. 正六边形12.下列正多边形的组合中,能够铺满地面的是()A.正六边形和正三角形B.正三角形和正方形C.正八边形和正方形D.正五边形和正八边形13.装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

相关文档
最新文档